1
|
Das A, Rajput V, Chowdhury D, Choudhary R, Bodakhe SH. Boron: An intriguing factor in retarding Alzheimer's progression. Neurochem Int 2024; 181:105897. [PMID: 39515586 DOI: 10.1016/j.neuint.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is the fifth most common cause of mortality worldwide and the second most common cause of death in developed countries. The etiology of AD remains poorly understood; however, it is correlated with the accumulation of proteins in the brain, ultimately leading to cellular damage. Multiple factors, including genetic and environmental factors such as chemicals or food, have been linked to protein aggregation and cell death in AD. Boron is a vital micronutrient that is necessary for plant growth and is abundantly present in various fruits and nuts. Prior research has emphasized the importance of boron as a neuroprotective agent and necessary component for the preservation of brain health and function. However, the precise function of boron in the brain remains poorly understood. This review elucidates the molecular role of boron in the brain by examining existing information about its impact on neurodegenerative diseases and may provide a deeper understanding of the etiology of AD and, ultimately, lead to the development of novel approaches for its treatment.
Collapse
Affiliation(s)
- Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Vikas Rajput
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Durlav Chowdhury
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Rajesh Choudhary
- Shri Shankracharya, College of Pharmaceutical Sciences, Bhilai, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India.
| |
Collapse
|
2
|
Li F, Chen Y, Liu X, Tang Y, Dong X, Wei G. Atomistic Insights into A315E Mutation-Enhanced Pathogenicity of TDP-43 Core Fibrils. ACS Chem Neurosci 2022; 13:2743-2754. [PMID: 36053560 DOI: 10.1021/acschemneuro.2c00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) into fibrillary deposits is implicated in amyotrophic lateral sclerosis (ALS), and some hereditary mutations localized in the low complexity domain (LCD) facilitate the formation of pathogenic TDP-43 fibrils. A recent cryo-EM study reported the atomic-level structures of the A315E TDP-43 LCD (residues 288-319, TDP-43288-319) core fibril in which the protofilaments have R-shaped structures and hypothesized that A315E U-shaped protofilaments can readily convert to R-shaped protofilaments compared to the wild-type (WT) ones. There are no atomic structures of WT protofilaments available yet. Herein, we performed extensive all-atom explicit-solvent molecular dynamics simulations on A315E and WT protofilaments starting from both the cryo-EM-determined R-shaped and our constructed U-shaped structures. Our simulations show that WT protofilaments also adopt the R-shaped structures but are less stable than their A315E counterparts. Except for R293-E315 salt bridges, N312-F316 hydrophobic interactions and F316-F316 π-π stacking interactions are also crucial for the stabilization of the neck region of the R-shaped A315E protofilaments. The loss of R293-E315 salt bridges and the weakened interactions of N312-F316 and F316-F316 result in the reduced stability of the R-shaped WT protofilaments. Simulations starting from U-shaped folds reveal that A315E protofilaments can spontaneously convert to the cryo-EM-derived R-shaped protofilaments, whereas WT protofilaments convert to R-shape-like structures with remodeled neck regions. The R-shape-like WT protofilaments could act as intermediate states slowing down the U-to-R transition. This study reveals that A315E mutation can not only enhance the structural stability of the R-shaped TDP-43288-319 protofilaments but also promote the U-to-R transition, which provides atomistic insights into the A315E mutation-enhanced TDP-43 pathogenicity in ALS.
Collapse
Affiliation(s)
- Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Bhattacharya S, Xu L, Thompson D. Characterization of Amyloidogenic Peptide Aggregability in Helical Subspace. Methods Mol Biol 2022; 2340:401-448. [PMID: 35167084 DOI: 10.1007/978-1-0716-1546-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prototypical amyloidogenic peptides amyloid-β (Aβ) and α-synuclein (αS) can undergo helix-helix associations via partially folded helical conformers, which may influence pathological progression to Alzheimer's (AD) and Parkinson's disease (PD), respectively. At the other extreme, stable folded helical conformers have been reported to resist self-assembly and amyloid formation. Experimental characterisation of such disparities in aggregation profiles due to subtle differences in peptide stabilities is precluded by the conformational heterogeneity of helical subspace. The diverse physical models used in molecular simulations allow sampling distinct regions of the phase space and are extensive in capturing the ensemble of rich helical subspace. Robust and powerful computational predictive methods utilizing network theory and free energy mapping can model the origin of helical population shifts in amyloidogenic peptides, which highlight their inherent aggregability. In this chapter, we discuss computational models, methods, design rules, and strategies to identify the driving force behind helical self-assembly and the molecular origin of aggregation resistance in helical intermediates of Aβ42 and αS. By extensive multiscale mapping of intrapeptide interactions, we show that the computational models can capture features that are otherwise imperceptible to experiments. Our models predict that targeting terminal residues may allow modulation and control of initial pathogenic aggregability of amyloidogenic peptides.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
4
|
Ermilova I, Lyubartsev AP. Modelling of interactions between Aβ(25-35) peptide and phospholipid bilayers: effects of cholesterol and lipid saturation. RSC Adv 2020; 10:3902-3915. [PMID: 35492630 PMCID: PMC9048594 DOI: 10.1039/c9ra06424a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022] Open
Abstract
Aggregation of amyloid beta (Aβ) peptides in neuronal membranes is a known promoter of Alzheimer’s disease. To gain insight into the molecular details of Aβ peptide aggregation and its effect on model neuronal membranes, we carried out molecular dynamics simulations of the Aβ(25–35) fragment of the amyloid precursor protein in phospholipid bilayers composed of either fully saturated or highly unsaturated lipids, in the presence or absence of cholesterol. It was found that the peptide does not penetrate through any of the considered membranes, but can reside in the headgroup region and upper part of the lipid tails showing a clear preference to a polyunsaturated cholesterol-free membrane. Due to the ordering and condensing effect upon addition of cholesterol, membranes become more rigid facilitating peptide aggregation on the surface. Except for the case of the cholesterol-free saturated lipid bilayer, the peptides have a small effect on the membrane structure and ordering. It was also found that the most “active” amino-acid for peptide–lipid and peptide–cholesterol interaction is methionine-35, followed by asparagine-27 and serine-26, which form hydrogen bonds between peptides and polar atoms of lipid headgroups. These amino acids are also primarily responsible for peptide aggregation. This work will be relevant for designing strategies to develop drugs to combat Alzheimer’s disease. Molecular dynamics simulations of Aβ(25–35) peptides in phospholipid bilayers are carried out to investigate the effect of polyunsaturated lipids and cholesterol on aggregation of the peptides. ![]()
Collapse
Affiliation(s)
- Inna Ermilova
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm Sweden +46 8161193
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm Sweden +46 8161193
| |
Collapse
|
5
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
6
|
Wang B, Pilkington EH, Sun Y, Davis TP, Ke PC, Ding F. Modulating protein amyloid aggregation with nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2017; 4:1772-1783. [PMID: 29230295 PMCID: PMC5722024 DOI: 10.1039/c7en00436b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Direct exposure or intake of nanopaticles (NPs) to the human body can invoke a series of biological responses, some of which are deleterious, and as such the role of NPs in vivo requires thorough examination. Over the past decade, it has been established that biomolecules such as proteins can bind NPs to form a 'corona', where the structures and dynamics of NP-associated proteins can assign new functionality, systemic distribution and toxicity. However, the behavior and fate of NPs in biological systems are still far from being fully understood. Growing evidence has shown that some natural or artificial NPs could either up- or down-regulate protein amyloid aggregation, which is associated with neurodegenerative diseases like Alzheimer's and Parkinson's diseases, as well as metabolic diseases such as type 2 diabetes. These effects can be either indirect (e.g., through a crowding effect) or direct, depending on the NP composition, size, shape and surface chemistry. However, efforts to design anti-amyloid NPs for biomedical applications have been largely hindered by insufficient understanding of the complex processes, even though proof-of-concept experiments have been conducted. Therefore, exploring the general mechanisms of NP-meditated protein aggregation marks an emerging field in bio-nano research and a new stage of handling nanotechnology that not only aids in elucidating the origin of nanotoxicity, but also provides a foundation for engineering de novo anti-amyloid nanomedicines. In this review, we summarize research on NP-mediated protein amyloid aggregation, with the goal of contributing to sustained nanotechnology and safe nanomedicine against amyloid diseases.
Collapse
Affiliation(s)
- Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| |
Collapse
|
7
|
Gong Y, Zhu Y, Zou Y, Ma B, Nussinov R, Zhang Q. Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity. J Phys Chem B 2017; 121:508-517. [PMID: 28030949 PMCID: PMC6413881 DOI: 10.1021/acs.jpcb.6b11094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
pH is highly regulated in mammalian central nervous systems. Neuronal calcium sensor-1 (NCS-1) can interact with numerous target proteins. Compared to that in the NCS-1 protein of Caenorhabditis elegans, evolution has avoided the placement of histidine residues at positions 102 and 83 in the NCS-1 protein of humans and Xenopus laevis, possibly to decrease the conformational sensitivity to pH gradients in synaptic processes. We used all-atom molecular dynamics simulations to investigate the effects of amino acid substitutions between species on human NCS-1 by substituting Arg102 and Ser83 for histidine at neutral (R102H and S83H) and acidic pHs (R102Hp and S83Hp). Our cumulative 5 μs simulations revealed that the R102H mutation slightly increases the structural flexibility of loop L2 and the R102Hp mutation decreases protein stability. Community network analysis illustrates that the R102H and S83H mutations weaken the interdomain and strengthen the intradomain communications. Secondary structure contents in the S83H and S83Hp mutants are similar to those in the wild type, whereas the global structural stabilities and salt-bridge probabilities decrease. This study highlights the conformational dynamics effects of the R102H and S83H mutations on the local structural flexibility and global stability of NCS-1, whereas protonated histidine decreases the stability of NCS-1. Thus, histidines at positions 102 and 83 may not be compatible with the function of NCS-1 whether in the neutral or protonated state.
Collapse
Affiliation(s)
- Yehong Gong
- College of Physical Education and Training, Shanghai University of Sport, 399 Chang Hai Road, Shanghai, 200438, China
| | - Yuzhen Zhu
- Shanghai Normal University Physical Education College, 100 Gui Lin Road, Shanghai, 200234, China
| | - Yu Zou
- College of Physical Education and Training, Shanghai University of Sport, 399 Chang Hai Road, Shanghai, 200438, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Genetics and Molecular Medicine, Sackler Inst. of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Chang Hai Road, Shanghai, 200438, China
| |
Collapse
|
8
|
Modulation of prion polymerization and toxicity by rationally designed peptidomimetics. Biochem J 2016; 474:123-147. [DOI: 10.1042/bcj20160737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022]
Abstract
Misfolding and aggregation of cellular prion protein is associated with a large array of neurological disorders commonly called the transmissible spongiform encephalopathies. Designing inhibitors against prions has remained a daunting task owing to limited information about mechanism(s) of their pathogenic self-assembly. Here, we explore the anti-prion properties of a combinatorial library of bispidine-based peptidomimetics (BPMs) that conjugate amino acids with hydrophobic and aromatic side chains. Keeping the bispidine unit unaltered, a series of structurally diverse BPMs were synthesized and tested for their prion-modulating properties. Administration of Leu- and Trp-BPMs delayed and completely inhibited the amyloidogenic conversion of human prion protein (HuPrP), respectively. We found that each BPM induced the HuPrP to form unique oligomeric nanostructures differing in their biophysical properties, cellular toxicities and response to conformation-specific antibodies. While Leu-BPMs were found to stabilize the oligomers, Trp-BPMs effected transient oligomerization, resulting in the formation of non-toxic, non-fibrillar aggregates. Yet another aromatic residue, Phe, however, accelerated the aggregation process in HuPrP. Molecular insights obtained through MD (molecular dynamics) simulations suggested that each BPM differently engages a conserved Tyr 169 residue at the α2–β2 loop of HuPrP and affects the stability of α2 and α3 helices. Our results demonstrate that this new class of molecules having chemical scaffolds conjugating hydrophobic/aromatic residues could effectively modulate prion aggregation and toxicity.
Collapse
|
9
|
Smith AK, Lockhart C, Klimov DK. Does Replica Exchange with Solute Tempering Efficiently Sample Aβ Peptide Conformational Ensembles? J Chem Theory Comput 2016; 12:5201-5214. [DOI: 10.1021/acs.jctc.6b00660] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amy K. Smith
- School
of Systems Biology
and Computational Materials Science Center, George Mason University, Manassas, Virginia 20110, United States
| | - Christopher Lockhart
- School
of Systems Biology
and Computational Materials Science Center, George Mason University, Manassas, Virginia 20110, United States
| | - Dmitri K. Klimov
- School
of Systems Biology
and Computational Materials Science Center, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
10
|
Dong M, Paul TJ, Hoffmann Z, Chan K, Hu D, Ai H, Prabhakar R. Structural and Material Properties of Amyloid Aβ40/42Fibrils. Chemphyschem 2016; 17:2558-66. [DOI: 10.1002/cphc.201600256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Mingyan Dong
- School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Thomas J. Paul
- Department of Chemistry; University of Miami; Coral Gables Florida 33146 USA
| | - Zachary Hoffmann
- Department of Chemistry; University of Miami; Coral Gables Florida 33146 USA
| | - Kwaichow Chan
- Department of Natural Science; Albany State University; Albany GA 31705 USA
| | - Dingkun Hu
- School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering; University of Jinan; Jinan 250022 China
| | - Rajeev Prabhakar
- Department of Chemistry; University of Miami; Coral Gables Florida 33146 USA
| |
Collapse
|
11
|
Khatua P, Jose JC, Sengupta N, Bandyopadhyay S. Conformational features of the Aβ42 peptide monomer and its interaction with the surrounding solvent. Phys Chem Chem Phys 2016; 18:30144-30159. [DOI: 10.1039/c6cp04925g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Heterogeneous conformational flexibility of the Aβ monomers has been found to be correlated with the corresponding non-uniform entropy gains.
Collapse
Affiliation(s)
- Prabir Khatua
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Jaya C. Jose
- Physical Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Neelanjana Sengupta
- Department of Biological Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
12
|
Qiao Q, Qi R, Wei G, Huang X. Dynamics of the conformational transitions during the dimerization of an intrinsically disordered peptide: a case study on the human islet amyloid polypeptide fragment. Phys Chem Chem Phys 2016; 18:29892-29904. [DOI: 10.1039/c6cp05590g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dimerization pathways of the human islet amyloid polypeptide fragment are elucidated from extensive molecular dynamics simulations.
Collapse
Affiliation(s)
- Qin Qiao
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)
- University of Science and Technology of China
- Hefei
- China
| | - Ruxi Qi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (MOE)
- and Department of Physics
- Fudan University
- Shanghai
| | - Guanghong Wei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (MOE)
- and Department of Physics
- Fudan University
- Shanghai
| | - Xuhui Huang
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
- Division of Biomedical Engineering
| |
Collapse
|
13
|
Hu YX, Ying YL, Gu Z, Cao C, Yan BY, Wang HF, Long YT. Single molecule study of initial structural features on the amyloidosis process. Chem Commun (Camb) 2016; 52:5542-5. [DOI: 10.1039/c6cc01292b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We employed an α-hemolysin (α-HL) nanopore as a single-molecule tool to investigate the effects of initial structure on the amyloidosis process.
Collapse
Affiliation(s)
- Yong-Xu Hu
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Zhen Gu
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Chan Cao
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Bing-Yong Yan
- School of Information Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Hui-Feng Wang
- School of Information Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
14
|
Tran L, Ha-Duong T. Exploring the Alzheimer amyloid-β peptide conformational ensemble: A review of molecular dynamics approaches. Peptides 2015; 69:86-91. [PMID: 25908410 DOI: 10.1016/j.peptides.2015.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is one of the most common dementia among elderly worldwide. There is no therapeutic drugs until now to treat effectively this disease. One main reason is due to the poorly understood mechanism of Aβ peptide aggregation, which plays a crucial role in the development of Alzheimer's disease. It remains challenging to experimentally or theoretically characterize the secondary and tertiary structures of the Aβ monomer because of its high flexibility and aggregation propensity, and its conformations that lead to the aggregation are not fully identified. In this review, we highlight various structural ensembles of Aβ peptide revealed and characterized by computational approaches in order to find converging structures of Aβ monomer. Understanding how Aβ peptide forms transiently stable structures prior to aggregation will contribute to the design of new therapeutic molecules against the Alzheimer's disease.
Collapse
Affiliation(s)
- Linh Tran
- BioCIS, UMR CNRS 8076, LabEx LERMIT, Faculty of Pharmacy, University Paris Sud, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- BioCIS, UMR CNRS 8076, LabEx LERMIT, Faculty of Pharmacy, University Paris Sud, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
15
|
Nivala J, Mulroney L, Li G, Schreiber J, Akeson M. Discrimination among protein variants using an unfoldase-coupled nanopore. ACS NANO 2014; 8:12365-75. [PMID: 25402970 DOI: 10.1021/nn5049987] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Previously we showed that the protein unfoldase ClpX could facilitate translocation of individual proteins through the α-hemolysin nanopore. This results in ionic current fluctuations that correlate with unfolding and passage of intact protein strands through the pore lumen. It is plausible that this technology could be used to identify protein domains and structural modifications at the single-molecule level that arise from subtle changes in primary amino acid sequence (e.g., point mutations). As a test, we engineered proteins bearing well-characterized domains connected in series along an ∼700 amino acid strand. Point mutations in a titin immunoglobulin domain (titin I27) and point mutations, proteolytic cleavage, and rearrangement of beta-strands in green fluorescent protein (GFP), caused ionic current pattern changes for single strands predicted by bulk phase and force spectroscopy experiments. Among these variants, individual proteins could be classified at 86-99% accuracy using standard machine learning tools. We conclude that a ClpXP-nanopore device can discriminate among distinct protein domains, and that sequence-dependent variations within those domains are detectable.
Collapse
Affiliation(s)
- Jeff Nivala
- Nanopore Group, Department of Biomolecular Engineering, University of California , Santa Cruz, California 95064, United States
| | | | | | | | | |
Collapse
|
16
|
Tsai HHG, Lee JB, Shih YC, Wan L, Shieh FK, Chen CY. Location and Conformation of Amyloid β(25-35) Peptide and its Sequence-Shuffled Peptides within Membranes: Implications for Aggregation and Toxicity in PC12 Cells. ChemMedChem 2014; 9:1002-11. [DOI: 10.1002/cmdc.201400062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Indexed: 12/18/2022]
|
17
|
Molecular Dynamics Studies on Amyloidogenic Proteins. COMPUTATIONAL METHODS TO STUDY THE STRUCTURE AND DYNAMICS OF BIOMOLECULES AND BIOMOLECULAR PROCESSES 2014. [DOI: 10.1007/978-3-642-28554-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Smith MD, Cruz L. Changes to the Structure and Dynamics in Mutations of Aβ21–30 Caused by Ions in Solution. J Phys Chem B 2013; 117:14907-15. [DOI: 10.1021/jp408579v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Micholas Dean Smith
- Department
of Physics, Drexel University, 3141 Chestnut Street, Philadelphia 19104, Pennsylvania, United States
| | - Luis Cruz
- Department
of Physics, Drexel University, 3141 Chestnut Street, Philadelphia 19104, Pennsylvania, United States
| |
Collapse
|
19
|
Qiao Q, Bowman GR, Huang X. Dynamics of an intrinsically disordered protein reveal metastable conformations that potentially seed aggregation. J Am Chem Soc 2013; 135:16092-101. [PMID: 24021023 DOI: 10.1021/ja403147m] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Amyloid fibril deposits of the intrinsically disordered hIAPP peptide are found in 95% of type II diabetes patients, and the aggregation of this peptide is suggested to induce apoptotic cell-death in insulin-producing β-cells. Understanding the structure and dynamics of the hIAPP monomer in solution is thus important for understanding the nucleation of aggregation and the formation of oligomers. In this study, we identify the metastable conformational states of the hIAPP monomer and the dynamics of transitioning between them using Markov state models constructed from extensive molecular dynamics simulations. We show that the overall structure of the hIAPP peptide is random coil-like and lacks a dominant folded structure. Despite this fact, our model reveals a large number of reasonably well-populated metastable conformational states (or local free energy minima) having populations of a few percent or less. The time scales for transitioning between these states range from several microseconds to milliseconds. In contrast to folded proteins, there is no kinetic hub. More strikingly, a few states contain significant amounts of β-hairpin secondary structure and extended hydrophobic surfaces that are exposed to the solvent. We propose that these states may facilitate the nucleation of hIAPP aggregation through a significant component of the conformational selection mechanism, because they may increase their populations upon aggregation by promoting hydrophobic interactions and at the same time provide a flat geometry to seed the ordered β-strand packing of the fibrils.
Collapse
Affiliation(s)
- Qin Qiao
- Bioengineering Graduate Program, Division of Biomedical Engineering, ‡Department of Chemistry, §Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | | | | |
Collapse
|
20
|
GhattyVenkataKrishna PK, Uberbacher EC, Cheng X. Effect of the amyloid β hairpin's structure on the handedness of helices formed by its aggregates. FEBS Lett 2013; 587:2649-55. [PMID: 23845280 DOI: 10.1016/j.febslet.2013.06.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 11/16/2022]
Abstract
Various structural models for amyloid β fibrils have been derived from a variety of experimental techniques. However, these models cannot differentiate between the relative position of the two arms of the β hairpin called the stagger. Amyloid fibrils of various hierarchical levels form left-handed helices composed of β sheets. However it is unclear if positive, negative and zero staggers all form the macroscopic left-handed helices. To address this issue we have conducted extensive molecular dynamics simulations of amyloid β sheets of various staggers and shown that only negative staggers lead to the experimentally observed left-handed helices while positive staggers generate the incorrect right-handed helices. This result suggests that the negative staggers are physiologically relevant structure of the amyloid β fibrils.
Collapse
|
21
|
Role of β-hairpin formation in aggregation: the self-assembly of the amyloid-β(25-35) peptide. Biophys J 2013; 103:576-586. [PMID: 22947874 DOI: 10.1016/j.bpj.2012.06.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 12/28/2022] Open
Abstract
The amyloid-β(25-35) peptide plays a key role in the etiology of Alzheimer's disease due to its extreme toxicity even in the absence of aging. Because of its high tendency to aggregate and its low solubility in water, the structure of this peptide is still unknown. In this work, we sought to understand the early stages of aggregation of the amyloid-β(25-35) peptide by conducting simulations of oligomers ranging from monomers to tetramers. Our simulations show that although the monomer preferentially adopts a β-hairpin conformation, larger aggregates have extended structures, and a clear transition from compact β-hairpin conformations to extended β-strand structures occurs between dimers and trimers. Even though β-hairpins are not present in the final architecture of the fibril, our simulations indicate that they play a critical role in fibril growth. Our simulations also show that β-sheet structures are stabilized when a β-hairpin is present at the edge of the sheet. The binding of the hairpin to the sheet leads to a subsequent destabilization of the hairpin, with part of the hairpin backbone dangling in solution. This free section of the peptide can then recruit an extra monomer from solution, leading to further sheet extension. Our simulations indicate that the peptide must possess sufficient conformational flexibility to switch between a hairpin and an extended conformation in order for β-sheet extension to occur, and offer a rationalization for the experimental observation that overstabilizing a hairpin conformation in the monomeric state (for example, through chemical cross-linking) significantly hampers the fibrillization process.
Collapse
|
22
|
Ozbil M, Barman A, Bora RP, Prabhakar R. Computational Insights into Dynamics of Protein Aggregation and Enzyme-Substrate Interactions. J Phys Chem Lett 2012; 3:3460-3469. [PMID: 26290973 DOI: 10.1021/jz301597k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this Perspective, the roles of protein dynamics have been discussed in the aggregation of amyloid beta (Aβ) peptides and formation of enzyme-substrate complexes of beta-secretase (BACE1) and insulin-degrading enzyme (IDE). The studies regarding the influence of individual amino acid residues and specific regions on the structures and oligomerization of early Aβ aggregates and computations of their translational and rotational diffusion coefficients and order parameters exhibited that even the short-time-scale molecular dynamics simulations can reproduce certain experimental parameters with reasonable accuracy. The simulations elucidating the enzyme-substrate interactions of BACE1 and IDE successfully showed that the chemical nature and length of the substrates influence the dynamics and plasticity of both the enzyme and substrate. An atomic-level understanding of these processes will advance our efforts to develop therapeutic strategies for several deadly diseases through the design of small molecules with antiaggregation properties and substrate-specific "designer" forms of enzymes.
Collapse
Affiliation(s)
- Mehmet Ozbil
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Arghya Barman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Ram Prasad Bora
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
23
|
Li Y, Ji C, Xu W, Zhang JZH. Dynamical stability and assembly cooperativity of β-sheet amyloid oligomers--effect of polarization. J Phys Chem B 2012; 116:13368-73. [PMID: 23101885 DOI: 10.1021/jp3086599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The soluble intermediate oligomers of amyloidogenic proteins are suspected to be more cytotoxic than the mature fibrils in neurodegenerative disorders. Here, the dynamic stability and assembly cooperativity of a model oligomer of human islet amyloid polypeptide (hIAPP) segments were explored by means of all-atom molecular dynamics (MD) simulations under different force fields including AMBER99SB, OPLS, and polarized protein-specific charge (PPC) model. Simulation results show that the dynamic stability of β-sheet oligomers is seriously impacted by electrostatic polarization. Without inclusion of polarization (simulation under standard AMBER and OPLS force field), the β-sheet oligomers are dynamically unstable during MD simulation. For comparison, simulation results under PPC give significantly more stable dynamical structures of the oligomers. Furthermore, calculation of electrostatic interaction energy between the neighboring β strands with an approximate polarizable method produces energetic evidence for cooperative assembly of β-strand oligomers. This result supports a picture of downhill-like cooperative assembly of β strands during fibrillation process. The present study demonstrates the critical role of polarization in dynamic stability and assembly cooperativity of β-sheet-rich amyloid oligomers.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai, China
| | | | | | | |
Collapse
|
24
|
Shanmugam G, Polavarapu PL. Site-specific structure of Aβ(25-35) peptide: isotope-assisted vibrational circular dichroism study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:308-16. [PMID: 22910376 DOI: 10.1016/j.bbapap.2012.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/17/2022]
Abstract
We investigated the site-specific local structure of an amyloid peptide, NH(2)-GSNKGAIIGLM-COOH [Aβ(25-35)], one of the active fragments of amyloid β peptide that is known to be responsible for Alzheimer's disease, in the fibrillar aggregated state. Isotope-assisted infrared vibrational circular dichroism (VCD) and absorption (VA) spectroscopy were used for the parent Aβ(25-35) peptide, along with doubly (13)C labeled peptides at the carbonyl groups of residues 29 (Gly) and 30 (Ala) [Aβ(25-35:(13)C-29/30)] and at the carbonyl groups of residues 33 (Gly) and 34 (Leu) [Aβ(25-35:(13)C-33/34)]. The present results confirm that Aβ(25-35) peptide fibrils adopt a β-sheet structure and isotopic dilution experiments suggest a parallel β-sheet structure. The isotopic shifts suggest that the microenvironment of residues 29 (Gly) and 30 (Ala) could be different from that of residues 33 (Gly) and 34 (Leu). An unusual enhancement for the amide II' VCD intensities of Aβ(25-35:(13)C-29/30) and Aβ(25-35:(13)C-33/34) peptide fibrils, considered to originate from inter-strand coupling, was found for the first time. The structural information reported in this manuscript has important implications in understanding the role of this peptide in the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Ganesh Shanmugam
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
25
|
Cruz L, Rao JS, Teplow DB, Urbanc B. Dynamics of metastable β-hairpin structures in the folding nucleus of amyloid β-protein. J Phys Chem B 2012; 116:6311-25. [PMID: 22587454 PMCID: PMC3394227 DOI: 10.1021/jp301619v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The amyloid β-protein (Aβ), which is present predominately as a 40- or 42-residue peptide, is postulated to play a seminal role in the pathogenesis of Alzheimer's disease (AD). Folding of the Aβ(21-30) decapeptide region is a critical step in the aggregation of Aβ. We report results of constant temperature all-atom molecular dynamics simulations in explicit water of the dynamics of monomeric Aβ(21-30) and its Dutch [Glu22Gln], Arctic [Glu22Gly], and Iowa [Asp23Asn] isoforms that are associated with familial forms of cerebral amyloid angiopathy and AD. The simulations revealed a variety of loop conformers that exhibited a hydrogen bond network involving the Asp23 and Ser26 amino acids. A population of conformers, not part of the loop population, was found to form metastable β-hairpin structures with the highest probability in the Iowa mutant. At least three β-hairpin structures were found that differed in their hydrogen bonding register, average number of backbone hydrogen bonds, and lifetimes. Analysis revealed that the Dutch mutant had the longest β-hairpin lifetime (≥500 ns), closely followed by the Iowa mutant (≈500 ns). Aβ(21-30) and the Arctic mutant had significantly lower lifetimes (≈200 ns). Hydrophobic packing of side chains was responsible for enhanced β-hairpin lifetimes in the Dutch and Iowa mutants, whereas lifetimes in Aβ(21-30) and its Arctic mutant were influenced by the backbone hydrogen bonding. The data suggest that prolonged β-hairpin lifetimes may impact peptide pathogenicity in vivo.
Collapse
Affiliation(s)
- L Cruz
- Department of Physics, 3141 Chestnut Street, Drexel University, Philadelphia, Pennsylvania 19104, United States.
| | | | | | | |
Collapse
|
26
|
Spill YG, Pasquali S, Derreumaux P. Impact of Thermostats on Folding and Aggregation Properties of Peptides Using the Optimized Potential for Efficient Structure Prediction Coarse-Grained Model. J Chem Theory Comput 2011; 7:1502-10. [DOI: 10.1021/ct100619p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yannick G. Spill
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS et Université Paris Diderot (Paris 7), Institut de Biologie Physico Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS et Université Paris Diderot (Paris 7), Institut de Biologie Physico Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS et Université Paris Diderot (Paris 7), Institut de Biologie Physico Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
27
|
Yu X, Wang Q, Zheng J. Structural determination of Abeta25-35 micelles by molecular dynamics simulations. Biophys J 2010; 99:666-74. [PMID: 20643087 DOI: 10.1016/j.bpj.2010.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022] Open
Abstract
Amyloid-beta (Abeta) peptides and other amyloidogenic proteins can form a wide range of soluble oligomers of varied morphologies at the early aggregation stage, and some of these oligomers are biologically relevant to the pathogenesis of Alzheimer's disease. Spherical micelle-like oligomers have been often observed for many different types of amyloids. Here, we report a hybrid computational approach to systematically construct, search, optimize, and rank soluble micelle-like Abeta25-35 structures with different side-chain packings at the atomic level. Simulations reveal for the first time, to our knowledge, that two Abeta micelles with antiparallel peptide organization and distinct surface hydrophobicity display high structural stability. Stable micelles experience a slow secondary structural transition from turn to alpha-helix. Energetic analysis coupled with computational mutagenesis reveals that van der Waals and solvation energies play a more pronounced role in stabilizing the micelles, whereas the electrostatic energies present a stable but minor energetic contribution to peptide assemblies. Modeled Abeta micelles with shapes and dimensions similar to those of experimentally derived spherical structures also provide detailed information about the roles of structural dynamics and transition in the formation of amyloid fibrils. The strong binding affinity of our micelles to antibodies implies that micelles may be a biologically relevant species.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, USA
| | | | | |
Collapse
|
28
|
Kittner M, Knecht V. Disordered versus Fibril-like Amyloid β (25−35) Dimers in Water: Structure and Thermodynamics. J Phys Chem B 2010; 114:15288-95. [DOI: 10.1021/jp1065264] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Madeleine Kittner
- Department of Theory and Bio-Systems, Max-Planck-Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Volker Knecht
- Department of Theory and Bio-Systems, Max-Planck-Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
29
|
Ma B, Nussinov R. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr Opin Chem Biol 2010; 14:652-9. [PMID: 20822947 PMCID: PMC6407632 DOI: 10.1016/j.cbpa.2010.08.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 12/13/2022]
Abstract
Recent data increasingly reveal that conformational dynamics are indispensable to enzyme function throughout the catalytic cycle, in substrate recruiting, chemical transformation, and product release. Conformational transitions may involve conformational selection and induced fit, which can be viewed as a special case in the catalytic network. NMR, X-ray crystallography, single-molecule FRET, and simulations clearly demonstrate that the free enzyme dynamics already encompass all the conformations necessary for substrate binding, preorganization, transition-state stabilization, and product release. Conformational selection and substate population shift at each step of the catalytic turnover can accommodate enzyme specificity and efficiency. Within such a framework, entropy can have a larger role in conformational dynamics than in direct energy transfer in dynamically promoted catalysis.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
30
|
Miller Y, Ma B, Nussinov R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev 2010; 110:4820-38. [PMID: 20402519 PMCID: PMC2920034 DOI: 10.1021/cr900377t] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Ruth Nussinov
- To whom correspondence should be addressed. Tel.: (301) 846-5579. Fax: (301) 846-5598. E-mail:
| |
Collapse
|
31
|
Nagarajan S, Rajadas J, Malar EP. Density functional theory analysis and spectral studies on amyloid peptide Aβ(28–35) and its mutants A30G and A30I. J Struct Biol 2010; 170:439-50. [DOI: 10.1016/j.jsb.2010.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 11/25/2022]
|
32
|
Masman MF, Eisel ULM, Csizmadia IG, Penke B, Enriz RD, Marrink SJ, Luiten PGM. In silico study of full-length amyloid beta 1-42 tri- and penta-oligomers in solution. J Phys Chem B 2010; 113:11710-9. [PMID: 19645414 DOI: 10.1021/jp901057w] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid oligomers are considered to play causal roles in the pathogenesis of amyloid-related degenerative diseases including Alzheimer's disease. Using MD simulation techniques, we explored the contributions of the different structural elements of trimeric and pentameric full-length Abeta1-42 aggregates in solution to their stability and conformational dynamics. We found that our models are stable at a temperature of 310 K, and converge toward an interdigitated side-chain packing for intermolecular contacts within the two beta-sheet regions of the aggregates: beta1 (residues 18-26) and beta2 (residues 31-42). MD simulations reveal that the beta-strand twist is a characteristic element of Abeta-aggregates, permitting a compact, interdigitated packing of side chains from neighboring beta-sheets. The beta2 portion formed a tightly organized beta-helix, whereas the beta1 portion did not show such a firm structural organization, although it maintained its beta-sheet conformation. Our simulations indicate that the hydrophobic core comprising the beta2 portion of the aggregate is a crucial stabilizing element in the Abeta aggregation process. On the basis of these structure-stability findings, the beta2 portion emerges as an optimal target for further antiamyloid drug design.
Collapse
Affiliation(s)
- Marcelo F Masman
- Department of Molecular Neurobiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Tsai HHG, Lee JB, Tseng SS, Pan XA, Shih YC. Folding and membrane insertion of amyloid-beta (25-35) peptide and its mutants: Implications for aggregation and neurotoxicity. Proteins 2010; 78:1909-25. [DOI: 10.1002/prot.22705] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Wei G, Jewett AI, Shea JE. Structural diversity of dimers of the Alzheimer amyloid-β(25–35) peptide and polymorphism of the resulting fibrils. Phys Chem Chem Phys 2010; 12:3622-9. [DOI: 10.1039/c000755m] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Fu Z, Luo Y, Derreumaux P, Wei G. Induced beta-barrel formation of the Alzheimer's Abeta25-35 oligomers on carbon nanotube surfaces: implication for amyloid fibril inhibition. Biophys J 2009; 97:1795-803. [PMID: 19751686 DOI: 10.1016/j.bpj.2009.07.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 11/18/2022] Open
Abstract
Recent experimental studies show that carbon nanotubes impact the aggregation process of proteins associated with neurodegenerative diseases. However, the details of molecular interactions between proteins and carbon nanotubes are still not well understood. In this study, we investigate the initial adsorption features and dynamics of the Alzheimer's amyloid-beta peptide spanning residues 25-35 (Abeta25-35) on a single-walled carbon nanotube (SWNT) surface using fully atomic molecular dynamics simulations (MD) in explicit solvent. The initial configurations of the Abeta25-35 peptides consist of two preformed bilayer beta-sheets, each with four or five beta-strands in parallel or mixed antiparallel-parallel orientations. Our simulations show, for what we believe is the first time, that two disjointed Abeta25-35 beta-sheets with mixed antiparallel-parallel strands can assemble into beta-barrels wrapping the SWNT. In contrast, both simulations of Abeta25-35 without SWNT, and simulations of SWNT-Abeta25-35 with purely parallel beta-strands, lead to disordered aggregates. We find that Abeta25-35 beta-barrel formation involves at least two steps: i), curving of the Abeta25-35 beta-sheets as a result of strong hydrophobic interactions with carbon nanotube concomitantly with dehydration of the SWNT-peptide interface; and ii), intersheet backbone hydrogen bond formation with fluctuating intrasheet hydrogen bonds. Detailed analysis of the conversion shows that beta-barrel formation on SWNT surface results from the interplay of dehydration and peptide-SWNT/peptide-peptide interactions. Implications of our results on amyloid fibril inhibition are discussed.
Collapse
Affiliation(s)
- Zhaoming Fu
- Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
36
|
Polymorphism of Alzheimer's Abeta17-42 (p3) oligomers: the importance of the turn location and its conformation. Biophys J 2009; 97:1168-77. [PMID: 19686665 DOI: 10.1016/j.bpj.2009.05.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 11/21/2022] Open
Abstract
Abeta(17-42) (so-called p3) amyloid is detected in vivo in the brains of individuals with Alzheimer's disease or Down's syndrome. We investigated the polymorphism of Abeta(17-42) oligomers based on experimental data from steady-state NMR measurements, electron microscopy, two-dimensional hydrogen exchange, and mutational studies, using all-atom molecular-dynamics simulation with explicit solvent. We assessed the structural stability and the populations. Our results suggest that conformational differences in the U-turn of Abeta(17-42) lead to polymorphism in beta-sheet registration and retention of an ordered beta-strand organization at the termini. Further, although the parallel Abeta(17-42) oligomer organization is the most stable of the conformers investigated here, different antiparallel Abeta(17-42) organizations are also stable and compete with the parallel architectures, presenting a polymorphic population. In this study we propose that 1), the U-turn conformation is the primary factor leading to polymorphism in the assembly of Abeta(17-42) oligomers, and is also coupled to oligomer growth; and 2), both parallel Abeta(17-42) oligomers and an assembly of Abeta(17-42) oligomers that includes both parallel and antiparallel organizations contribute to amyloid fibril formation. Finally, since a U-turn motif generally appears in amyloids formed by full proteins or long fragments, and since to date these have been shown to exist only in parallel architectures, our results apply to a broad range of oligomers and fibrils.
Collapse
|
37
|
Liu FF, Ji L, Dong XY, Sun Y. Molecular Insight into the Inhibition Effect of Trehalose on the Nucleation and Elongation of Amyloid β-Peptide Oligomers. J Phys Chem B 2009; 113:11320-9. [DOI: 10.1021/jp905580j] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fu-Feng Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Luo Ji
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Yan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
38
|
Viana RJS, Nunes AF, Castro RE, Ramalho RM, Meyerson J, Fossati S, Ghiso J, Rostagno A, Rodrigues CMP. Tauroursodeoxycholic acid prevents E22Q Alzheimer's Abeta toxicity in human cerebral endothelial cells. Cell Mol Life Sci 2009; 66:1094-104. [PMID: 19189048 PMCID: PMC2760857 DOI: 10.1007/s00018-009-8746-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vasculotropic E22Q mutant of the amyloid-beta (Abeta) peptide is associated with hereditary cerebral hemorrhage with amyloidosis Dutch type. The cellular mechanism(s) of toxicity and nature of the AbetaE22Q toxic assemblies are not completely understood. Comparative assessment of structural parameters and cell death mechanisms elicited in primary human cerebral endothelial cells by AbetaE22Q and wild-type Abeta revealed that only AbetaE22Q triggered the Bax mitochondrial pathway of apoptosis. AbetaE22Q neither matched the fast oligomerization kinetics of Abeta42 nor reached its predominant beta-sheet structure, achieving a modest degree of oligomerization with a secondary structure that remained a mixture of beta and random conformations. The endogenous molecule tauroursodeoxycholic acid (TUDCA) was a strong modulator of AbetaE22Q-triggered apoptosis but did not significantly change the secondary structures and fibrillogenic propensities of Abeta peptides. These data dissociate the pro-apoptotic properties of Abeta peptides from their distinct mechanisms of aggregation/fibrillization in vitro, providing new perspectives for modulation of amyloid toxicity.
Collapse
Affiliation(s)
- R. J. S. Viana
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649–019 Portugal
| | - A. F. Nunes
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649–019 Portugal
| | - R. E. Castro
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649–019 Portugal
| | - R. M. Ramalho
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649–019 Portugal
| | - J. Meyerson
- Department of Pathology, New York University School of Medicine, New York, New York USA
| | - S. Fossati
- Department of Pathology, New York University School of Medicine, New York, New York USA
| | - J. Ghiso
- Department of Pathology, New York University School of Medicine, New York, New York USA
- Department of Psychiatry, New York University School of Medicine, New York, New York USA
| | - A. Rostagno
- Department of Pathology, New York University School of Medicine, New York, New York USA
| | - C. M. P. Rodrigues
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, Lisbon, 1649–019 Portugal
| |
Collapse
|
39
|
Hydration effects on the HET-s prion and amyloid-beta fibrillous aggregates, studied with three-dimensional molecular theory of solvation. Biophys J 2008; 95:4540-8. [PMID: 18689456 DOI: 10.1529/biophysj.107.123000] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We study the thermodynamic properties of the experimental fragments of the amyloid fibril made of the HET-s prion proteins (the infectious element of the filamentous fungus Podospora anserina) and of amyloid-beta proteins (the major component of Alzheimer's disease-associated plaques) by using the three-dimensional molecular theory of solvation. The full quantitative picture of hydration effects, including the hydration thermodynamics and hydration structure around the fragments, is presented. For both the complexes, the hydration entropic effects dominate, which results in the entropic part offsetting the unfavorable energetic part of the free energy change upon the association. This is in accord with the fact that the hydrophobic cooperativity plays an essential role in the formation of amyloid fibrils. By calculating the partial molar volume of the proteins, we found that the volume change upon the association in both the systems is large and positive, with the implication that high pressure causes destabilization of the fibril. This observation is in good agreement with the recent experimental results. We also found that both the HET-s and amyloid-beta pentamers have loose intermolecular packing with voids. The three-dimensional molecular theory of solvation predicts that water molecules can be locked in the interior cavities along the fibril axis for both the HET-s and amyloid-beta proteins. We provide a detailed molecular picture of the structural water localized in the interior of the fibrils. Our results suggest that the interior hydration plays an important role in the structural stability of fibrils.
Collapse
|
40
|
Fibrillogenesis in ADan peptides is inhibited by biphenyl ethers. Biochem Biophys Res Commun 2008; 370:681-6. [PMID: 18413138 DOI: 10.1016/j.bbrc.2008.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 04/01/2008] [Indexed: 11/21/2022]
Abstract
In this study, biphenyl ethers of diverse functionality were used to assess their effect on fibrillogenesis of both the oxidized and reduced ADan peptides, in vitro. It was noted that these compounds not only stalled fibrillogenesis but were also able to disrupt pre-formed fibers. The EC(50) values for the inhibition of this process lie in the nanomolar range for 50 microM of peptide concentration, indicating the high potency of these compounds as inhibitors. It was found that these compounds impart to the peptides, an alpha-helical conformation which does not allow them to aggregate and form fibrils. These studies also point out that the transition of peptides through alpha-helical conformation may be a prelude to the onset of fibrillogenesis for oxADan peptides.
Collapse
|
41
|
Giurleo JT, Talaga DS. Global fitting without a global model: regularization based on the continuity of the evolution of parameter distributions. J Chem Phys 2008; 128:114114. [PMID: 18361561 DOI: 10.1063/1.2837293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a new approach to global data fitting based on a regularization condition that invokes continuity in the global data coordinate. Stabilization of the data fitting procedure comes from probabilistic constraint of the global solution to physically reasonable behavior rather than to specific models of the system behavior. This method is applicable to the fitting of many types of spectroscopic data including dynamic light scattering, time-correlated single-photon counting (TCSPC), and circular dichroism. We compare our method to traditional approaches to fitting an inverse Laplace transform by examining the evolution of multiple lifetime components in synthetic TCSPC data. The global regularizer recovers features in the data that are not apparent from traditional fitting. We show how our approach allows one to start from an essentially model-free fit and progress to a specific model by moving from probabilistic to deterministic constraints in both Laplace transformed and nontransformed coordinates.
Collapse
Affiliation(s)
- Jason T Giurleo
- Department of Chemistry and Chemical Biology and BIOMAPS Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
42
|
Nagarajan S, Ramalingam K, Neelakanta Reddy P, Cereghetti DM, Padma Malar EJ, Rajadas J. Lipid-induced conformational transition of the amyloid core fragment Abeta(28-35) and its A30G and A30I mutants. FEBS J 2008; 275:2415-27. [PMID: 18422968 DOI: 10.1111/j.1742-4658.2008.06378.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of the beta-amyloid peptide (Abeta) with neuronal membranes could play a key role in the pathogenesis of Alzheimer's disease. Recent studies have focused on the interactions of Abeta oligomers to explain the neuronal toxicity accompanying Alzheimer's disease. In our study, we have investigated the role of lipid interactions with soluble Abeta(28-35) (wild-type) and its mutants A30G and A30I in their aggregation and conformational preferences. CD and Trp fluorescence spectroscopic studies indicated that, immediately on dissolution, these peptides adopted a random coil structure. Upon addition of negatively charged 1,2-dipalmitoyl-syn-glycero-3-phospho-rac-(glycerol) sodium salt (PG) lipid, the wild-type and A30I mutant underwent reorganization into a predominant beta-sheet structure. However, no conformational changes were observed in the A30G mutant on interaction with PG. In contrast, the presence of zwitterionic 1,2-dipalmitoyl-syn-glycero-3-phosphatidylcholine (PC) lipid had no effect on the conformation of these three peptides. These observations were also confirmed with atomic force microscopy and the thioflavin-T assay. In the presence of PG vesicles, both the wild-type and A30I mutant formed fibrillar structures within 2 days of incubation in NaCl/P(i), but not in their absence. Again, no oligomerization was observed with PC vesicles. The Trp studies also revealed that both ends of the three peptides are not buried deep in the vesicle membrane. Furthermore, fluorescence spectroscopy using the environment-sensitive probe 1,6-diphenyl-1,3,5-hexatriene showed an increase in the membrane fluidity upon exposure of the vesicles to the peptides. The latter effect may result from the lipid head group interactions with the peptides. Fluorescence resonance energy transfer experiments revealed that these peptides undergo a random coil-to-sheet conversion in solution on aging and that this process is accelerated by negatively charged lipid vesicles. These results indicate that aggregation depends on hydrophobicity and propensity to form beta-sheets of the amyloid peptide, and thus offer new insights into the mechanism of amyloid neurodegenerative disease.
Collapse
Affiliation(s)
- Sureshbabu Nagarajan
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Amyloid fibrils are structures consisting of many proteins with a well-defined conformation. The formation of these fibrils has been the subject of intense research, largely due to their connection to several diseases. We focus here on the computational studies and discuss these from a free-energy point of view. The fibrillogenic properties of many proteins can be predicted and understood by taking the relevant free energies into account in an appropriate way. This is because both the equilibrium and the kinetic properties of the protein system depend on its free-energy landscape. Advanced simulation techniques can be used to understand the relationship between the free-energy landscape of a protein and its three-dimensional structure and propensity to form amyloid fibrils. We give an overview of existing simulation techniques that operate at a molecular level of detail and that are capable of generating relevant free-energy values. The free energies obtained with these methods can be inserted into a statistical-mechanical or kinetic framework to predict mean fibril properties on length scales and time scales that are inaccessible by molecular-scale simulation methods.
Collapse
Affiliation(s)
- Maarten G Wolf
- DelftChemTech, Delft University of Technology, Delft, The Netherlands
| | | | | |
Collapse
|
44
|
Bellesia G, Lampoudi S, Shea JE. Computational methods in nanostructure design: replica exchange simulations of self-assembling peptides. Methods Mol Biol 2008; 474:133-151. [PMID: 19031065 DOI: 10.1007/978-1-59745-480-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Self-assembling peptides can serve as building blocks for novel biomaterials. Replica exchange molecular dynamics simulations are a powerful means to probe the conformational space of these peptides. We discuss the theoretical foundations of this enhanced sampling method and its use in biomolecular simulations. We then apply this method to determine the monomeric conformations of the Alzheimer amyloid-beta(12-28) peptide that can serve as initiation sites for aggregation.
Collapse
Affiliation(s)
- Giovanni Bellesia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | | | | |
Collapse
|
45
|
Choi MM, Kim EA, Hahn HG, Nam KD, Yang SJ, Choi SY, Kim TU, Cho SW, Huh JW. Protective effect of benzothiazole derivative KHG21834 on amyloid β-induced neurotoxicity in PC12 cells and cortical and mesencephalic neurons. Toxicology 2007; 239:156-66. [PMID: 17714846 DOI: 10.1016/j.tox.2007.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/01/2007] [Accepted: 07/02/2007] [Indexed: 01/09/2023]
Abstract
We have investigated the effect of KHG21834, a benzothiazole derivative, on the amyloid beta protein (Abeta)-induced cell death in rat pheochromocytoma (PC12) cells and rat cortical and mesencephalic neuron-glia cultures. KHG21834 attenuated the Abeta(25-35)-induced apoptotic death in PC12 cells determined by characteristic morphological alterations and positive in situ terminal end-labeling (TUNEL). In the cortical neuron-glia cultures, KHG21834 reduced the Abeta(25-35)-induced apoptosis determined by TUNEL staining. Immunocytochemical analysis and Western blot analysis of Abeta(25-35)-induced neurotoxicity in mesencephalic neuron-glia cultures with anti-tyrosine hydroxylase (TH) antibody showed that Abeta(25-35) decreased the expression of TH protein by 60% and KHG21834 significantly attenuated the Abeta(25-35)-induced reduction in the expression of TH. Moreover, KHG21834 attenuates Abeta(25-35)-induced toxicity concomitant with the reduction of activation of extracellular signal-regulated kinase (ERK)1/2 to a lesser extent. ERK1 was more sensitively affected than ERK2 in attenuation of Abeta(25-35)-induced phosphorylation by KHG21834. These results demonstrated that KHG21834 was capable of protecting neuronal cells from Abeta(25-35)-induced degeneration.
Collapse
Affiliation(s)
- Myung-Min Choi
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Legge FS, Treutlein H, Howlett GJ, Yarovsky I. Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II. Biophys Chem 2007; 130:102-13. [PMID: 17825978 DOI: 10.1016/j.bpc.2007.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 01/17/2023]
Abstract
The pathway to amyloid fibril formation in proteins involves specific structural changes leading to the combination of misfolded intermediates into oligomeric assemblies. Recent NMR studies showed the presence of "turns" in amyloid peptides, indicating that turn formation may play an important role in the nucleation of the intramolecular folding and possible assembly of amyloid. Fully solvated all-atom molecular dynamics simulations were used to study the structure and dynamics of the apolipoprotein C-II peptide 56 to 76, associated with the formation of amyloid fibrils. The peptide populated an ensemble of turn structures, stabilized by hydrogen bonds and hydrophobic interactions enabling the formation of a strong hydrophobic core which may provide the conditions required to initiate aggregation. Two competing mechanisms discussed in the literature were observed. This has implications in understanding the mechanism of amyloid formation in not only apoC-II and its fragments, but also in other amyloidogenic peptides.
Collapse
Affiliation(s)
- F Sue Legge
- Applied Physics, School of Applied Sciences, RMIT University, GPO Box 2476V Melbourne, Victoria, 3001, Australia
| | | | | | | |
Collapse
|
47
|
Colombo G, Soto P, Gazit E. Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. Trends Biotechnol 2007; 25:211-8. [PMID: 17379339 DOI: 10.1016/j.tibtech.2007.03.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/09/2007] [Indexed: 12/26/2022]
Abstract
Self-assembly at the nanoscale is becoming increasingly important for the fabrication of novel supramolecular structures, with applications in the fields of nanobiotechnology and nanomedicine. Peptides represent the most favorable building blocks for the design and synthesis of nanostructures because they offer a great diversity of chemical and physical properties, they can be synthesized in large amounts, and can be modified and decorated with functional elements, which can be used in diverse applications. In this article, we review some of the most recent experimental advances in the use of nanoscale self-assembled peptide structures and the theoretical efforts aimed at understanding the microscopic determinants of their formation, stability and conformational properties. The combination of experimental observations and theoretical advances will be fundamental to fully realizing the biotechnological potential of peptide self-organization.
Collapse
Affiliation(s)
- Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, 20131 Milano, Italy.
| | | | | |
Collapse
|
48
|
Buchete NV, Hummer G. Structure and dynamics of parallel beta-sheets, hydrophobic core, and loops in Alzheimer's A beta fibrils. Biophys J 2007; 92:3032-9. [PMID: 17293399 PMCID: PMC1852365 DOI: 10.1529/biophysj.106.100404] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We explore the relative contributions of different structural elements to the stability of Abeta fibrils by molecular-dynamics simulations performed over a broad range of temperatures (298 K to 398 K). Our fibril structures are based on solid-state nuclear magnetic resonance experiments of Abeta(1-40) peptides, with sheets of parallel beta-strands connected by loops and stabilized by interior salt bridges. We consider models with different interpeptide interfaces, and different staggering of the N- and C-terminal beta-strands along the fibril axis. Multiple 10-20 ns molecular-dynamics simulations show that fibril segments with 12 peptides are stable at ambient temperature. The different models converge toward an interdigitated side-chain packing, and present water channels solvating the interior D23/K28 salt bridges. At elevated temperatures, we observe the early phases of fibril dissociation as a loss of order in the hydrophilic loops connecting the two beta-strands, and in the solvent-exposed N-terminal beta-sheets. As the most dramatic structural change, we observe collective sliding of the N- and C-terminal beta-sheets on top of each other. The interior C-terminal beta-sheets in the hydrophobic core remain largely intact, indicating that their formation and stability is crucial to the dissociation/elongation and stability of Abeta fibrils.
Collapse
Affiliation(s)
- Nicolae-Viorel Buchete
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| | | |
Collapse
|
49
|
Baumketner A, Shea JE. The Structure of the Alzheimer Amyloid β 10-35 Peptide Probed through Replica-Exchange Molecular Dynamics Simulations in Explicit Solvent. J Mol Biol 2007; 366:275-85. [PMID: 17166516 DOI: 10.1016/j.jmb.2006.11.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 10/29/2006] [Accepted: 11/03/2006] [Indexed: 11/28/2022]
Abstract
The conformational states sampled by the Alzheimer amyloid beta (10-35) (Abeta 10-35) peptide were probed using replica-exchange molecular dynamics (REMD) simulations in explicit solvent. The Abeta 10-35 peptide is a fragment of the full-length Abeta 40/42 peptide that possesses many of the amyloidogenic properties of its full-length counterpart. Under physiological temperature and pressure, our simulations reveal that the Abeta 10-35 peptide does not possess a single unique folded state. Rather, this peptide exists as a mixture of collapsed globular states that remain in rapid dynamic equilibrium with each other. This conformational ensemble is dominated by random coil and bend structures with insignificant presence of an alpha-helical or beta-sheet structure. The 3D structure of Abeta 10-35 is seen to be defined by a salt bridge formed between the side-chains of K28 and D23. This salt bridge is also observed in Abeta fibrils and our simulations suggest that monomeric conformations of Abeta 10-35 contain pre-folded structural motifs that promote rapid aggregation of this peptide.
Collapse
Affiliation(s)
- Andrij Baumketner
- Department of Physics and Optical Science, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | | |
Collapse
|
50
|
Abstract
Familial Danish dementia is a neurodegenerative disease which is a consequence of alterations in the BRI gene. The pathological signatures of the disease are cerebral amyloidolysis, parenchymal protein deposits and neuronal degeneration. Synthetic Danish dementia (ADan) peptides are capable of forming fibrillar assemblies in vitro at pH 4.8. However, the morphology of the aggregates formed depends greatly on the form of the peptides (oxidized or reduced). In addition to long slender assemblies (2-5 nm in diameter and several micrometers in length) we report ring-like or annular masses (8-9 nm in diameter and 1-2 mm in perimeter) in the case of the oxidized form of the peptides. The reduced forms mainly aggregate to produce granular heaps. The biophysical and kinetic characterization of the process of aggregation was carried out using different spectroscopic and imaging techniques. Neurotoxicity assays performed on both the forms reveal that the toxicity bears proportionality with the aggregate size.
Collapse
Affiliation(s)
- Ira Surolia
- National Institute of Nutrition, Hyderabad, India
| | | | | |
Collapse
|