1
|
Sun W, Li Y, Jin X, Liu X, Li H, Bian J, Li L, Hu J, Huo J, Sun Z, Wang H, Li M, Fu C, Zhu X. IgG-Associated Hypocomplementemia in Neonatal Lupus: A Retrospective Multicenter Study. J Inflamm Res 2025; 18:3419-3429. [PMID: 40093954 PMCID: PMC11910033 DOI: 10.2147/jir.s510816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background Hypocomplementemia, defined as a complement C3 or C4 level below the normal lower limit, is strongly associated with an unfavorable prognosis in patients with autoimmune diseases. This study aimed to explore the clinical features and outcomes of patients with neonatal systemic lupus erythematosus (NLE) with hypocomplementemia. Methods This retrospective clinical study was conducted across four tertiary hospitals in Eastern China on January 1, 2011, and December 31, 2023. This study included 91 patients with NLE. Patients were classified into hypocomplementemic and non-hypocomplementemic groups according to their serum C3 and/or C4 levels. Risk factors for the development of hypocomplementemia were explored using univariate/multifactorial analyses, organ involvement, and follow-up outcomes were compared between groups. Results The number of NLE patients with hypocomplementemia was 36 (39.56%). Hypocomplementemia group had a significantly lower proportion of fish oil supplementation during pregnancy, a higher proportion of cesarean deliveries, mothers with systemic lupus erythematosus, double antibody positivity for anti-SSA and anti-SSB, and higher serum IgG levels. Multivariate analyses showed that maternal allergic diseases, double antibody positivity, and serum IgG levels were risk factors for hypocomplementemia. Baseline IgG levels negatively correlated with complement C3 and C4 levels. NLE Patients with hypocomplementemia are more likely to have thrombocytopenia, hypoproteinemia, or gastrointestinal involvement than those without hypocomplementemia. Systemic application of glucocorticoids was significantly more prevalent in the hypocomplementemia group. Long-term follow-up revealed that allergy-associated disorders were common in patients with NLE and hypocomplementemia, followed by developmental delay, severe infections, attention- deficit hyperactivity disorder, and anxiety/depression, respectively. Log-rank analysis revealed that these patients had significantly higher frequencies of allergic diseases and developmental delays later in life. Conclusion Maternal allergic diseases, double antibody positivity, and serum IgG levels were associated with the development of hypocomplementemia in children with NLE. Patients with hypocomplementemia-associated NLE typically exhibit a more severe disease course.
Collapse
Affiliation(s)
- Wenqiang Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yihui Li
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xinyun Jin
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xue Liu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huiwen Li
- Department of Nephrology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jingtao Bian
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lili Li
- Department of Neonatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Jinhui Hu
- Department of Neonatology, Huai'an Maternal and Child Health Hospital, Huaian, People's Republic of China
| | - Jie Huo
- Department of Neonatology, Yangzhou Maternal and Child Health Hospital, Yangzhou, People's Republic of China
| | - Zexi Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huawei Wang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Mengzhao Li
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Changchang Fu
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xueping Zhu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
2
|
Muts RM, den Boer MA, Bardoel BW, Aerts PC, de Haas CJC, Heck AJR, Rooijakkers SHM, Heesterbeek DAC. Artificial surface labelling of Escherichia coli with StrepTagII antigen to study how monoclonal antibodies drive complement-mediated killing. Sci Rep 2023; 13:18836. [PMID: 37914798 PMCID: PMC10620216 DOI: 10.1038/s41598-023-46026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Antibodies play a key role in the immune defence against Gram-negative bacteria. After binding to bacterial surface antigens, IgG and IgM can activate the complement system and trigger formation of lytic membrane attack complex (MAC) pores. Molecular studies to compare functional activity of antibodies on bacteria are hampered by the limited availability of well-defined antibodies against bacterial surface antigens. Therefore, we genetically engineered E. coli by expressing the StrepTagII antigen into outer membrane protein X (OmpX) and validated that these engineered bacteria were recognised by anti-StrepTagII antibodies. We then combined this antigen-antibody system with a purified complement assay to avoid interference of serum components and directly compare MAC-mediated bacterial killing via IgG1 and pentameric IgM. While both IgG1 and IgM could induce MAC-mediated killing, we show that IgM has an increased capacity to induce complement-mediated killing of E. coli compared to IgG1. While Fc mutations that enhance IgG clustering after target binding could not improve MAC formation, mutations that cause formation of pre-assembled IgG hexamers enhanced the complement activating capacity of IgG1. Altogether, we here present a system to study antibody-dependent complement activation on E. coli and show IgM's enhanced capacity over IgG to induce complement-mediated lysis of E. coli.
Collapse
Affiliation(s)
- Remy M Muts
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomic Center, 3584 CH, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Piet C Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomic Center, 3584 CH, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Dani A C Heesterbeek
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Abu Hammad K, Dinu V, MacCalman TE, Pattem J, Goodall M, Gillis RB, Jefferis R, Harding SE. Comparative sedimentation equilibrium analysis of two IgG1 glycoforms: IgGCri and IgGWid. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:439-443. [PMID: 37195494 PMCID: PMC10444637 DOI: 10.1007/s00249-023-01656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/14/2023] [Indexed: 05/18/2023]
Abstract
The solution properties of two different glycoforms of IgG1 (IgG1Cri and IgG1Wid) are compared using primarily sedimentation equilibrium analysis with two complementary analysis routines: SEDFIT-MSTAR and MULTISIG. IgGCri bears diantennary complex-type glycans on its Fc domain that are fully core fucosylated and partially sialylated, whilst on IgGWid, they are non-fucosylated, partially galactosylated and non-sialylated. IgGWid is also Fab glycosylated. Despite these differences, SEDFIT-MSTAR analysis shows similar weight average molar masses Mw of ~ (150 ± 5) kDa for IgGCri and ~ (154 ± 5) kDa for IgGWid and both glycoforms show evidence of the presence of a small fraction of dimer confirmed by MULTISIG analysis and also by sedimentation coefficient distributions from supportive sedimentation velocity measurements. The closeness of the sedimentation equilibrium behaviour and sedimentation coefficient distributions with a main peak sedimentation coefficient of ~ 6.4S for both glycoforms at different concentrations suggest that the different glycosylation profiles do not significantly impact on molar mass (molecular weight) nor conformation in solution.
Collapse
Affiliation(s)
- Khalil Abu Hammad
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Thomas E MacCalman
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Jacob Pattem
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Margaret Goodall
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard B Gillis
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
- College of Business, Technology and Engineering, Food and Nutrition Group, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Roy Jefferis
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
4
|
Wasiluk T, Sredzinska M, Rogowska A, Zebrowska A, Boczkowska-Radziwon B, Stasiak-Barmuta A, Radziwon P. Analysis of the IgG subclass profile and IgG sum-total discrepancy in COVID-19 convalescent plasma donors: A single-centre prospective cohort study. Transfus Apher Sci 2023; 62:103527. [PMID: 36038476 PMCID: PMC9417371 DOI: 10.1016/j.transci.2022.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Although IgG1 and IgG3 have been shown to be the dominant subclasses in the acute phase of SARS-CoV-2 infection, little is known about the distribution of IgG subclasses during the recovery phase of COVID-19. The aim of the study was to analyze the profile of IgG subclasses in COVID-19 convalescent plasma donors. METHODS A total of 36 convalescent plasma donors were included in the analysis. IgG and IgG subclass levels were measured using a nephelometric assay in plasma samples obtained directly from the plasma container. RESULTS Although there was no significant difference in the concentration of IgG subclasses between the study and control groups, the contribution of IgG1 to the total IgG pool between the study and control groups was statistically significant (p = 0.0478). In addition, there was a discrepancy between the total IgG and IgG sum values in the study group, exceeding 15 % in 19,4 % of samples (n = 7), while in the control group no samples with a sum/ total IgG difference > 15 % were observed. CONCLUSIONS The selective affinity of the IgG1 subclass for the polyclonal anti-IgG reagent may interfere with the determination of total IgG and should be considered when interpreting the results of enzyme immunoassays DATA AVAILABILITY: The data that support the findings of this study are available on request from the corresponding author.
Collapse
Affiliation(s)
- Tomasz Wasiluk
- Regional Centre for Transfusion Medicine, Bialystok, Poland.
| | | | - Anna Rogowska
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | | | | | - Anna Stasiak-Barmuta
- Department of Clinical Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland,Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
James LK. B cells defined by immunoglobulin isotypes. Clin Exp Immunol 2022; 210:230-239. [PMID: 36197112 PMCID: PMC9985177 DOI: 10.1093/cei/uxac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
The ability of B cells to generate antibodies and provide long-lived protective immunity is the cornerstone of vaccination and has contributed to the success of modern medicine. The nine different antibody subclasses produced by humans have effector functions that differ according to antigen type and route of exposure. Expression of the appropriate isotype is critical for effective humoral immunity, and it is becoming clear that subclass specificity is to some extent reflected at the cellular level. Understanding the mechanisms that govern the induction, expansion, and maintenance of B cells expressing different antibody subclasses informs the strategic manipulation of responses to benefit human health. This article provides an overview of the mechanisms by which the different human antibody subclasses regulate immunity, presents an update on how antibody subclass expression is regulated at the cellular level and highlights key areas for future research.
Collapse
|
6
|
Biophysical Reviews’ “meet the editors series”—a profile of Steve Harding’s career in macromolecular hydrodynamics. Biophys Rev 2022; 14:605-610. [DOI: 10.1007/s12551-022-00963-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/14/2023] Open
|
7
|
Fujita Y, Fukui S, Umeda M, Tsuji S, Iwamoto N, Nakashima Y, Horai Y, Suzuki T, Okada A, Aramaki T, Ueki Y, Mizokami A, Origuchi T, Watanabe H, Migita K, Kawakami A. Clinical Characteristics of Patients With IgG4-Related Disease Complicated by Hypocomplementemia. Front Immunol 2022; 13:828122. [PMID: 35296071 PMCID: PMC8920547 DOI: 10.3389/fimmu.2022.828122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 01/13/2023] Open
Abstract
Background A proportion of patients with immunogloblin G (IgG) 4-related disease (IgG4-RD) have hypocomplementemia. We aimed to identify characteristics of such patients. Methods We analyzed the demographic and clinical data and complement levels of 85 patients with IgG4-RD. We defined hypocomplementemia as serum C3 and/or C4 levels below the lower limit of normal at diagnosis. We also compared the characteristics of patients with and without IgG4-RD. Results Thirty-two (38%) patients had hypocomplementemia at diagnosis. Patients with hypocomplementemia had more lymph node (p < 0.01), lung (p < 0.01), and kidney (p = 0.02) involvement and a higher IgG4-RD responder index than those without (p = 0.05). Additionally, patients with hypocomplementemia had significantly higher IgG (p < 0.01), IgG4 (p < 0.01), and soluble interleukin 2-receptor (sIL-2R) (p < 0.01) levels and total IgG minus IgG4 (p < 0.01). C3 and C4 levels negatively correlated with IgG, IgG4, and sIL-2R levels, total IgG minus IgG4, and number of IgG4-RD responder index: a measure of the disease activity in IgG4-RD. Patients with hypocomplementemia at diagnosis had a significantly higher frequency of relapse (p = 0.024), as determined using the log-rank test. A multivariate logistic regression analysis showed the presence of hypocomplementemia was independently associated with relapse (OR, 6.842; 95% confidence interval [95%CI], 1.684–27.79; p = 0.007). Conclusions Patients with IgG4-RD with hypocomplementemia have a more active clinical phenotype, suggesting contributions of the complement system in the pathophysiology of IgG4-RD.
Collapse
Affiliation(s)
- Yuya Fujita
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shoichi Fukui
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Sosuke Tsuji
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshikazu Nakashima
- Department of Internal Medicine, Sasebo City General Hospital, Nagasaki, Japan
| | - Yoshiro Horai
- Department of General Internal Medicine and Rheumatology, Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki, Japan
| | - Takahisa Suzuki
- Department of Rheumatology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Akitomo Okada
- Department of Rheumatology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | | | - Yukitaka Ueki
- Rheumatic Disease Center, Sasebo Chuo Hospital, Nagasaki, Japan
| | - Akinari Mizokami
- Department of Rheumatology, Japan Community Healthcare Organization, Isahaya General Hospital, Nagasaki, Japan
| | - Tomoki Origuchi
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
8
|
Koneczny I, Tzartos J, Mané-Damas M, Yilmaz V, Huijbers MG, Lazaridis K, Höftberger R, Tüzün E, Martinez-Martinez P, Tzartos S, Leypoldt F. IgG4 Autoantibodies in Organ-Specific Autoimmunopathies: Reviewing Class Switching, Antibody-Producing Cells, and Specific Immunotherapies. Front Immunol 2022; 13:834342. [PMID: 35401530 PMCID: PMC8986991 DOI: 10.3389/fimmu.2022.834342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Organ-specific autoimmunity is often characterized by autoantibodies targeting proteins expressed in the affected tissue. A subgroup of autoimmunopathies has recently emerged that is characterized by predominant autoantibodies of the IgG4 subclass (IgG4-autoimmune diseases; IgG4-AID). This group includes pemphigus vulgaris, thrombotic thrombocytopenic purpura, subtypes of autoimmune encephalitis, inflammatory neuropathies, myasthenia gravis and membranous nephropathy. Although the associated autoantibodies target specific antigens in different organs and thus cause diverse syndromes and diseases, they share surprising similarities in genetic predisposition, disease mechanisms, clinical course and response to therapies. IgG4-AID appear to be distinct from another group of rare immune diseases associated with IgG4, which are the IgG4-related diseases (IgG4-RLD), such as IgG4-related which have distinct clinical and serological properties and are not characterized by antigen-specific IgG4. Importantly, IgG4-AID differ significantly from diseases associated with IgG1 autoantibodies targeting the same organ. This may be due to the unique functional characteristics of IgG4 autoantibodies (e.g. anti-inflammatory and functionally monovalent) that affect how the antibodies cause disease, and the differential response to immunotherapies of the IgG4 producing B cells/plasmablasts. These clinical and pathophysiological clues give important insight in the immunopathogenesis of IgG4-AID. Understanding IgG4 immunobiology is a key step towards the development of novel, IgG4 specific treatments. In this review we therefore summarize current knowledge on IgG4 regulation, the relevance of class switching in the context of health and disease, describe the cellular mechanisms involved in IgG4 production and provide an overview of treatment responses in IgG4-AID.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- 2nd Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Mané-Damas
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Maartje G. Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Konstantinos Lazaridis
- Department of Immunology, Laboratory of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Pilar Martinez-Martinez
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Socrates Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/Lübeck, Kiel University, Kiel, Germany
| |
Collapse
|
9
|
Lee J, Cho K, Kook H, Kang S, Lee Y, Lee J. The Different Immune Responses by Age Are due to the Ability of the Fetal Immune System to Secrete Primal Immunoglobulins Responding to Unexperienced Antigens. Int J Biol Sci 2022; 18:617-636. [PMID: 35002513 PMCID: PMC8741860 DOI: 10.7150/ijbs.67203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Among numerous studies on coronavirus 2019 (COVID-19), we noted that the infection and mortality rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) increased with age and that fetuses known to be particularly susceptible to infection were better protected despite various mutations. Hence, we established the hypothesis that a new immune system exists that forms before birth and decreases with aging. Methods: To prove this hypothesis, we established new ex-vivo culture conditions simulating the critical environmental factors of fetal stem cells (FSCs) in early pregnancy. Then, we analyzed the components from FSCs cultivated newly developed ex-vivo culture conditions and compared them from FSCs cultured in a normal condition. Results: We demonstrated that immunoglobulin M (IgM), a natural antibody (NAb) produced only in early B-1 cells, immunoglobulins (Igs) including IgG3, which has a wide range of antigen-binding capacity and affinity, complement proteins, and antiviral proteins are induced in FSCs only cultured in newly developed ex-vivo culture conditions. Particularly we confirmed that their extracellular vesicles (EVs) contained NAbs, Igs, various complement proteins, and antiviral proteins, as well as human leukocyte antigen G (HLA-G), responsible for immune tolerance. Conclusion: Our results suggest that FSCs in early pregnancy can form an independent immune system responding to unlearned antigens as a self-defense mechanism before establishing mature immune systems. Moreover, we propose the possibility of new solutions to cope with various infectious diseases based on the factors in NAbs-containing EVs, especially not causing unnecessary immune reaction due to HLA-G.
Collapse
Affiliation(s)
- Jangho Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Kyoungshik Cho
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Hyejin Kook
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Suman Kang
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Yunsung Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Jiwon Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| |
Collapse
|
10
|
Spiteri VA, Goodall M, Doutch J, Rambo RP, Gor J, Perkins SJ. Solution structures of human myeloma IgG3 antibody reveal extended Fab and Fc regions relative to the other IgG subclasses. J Biol Chem 2021; 297:100995. [PMID: 34302810 PMCID: PMC8371214 DOI: 10.1016/j.jbc.2021.100995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Human immunoglobulin G subclass 3 (IgG3) possesses a uniquely long hinge region that separates its Fab antigen-binding and Fc receptor-binding regions. Owing to this hinge length, the molecular structure of full-length IgG3 remains elusive, and the role of the two conserved Fc glycosylation sites are unknown. To address these issues, we subjected glycosylated and deglycosylated human myeloma IgG3 to multidisciplinary solution structure studies. Using analytical ultracentrifugation, the elongated structure of IgG3 was determined from the reduced sedimentation coefficients s020,w of 5.82 to 6.29 S for both glycosylated and deglycosylated IgG3. X-ray and neutron scattering showed that the Guinier RG values were 6.95 nm for glycosylated IgG3 and were unchanged after deglycosylation, again indicating an elongated structure. The distance distribution function P(r) showed a maximum length of 25 to 28 nm and three distinct maxima. The molecular structure of IgG3 was determined using atomistic modeling based on molecular dynamics simulations of the IgG3 hinge and Monte Carlo simulations to identify physically realistic arrangements of the Fab and Fc regions. This resulted in libraries containing 135,135 and 73,905 glycosylated and deglycosylated IgG3 structures, respectively. Comparisons with the X-ray and neutron scattering curves gave 100 best-fit models for each form of IgG3 that accounted for the experimental scattering curves. These models revealed the first molecular structures for full-length IgG3. The structures exhibited relatively restricted Fab and Fc conformations joined by an extended semirigid hinge, which explains the potent effector functions of IgG3 relative to the other subclasses IgG1, IgG2, and IgG4.
Collapse
Affiliation(s)
- Valentina A Spiteri
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Margaret Goodall
- Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - James Doutch
- ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Robert P Rambo
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Jayesh Gor
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen J Perkins
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.
| |
Collapse
|
11
|
Zwarthoff SA, Widmer K, Kuipers A, Strasser J, Ruyken M, Aerts PC, de Haas CJC, Ugurlar D, den Boer MA, Vidarsson G, van Strijp JAG, Gros P, Parren PWHI, van Kessel KPM, Preiner J, Beurskens FJ, Schuurman J, Ricklin D, Rooijakkers SHM. C1q binding to surface-bound IgG is stabilized by C1r 2s 2 proteases. Proc Natl Acad Sci U S A 2021; 118:e2102787118. [PMID: 34155115 PMCID: PMC8256010 DOI: 10.1073/pnas.2102787118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complement is an important effector mechanism for antibody-mediated clearance of infections and tumor cells. Upon binding to target cells, the antibody's constant (Fc) domain recruits complement component C1 to initiate a proteolytic cascade that generates lytic pores and stimulates phagocytosis. The C1 complex (C1qr2s2) consists of the large recognition protein C1q and a heterotetramer of proteases C1r and C1s (C1r2s2). While interactions between C1 and IgG-Fc are believed to be mediated by the globular heads of C1q, we here find that C1r2s2 proteases affect the capacity of C1q to form an avid complex with surface-bound IgG molecules (on various 2,4-dinitrophenol [DNP]-coated surfaces and pathogenic Staphylococcus aureus). The extent to which C1r2s2 contributes to C1q-IgG stability strongly differs between human IgG subclasses. Using antibody engineering of monoclonal IgG, we reveal that hexamer-enhancing mutations improve C1q-IgG stability, both in the absence and presence of C1r2s2 In addition, hexamer-enhanced IgGs targeting S. aureus mediate improved complement-dependent phagocytosis by human neutrophils. Altogether, these molecular insights into complement binding to surface-bound IgGs could be important for optimal design of antibody therapies.
Collapse
Affiliation(s)
- Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Kevin Widmer
- Pharmaceutical Sciences, University of Basel, 4001 Basel, Switzerland
| | - Annemarie Kuipers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jürgen Strasser
- Nano Structuring and Bio-Analytics Group, TIMed Center, of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Maartje Ruyken
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Deniz Ugurlar
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CH, Utrecht, The Netherlands
| | - Gestur Vidarsson
- Experimental Immunohematology, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Piet Gros
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Paul W H I Parren
- Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Lava Therapeutics, 3584 CM Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Johannes Preiner
- Nano Structuring and Bio-Analytics Group, TIMed Center, of Applied Sciences Upper Austria, 4020 Linz, Austria
| | | | | | - Daniel Ricklin
- Pharmaceutical Sciences, University of Basel, 4001 Basel, Switzerland
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
12
|
Zografou C, Vakrakou AG, Stathopoulos P. Short- and Long-Lived Autoantibody-Secreting Cells in Autoimmune Neurological Disorders. Front Immunol 2021; 12:686466. [PMID: 34220839 PMCID: PMC8248361 DOI: 10.3389/fimmu.2021.686466] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
As B cells differentiate into antibody-secreting cells (ASCs), short-lived plasmablasts (SLPBs) are produced by a primary extrafollicular response, followed by the generation of memory B cells and long-lived plasma cells (LLPCs) in germinal centers (GCs). Generation of IgG4 antibodies is T helper type 2 (Th2) and IL-4, -13, and -10-driven and can occur parallel to IgE, in response to chronic stimulation by allergens and helminths. Although IgG4 antibodies are non-crosslinking and have limited ability to mobilize complement and cellular cytotoxicity, when self-tolerance is lost, they can disrupt ligand-receptor binding and cause a wide range of autoimmune disorders including neurological autoimmunity. In myasthenia gravis with predominantly IgG4 autoantibodies against muscle-specific kinase (MuSK), it has been observed that one-time CD20+ B cell depletion with rituximab commonly leads to long-term remission and a marked reduction in autoantibody titer, pointing to a short-lived nature of autoantibody-secreting cells. This is also observed in other predominantly IgG4 autoantibody-mediated neurological disorders, such as chronic inflammatory demyelinating polyneuropathy and autoimmune encephalitis with autoantibodies against the Ranvier paranode and juxtaparanode, respectively, and extends beyond neurological autoimmunity as well. Although IgG1 autoantibody-mediated neurological disorders can also respond well to rituximab induction therapy in combination with an autoantibody titer drop, remission tends to be less long-lasting and cases where titers are refractory tend to occur more often than in IgG4 autoimmunity. Moreover, presence of GC-like structures in the thymus of myasthenic patients with predominantly IgG1 autoantibodies against the acetylcholine receptor and in ovarian teratomas of autoimmune encephalitis patients with predominantly IgG1 autoantibodies against the N‐methyl‐d‐aspartate receptor (NMDAR) confers increased the ability to generate LLPCs. Here, we review available information on the short-and long-lived nature of ASCs in IgG1 and IgG4 autoantibody-mediated neurological disorders and highlight common mechanisms as well as differences, all of which can inform therapeutic strategies and personalized medical approaches.
Collapse
Affiliation(s)
- C Zografou
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - A G Vakrakou
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - P Stathopoulos
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
13
|
Koneczny I. Update on IgG4-mediated autoimmune diseases: New insights and new family members. Autoimmun Rev 2020; 19:102646. [PMID: 32801046 DOI: 10.1016/j.autrev.2020.102646] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022]
Abstract
Antibodies of IgG4 subclass are exceptional players of the immune system, as they are considered to be immunologically inert and functionally monovalent, and as such may be part of classical tolerance mechanisms. IgG4 antibodies are found in a range of different diseases, including IgG4-related diseases, allergy, cancer, rheumatoid arthritis, helminth infection and IgG4 autoimmune diseases, where they may be pathogenic or protective. IgG4 autoimmune diseases are an emerging new group of diseases that are characterized by pathogenic, antigen-specific autoantibodies of IgG4 subclass, such as MuSK myasthenia gravis, pemphigus vulgaris and thrombotic thrombocytopenic purpura. The list of IgG4 autoantigens is rapidly growing and to date contains 29 candidate antigens. Interestingly, IgG4 autoimmune diseases are restricted to four distinct organs: 1) the central and peripheral nervous system, 2) the kidney, 3) the skin and mucous membranes and 4) the vascular system and soluble antigens in the blood circulation. The pathogenicity of IgG4 can be validated using our classification system, and is usually excerted by functional blocking of protein-protein interaction.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
14
|
Marsh‐Wakefield F, Ashhurst T, Trend S, McGuire HM, Juillard P, Zinger A, Jones AP, Kermode AG, Hawke S, Grau GE, Hart PH, Byrne SN. IgG 3 + B cells are associated with the development of multiple sclerosis. Clin Transl Immunology 2020; 9:e01133. [PMID: 32355561 PMCID: PMC7190396 DOI: 10.1002/cti2.1133] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Disease-modifying therapies (DMTs) targeting B cells are amongst the most effective for preventing multiple sclerosis (MS) progression. IgG3 antibodies and their uncharacterised B-cell clones are predicted to play a pathogenic role in MS. Identifying subsets of IgG3 + B cells involved in MS progression could improve diagnosis, could inform timely disease intervention and may lead to new DMTs that target B cells more specifically. METHODS We designed a 31-parameter B-cell-focused mass cytometry panel to interrogate the role of peripheral blood IgG3 + B cells in MS progression of two different patient cohorts: one to investigate the B-cell subsets involved in conversion from clinically isolated syndrome (CIS) to MS; and another to compare MS patients with inactive or active stages of disease. Each independent cohort included a group of non-MS controls. RESULTS Nine distinct CD20+IgD-IgG3 + B-cell subsets were identified. Significant changes in the proportion of CD21+CD24+CD27-CD38- and CD27+CD38hiCD71hi memory B-cell subsets correlated with changes in serum IgG3 levels and time to conversion from CIS to MS. The same CD38- double-negative B-cell subset was significantly elevated in MS patients with active forms of the disease. A third CD21+CD24+CD27+CD38- subset was elevated in patients with active MS, whilst narrowband UVB significantly reduced the proportion of this switched-memory B-cell subset. CONCLUSION We have identified previously uncharacterised subsets of IgG3 + B cells and shown them to correlate with autoimmune attacks on the central nervous system (CNS). These results highlight the potential for therapies that specifically target IgG3 + B cells to impact MS progression.
Collapse
Affiliation(s)
- Felix Marsh‐Wakefield
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Vascular Immunology UnitDepartment of PathologyThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| | - Thomas Ashhurst
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
- Viral Immunopathology LaboratoryDepartment of PathologyThe University of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
- Sydney Cytometry FacilityCharles Perkins CentreThe University of Sydney and Centenary InstituteSydneyNSWAustralia
| | - Stephanie Trend
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
- Centre for Neuromuscular and Neurological DisordersPerron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Helen M McGuire
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
- Translational Immunology LaboratoryDepartment of PathologyThe University of SydneySydneyNSWAustralia
| | - Pierre Juillard
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Vascular Immunology UnitDepartment of PathologyThe University of SydneySydneyNSWAustralia
| | - Anna Zinger
- Vascular Immunology UnitDepartment of PathologyThe University of SydneySydneyNSWAustralia
| | - Anderson P Jones
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological DisordersPerron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
- Institute for Immunology and Infectious DiseaseMurdoch UniversityPerthWAAustralia
| | - Simon Hawke
- Vascular Immunology UnitDepartment of PathologyThe University of SydneySydneyNSWAustralia
- Central West Neurology and NeurosurgeryOrangeNSWAustralia
| | - Georges E Grau
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Vascular Immunology UnitDepartment of PathologyThe University of SydneySydneyNSWAustralia
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Scott N Byrne
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
- Centre for Immunology and Allergy ResearchWestmead Institute for Medical ResearchWestmeadNSWAustralia
| |
Collapse
|
15
|
Gentiluomo L, Roessner D, Frieß W. Application of machine learning to predict monomer retention of therapeutic proteins after long term storage. Int J Pharm 2020; 577:119039. [PMID: 31953088 DOI: 10.1016/j.ijpharm.2020.119039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
An important aspect of initial developability assessments as well formulation development and selection of therapeutic proteins is the evaluation of data obtained under accelerated stress condition, i.e. at elevated temperatures. We propose the application of artificial neural networks (ANNs) to predict long term stability in real storage condition from accelerated stability studies and other high-throughput biophysical properties e.g. the first apparent temperature of unfolding (Tm). Our models have been trained on therapeutic relevant proteins, including monoclonal antibodies, in various pharmaceutically relevant formulations. Further, we developed network architectures with good prediction power using the least amount of input features, i.e. experimental effort to train the network. This provides an empiric means to highlight the most important parameters in the prediction of real-time protein stability. Further, several models were developed by a different validation means (i.e. leave-one-protein-out cross-validation) to test the robustness and the limitations of our approach. Finally, we apply surrogate machine learning algorithms (e.g. linear regression) to build trust in the ANNs decision making procedure and to highlight the connection between the leading inputs and the outputs.
Collapse
Affiliation(s)
- Lorenzo Gentiluomo
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, 81377 Munich, Germany.
| | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany
| | - Wolfgang Frieß
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, 81377 Munich, Germany
| |
Collapse
|
16
|
Abstract
Immunoglobulin (Ig) molecules are composed of Fab and Fc portions tethered by a hinge region that enables them to rotate and flex, relative to each other. Variable (V) and constant (C) domains of the Fab are connected by a flexible elbow region that is responsible for the movements of the V and C heterodimers. Significant movements of Fc domains have also been documented. The Ig portion's rotational freedom greatly enhances its ability to react with antigens and cell receptors, often simultaneously. The antigen-combining site also displays a dynamic structure. The ability of its various parts to change position greatly facilitates their complexation with various antigenic compounds.
Collapse
Affiliation(s)
- Roald Nezlin
- Department of Immunology, The Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
17
|
Blech M, Hörer S, Kuhn AB, Kube S, Göddeke H, Kiefer H, Zang Y, Alber Y, Kast SM, Westermann M, Tully MD, Schäfer LV, Garidel P. Structure of a Therapeutic Full-Length Anti-NPRA IgG4 Antibody: Dissecting Conformational Diversity. Biophys J 2019; 116:1637-1649. [PMID: 31023536 DOI: 10.1016/j.bpj.2019.03.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/02/2023] Open
Abstract
We report the x-ray crystal structure of intact, full-length human immunoglobulin (IgG4) at 1.8 Å resolution. The data for IgG4 (S228P), an antibody targeting the natriuretic peptide receptor A, show a previously unrecognized type of Fab-Fc orientation with a distorted λ-shape in which one Fab-arm is oriented toward the Fc portion. Detailed structural analysis by x-ray crystallography and molecular simulations suggest that this is one of several conformations coexisting in a dynamic equilibrium state. These results were confirmed by small angle x-ray scattering in solution. Furthermore, electron microscopy supported these findings by preserving molecule classes of different conformations. This study fosters our understanding of IgG4 in particular and our appreciation of antibody flexibility in general. Moreover, we give insights into potential biological implications, specifically for the interaction of human anti-natriuretic peptide receptor A IgG4 with the neonatal Fc receptor, Fcγ receptors, and complement-activating C1q by considering conformational flexibility.
Collapse
Affiliation(s)
- Michaela Blech
- Innovation Unit, Pharmaceutical Development Biologics, Biberach (Riss), Germany.
| | - Stefan Hörer
- Department Lead Identification and Optimization Support, Structural Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | | | - Sebastian Kube
- Innovation Unit, Pharmaceutical Development Biologics, Biberach (Riss), Germany
| | - Hendrik Göddeke
- Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Hans Kiefer
- University of Applied Sciences Biberach, Biberach (Riss), Germany
| | - Yuguo Zang
- University of Applied Sciences Biberach, Biberach (Riss), Germany
| | - Yannic Alber
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund, Germany
| | - Martin Westermann
- Elektronenmikroskopisches Zentrum, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Mark D Tully
- European Synchrotron Radiation Facility, Grenoble, France
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Patrick Garidel
- Innovation Unit, Pharmaceutical Development Biologics, Biberach (Riss), Germany.
| |
Collapse
|
18
|
Tay MZ, Wiehe K, Pollara J. Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Front Immunol 2019; 10:332. [PMID: 30873178 PMCID: PMC6404786 DOI: 10.3389/fimmu.2019.00332] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Antiviral activities of antibodies may either be dependent only on interactions between the antibody and cognate antigen, as in binding and neutralization of an infectious virion, or instead may require interactions between antibody-antigen immune complexes and immunoproteins or Fc receptor expressing immune effector cells. These Fc receptor-dependent antibody functions provide a direct link between the innate and adaptive immune systems by combining the potent antiviral activity of innate effector cells with the diversity and specificity of the adaptive humoral response. The Fc receptor-dependent function of antibody-dependent cellular phagocytosis (ADCP) provides mechanisms for clearance of virus and virus-infected cells, as well as for stimulation of downstream adaptive immune responses by facilitating antigen presentation, or by stimulating the secretion of inflammatory mediators. In this review, we discuss the properties of Fc receptors, antibodies, and effector cells that influence ADCP. We also provide and interpret evidence from studies that support a potential role for ADCP in either inhibiting or enhancing viral infection. Finally, we describe current approaches used to measure antiviral ADCP and discuss considerations for the translation of studies performed in animal models. We propose that additional investigation into the role of ADCP in protective viral responses, the specific virus epitopes targeted by ADCP antibodies, and the types of phagocytes and Fc receptors involved in ADCP at sites of virus infection will provide insight into strategies to successfully leverage this important immune response for improved antiviral immunity through rational vaccine design.
Collapse
Affiliation(s)
- Matthew Zirui Tay
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Justin Pollara
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
19
|
Damelang T, Rogerson SJ, Kent SJ, Chung AW. Role of IgG3 in Infectious Diseases. Trends Immunol 2019; 40:197-211. [PMID: 30745265 DOI: 10.1016/j.it.2019.01.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
IgG3 comprises only a minor fraction of IgG and has remained relatively understudied until recent years. Key physiochemical characteristics of IgG3 include an elongated hinge region, greater molecular flexibility, extensive polymorphisms, and additional glycosylation sites not present on other IgG subclasses. These characteristics make IgG3 a uniquely potent immunoglobulin, with the potential for triggering effector functions including complement activation, antibody (Ab)-mediated phagocytosis, or Ab-mediated cellular cytotoxicity (ADCC). Recent studies underscore the importance of IgG3 effector functions against a range of pathogens and have provided approaches to overcome IgG3-associated limitations, such as allotype-dependent short Ab half-life, and excessive proinflammatory activation. Understanding the molecular and functional properties of IgG3 may facilitate the development of improved Ab-based immunotherapies and vaccines against infectious diseases.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Abstract
IgG4 autoimmune diseases are characterized by the presence of antigen-specific autoantibodies of the IgG4 subclass and contain well-characterized diseases such as muscle-specific kinase myasthenia gravis, pemphigus, and thrombotic thrombocytopenic purpura. In recent years, several new diseases were identified, and by now 14 antigens targeted by IgG4 autoantibodies have been described. The IgG4 subclass is considered immunologically inert and functionally monovalent due to structural differences compared to other IgG subclasses. IgG4 usually arises after chronic exposure to antigen and competes with other antibody species, thus "blocking" their pathogenic effector mechanisms. Accordingly, in the context of IgG4 autoimmunity, the pathogenicity of IgG4 is associated with blocking of enzymatic activity or protein-protein interactions of the target antigen. Pathogenicity of IgG4 autoantibodies has not yet been systematically analyzed in IgG4 autoimmune diseases. Here, we establish a modified classification system based on Witebsky's postulates to determine IgG4 pathogenicity in IgG4 autoimmune diseases, review characteristics and pathogenic mechanisms of IgG4 in these disorders, and also investigate the contribution of other antibody entities to pathophysiology by additional mechanisms. As a result, three classes of IgG4 autoimmune diseases emerge: class I where IgG4 pathogenicity is validated by the use of subclass-specific autoantibodies in animal models and/or in vitro models of pathogenicity; class II where IgG4 pathogenicity is highly suspected but lack validation by the use of subclass specific antibodies in in vitro models of pathogenicity or animal models; and class III with insufficient data or a pathogenic mechanism associated with multivalent antigen binding. Five out of the 14 IgG4 antigens were validated as class I, five as class II, and four as class III. Antibodies of other IgG subclasses or immunoglobulin classes were present in several diseases and could contribute additional pathogenic mechanisms.
Collapse
Affiliation(s)
- Inga Koneczny
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Vega JF, Ramos J, Cruz VL, Vicente-Alique E, Sánchez-Sánchez E, Sánchez-Fernández A, Wang Y, Hu P, Cortés J, Martínez-Salazar J. Molecular and hydrodynamic properties of human epidermal growth factor receptor HER2 extracellular domain and its homodimer: Experiments and multi-scale simulations. Biochim Biophys Acta Gen Subj 2017. [PMID: 28642126 DOI: 10.1016/j.bbagen.2017.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND In a broad range of human carcinomas gene amplification leads to HER2 overexpression, which has been proposed to cause spontaneous dimerization and activation in the absence of ligand. This makes HER2 attractive as a therapeutic target. However, the HER2 homodimerization mechanism remains unexplored. It has been suggested that the "back-to-back" homodimer does not form in solution. Notwithstanding, very recently the crystal structure of the HER2 extracellular domain homodimer formed with a "back-to-head" interaction has been resolved. We intend to explore the existence of such interactions. METHODS A combination of experiments, molecular dynamics and hydrodynamic modeling were used to monitor the transport properties of HER2 in solution. RESULTS & CONCLUSIONS We have detected the HER2 extracellular domain homodimer in solution. The results show a high degree of molecular flexibility, which ultimately leads to quite higher values of the intrinsic viscosity and lower values of diffusion coefficient than those corresponding to globular proteins. This flexibility obeys to the open conformation of the receptor and to the large fluctuations of the different domains. We also report that for obtaining the correct hydrodynamic constants from the modeling one must consider the glycosylation of the systems. GENERAL SIGNIFICANCE Conformational features of epidermal growth factor receptors regulate their hydrodynamic properties and control their activity. It is essential to understand the dynamics of these systems and the role of the specific domains involved. To find biophysical correlations between dynamics and macroscopic transport properties is of general interest for researches working in this area. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- J F Vega
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain.
| | - J Ramos
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - V L Cruz
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - E Vicente-Alique
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - E Sánchez-Sánchez
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - A Sánchez-Fernández
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - Y Wang
- Sino Biological, Inc., Beijing, People's Republic of China
| | - P Hu
- Sino Biological, Inc., Beijing, People's Republic of China
| | - J Cortés
- Ramon y Cajal University Hospital, Ctra. de Colmenar Viejo, km 9,100, 28034 Madrid, Spain; Vall D'Hebron Institute of Oncology (VHIO), Paseo Vall Hebron 119-129, 08035 Barcelona, Spain
| | - J Martínez-Salazar
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| |
Collapse
|
22
|
Abstract
IgG4, the least represented human IgG subclass in serum, is an intriguing antibody with unique biological properties, such as the ability to undergo Fab-arm exchange and limit immune complex formation. The lack of effector functions, such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity, is desirable for therapeutic purposes. IgG4 plays a protective role in allergy by acting as a blocking antibody, and inhibiting mast cell degranulation, but a deleterious role in malignant melanoma, by impeding IgG1-mediated anti-tumor immunity. These findings highlight the importance of understanding the interaction between IgG4 and Fcγ receptors. Despite a wealth of structural information for the IgG1 subclass, including complexes with Fcγ receptors, and structures for intact antibodies, high-resolution crystal structures were not reported for IgG4-Fc until recently. Here, we highlight some of the biological properties of human IgG4, and review the recent crystal structures of IgG4-Fc. We discuss the unexpected conformations adopted by functionally important Cγ2 domain loops, and speculate about potential implications for the interaction between IgG4 and FcγRs.
Collapse
Affiliation(s)
- Anna M Davies
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Brian J Sutton
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
23
|
Yu D, Song Y, Huang RYC, Swanson RK, Tan Z, Schutsky E, Lewandowski A, Chen G, Li ZJ. Molecular perspective of antibody aggregates and their adsorption on Protein A resin. J Chromatogr A 2016; 1457:66-75. [PMID: 27344283 DOI: 10.1016/j.chroma.2016.06.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 11/15/2022]
Abstract
Antibody aggregate is a common issue in therapeutic antibodies, which may compromise product efficacy and cause adverse effects. Antibody aggregate level is normally controlled in bioprocessing by polishing steps after Protein A capture. This paper studied the Higher Order Structures (HOS) of antibody aggregates (dimer H1 and H2) and their adsorption on Protein A resin and thus elucidated the mechanism using Protein A capture for enhanced aggregate removal. The HOS of antibody aggregates and their complex with Protein A were characterized using HDX-MS combined with SEC-MALS, Protein Conformational Array (PCA), and molecular modeling. The aggregate size and Protein A binding ratio suggested that H2 has much more compact structure than H1. HDX-MS and PCA further revealed that H1 was formed by single Fab-Fab interaction while H2 formed by Fab-Fab and likely Fc-Fc interaction. On Protein A resin, both the molar binding ratio and the correlation between protein size and ligand distance support that each monomer can only bind one Protein A ligand, while each dimer can bind two ligands, thus resulting in stronger resin binding. Furthermore, dimer H2 binds stronger than dimer H1 due to its compact structure. By integrating biophysical analysis and molecular modeling with process development, this study revealed the antibody aggregate structures and the mechanism of aggregate removal using Protein A chromatography. It also provided a general strategy for in-depth product and process understanding in antibody and other biologics development.
Collapse
Affiliation(s)
- Deqiang Yu
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, USA.
| | - Yuanli Song
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Richard Y-C Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Ryan K Swanson
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Zhijun Tan
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Elizabeth Schutsky
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Angela Lewandowski
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Zheng Jian Li
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| |
Collapse
|
24
|
Chenoweth AM, Trist HM, Tan PS, Wines BD, Hogarth PM. The high-affinity receptor for IgG, FcγRI, of humans and non-human primates. Immunol Rev 2015; 268:175-91. [DOI: 10.1111/imr.12366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alicia M. Chenoweth
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
- Department of Immunology; Monash University; Melbourne Vic. Australia
| | - Halina M. Trist
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
| | - Peck-Szee Tan
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
| | - Bruce D. Wines
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
- Department of Immunology; Monash University; Melbourne Vic. Australia
- Department of Pathology; University of Melbourne; Melbourne Vic. Australia
| | - P. Mark Hogarth
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
- Department of Immunology; Monash University; Melbourne Vic. Australia
- Department of Pathology; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
25
|
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014; 5:520. [PMID: 25368619 PMCID: PMC4202688 DOI: 10.3389/fimmu.2014.00520] [Citation(s) in RCA: 1784] [Impact Index Per Article: 162.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptors (FcγR) and C1q. As a result, the different subclasses have different effector functions, both in terms of triggering FcγR-expressing cells, resulting in phagocytosis or antibody-dependent cell-mediated cytotoxicity, and activating complement. The Fc-regions also contain a binding epitope for the neonatal Fc receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells, where it participates in both phagocytosis and antigen presentation together with classical FcγR and complement. How these properties, IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function will be the focus of the current review.
Collapse
Affiliation(s)
- Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Gillian Dekkers
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
26
|
Solanki AK, Rathore YS, Badmalia MD, Dhoke RR, Nath SK, Nihalani D, Ashish. Global shape and ligand binding efficiency of the HIV-1-neutralizing antibodies differ from those of antibodies that cannot neutralize HIV-1. J Biol Chem 2014; 289:34780-800. [PMID: 25331945 DOI: 10.1074/jbc.m114.563486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asymmetric disposition of Fab arms in the structures solved for the broadly neutralizing monoclonal antibody (nmAb) IgG1 b12 raised the question of whether the unusual shape observed for b12 is common for all IgG1 mAbs or if there is a difference in the overall shape of nmAbs versus non-nmAbs. We compared small angle x-ray scattering (SAXS) data-based models and limited proteolysis profiles of some IgG1 mAbs known to be having and lacking HIV-1 neutralizing potency. In non-nmAbs, the Fab arms were found to be symmetrically disposed in space relative to central Fc, but in most nmAbs, the Fab arms were asymmetrically disposed, as seen for IgG1 b12. The only exceptions were 2G12 and 4E10, where both Fab arms were closed above Fc, suggesting some Fab-Fc and/or Fab-Fab interaction in the nmAbs that constrained extension of the Fab-Fc linker. Interestingly, these observations were correlated with differential proteolysis profiles of the mAbs by papain. Under conditions when papain could cut both Fab arms of non-nmAbs, only one Fab arm could be removed from neutralizing ones (except for 2G12 and 4E10). Chromatography and small angle x-ray scattering results of papain-digested products revealed that 1) the Fab-Fc or Fab-Fab interactions in unliganded mAbs are retained in digested products, and 2) whereas anti-gp120 non-nmAbs could bind two gp120 molecules, nmAbs could bind only one gp120. Additional experiments showed that except for 2G12 and 4E10, unopen shapes of nmAbs remain uninfluenced by ionic strength but can be reversibly opened by low pH of buffer accompanied by loss of ligand binding ability.
Collapse
Affiliation(s)
- Ashish K Solanki
- From the CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India and
| | - Yogendra S Rathore
- From the CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India and
| | - Maulik D Badmalia
- From the CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India and
| | - Reema R Dhoke
- From the CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India and
| | - Samir K Nath
- From the CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India and
| | - Deepak Nihalani
- the Renal Electrolyte Division, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ashish
- From the CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India and
| |
Collapse
|
27
|
Rayner LE, Hui GK, Gor J, Heenan RK, Dalby PA, Perkins SJ. The Fab conformations in the solution structure of human immunoglobulin G4 (IgG4) restrict access to its Fc region: implications for functional activity. J Biol Chem 2014; 289:20740-56. [PMID: 24876381 PMCID: PMC4110284 DOI: 10.1074/jbc.m114.572404] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/12/2014] [Indexed: 12/24/2022] Open
Abstract
Human IgG4 antibody shows therapeutically useful properties compared with the IgG1, IgG2, and IgG3 subclasses. Thus IgG4 does not activate complement and shows conformational variability. These properties are attributable to its hinge region, which is the shortest of the four IgG subclasses. Using high throughput scattering methods, we studied the solution structure of wild-type IgG4(Ser(222)) and a hinge mutant IgG4(Pro(222)) in different buffers and temperatures where the proline substitution suppresses the formation of half-antibody. Analytical ultracentrifugation showed that both IgG4 forms were principally monomeric with sedimentation coefficients s20,w(0) of 6.6-6.8 S. A monomer-dimer equilibrium was observed in heavy water buffer at low temperature. Scattering showed that the x-ray radius of gyration Rg was unchanged with concentration in 50-250 mm NaCl buffers, whereas the neutron Rg values showed a concentration-dependent increase as the temperature decreased in heavy water buffers. The distance distribution curves (P(r)) revealed two peaks, M1 and M2, that shifted below 2 mg/ml to indicate concentration-dependent IgG4 structures in addition to IgG4 dimer formation at high concentration in heavy water. Constrained x-ray and neutron scattering modeling revealed asymmetric solution structures for IgG4(Ser(222)) with extended hinge structures. The IgG4(Pro(222)) structure was similar. Both IgG4 structures showed that their Fab regions were positioned close enough to the Fc region to restrict C1q binding. Our new molecular models for IgG4 explain its inability to activate complement and clarify aspects of its stability and function for therapeutic applications.
Collapse
Affiliation(s)
- Lucy E Rayner
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building and
| | - Gar Kay Hui
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building and
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building and
| | - Richard K Heenan
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Paul A Dalby
- Department of Biochemical Engineering, Division of Engineering, Roberts Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Stephen J Perkins
- From the Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building and
| |
Collapse
|
28
|
Dąbkowska M, Adamczyk Z. Mechanism of immonoglobulin G adsorption on mica-AFM and electrokinetic studies. Colloids Surf B Biointerfaces 2014; 118:57-64. [DOI: 10.1016/j.colsurfb.2014.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/10/2014] [Accepted: 02/26/2014] [Indexed: 12/11/2022]
|
29
|
Tavakoli-Keshe R, Phillips JJ, Turner R, Bracewell DG. Understanding the relationship between biotherapeutic protein stability and solid-liquid interfacial shear in constant region mutants of IgG1 and IgG4. J Pharm Sci 2013; 103:437-44. [PMID: 24357426 PMCID: PMC4263191 DOI: 10.1002/jps.23822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/06/2013] [Accepted: 11/25/2013] [Indexed: 01/12/2023]
Abstract
Relative stability of therapeutic antibody candidates is currently evaluated primarily through their response to thermal degradation, yet this technique is not always predictive of stability in manufacture, shipping, and storage. A rotating disk shear device is proposed that produces defined shear conditions at a known solid–liquid interface to measure stability in this environment. Five variants of IgG1 and IgG4 antibodies were created using combinations of two discrete triple amino acid sequence mutations denoted TM and YTE. Antibodies were ranked for stability based on shear device output (protein decay coefficient, PDC), and compared with accelerated thermal stability data and the melting temperature of the CH2 domain (Tm1) from differential scanning calorimetry to investigate technique complimentarity. Results suggest that the techniques are orthogonal, with thermal methods based on intramolecular interaction and shear device stability based on localized unfolding revealing less stable regions that drive aggregation. Molecular modeling shows the modifications’ effects on the antibody structures and indicates a possible role for Fc conformation and Fab-Fc docking in determining suspended protein stability. The data introduce the PDC value as an orthogonal stability indicator, complementary to traditional thermal methods, allowing lead antibody selection based on a more full understanding of process stability. © 2013 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:437–444, 2014
Collapse
Affiliation(s)
- Roumteen Tavakoli-Keshe
- The Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK; MedImmune, Granta Park, Cambridge, CB21 6GH, UK
| | | | | | | |
Collapse
|
30
|
Davies AM, Rispens T, Ooijevaar-de Heer P, Gould HJ, Jefferis R, Aalberse RC, Sutton BJ. Structural determinants of unique properties of human IgG4-Fc. J Mol Biol 2013; 426:630-44. [PMID: 24211234 PMCID: PMC3905167 DOI: 10.1016/j.jmb.2013.10.039] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/24/2022]
Abstract
Human IgG4, normally the least abundant of the four subclasses of IgG in serum, displays a number of unique biological properties. It can undergo heavy-chain exchange, also known as Fab-arm exchange, leading to the formation of monovalent but bispecific antibodies, and it interacts poorly with FcγRII and FcγRIII, and complement. These properties render IgG4 relatively “non-inflammatory” and have made it a suitable format for therapeutic monoclonal antibody production. However, IgG4 is also known to undergo Fc-mediated aggregation and has been implicated in auto-immune disease pathology. We report here the high-resolution crystal structures, at 1.9 and 2.35 Å, respectively, of human recombinant and serum-derived IgG4-Fc. These structures reveal conformational variability at the CH3–CH3 interface that may promote Fab-arm exchange, and a unique conformation for the FG loop in the CH2 domain that would explain the poor FcγRII, FcγRIII and C1q binding properties of IgG4 compared with IgG1 and -3. In contrast to other IgG subclasses, this unique conformation folds the FG loop away from the CH2 domain, precluding any interaction with the lower hinge region, which may further facilitate Fab-arm exchange by destabilisation of the hinge. The crystals of IgG4-Fc also display Fc–Fc packing contacts with very extensive interaction surfaces, involving both a consensus binding site in IgG-Fc at the CH2–CH3 interface and known hydrophobic aggregation motifs. These Fc–Fc interactions are compatible with intact IgG4 molecules and may provide a model for the formation of aggregates of IgG4 that can cause disease pathology in the absence of antigen. The first high-resolution crystal structures of IgG4-Fc have been solved. Arg409 adopts two conformations, each with a different effect on the CH3–CH3 interface. Crystal packing analysis reveals a novel Fc–Fc interface. The CH2 domain FG loop adopts a unique conformation, affecting FcγR and C1q binding. The IgG4-Fc crystal structures explain unique biological properties of IgG4.
Collapse
Affiliation(s)
- Anna M Davies
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 9RT, United Kingdom.
| | - Theo Rispens
- Sanquin Research, Amsterdam 1066 CX, The Netherlands; Academic Medical Centre Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research, Amsterdam 1066 CX, The Netherlands; Academic Medical Centre Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Hannah J Gould
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 9RT, United Kingdom
| | - Roy Jefferis
- College of Medical and Dental Sciences, School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rob C Aalberse
- Sanquin Research, Amsterdam 1066 CX, The Netherlands; Academic Medical Centre Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Brian J Sutton
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London SE1 9RT, United Kingdom.
| |
Collapse
|
31
|
García de la Torre J, Harding SE. Hydrodynamic modelling of protein conformation in solution: ELLIPS and HYDRO. Biophys Rev 2013; 5:195-206. [PMID: 23646070 PMCID: PMC3641304 DOI: 10.1007/s12551-013-0102-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/22/2013] [Indexed: 11/21/2022] Open
Abstract
The last three decades has seen some important advances in our ability to represent the conformation of proteins in solution on the basis of hydrodynamic measurements. Advances in theoretical modeling capabilities have been matched by commensurate advances in the precision of hydrodynamic measurements. We consider the advances in whole-body (simple ellipsoid-based) modeling-still useful for providing an overall idea of molecular shape, particularly for those systems where only a limited amount of data is available-and outline the ELLIPS suite of algorithms which facilitates the use of this approach. We then focus on bead modeling strategies, particularly the surface or shell-bead approaches and the HYDRO suite of algorithms. We demonstrate how these are providing great insights into complex issues such as the conformation of immunoglobulins and other multi-domain complexes.
Collapse
Affiliation(s)
- José García de la Torre
- Departamento de Quimica Fisica, Universidad de Murcia, Regional Campus Mare Nostrum, 30071 Murcia, Spain
| | - Stephen E. Harding
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD England, UK
| |
Collapse
|
32
|
Rayner LE, Kadkhodayi-Kholghi N, Heenan RK, Gor J, Dalby PA, Perkins SJ. The solution structure of rabbit IgG accounts for its interactions with the Fc receptor and complement C1q and its conformational stability. J Mol Biol 2012. [PMID: 23178865 DOI: 10.1016/j.jmb.2012.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Solution structures for antibodies are critical to understand function and therapeutic applications. The stability of the solution structure of rabbit IgG in different buffers and temperatures was determined by analytical ultracentrifugation and X-ray and neutron scattering. Rabbit IgG showed a principally monomeric species, which is well resolved from small amounts of a dimeric species. The proportion of dimer increased with increased concentration, decreased temperature and heavy water from 8% to 25% in all buffers except for high salt (250 mM NaCl). The Guinier X-ray radius of gyration R(G) likewise increased with concentration in 137 mM NaCl buffer but was unchanged in 250 mM NaCl buffer. The Guinier neutron R(G) values increased as the temperature decreased. The X-ray and neutron distance distribution curves P(r) revealed two peaks, M1 and M2, whose positions did not change with concentration to indicate unchanged structures under all these conditions. The maximum dimension increased with concentration because of dimer formation. Constrained scattering modeling reproducibly revealed very similar asymmetric solution structures for monomeric rabbit IgG in different buffers, in which the Fab-Fc and Fab-Fab pairs were separated by maximally extended hinge structures. The dimer was best modeled by two pairs of Fab regions forming tip-to-tip contacts. The intact rabbit IgG structures explained the ability of its two ligands, the Fc receptor and complement C1q, to bind to the top of its Fc region that is fully accessible and unhindered by the Fab regions.
Collapse
Affiliation(s)
- Lucy E Rayner
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
33
|
Rispens T, Meesters J, den Bleker TH, Ooijevaar-De Heer P, Schuurman J, Parren PWHI, Labrijn A, Aalberse RC. Fc-Fc interactions of human IgG4 require dissociation of heavy chains and are formed predominantly by the intra-chain hinge isomer. Mol Immunol 2012; 53:35-42. [PMID: 22784992 DOI: 10.1016/j.molimm.2012.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 01/13/2023]
Abstract
Human IgG4 antibodies are remarkable not only because they can dynamically exchange half-molecules (Fab-arm exchange) but also for their ability to interact with the Fc part of IgG4 and other IgG subclasses. This rheumatoid factor-like binding of IgG4 does not appear to take place spontaneously, because it is only observed to solid-phase or antigen-bound IgG. We hypothesized that Fc-Fc interactions might involve (partial) dissociation of heavy chains. We investigated the molecular basis of these Fc-Fc interactions, and found that the structural features important for the exchange reaction also control the Fc binding activity. In particular, if arginine-409 in the CH(3)-CH(3) interface in IgG4 is mutated to lysine (the equivalent in IgG1), Fc-Fc interactions are formed 3 orders of magnitude less efficiently compared to the wild-type. This mutation was previously found to increase the CH(3)-CH(3) interaction strength in IgG4. Furthermore, of the two hinge isomers of IgG4, the intra-chain (non-covalently linked) form was found to form Fc-Fc interactions, but not the inter-chain form. Together, these results demonstrate that Fc-Fc interactions of IgG4 involve (partial or complete) dissociation of heavy chains. The promiscuity to other IgG subclasses suggests that IgG4 might act as scavenger to IgG molecules with impaired structural integrity.
Collapse
|
34
|
Rispens T, Ooijevaar-de Heer P, Bende O, Aalberse RC. Mechanism of Immunoglobulin G4 Fab-arm Exchange. J Am Chem Soc 2011; 133:10302-11. [DOI: 10.1021/ja203638y] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Theo Rispens
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Onno Bende
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Rob C. Aalberse
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| |
Collapse
|
35
|
Jefferis R. The antibody paradigm: present and future development as a scaffold for biopharmaceutical drugs. Biotechnol Genet Eng Rev 2011; 26:1-42. [PMID: 21415874 DOI: 10.5661/bger-26-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early studies of the humoral immune response revealed an apparent paradox: an infinite diversity of antibody specificities encoded within a finite genome. In consequence antibodies became a focus of interest for biochemists and geneticists. It resulted in the elucidation of the basic structural unit, the immunoglobulin (Ig) domain, comprised of ~ 100 amino acid residues that generate the characteristic "immunoglobulin (Ig) fold". The Ig fold has an anti-parallel ß-pleated sheet (barrel) structure that affords structural stability whilst the ß-bends allow for essentially infinite structural variation and functional diversity. This versatility is reflected in the Ig domain being the most widely utilised structural unit within the proteome. Human antibodies are comprised of multiple Ig domains and their structural diversity may be enhanced through the attachment of oligosaccharides. This review summarizes our current understanding of the immunoglobulin structure/function relationships and the application of protein and oligosaccharide engineering to further develop the Ig domain as a scaffold for the generation of new and novel antibody based therapeutics.
Collapse
Affiliation(s)
- Roy Jefferis
- School of Immunity and Infection, The College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
36
|
Ortega A, Amorós D, García de la Torre J. Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties. Methods 2010; 54:115-23. [PMID: 21163355 DOI: 10.1016/j.ymeth.2010.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 11/30/2022] Open
Abstract
The calculation of hydrodynamic and other solution properties from structural information (size and shape or flexibility) of macromolecules and nanoparticles is feasible thanks to existing theories and computational tools. Here we review our recent advances in the inverse problem of extracting structural information from those properties. The concepts of equivalent radii and ratios of radii are particularly useful in global-fitting structural analysis, when one has to treat simultaneously with various properties, eventually for a series of samples. Based on the equivalent radii or their ratios, we define target functions that measure the adequacy of a given structure to fit a set of experimental properties. Structural determination is carried out by minimization of those target functions. We review a variety of examples. Some of them refer to the simple, yet important models like ellipsoids, cylinders and wormlike chains, whose structure is determined by optimization of the model parameters. In other, more complex cases, properties are calculated with computational tools like programs in the HYDRO suite. We have devised other tools to make the structure optimization from the results of those calculations in a quite direct, simple and systematic manner.
Collapse
Affiliation(s)
- A Ortega
- Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30071 Murcia, Spain.
| | | | | |
Collapse
|
37
|
Masking of the Fc region in human IgG4 by constrained X-ray scattering modelling: implications for antibody function and therapy. Biochem J 2010; 432:101-11. [PMID: 20722630 DOI: 10.1042/bj20100641] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Of the four human IgG antibody subclasses IgG1-IgG4, IgG4 is of interest in that it does not activate complement and exhibits atypical self-association, including the formation of bispecific antibodies. The solution structures of antibodies are critical to understand function and therapeutic applications. Thus IgG4 was studied by synchrotron X-ray scattering. The Guinier X-ray radius of gyration R(G) increased from 5.0 nm to 5.1 nm with an increase of concentration. The distance distribution function P(r) revealed a single peak at 0.3 mg/ml, which resolved into two peaks that shifted to smaller r values at 1.3 mg/ml, even though the maximum dimension of IgG4 was unchanged at 17 nm. This indicated a small concentration dependence of the IgG4 solution structure. By analytical ultracentrifugation, no concentration dependence in the sedimentation coefficient of 6.4 S was observed. Constrained scattering modelling resulted in solution structural determinations that showed that IgG4 has an asymmetric solution structure in which one Fab-Fc pair is closer together than the other pair, and the accessibility of one side of the Fc region is masked by the Fab regions. The averaged distances between the two Fab-Fc pairs change by 1-2 nm with the change in IgG4 concentration. The averaged conformation of the Fab regions appear able to hinder complement C1q binding to the Fc region and the self-association of IgG4 through the Fc region. The present results clarify IgG4 function and provide a starting point to investigate antibody stability.
Collapse
|
38
|
Brandt JP, Patapoff TW, Aragon SR. Construction, MD simulation, and hydrodynamic validation of an all-atom model of a monoclonal IgG antibody. Biophys J 2010; 99:905-13. [PMID: 20682269 DOI: 10.1016/j.bpj.2010.05.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/27/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022] Open
Abstract
At 150 kDa, antibodies of the IgG class are too large for their structure to be determined with current NMR methodologies. Because of hinge-region flexibility, it is difficult to obtain atomic-level structural information from the crystal, and questions regarding antibody structure and dynamics in solution remain unaddressed. Here we describe the construction of a model of a human IgG1 monoclonal antibody (trastuzumab) from the crystal structures of fragments. We use a combination of molecular-dynamics (MD) simulation, continuum hydrodynamics modeling, and experimental diffusion measurements to explore antibody behavior in aqueous solution. Hydrodynamic modeling provides a link between the atomic-level details of MD simulation and the size- and shape-dependent data provided by hydrodynamic measurements. Eight independent 40 ns MD trajectories were obtained with the AMBER program suite. The ensemble average of the computed transport properties over all of the MD trajectories agrees remarkably well with the value of the translational diffusion coefficient obtained with dynamic light scattering at 20 degrees C and 27 degrees C, and the intrinsic viscosity measured at 20 degrees C. Therefore, our MD results likely represent a realistic sampling of the conformational space that an antibody explores in aqueous solution.
Collapse
Affiliation(s)
- J Paul Brandt
- Department of Early Stage Pharmaceutical Development, Genentech, South San Francisco, California, USA
| | | | | |
Collapse
|
39
|
Harding SE, Abdelhameed AS, Morris GA. On the hydrodynamic analysis of conformation in mixed biopolymer systems. POLYM INT 2010. [DOI: 10.1002/pi.2934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Generation and Characterization of Mouse Hybridomas Secreting Monoclonal Antibodies Specific for Human IgG3. Avicenna J Med Biotechnol 2009; 1:19-26. [PMID: 23407435 PMCID: PMC3558122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 04/20/2009] [Indexed: 11/20/2022] Open
Abstract
Mammalians express several subclasses of the IgG molecule. In human being there are four homologous IgG subclasses, each of which is structurally unique and has different functions. Quantification of IgG subclasses is fundamental to clinical assessment and diagnosis of many diseases as such assessments depends on the availability of subclassspecific antibodies (Abs), particularly monoclonal antibodies (MAbs). In the present study, we produced and characterized two murine MAbs specific for human IgG3 molecule. These MAbs were obtained by the fusion of myeloma cells with splenocytes from Balb/c mice immunized with heavy chain of a human IgG3 myeloma protein. Fused cells were selected in hypoxanthine, aminopterine and thymidine (HAT) medium and cloned by limiting dilution assay. Ab-secreting cells were screened by enzyme-linked immunosorbent assay (ELISA) and the specificity of secreted MAbs was further analyzed, using a panel of purified myeloma proteins by ELISA and immunoblotting. Two stable hybridomas designated 1F18G7 and 1F18A11 were obtained secreting MAbs specific for Fc fragment of human IgG3. None of these MAbs showed cross-reactivity with other immunoglobulin isotypes derived from human and nine other animals, except 1F18A11 which displayed a weak cross-reactivity with only dog serum. Immunoblotting results indicate that these MAbs react with linear epitope(s) located in the heavy chain of human IgG3 molecules. The affinity constant of 1F18G7 and 1F18A11 MAbs was found to be 0.81×10(9) Mol (-1) and 0.71×10(9) Mol (-1), respectively, as measured by ELISA. These two MAbs with relatively high affinity can be useful tools for quantification of IgG3 subclass levels in human serum.
Collapse
|
41
|
Amorós D, Ortega A, Harding SE, García de la Torre J. Multi-scale calculation and global-fit analysis of hydrodynamic properties of biological macromolecules: determination of the overall conformation of antibody IgG molecules. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 39:361-70. [DOI: 10.1007/s00249-008-0388-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/24/2008] [Accepted: 11/28/2008] [Indexed: 10/21/2022]
|