1
|
Hagness DE, Yang Y, Ma Y, Ishtiaq S, Fan S, Tilley RD, Gooding JJ. An investigative study of electrochemical induced fluorescence for fluorophores. Chem Sci 2025; 16:8959-8969. [PMID: 40271026 PMCID: PMC12013507 DOI: 10.1039/d5sc01265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Understanding and controlling the fluorescence of dye molecules is essential for many applications especially in biological imaging. Electrochemical-induced modulation of fluorescence provides the capability to non-destructively control the fluorescent emission of fluorophores, allowing new avenues to exploit for fluorescence imaging. This paper reports on the investigation of electrochemical-induced fluorescence modulation, focusing on the effect of the fluorophore chemical structure and the buffer composition. Of the twelve fluorophores investigated, it was observed that any variations in the chemical structure results in differences in how the fluorescence is modulated with potential. Our results showed that different core fluorescent structures exhibited distinctive modulation behaviours, the oxazine fluorophore (ATTO 655) was stable in the non-fluorescent configuration causing a prolonged low signal and the coumarin fluorophore (ATTO 390) possessed low response. Certain trends observed are related to the impact of the chemical structure on the fluorescence modulation with potential. For example, the low fluorescence modulation with potential for ATTO 390 suggests that the presence of the electron withdrawing -N+R3 group facilitates significant modulation, while a lack of the -N+R3 group results in low modulation. The unique response of ATTO 655 suggested the element at the radical site can affect the stability of the radical- and leuco-states and influence the fluorescence modulation that occurs. Additionally, the results show that buffer additives, such as oxygen scavengers and triplet quenchers, affect the fluorescence modulation either by stabilising the non-fluorescent radical or leuco-fluorophore structure, or improving photon emission. The quantitative characterisation of electrochemical fluorescence modulation behaviours for various fluorophores provides a guideline for future application of the fluorophores for sensing or imaging based on their performances.
Collapse
Affiliation(s)
- Daniel E Hagness
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
- Australia Centre for NanoMedicine, The University of New South Wales Sydney New South Wales 2052 Australia
| | - Ying Yang
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
- Australia Centre for NanoMedicine, The University of New South Wales Sydney New South Wales 2052 Australia
| | - Yuanqing Ma
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
| | - Sumaya Ishtiaq
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
| | - Sanjun Fan
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
- Australia Centre for NanoMedicine, The University of New South Wales Sydney New South Wales 2052 Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales Sydney New South Wales 2052 Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales Sydney New South Wales 2052 Australia
- Australia Centre for NanoMedicine, The University of New South Wales Sydney New South Wales 2052 Australia
| |
Collapse
|
2
|
Xu LWQ, Jazani S, Kilic Z, Pressé S. Single-molecule reaction-diffusion. Biophys J 2025; 124:1643-1657. [PMID: 40221837 DOI: 10.1016/j.bpj.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
We propose capturing reaction-diffusion on a molecule-by-molecule basis from the fastest acquirable timescale, namely individual photon arrivals. We illustrate our method on the intrinsically disordered human protein linker histone H1.0 and its chaperone prothymosin α, as these diffuse through an illuminated confocal spot and interact, forming larger ternary complexes on millisecond timescales. Most importantly, single-molecule reaction-diffusion (smRD) reveals single-molecule properties without the requirement to trap or otherwise confine molecules to surfaces. We achieve smRD within a Bayesian paradigm and term our method Bayes-smRD. Bayes-smRD is further free of the average, bulk results inherent to analyzing long photon arrival traces by fluorescence correlation spectroscopy. In learning from mere thousands of photon arrivals, continuous spatial positions, and discrete conformational and photophysical state changes, Bayes-smRD estimates kinetic parameters on a molecule-by-molecule basis with two to three orders of magnitude less data than tools such as fluorescence correlation spectroscopy, thereby also dramatically reducing sample photodamage.
Collapse
Affiliation(s)
- Lance W Q Xu
- Center for Biological Physics, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona
| | - Sina Jazani
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins Medicine, Baltimore, Maryland
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona; School of Molecular Science, Arizona State University, Tempe, Arizona.
| |
Collapse
|
3
|
Niitani Y, Matsuzaki K, Jonsson E, Vale RD, Tomishige M. Kinetic regulation of kinesin's two motor domains coordinates its stepping along microtubules. eLife 2025; 14:RP106228. [PMID: 40243292 PMCID: PMC12005725 DOI: 10.7554/elife.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head-head coordination; however, which kinetic step(s) in the chemomechanical cycle is 'gated' by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin's motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.
Collapse
Affiliation(s)
- Yamato Niitani
- Department of Applied Physics, School of Engineering, The University of TokyoTokyoJapan
| | - Kohei Matsuzaki
- Department of Applied Physics, School of Engineering, The University of TokyoTokyoJapan
- Department of Physical Sciences, College of Science and Engineering, Aoyama Gakuin UniversitySagamiharaJapan
| | - Erik Jonsson
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Ronald D Vale
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Michio Tomishige
- Department of Applied Physics, School of Engineering, The University of TokyoTokyoJapan
- Department of Physical Sciences, College of Science and Engineering, Aoyama Gakuin UniversitySagamiharaJapan
| |
Collapse
|
4
|
Liu J, Zhang X, Zhao B, Ling H, Li Y, Sun K, Chen S, Zhang Y, Zhai T, Zhang Y, Li F, Liu Q. In Situ Monitoring of Membrane Protein Dynamics Using High-Throughput Red-Light-Activated Single-Molecule Tracking. ACS NANO 2025; 19:13466-13478. [PMID: 40153256 DOI: 10.1021/acsnano.5c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Single-molecule tracking offers nanometer resolution for studying individual molecule dynamics but is often limited by sparse labeling to avoid signal overlap. We present Red-Light-Activated Single-molecule Tracking (RE-LAST) strategy to address this challenge utilizing a photoactivatable probe, SiR670. SiR670 combines traditional silicon rhodamine with a photocage called SO, quenching fluorescence via photoinduced electron transfer (PET). Red light triggers SiR670 excitation, generating singlet oxygen that oxidizes the SO cage, halting PET and restoring fluorescence. RE-LAST used red light for both activation and imaging, eliminating harmful UV exposure. This method enables high-throughput single-molecule tracking, achieving approximately 9 times more tracks than conventional methods and allowing detailed classification of CD56 membrane protein motion. Furthermore, in situ imaging of single live cells revealed the effects of triplet quencher and oxygen scavenging system (OSS) on membrane protein dynamics. While triplet quenchers like Trolox had minimal impact on protein movement patterns, OSS significantly accelerated protein movement and increased the proportion of mobile proteins. This approach provides a comprehensive method for investigating membrane protein dynamics in living cells, contributing to further developments in cellular and molecular biology.
Collapse
Affiliation(s)
- Jinyang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Xuebo Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Bingjie Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Huan Ling
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Yanzhong Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Kuangshi Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Song Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Yanxin Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Tianli Zhai
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| | - Fuyou Li
- Institute of Translational Medicine, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, P.R. China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institution, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Probst J, Mathur P, Gai M, Si T, He Q, Gao C, Gao H, Sapelkin AV, Kappl M, Qiu G, Wang J, Frueh J, Stavrakis S. Photoswitchable Gold Nanoparticles for Super-Resolution Radial Fluctuation Imaging in Nanostructured Materials. SMALL METHODS 2025; 9:e2401411. [PMID: 40272001 DOI: 10.1002/smtd.202401411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/17/2024] [Indexed: 04/25/2025]
Abstract
Camera-based super-resolution approaches surpass the diffraction limit of conventional optical microscopy by relying on the stochastic activation and precise localization of fluorescent molecules. However, traditional probes such as organic dyes and quantum dots present challenges such as photobleaching and blinking variability, which limit their application in super-resolution imaging, particularly in non-liquid environments. Herein, the study demonstrates the potential of gold nanoparticles as a promising alternative for localization-based super-resolution imaging. The study specifically investigates how different surface functionalizations and states (aggregated vs isolated) of gold nanoparticles impact their photoluminescence properties, including fluorescence intensity, lifetime, and blinking behavior. By leveraging the intrinsic photoluminescence of gold nanoparticles, their capability is demonstrated as probes to achieve super-resolution imaging of nano-sized structures, at a resolution down to 100 nm, without the need for conventional imaging buffers. These proof-of-concept applications, which include imaging of silica nanosized wrinkles and logos, reveal that gold nanoparticles exhibit superior photophysical properties compared to common organic fluorophores, offering a promising alternative for super-resolution imaging. This work paves the way for the application of super-resolution fluorescence microscopy in materials science where non-liquid environments often restrict the use of traditional probes.
Collapse
Affiliation(s)
- Julie Probst
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland
| | - Prerit Mathur
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland
| | - Meiyu Gai
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London, E1 4NS, UK
| | - Tieyan Si
- Physics Department, School of Physics, Harbin Institute of Technology, Yikuang Street 2 2H, Harbin, 150080, P. R. China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080, P. R. China
| | - Changyong Gao
- Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080, P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Hanchao Gao
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
- Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Andrei V Sapelkin
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London, E1 4NS, UK
| | - Michael Kappl
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany
| | - Guangyu Qiu
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
- Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Johannes Frueh
- Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080, P. R. China
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
6
|
Samaan GN, Jimenez Salinas A, Bailie AE, Grim J, Cizmic JM, Jones AC, Lee Y, Purse BW. Single-molecule detection of oligonucleotides using the fluorescent nucleobase analogue ABN. Chem Sci 2025; 16:4866-4875. [PMID: 39935500 PMCID: PMC11808398 DOI: 10.1039/d4sc07334g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/02/2025] [Indexed: 02/13/2025] Open
Abstract
Fluorescent nucleobase analogues (FBAs) have emerged as powerful tools for understanding nucleic acid systems at the molecular level. However, their application at the single-molecule level has been limited by low brightness and an incomplete understanding of how local chemical environments affect their properties. In this study, we investigate the bright fluorescent pyrimidine analogue ABN in duplex DNA oligonucleotides and study its single-molecule applications. Time-resolved fluorescence spectroscopy reveals its unique tautomeric behavior, including photo-induced double proton transfer, influenced by base-pairing partners. This tautomerization directly impacts ABN's quantum yield and spectral characteristics. By favoring a high quantum yield thymine-like tautomer through base pairing, surface-immobilized ABN-containing DNA duplexes are readily observed as bright spots using single-molecule fluorescence microscopy, exhibiting well-defined single-exponential bleaching kinetics. The brightness and photostability are enhanced by oxygen depletion. These results demonstrate that ABN is unique among FBAs in enabling single-molecule fluorescence studies of oligonucleotides using a standard microscopy setup.
Collapse
Affiliation(s)
- George N Samaan
- Department of Chemistry and Biochemistry, San Diego State University San Diego CA USA
| | | | | | - Julian Grim
- Department of Chemistry and Biochemistry, San Diego State University San Diego CA USA
| | - Julian M Cizmic
- Department of Chemistry and Biochemistry, San Diego State University San Diego CA USA
| | - Anita C Jones
- School of Chemistry, The University of Edinburgh Edinburgh UK
| | - Youngkwang Lee
- Department of Chemistry and Biochemistry, San Diego State University San Diego CA USA
- The Smart Health Institute, San Diego State University San Diego CA USA
| | - Byron W Purse
- Department of Chemistry and Biochemistry, San Diego State University San Diego CA USA
| |
Collapse
|
7
|
Popchock AR, Hedouin S, Mao Y, Asbury CL, Stergachis AB, Biggins S. Stable centromere association of the yeast histone variant Cse4 requires its essential N-terminal domain. EMBO J 2025; 44:1488-1511. [PMID: 39809842 PMCID: PMC11876619 DOI: 10.1038/s44318-024-00345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Chromosome segregation relies on kinetochores that assemble on specialized centromeric chromatin containing a histone H3 variant. In budding yeast, a single centromeric nucleosome containing Cse4 assembles at a sequence-defined 125 bp centromere. Yeast centromeric sequences are poor templates for nucleosome formation in vitro, suggesting the existence of mechanisms that specifically stabilize Cse4 nucleosomes in vivo. The extended Cse4 N-terminal tail binds to the chaperone Scm3, and a short essential region called END within the N-terminal tail binds the inner kinetochore complex Okp1/Ame1. To address the roles of these interactions, we utilized single-molecule fluorescence assays to monitor Cse4 during kinetochore assembly. We found that Okp1/Ame1 and Scm3 independently stabilize Cse4 at centromeres via their END interaction. Scm3 and Cse4 stability at the centromere are enhanced by Ipl1/Aurora B phosphorylation of the Cse4 END, identifying a previously unknown role for Ipl1 in ensuring Cse4 stability. Strikingly, a phosphomimetic mutation in the Cse4 END restores Cse4 recruitment in mutants defective in Okp1/Ame1 binding. Together, these data suggest that a key function of the essential Cse4 N-terminus is to ensure Cse4 localization at centromeres.
Collapse
Affiliation(s)
- Andrew R Popchock
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sabrine Hedouin
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| |
Collapse
|
8
|
Ernst J, Sane A, van Noort J. Disentangling Timescales of Molecular Kinetics with spFRET using ALEX-FCS. J Fluoresc 2025:10.1007/s10895-025-04187-0. [PMID: 39960521 DOI: 10.1007/s10895-025-04187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 05/23/2025]
Abstract
Single-pair Förster resonance energy transfer (spFRET) probes the dynamics of molecular structures with (sub-)nanometer accuracy. When combined with fluorescence correlation spectroscopy (FCS), diffusion times and conformation lifetimes can be obtained. Alternating excitation (ALEX) further complements spFRET measurements on freely diffusing molecules, allowing for burst analysis, which can be used to reduce background signal without significant changes to the experimental setup. ALEX is particularly useful for extracting conformational dynamics, but extracting small differences in FRET levels and/or diffusion times can still be difficult for multi-species samples with fast or slow transition rates. Though the combination of spFRET, FCS and ALEX can help to constrain the fits of correlation curves, a rigorous analysis of the range of lifetimes that can be probed with a combination of these methods is lacking. Here, we simulated spFRET-ALEX-FCS experiments of molecules with two conformations that differ both in FRET levels and in diffusion coefficients, representative of fully wrapped and partially unwrapped nucleosomes. We show that we can distinguish small changes in the diffusion coefficient and that burst selection yields accurate lifetimes ranging from 100 us to 100 ms. The simulations provide a framework that can be expanded for more complex systems having a larger number of conformational states, variable stoichiometries from binding interactions and/or other excitation schemes.
Collapse
Affiliation(s)
- Jeremy Ernst
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Aditya Sane
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands.
| |
Collapse
|
9
|
Gao S, Liang J, Tan C, Ma J. An oxygen-scavenging system without impact on DNA mechanical properties in single-molecule fluorescence experiments. NANOSCALE 2025; 17:3236-3242. [PMID: 39633609 DOI: 10.1039/d4nr04287e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Oxygen scavenging systems (OSSs) are critical for dye stability in single-molecule fluorescence (SMF) experiments. However, the commonly used protocatechuic acid (PCA)/protocatechuate-3,4-dioxygenase (PCD) OSS alters DNA mechanical properties, limiting its applicability. To address this limitation, we examine the bilirubin oxidase (BOD) OSS, which had not been previously used in single-molecule experiments, alongside the pyranose oxidase and catalase (POC) OSS. Our results revealed that POC OSS affected DNA mechanics in a buffer-dependent manner, while BOD OSS had no discernible effect across all tested buffer conditions. Furthermore, BOD OSS significantly extended the photobleaching lifetimes of Cy3 and Cy5 dyes and caused minimal pH changes compared to PCD OSS. Collectively, these findings highlight the superior performance of BOD OSS, suggesting its potential for widespread application, particularly in experiments combining SMF with single-molecule force spectroscopy (SMFS) measurements.
Collapse
Affiliation(s)
- Shang Gao
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Jialun Liang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuang Tan
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Banerjee P, Ray S, Dai L, Sandford E, Chatterjee T, Mandal S, Siddiqui J, Tewari M, Walter NG. Chromato-kinetic fingerprinting enables multiomic digital counting of single disease biomarker molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.636009. [PMID: 39975368 PMCID: PMC11838488 DOI: 10.1101/2025.01.31.636009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Early and personalized intervention in complex diseases requires robust molecular diagnostics, yet the simultaneous detection of diverse biomarkers-microRNAs (miRNAs), mutant DNAs, and proteins-remains challenging due to low abundance and preprocessing incompatibilities. We present Biomarker Single-molecule Chromato-kinetic multi-Omics Profiling and Enumeration (Bio-SCOPE), a next-generation, triple-modality, multiplexed detection platform that integrates both chromatic and kinetic fingerprinting for molecular profiling through digital encoding. Bio-SCOPE achieves femtomolar sensitivity, single-base mismatch specificity, and minimal matrix interference, enabling precise, parallel quantification of up to six biomarkers in a single sample with single-molecule resolution. We demonstrate its versatility in accurately detecting low-abundance miRNA signatures from human tissues, identifying upregulated miRNAs in the plasma of prostate cancer patients, and measuring elevated interleukin-6 (IL-6) and hsa-miR-21 levels in cytokine release syndrome patients. By seamlessly integrating multiomic biomarker panels on a unified, high-precision platform, Bio-SCOPE provides a transformative tool for molecular diagnostics and precision medicine.
Collapse
Affiliation(s)
- Pavel Banerjee
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sujay Ray
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Liuhan Dai
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Erin Sandford
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Shankar Mandal
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Javed Siddiqui
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Muneesh Tewari
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Nils G. Walter
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Miao Y, Cheng Y, Xia Y, Hei Y, Wang W, Dai Q, Suo J, Chen C. Supervised multi-frame dual-channel denoising enables long-term single-molecule FRET under extremely low photon budget. Nat Commun 2025; 16:74. [PMID: 39746928 PMCID: PMC11697068 DOI: 10.1038/s41467-024-54652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Camera-based single-molecule techniques have emerged as crucial tools in revolutionizing the understanding of biochemical and cellular processes due to their ability to capture dynamic processes with high precision, high-throughput capabilities, and methodological maturity. However, the stringent requirement in photon number per frame and the limited number of photons emitted by each fluorophore before photobleaching pose a challenge to achieving both high temporal resolution and long observation times. In this work, we introduce MUFFLE, a supervised deep-learning denoising method that enables single-molecule FRET with up to 10-fold reduction in photon requirement per frame. In practice, MUFFLE extends the total number of observation frames by a factor of 10 or more, greatly relieving the trade-off between temporal resolution and observation length and allowing for long-term measurements even without the need for oxygen scavenging systems and triplet state quenchers.
Collapse
Affiliation(s)
- Yu Miao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxiao Cheng
- Department of Automation, Tsinghua University, Beijing, China
| | - Yushi Xia
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhen Hei
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjuan Wang
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Science, Tsinghua University (THUIBCS), Beijing, China.
| | - Jinli Suo
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Science, Tsinghua University (THUIBCS), Beijing, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Zhang O, Lew MD. Single-molecule orientation-localization microscopy: Applications and approaches. Q Rev Biophys 2024; 57:e17. [PMID: 39710866 PMCID: PMC11771422 DOI: 10.1017/s0033583524000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Single-molecule orientation-localization microscopy (SMOLM) builds upon super-resolved localization microscopy by imaging orientations and rotational dynamics of individual molecules in addition to their positions. This added dimensionality provides unparalleled insights into nanoscale biophysical and biochemical processes, including the organization of actin networks, movement of molecular motors, conformations of DNA strands, growth and remodeling of amyloid aggregates, and composition changes within lipid membranes. In this review, we discuss recent innovations in SMOLM and cover three key aspects: (1) biophysical insights enabled by labeling strategies that endow fluorescent probes to bind to targets with orientation specificity; (2) advanced imaging techniques that leverage the physics of light-matter interactions and estimation theory to encode orientation information with high fidelity into microscope images; and (3) computational methods that ensure accurate and precise data analysis and interpretation, even in the presence of severe shot noise. Additionally, we compare labeling approaches, imaging hardware, and publicly available analysis software to aid the community in choosing the best SMOLM implementation for their specific biophysical application. Finally, we highlight future directions for SMOLM, such as the development of probes with improved photostability and specificity, the design of “smart” adaptive hardware, and the use of advanced computational approaches to handle large, complex datasets. This review underscores the significant current and potential impact of SMOLM in deepening our understanding of molecular dynamics, paving the way for future breakthroughs in the fields of biophysics, biochemistry, and materials science.
Collapse
Affiliation(s)
- Oumeng Zhang
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matthew D. Lew
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
13
|
Park J, Prokopchuk G, Popchock AR, Hao J, Liao TW, Yan S, Hedman DJ, Larson JD, Walther BK, Becker NA, Basu A, Maher LJ, Wheeler RJ, Asbury CL, Biggins S, Lukeš J, Ha T. Probing mechanical selection in diverse eukaryotic genomes through accurate prediction of 3D DNA mechanics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629997. [PMID: 39763889 PMCID: PMC11703244 DOI: 10.1101/2024.12.22.629997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Connections between the mechanical properties of DNA and biological functions have been speculative due to the lack of methods to measure or predict DNA mechanics at scale. Recently, a proxy for DNA mechanics, cyclizability, was measured by loop-seq and enabled genome-scale investigation of DNA mechanics. Here, we use this dataset to build a computational model predicting bias-corrected intrinsic cyclizability, with near-perfect accuracy, solely based on DNA sequence. Further, the model predicts intrinsic bending direction in 3D space. Using this tool, we aimed to probe mechanical selection - that is, the evolutionary selection of DNA sequence based on its mechanical properties - in diverse circumstances. First, we found that the intrinsic bend direction of DNA sequences correlated with the observed bending in known protein-DNA complex structures, suggesting that many proteins co-evolved with their DNA partners to capture DNA in its intrinsically preferred bent conformation. We then applied our model to large-scale yeast population genetics data and showed that centromere DNA element II, whose consensus sequence is unknown, leaving its sequence-specific role unclear, is under mechanical selection to increase the stability of inner-kinetochore structure and to facilitate centromeric histone recruitment. Finally, in silico evolution under strong mechanical selection discovered hallucinated sequences with cyclizability values so extreme that they required experimental validation, yet, found in nature in the densely packed mitochondrial(mt) DNA of Namystynia karyoxenos, an ocean-dwelling protist with extreme mitochondrial gene fragmentation. The need to transmit an extraordinarily large amount of mtDNA, estimated to be > 600 Mb, in combination with the absence of mtDNA compaction proteins may have pushed mechanical selection to the extreme. Similarly extreme DNA mechanics are observed in bird microchromosomes, although the functional consequence is not yet clear. The discovery of eccentric DNA mechanics in unrelated unicellular and multicellular eukaryotes suggests that we can predict extreme natural biology which can arise through strong selection. Our methods offer a way to study the biological functions of DNA mechanics in any genome and to engineer DNA sequences with desired mechanical properties.
Collapse
Affiliation(s)
- Jonghan Park
- College of Medicine, Yonsei University, Seoul, Republic of Korea
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Andrew R. Popchock
- Basic Sciences Division, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jingzhou Hao
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biophysics, Johns Hopkins University. Baltimore, MD, USA
| | - Ting-Wei Liao
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biophysics, Johns Hopkins University. Baltimore, MD, USA
| | - Sophia Yan
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Newton South High School, Newton, MA, USA
| | - Dylan J. Hedman
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA, USA
| | - Joshua D. Larson
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA, USA
| | - Brandon K. Walther
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Aakash Basu
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Richard J. Wheeler
- Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Charles L. Asbury
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA, USA
| | - Sue Biggins
- Basic Sciences Division, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Taekjip Ha
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Biophysics, Johns Hopkins University. Baltimore, MD, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Knapp M, Jo M, Henthorn CL, Brimberry M, Gnann AD, Dowling DP, Bridwell-Rabb J. Chlorophyllase from Arabidopsis thaliana Reveals an Emerging Model for Controlling Chlorophyll Hydrolysis. ACS BIO & MED CHEM AU 2024; 4:353-370. [PMID: 39712203 PMCID: PMC11659893 DOI: 10.1021/acsbiomedchemau.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/24/2024]
Abstract
Chlorophyll (Chl) is one of Nature's most complex pigments to biosynthesize and derivatize. This pigment is vital for survival and also paradoxically toxic if overproduced or released from a protective protein scaffold. Therefore, along with the mass production of Chl, organisms also invest in mechanisms to control its degradation and recycling. One important enzyme that is involved in these latter processes is chlorophyllase. This enzyme is employed by numerous photosynthetic organisms to hydrolyze the phytol tail of Chl. Although traditionally thought to catalyze the first step of Chl degradation, recent work suggests that chlorophyllase is instead employed during times of abiotic stress or conditions that produce reactive oxygen species. However, the molecular details regarding how chlorophyllases are regulated to function under such conditions remain enigmatic. Here, we investigate the Arabidopsis thaliana chlorophyllase isoform AtCLH2 using site-directed mutagenesis, mass spectrometry, dynamic light scattering, size-exclusion multiangle light scattering, and both steady-state enzyme kinetic and thermal stability measurements. Through these experiments, we show that AtCLH2 exists as a monomer in solution and contains two disulfide bonds. One disulfide bond putatively maps to the active site, whereas the other links two N-terminal Cys residues together. These disulfide bonds are cleaved by chemical or chemical and protein-based reductants, respectively, and are integral to maintaining the activity, stability, and substrate scope of the enzyme. This work suggests that Cys residue oxidation in chlorophyllases is an emerging regulatory strategy for controlling the hydrolysis of Chl pigments.
Collapse
Affiliation(s)
- Madison Knapp
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Minshik Jo
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Courtney L. Henthorn
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marley Brimberry
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew D. Gnann
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Daniel P. Dowling
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Jennifer Bridwell-Rabb
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Olaya-Bravo K, Martínez-Flores D, Rodríguez-Hernández AP, Tobías-Juárez I, Castro-Rodríguez JA, Sampieri A, Vaca L. Resolving viral structural complexity by super-resolution microscopy. Arch Virol 2024; 170:5. [PMID: 39652240 DOI: 10.1007/s00705-024-06192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 12/17/2024]
Abstract
In this review, we discuss different super-resolution microscopy (SRM) techniques employed to study viral structures and virus composition with nanometric resolution. We describe the basic principles of the different microscopy methods utilized to break the light diffraction limit, enabling the study of protein composition in viral structures. Finally, we demonstrate for the first time the differential spatial distribution of two structural proteins in an individual baculovirus using single-molecule super-resolution microscopy. We discuss the future of these powerful methods for virology, medicine, and biotechnology applications.
Collapse
Affiliation(s)
- Kevin Olaya-Bravo
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Daniel Martínez-Flores
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aaron Pavel Rodríguez-Hernández
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ileana Tobías-Juárez
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Jorge A Castro-Rodríguez
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alicia Sampieri
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Vaca
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
16
|
Chakraborty UK, Park Y, Sengupta K, Jung W, Joshi CP, Francis DH, Chen P. A 'through-DNA' mechanism for co-regulation of metal uptake and efflux. Nat Commun 2024; 15:10555. [PMID: 39632925 PMCID: PMC11618457 DOI: 10.1038/s41467-024-55017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Transition metals like Zn are essential for all organisms including bacteria, but fluctuations of their concentrations in the cell can be lethal. Organisms have thus evolved complex mechanisms for cellular metal homeostasis. One mechanistic paradigm involves pairs of transcription regulators sensing intracellular metal concentrations to regulate metal uptake and efflux. Here we report that Zur and ZntR, a prototypical pair of regulators for Zn uptake and efflux in E. coli, respectively, can coordinate their regulation through DNA, besides sensing cellular Zn2+ concentrations. Using a combination of live-cell single-molecule tracking and in vitro single-molecule FRET measurements, we show that unmetallated ZntR can enhance the unbinding kinetics of Zur from DNA by directly acting on Zur-DNA complexes, possibly through forming heteromeric ternary and quaternary complexes that involve both protein-DNA and protein-protein interactions. This 'through-DNA' mechanism may functionally facilitate the switching in Zn-uptake regulation when bacteria encounter changing Zn environments, such as facilitating derepression of Zn-uptake genes upon Zn depletion; it could also be relevant for regulating the uptake-vs.-efflux of various metals across different bacterial species and yeast.
Collapse
Affiliation(s)
| | - Youngchan Park
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Kushal Sengupta
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Won Jung
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Chandra P Joshi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Physics, Durham Technical Community College, Durham, NC, USA
| | - Danielle H Francis
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Wheaton High School, Silver Spring, MD, USA
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
17
|
Ghosh S, Schmid S. The potential of fluorogenicity for single molecule FRET and DyeCycling. QRB DISCOVERY 2024; 5:e8. [PMID: 39687231 PMCID: PMC11649375 DOI: 10.1017/qrd.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 12/18/2024] Open
Abstract
Single Molecule Förster Resonance Energy Transfer (smFRET) is a popular technique to directly observe biomolecular dynamics in real time, offering unique mechanistic insight into proteins, ribozymes, and so forth. However, inevitable photobleaching of the fluorophores puts a stringent limit on the total time a surface-tethered molecule can be monitored, fundamentally limiting the information gain through conventional smFRET measurements. DyeCycling addresses this problem by using reversibly - instead of covalently - coupled FRET fluorophores, through which it can break the photobleaching limit and theoretically provide unlimited observation time. In this perspective paper, we discuss the potential of various fluorogenic strategies to suppress the background fluorescence caused by unbound, freely diffusing fluorophores inherent to the DyeCycling approach. In comparison to nanophotonic background suppression using zero-mode waveguides, the fluorogenic approach would enable DyeCycling experiments on regular glass slides with fluorogenic FRET probes that are quenched in solution and only fluoresce upon target binding. We review a number of fluorogenic approaches and conclude, among other things, that short-range quenching appears promising for realising fluorogenic DyeCycling on regular glass slides. We anticipate that our discussion will be relevant for all single-molecule fluorescence techniques that use reversible fluorophore binding.
Collapse
Affiliation(s)
- Srijayee Ghosh
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Sonja Schmid
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Deng S, Yi D, Rujiralai T, Ren Q, Tan C, Ma J. Investigating the photophysical properties of rhodamines using a spectroscopic single-molecule fluorescence method. RSC Adv 2024; 14:38523-38529. [PMID: 39650840 PMCID: PMC11622037 DOI: 10.1039/d4ra06577h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024] Open
Abstract
The photophysical properties of rhodamine molecules play a critical role in their performance across various applications. The spectroscopic single-molecule fluorescence (sSMF) technique overcomes the limitations of conventional SMF by distinguishing individual fluorophores based on their emission spectra. This enables precise measurement and direct comparison of photophysical properties among distinct molecules under identical conditions, without requiring separation of molecules. In this study, using a custom sSMF instrument, we successfully identified individual rhodamine B molecules and their various N-dealkylated intermediates, allowing for simultaneous investigation of their photophysical properties. Notably, we observed that rhodamine B undergoing a single dealkylation step exhibited a striking enhancement in photostability compared to its fully intact counterparts and those undergoing two dealkylation steps. This enhancement persisted across various buffer conditions, including different pH levels and the presence or absence of an oxygen scavenger system (OSS). Despite these differences in photostability, time-dependent density functional theory (TD-DFT) calculations revealed that all these rhodamine molecules examined shared a similar energy gap (∼0.6 eV) between their first excited singlet and triplet states.
Collapse
Affiliation(s)
- Shangyuan Deng
- School of Physics, Sun Yat-sen University Guangzhou 510275 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Deqi Yi
- School of Physics, Sun Yat-sen University Guangzhou 510275 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Thitima Rujiralai
- Division of Physical Science, Faculty of Science, Prince of Songkla University Songkhla 90110 Thailand
| | - Qinghua Ren
- Department of Chemistry, Shanghai University Shanghai 200444 China
| | - Chuang Tan
- School of Physics, Sun Yat-sen University Guangzhou 510275 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Jie Ma
- School of Physics, Sun Yat-sen University Guangzhou 510275 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
19
|
Dey S, Pahari P, Mukherjee S, Munro JB, Das DK. Conformational dynamics of SARS-CoV-2 Omicron spike trimers during fusion activation at single molecule resolution. Structure 2024; 32:1910-1925.e6. [PMID: 39366371 PMCID: PMC11560620 DOI: 10.1016/j.str.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron entry involves spike (S) glycoprotein-mediated fusion of viral and late endosomal membranes. Here, using single-molecule Förster resonance energy transfer (sm-FRET) imaging and biochemical measurements, we directly visualized conformational changes of individual spike trimers on the surface of SARS-CoV-2 Omicron pseudovirions during fusion activation. We observed that the S2 domain of the Omicron spike is a dynamic fusion machine. S2 reversibly interchanges between the pre-fusion conformation and two previously undescribed intermediate conformations. Acidic pH shifts the conformational equilibrium of S2 toward an intermediate conformation and promotes the membrane hemi-fusion reaction. Moreover, we captured conformational reversibility in the S2 domain, which suggests that spike can protect itself from pre-triggering. Furthermore, we determined that Ca2+ directly promotes the S2 conformational change from an intermediate conformation to post-fusion conformation. In the presence of a target membrane, low pH and Ca2+ stimulate the irreversible transition to S2 post-fusion state and promote membrane fusion.
Collapse
Affiliation(s)
- Shuvankar Dey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Purba Pahari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Srija Mukherjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - James B Munro
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dibyendu Kumar Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
20
|
Wang X, Rusinova R, Gregorio GG, Boudker O. Free fatty acids inhibit an ion-coupled membrane transporter by dissipating the ion gradient. J Biol Chem 2024; 300:107955. [PMID: 39491650 DOI: 10.1016/j.jbc.2024.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Glutamate is the main excitatory transmitter in the mammalian central nervous system; glutamate transporters keep the synaptic glutamate concentrations at bay for normal brain function. Arachidonic acid (AA), docosahexaenoic acid, and other unsaturated fatty acids modulate glutamate transporters in cell- and tissue slices-based studies. Here, we investigated their effect and mechanism using a purified archaeal glutamate transporter homolog reconstituted into the lipid membranes. AA, docosahexaenoic acid, and related fatty acids irreversibly inhibited the sodium-dependent concentrative substrate uptake into lipid vesicles within the physiologically relevant concentration range. In contrast, AA did not inhibit amino acid exchange across the membrane. The length and unsaturation of the aliphatic tail affect inhibition, and the free carboxylic headgroup is necessary. The inhibition potency did not correlate with the fatty acid effects on the bilayer deformation energies. AA does not affect the conformational dynamics of the protein, suggesting it does not inhibit structural transitions necessary for transport. Single-transporter and membrane voltage assays showed that AA and related fatty acids mediate cation leak, dissipating the driving sodium gradient. Thus, such fatty acids can act as cation ionophores, suggesting a general modulatory mechanism of membrane channels and ion-coupled transporters.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA.
| | - Radda Rusinova
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - G Glenn Gregorio
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA; Howard Hughes Medical Institute, Weill Cornell Medicine, New York, New York, USA
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA; Howard Hughes Medical Institute, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
21
|
Park D, Won SM, Lee H. Enhanced Deoxygenation of Solvents via an Improved Inert Gas Bubbling Method with a Ventilation Pathway. ACS OMEGA 2024; 9:42915-42922. [PMID: 39464442 PMCID: PMC11500370 DOI: 10.1021/acsomega.4c05786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
We introduce an improved inert gas bubbling method for solvent deoxygenation, featuring a ventilation path alongside the inert gas inlet to enhance the efficiency and reproducibility. While essential for life, oxygen's reactivity can disrupt scientific and industrial processes by forming unwanted intermediates and deactivating catalysts, necessitating efficient deoxygenation methods. Traditional methods like freeze-pump-thaw (FPT) are effective but time-consuming, require stringent safety measures, and have potential limitations for use with aqueous and biological samples. Our enhanced inert gas bubbling method retains the simplicity and safety of conventional bubbling while achieving FPT-like deoxygenation efficiency, demonstrated by photoluminescence intensity and lifetime measurements in acetonitrile (ACN) and toluene (TOL). Simulations using a simplified kinetic model and the Stern-Volmer equation reveal that the added ventilation pathway reduces oxygen contamination in Ar gas bubbles, improving the deoxygenation efficiency. This method is widely applicable in academic and industrial fields, requiring consistent and efficient solvent deoxygenation.
Collapse
Affiliation(s)
- Dongcheol Park
- Department
of Chemistry, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
- Innovative
Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem)
Research Center (ERC), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
| | - Seong Min Won
- Department
of Chemistry, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
- Innovative
Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem)
Research Center (ERC), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
| | - Hohjai Lee
- Department
of Chemistry, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
- Innovative
Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem)
Research Center (ERC), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea
| |
Collapse
|
22
|
Lam AYW, Tsuboyama K, Tadakuma H, Tomari Y. DNAJA2 and Hero11 mediate similar conformational extension and aggregation suppression of TDP-43. RNA (NEW YORK, N.Y.) 2024; 30:1422-1436. [PMID: 39117455 PMCID: PMC11482610 DOI: 10.1261/rna.080165.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Many RNA-binding proteins (RBPs) contain low-complexity domains (LCDs) with prion-like compositions. These long intrinsically disordered regions regulate their solubility, contributing to their physiological roles in RNA processing and organization. However, this also makes these RBPs prone to pathological misfolding and aggregation that are characteristic of neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) forms pathological aggregates associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While molecular chaperones are well-known suppressors of these aberrant events, we recently reported that highly disordered, hydrophilic, and charged heat-resistant obscure (Hero) proteins may have similar effects. Specifically, Hero proteins can maintain the activity of other proteins from denaturing conditions in vitro, while their overexpression can suppress cellular aggregation and toxicity associated with aggregation-prone proteins. However, it is unclear how these protective effects are achieved. Here, we used single-molecule FRET to monitor the conformations of the aggregation-prone prion-like LCD of TDP-43. While we observed high conformational heterogeneity in wild-type LCD, the ALS-associated mutation A315T promoted collapsed conformations. In contrast, an Hsp40 chaperone, DNAJA2, and a Hero protein, Hero11, stabilized extended states of the LCD, consistent with their ability to suppress the aggregation of TDP-43. Our results link single-molecule effects on conformation to macro effects on bulk aggregation, where a Hero protein, like a chaperone, can maintain the conformational integrity of a client protein to prevent its aggregation.
Collapse
Affiliation(s)
- Andy Y W Lam
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kotaro Tsuboyama
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Institute of Industrial Science, the University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Hisashi Tadakuma
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
23
|
Mougios N, Cotroneo ER, Imse N, Setzke J, Rizzoli SO, Simeth NA, Tsukanov R, Opazo F. NanoPlex: a universal strategy for fluorescence microscopy multiplexing using nanobodies with erasable signals. Nat Commun 2024; 15:8771. [PMID: 39384781 PMCID: PMC11479620 DOI: 10.1038/s41467-024-53030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Fluorescence microscopy has long been a transformative technique in biological sciences. Nevertheless, most implementations are limited to a few targets, which have been revealed using primary antibodies and fluorescently conjugated secondary antibodies. Super-resolution techniques such as Exchange-PAINT and, more recently, SUM-PAINT have increased multiplexing capabilities, but they require specialized equipment, software, and knowledge. To enable multiplexing for any imaging technique in any laboratory, we developed NanoPlex, a streamlined method based on conventional antibodies revealed by engineered secondary nanobodies that allow the selective removal of fluorescence signals. We develop three complementary signal removal strategies: OptoPlex (light-induced), EnzyPlex (enzymatic), and ChemiPlex (chemical). We showcase NanoPlex reaching 21 targets for 3D confocal analyses and 5-8 targets for dSTORM and STED super-resolution imaging. NanoPlex has the potential to revolutionize multi-target fluorescent imaging methods, potentially redefining the multiplexing capabilities of antibody-based assays.
Collapse
Affiliation(s)
- Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany
| | - Elena R Cotroneo
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Nils Imse
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Jonas Setzke
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Roman Tsukanov
- III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany.
- NanoTag Biotechnologies GmbH, Göttingen, Germany.
| |
Collapse
|
24
|
O'Brien BM, Moulick R, Jiménez-Avalos G, Rajasekaran N, Kaiser CM, Woodson SA. Stick-slip unfolding favors self-association of expanded HTT mRNA. Nat Commun 2024; 15:8738. [PMID: 39384800 PMCID: PMC11464812 DOI: 10.1038/s41467-024-52764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024] Open
Abstract
In Huntington's Disease (HD) and related disorders, expansion of CAG trinucleotide repeats produces a toxic gain of function in affected neurons. Expanded huntingtin (expHTT) mRNA forms aggregates that sequester essential RNA binding proteins, dysregulating mRNA processing and translation. The physical basis of RNA aggregation has been difficult to disentangle owing to the heterogeneous structure of the CAG repeats. Here, we probe the folding and unfolding pathways of expHTT mRNA using single-molecule force spectroscopy. Whereas normal HTT mRNAs unfold reversibly and cooperatively, expHTT mRNAs with 20 or 40 CAG repeats slip and unravel non-cooperatively at low tension. Slippage of CAG base pairs is punctuated by concerted rearrangement of adjacent CCG trinucleotides, trapping partially folded structures that readily base pair with another RNA strand. We suggest that the conformational entropy of the CAG repeats, combined with stable CCG base pairs, creates a stick-slip behavior that explains the aggregation propensity of expHTT mRNA.
Collapse
Affiliation(s)
- Brett M O'Brien
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD, USA
| | - Roumita Moulick
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| | - Sarah A Woodson
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD, USA.
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
25
|
Biase FH, Moorey SE, Schnuelle JG, Rodning S, Ortega MS, Spencer TE. Altered microRNA composition in the uterine lumen fluid in cattle (Bos taurus) pregnancies initiated by artificial insemination or transfer of an in vitro produced embryo. J Anim Sci Biotechnol 2024; 15:130. [PMID: 39267128 PMCID: PMC11397056 DOI: 10.1186/s40104-024-01083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/29/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are presented in the uterine lumen of many mammals, and in vitro experiments have determined that several miRNAs are important for the regulation of endometrial and trophoblast functions. Our aim was to identify and contrast the miRNAs present in extracellular vesicles (EVs) in the uterine lumen fluid (ULF) at the onset of attachment in cattle pregnancies (gestation d 18) initiated by artificial insemination (AI) or by the transfer of an in vitro-produced blastocyst (IVP-ET). A third group had no conceptus after the transfer of an IVP embryo. RESULTS The abundance of 263 annotated miRNAs was quantified in the EVs collected from ULF. There was an increase in the transcript abundance of 20 miRNAs in the ULF EVs from the AI pregnant group, while 4 miRNAs had a lower abundance relative to the group not containing a conceptus. Additionally, 4 miRNAs were more abundant in ULF EVs in the AI pregnant group relative to IVP-ET group (bta-mir-17, bta-mir-7-3, MIR7-1, MIR18A). Specific miRNAs in the ULF EVs were co-expressed with messenger RNAs expressed in extra-embryonic tissues and endometrium, including genes that are known to be their targets. CONCLUSIONS The results provide biological insights into the participation of miRNAs in the regulation of trophoblast proliferation and differentiation, as well as in endometrium receptivity. The knowledge that in vitro cultured embryos can contribute to the altered abundance of specific miRNAs in the uterine lumen can lead to the development of corrective approaches to reduce conceptus losses during the first month of pregnancy in cattle.
Collapse
Affiliation(s)
- Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus Dr, Blacksburg, VA, 24061, USA.
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Julie G Schnuelle
- Department of Clinical Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Soren Rodning
- Department of Animal Science, Auburn University, Auburn, AL, 36849, USA
| | - Martha Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, Madison, WI, 53706, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
26
|
Singh P, Pahari P, Mukherjee S, Karmakar S, Hoffmann M, Mandal T, Das DK. SARS-CoV-2 spike fusion peptide trans interaction with phosphatidylserine lipid triggers membrane fusion for viral entry. mBio 2024; 15:e0107724. [PMID: 39115315 PMCID: PMC11389415 DOI: 10.1128/mbio.01077-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/30/2024] [Indexed: 09/12/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the fusion machine for host cell entry. Still, the mechanism by which spike protein interacts with the target lipid membrane to facilitate membrane fusion during entry is not fully understood. Here, using steady-state membrane fusion and single-molecule fluorescence resonance energy transfer imaging of spike trimers on the surface of SARS-CoV-2 pseudovirion, we directly show that spike protein interacts with phosphatidylserine (PS) lipid in the target membrane for mediating fusion. We observed that the fusion peptide of the spike S2 domain interacts with the PS lipid of the target membrane. Low pH and Ca2+ trigger the spike conformational change and bring fusion peptide in close proximity to the PS lipid of the membrane. The binding of the spike with PS lipid of its viral membrane (cis interaction) impedes the fusion activation. PS on the target membrane promotes spike binding via trans interaction, prevents the cis interaction, and accelerates fusion. Sequestering or absence of PS lipid abrogates the spike-mediated fusion process and restricts SARS-CoV-2 infectivity. We found that PS-dependent interaction for fusion is conserved across all the SARS-CoV-2 spike variants of concern (D614G, Alpha, Beta, Delta, and Omicron). Our study suggests that PS lipid is indispensable for SARS-CoV-2 spike-mediated virus and target membrane fusion for entry, and restricting PS interaction with spike inhibits the SARS-CoV-2 spike-mediated entry. Therefore, PS is an important cofactor and acts as a molecular beacon in the target membrane for SARS-CoV-2 entry. IMPORTANCE The role of lipids in the host cell target membrane for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry is not clear. We do not know whether SARS-CoV-2 spike protein has any specificity in terms of lipid for membrane fusion reaction. Here, using in vitro reconstitution of membrane fusion assay and single-molecule fluorescence resonance energy transfer imaging of SARS-CoV-2 spike trimers on the surface of the virion, we have demonstrated that phosphatidylserine (PS) lipid plays a key role in SARS-CoV-2 spike-mediated membrane fusion reaction for entry. Membrane-externalized PS lipid strongly promotes spike-mediated membrane fusion and COVID-19 infection. Blocking externalized PS lipid with PS-binding protein or in the absence of PS, SARS-CoV-2 spike-mediated fusion is strongly inhibited. Therefore, PS is an important target for restricting viral entry and intervening spike, and PS interaction presents new targets for COVID-19 interventions.
Collapse
Affiliation(s)
- Puspangana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Purba Pahari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Srija Mukherjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Sharmistha Karmakar
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg August University, Göttingen, Germany
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Dibyendu Kumar Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
27
|
Steen PR, Unterauer EM, Masullo LA, Kwon J, Perovic A, Jevdokimenko K, Opazo F, Fornasiero EF, Jungmann R. The DNA-PAINT palette: a comprehensive performance analysis of fluorescent dyes. Nat Methods 2024; 21:1755-1762. [PMID: 39112798 PMCID: PMC11399092 DOI: 10.1038/s41592-024-02374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/21/2024] [Indexed: 09/15/2024]
Abstract
DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a super-resolution fluorescence microscopy technique that achieves single-molecule 'blinking' by transient DNA hybridization. Despite blinking kinetics being largely independent of fluorescent dye choice, the dye employed substantially affects measurement quality. Thus far, there has been no systematic overview of dye performance for DNA-PAINT. Here we defined four key parameters characterizing performance: brightness, signal-to-background ratio, DNA-PAINT docking site damage and off-target signal. We then analyzed 18 fluorescent dyes in three spectral regions and examined them both in DNA origami nanostructures, establishing a reference standard, and in a cellular environment, targeting the nuclear pore complex protein Nup96. Finally, having identified several well-performing dyes for each excitation wavelength, we conducted simultaneous three-color DNA-PAINT combined with Exchange-PAINT to image six protein targets in neurons at ~16 nm resolution in less than 2 h. We thus provide guidelines for DNA-PAINT dye selection and evaluation and an overview of performances of commonly used dyes.
Collapse
Affiliation(s)
- Philipp R Steen
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eduard M Unterauer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Jisoo Kwon
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ana Perovic
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kristina Jevdokimenko
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
28
|
Song E, Han S, Uhm H, Kang C, Hohng S. Single-mode termination of phage transcriptions, disclosing bacterial adaptation for facilitated reinitiations. Nucleic Acids Res 2024; 52:9092-9102. [PMID: 39011892 PMCID: PMC11347151 DOI: 10.1093/nar/gkae620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Bacterial and bacteriophage RNA polymerases (RNAPs) have divergently evolved and share the RNA hairpin-dependent intrinsic termination of transcription. Here, we examined phage T7, T3 and SP6 RNAP terminations utilizing the single-molecule fluorescence assays we had developed for bacterial terminations. We discovered the phage termination mode or outcome is virtually single with decomposing termination. Therein, RNAP is displaced forward along DNA and departs both RNA and DNA for one-step decomposition, three-dimensional diffusion and reinitiation at any promoter. This phage displacement-mediated decomposing termination is much slower than readthrough and appears homologous with the bacterial one. However, the phage sole mode of termination contrasts with the bacterial dual mode, where both decomposing and recycling terminations occur compatibly at any single hairpin- or Rho-dependent terminator. In the bacterial recycling termination, RNA is sheared from RNA·DNA hybrid, and RNAP remains bound to DNA for one-dimensional diffusion, which enables facilitated recycling for reinitiation at the nearest promoter located downstream or upstream in the sense or antisense orientation. Aligning with proximity of most terminators to adjacent promoters in bacterial genomes, the shearing-mediated recycling termination could be bacterial adaptation for the facilitated reinitiations repeated at a promoter for accelerated expression and coupled at adjoining promoters for coordinated regulation.
Collapse
Affiliation(s)
- Eunho Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Han
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Heesoo Uhm
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Changwon Kang
- Department of Biological Sciences, and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Grosely R, Alvarado C, Ivanov IP, Nicholson OB, Puglisi JD, Dever TE, Lapointe CP. eIF1 and eIF5 dynamically control translation start site fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602410. [PMID: 39026837 PMCID: PMC11257575 DOI: 10.1101/2024.07.10.602410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Translation initiation defines the identity of a synthesized protein through selection of a translation start site on a messenger RNA. This process is essential to well-controlled protein synthesis, modulated by stress responses, and dysregulated in many human diseases. The eukaryotic initiation factors eIF1 and eIF5 interact with the initiator methionyl-tRNAi Met on the 40S ribosomal subunit to coordinate start site selection. Here, using single-molecule analysis of in vitro reconstituted human initiation combined with translation assays in cells, we examine eIF1 and eIF5 function. During translation initiation on a panel of RNAs, we monitored both proteins directly and in real time using single-molecule fluorescence. As expected, eIF1 loaded onto mRNAs as a component of the 43S initiation complex. Rapid (~ 2 s) eIF1 departure required a translation start site and was delayed by alternative start sites and a longer 5' untranslated region (5'UTR). After its initial departure, eIF1 rapidly and transiently sampled initiation complexes, with more prolonged sampling events on alternative start sites. By contrast, eIF5 only transiently bound initiation complexes late in initiation immediately prior to association of eIF5B, which allowed joining of the 60S ribosomal subunit. eIF5 association required the presence of a translation start site and was inhibited and destabilized by alternative start sites. Using both knockdown and overexpression experiments in human cells, we validated that eIF1 and eIF5 have opposing roles during initiation. Collectively, our findings demonstrate how multiple eIF1 and eIF5 binding events control start-site selection fidelity throughout initiation, which is tuned in response to changes in the levels of both proteins.
Collapse
Affiliation(s)
- Rosslyn Grosely
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos Alvarado
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivaylo P. Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Joseph D. Puglisi
- Dept. of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas E. Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
30
|
Algama CH, Basir J, Wijesinghe KM, Dhakal S. Fluorescence-Based Multimodal DNA Logic Gates. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1185. [PMID: 39057862 PMCID: PMC11280116 DOI: 10.3390/nano14141185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The use of DNA structures in creating multimodal logic gates bears high potential for building molecular devices and computation systems. However, due to the complex designs or complicated working principles, the implementation of DNA logic gates within molecular devices and circuits is still quite limited. Here, we designed simple four-way DNA logic gates that can serve as multimodal platforms for simple to complex operations. Using the proximity quenching of the fluorophore-quencher pair in combination with the toehold-mediated strand displacement (TMSD) strategy, we have successfully demonstrated that the fluorescence output, which is a result of gate opening, solely relies on the oligonucleotide(s) input. We further demonstrated that this strategy can be used to create multimodal (tunable displacement initiation sites on the four-way platform) logic gates including YES, AND, OR, and the combinations thereof. The four-way DNA logic gates developed here bear high promise for building biological computers and next-generation smart molecular circuits with biosensing capabilities.
Collapse
Affiliation(s)
| | | | | | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
31
|
Pati AK, Kilic Z, Martin MI, Terry DS, Borgia A, Bar S, Jockusch S, Kiselev R, Altman RB, Blanchard SC. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation. Nat Methods 2024; 21:1222-1230. [PMID: 38877317 PMCID: PMC11239528 DOI: 10.1038/s41592-024-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates. We propose both robust triplet state suppression and data correction strategies that enable the recovery of FRET efficiencies more closely approximating true values, thereby extending the spatial and temporal resolution of smFRET.
Collapse
Affiliation(s)
- Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sukanta Bar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steffen Jockusch
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Roman Kiselev
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roger B Altman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
32
|
Zhou W, Tao Y, Qiao Q, Xu N, Li J, Wang G, Fang X, Chen J, Liu W, Xu Z. Cell-Impermeable Buffering Fluorogenic Probes for Live-Cell Super-Resolution Imaging of Plasma Membrane Morphology Dynamics. ACS Sens 2024; 9:3170-3177. [PMID: 38859630 DOI: 10.1021/acssensors.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Super-resolution fluorescence imaging has emerged as a potent tool for investigating the nanoscale structure and function of the plasma membrane (PM). Nevertheless, the challenge persists in achieving super-resolution imaging of PM dynamics due to limitations in probe photostability and issues with cell internalization staining. Herein, we report assembly-mediated buffering fluorogenic probes BMP-14 and BMP-16 exhibiting fast PM labeling and extended retention time (over 2 h) on PM. The incorporation of alkyl chains proves effective in promoting the aggregation of BMP-14 and BMP-16 into nonfluorescent nanoparticles to realize fluorogenicity and regulate the buffering capacity to rapidly replace photobleached probes ensuring stable long-term super-resolution imaging of PM. Utilizing these PM-buffering probes, we observed dynamic movements of PM filopodia and continuous shrinkage, leading to the formation of extracellular vesicles (EVs) using structured illumination microscopy (SIM). Furthermore, we discovered two distinct modes of EV fusion: one involving fusion through adjacent lipids and the other through filamentous lipid traction. The entire process of EV fusion outside the PM was dynamically tracked. Additionally, BMP-16 exhibited a unique capability of inducing single-molecule fluorescence blinking when used for cell membrane staining. This property makes BMP-16 suitable for the PAINT imaging of cell membranes.
Collapse
Affiliation(s)
- Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangying Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangning Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
O'Brien BM, Moulick R, Jiménez-Avalos G, Rajasekaran N, Kaiser CM, Woodson SA. Stick-slip unfolding favors self-association of expanded HTT mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596809. [PMID: 38895475 PMCID: PMC11185545 DOI: 10.1101/2024.05.31.596809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In Huntington's Disease (HD) and related disorders, expansion of CAG trinucleotide repeats produces a toxic gain of function in affected neurons. Expanded huntingtin (expHTT) mRNA forms aggregates that sequester essential RNA binding proteins, dysregulating mRNA processing and translation. The physical basis of RNA aggregation has been difficult to disentangle owing to the heterogeneous structure of the CAG repeats. Here, we probe the folding and unfolding pathways of expHTT mRNA using single-molecule force spectroscopy. Whereas normal HTT mRNAs unfold reversibly and cooperatively, expHTT mRNAs with 20 or 40 CAG repeats slip and unravel non-cooperatively at low tension. Slippage of CAG base pairs is punctuated by concerted rearrangement of adjacent CCG trinucleotides, trapping partially folded structures that readily base pair with another RNA strand. We suggest that the conformational entropy of the CAG repeats, combined with stable CCG base pairs, creates a stick-slip behavior that explains the aggregation propensity of expHTT mRNA.
Collapse
Affiliation(s)
- Brett M O'Brien
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Roumita Moulick
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Gabriel Jiménez-Avalos
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | | | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218 USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Sarah A Woodson
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218 USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
34
|
Bharadwaj A, Kumar A, Mitra R, Jaganathan BG, Boruah BR. Enhanced fluorescence blinking of AF647 fluorophores in Mowiol via violet and UV light induced recovery for superior localization microscopy. Methods Appl Fluoresc 2024; 12:035007. [PMID: 38740072 DOI: 10.1088/2050-6120/ad4ae6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Blinking of fluorophores is essential in the context of single molecule localization-based optical super-resolution microscopy methods. To make the fluorescence molecule undergo blinking specific complex chemical mounting buffer systems, combined with suitable oxygen scavengers, and reducing agents are required. For instance to realise blinking in widely used fluorescence tags, like Alexa Fluor 647 (AF647), they are to be mounted on anti-fading buffer such as Mowiol and reducing agent such as Beta (β) - ME. However, the quality of the super-resolved images is decided by the total number of blinking events or in other words net duration for which the fluorescence blinking persists. In this paper we investigate how a violet and UV light induced fluorescence recovery mechanism can enhance the duration of fluorescence blinking. Our study uses AF647 dye conjugated with Phalloidin antibody in U87MG cell line mounted on Mowiol andβ- ME. On the basis of the investigation we optimize the intensity, at the sample plane, of fluorescence excitation laser at 638 nm and fluorescence recovery beam at 405 nm or in the UV giving the maximum possible fluorescence blinking duration. We observe that the longer blinking duration, using the optimized illumination scheme, has brought down the resolution in the super-resolved image, as given by Fourier Ring Correlation method, from 168 nm to 112 nm, while the separation between two nearby resolvable filaments has been brought down to ≤ 60 nm.
Collapse
Affiliation(s)
- Anupam Bharadwaj
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Amalesh Kumar
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rumela Mitra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Bithiah Grace Jaganathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Bosanta R Boruah
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
35
|
Cao X, Li M, Li Q, Fan C, Sun J, Gao Z. Single-molecule localization microscopy at 2.4-fold resolution improvement with optical lattice pattern illumination. OPTICS EXPRESS 2024; 32:20218-20229. [PMID: 38859137 DOI: 10.1364/oe.514937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/27/2024] [Indexed: 06/12/2024]
Abstract
Traditional camera-based single-molecule localization microscopy (SMLM), with its high imaging resolution and localization throughput, has made significant advancements in biological and chemical researches. However, due to the limitation of the fluorescence signal-to-noise ratio (SNR) of a single molecule, its resolution is difficult to reach to 5 nm. Optical lattice produces a nondiffracting beam pattern that holds the potential to enhance microscope performance through its high contrast and penetration depth. Here, we propose a new method named LatticeFLUX which utilizes the wide-field optical lattice pattern illumination for individual molecule excitation and localization. We calculated the Cramér-Rao lower bound of LatticeFLUX resolution and proved that our method can improve the single molecule localization precision by 2.4 times compared with the traditional SMLM. We propose a scheme using 9-frame localization, which solves the problem of uneven lattice light illumination. Based on the experimental single-molecule fluorescence SNR, we coded the image reconstruction software to further verify the resolution enhancement capability of LatticeFLUX on simulated punctate DNA origami, line pairs, and cytoskeleton. LatticeFLUX confirms the feasibility of using 2D structured light illumination to obtain high single-molecule localization precision under high localization throughput. It paves the way for further implementation of ultra-high resolution full 3D structured-light-illuminated SMLM.
Collapse
|
36
|
de la Torre M, Pomorski A. Investigation of metal ion binding biomolecules one molecule at a time. Front Chem 2024; 12:1378447. [PMID: 38680456 PMCID: PMC11045889 DOI: 10.3389/fchem.2024.1378447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Metal ions can perform multiple roles ranging from regulatory to structural and are crucial for cell function. While some metal ions like Na+ are ubiquitously present at high concentrations, other ions, especially Ca2+ and transition metals, such as Zn2+ or Cu+/2+ are regulated. The concentrations above or below the physiological range cause severe changes in the behavior of biomolecules that bind them and subsequently affect the cell wellbeing. This has led to the development of specialized protocols to study metal ion binding biomolecules in bulk conditions that mimic the cell environment. Recently, there is growing evidence of influence of post-transcriptional and post-translational modifications on the affinity of the metal ion binding sites. However, such targets are difficult to obtain in amounts required for classical biophysical experiments. Single molecule techniques have revolutionized the field of biophysics, molecular and structural biology. Their biggest advantage is the ability to observe each molecule's interaction independently, without the need for synchronization. An additional benefit is its extremely low sample consumption. This feature allows characterization of designer biomolecules or targets obtained coming from natural sources. All types of biomolecules, including proteins, DNA and RNA were characterized using single molecule methods. However, one group is underrepresented in those studies. These are the metal ion binding biomolecules. Single molecule experiments often require separate optimization, due to extremely different concentrations used during the experiments. In this review we focus on single molecule methods, such as single molecule FRET, nanopores and optical tweezers that are used to study metal ion binding biomolecules. We summarize various examples of recently characterized targets and reported experimental conditions. Finally, we discuss the potential promises and pitfalls of single molecule characterization on metal ion binding biomolecules.
Collapse
Affiliation(s)
| | - Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
37
|
Zhang Y, Ling J, Liu T, Chen Z. Lumos maxima - How robust fluorophores resist photobleaching? Curr Opin Chem Biol 2024; 79:102439. [PMID: 38432145 DOI: 10.1016/j.cbpa.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Fluorescent dyes synergize with advanced microscopy for researchers to investigate the location and dynamic processes of biomacromolecules with high spatial and temporal resolution. However, the instability of fluorescent dyes, including photobleaching and photoconversion, represent fundamental limits for super-resolution and time-lapse imaging. In this review, we discuss the latest advances in improving the photostability of fluorescent dyes. We summarize the primary photobleaching processes of cyanine and rhodamine dyes and highlight a range of strategies developed in recent years to strengthen these fluorophores. Additionally, we discuss the influence of protein microenvironments and labeling methods on the photostability of fluorophores. We aim to inspire next-generation robust and bright fluorophores that ultimately enable the routine practice of time-lapse super-resolution imaging of live cells.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Jing Ling
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianyan Liu
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China.
| |
Collapse
|
38
|
Fortea E, Lee S, Chadda R, Argyros Y, Sandal P, Mahoney-Kruszka R, Ciftci HD, Falzone ME, Huysmans G, Robertson JL, Boudker O, Accardi A. Structural basis of pH-dependent activation in a CLC transporter. Nat Struct Mol Biol 2024; 31:644-656. [PMID: 38279055 PMCID: PMC11262703 DOI: 10.1038/s41594-023-01210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
CLCs are dimeric chloride channels and anion/proton exchangers that regulate processes such as muscle contraction and endo-lysosome acidification. Common gating controls their activity; its closure simultaneously silences both protomers, and its opening allows them to independently transport ions. Mutations affecting common gating in human CLCs cause dominant genetic disorders. The structural rearrangements underlying common gating are unknown. Here, using single-particle cryo-electron microscopy, we show that the prototypical Escherichia coli CLC-ec1 undergoes large-scale rearrangements in activating conditions. The slow, pH-dependent remodeling of the dimer interface leads to the concerted opening of the intracellular H+ pathways and is required for transport. The more frequent formation of short water wires in the open H+ pathway enables Cl- pore openings. Mutations at disease-causing sites favor CLC-ec1 activation and accelerate common gate opening in the human CLC-7 exchanger. We suggest that the pH activation mechanism of CLC-ec1 is related to the common gating of CLC-7.
Collapse
Affiliation(s)
- Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Sangyun Lee
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiorgos Argyros
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA
| | - Priyanka Sandal
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Robyn Mahoney-Kruszka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hatice Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, New York, NY, USA
| | - Maria E Falzone
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA
| | - Gerard Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Erasmus University, Jette, Belgium
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA.
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA.
| |
Collapse
|
39
|
Ao Y, Grover JR, Gifford L, Han Y, Zhong G, Katte R, Li W, Bhattacharjee R, Zhang B, Sauve S, Qin W, Ghimire D, Haque MA, Arthos J, Moradi M, Mothes W, Lemke EA, Kwong PD, Melikyan GB, Lu M. Bioorthogonal click labeling of an amber-free HIV-1 provirus for in-virus single molecule imaging. Cell Chem Biol 2024; 31:487-501.e7. [PMID: 38232732 PMCID: PMC10960674 DOI: 10.1016/j.chembiol.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
Structural dynamics of human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein mediate cell entry and facilitate immune evasion. Single-molecule FRET using peptides for Env labeling revealed structural dynamics of Env, but peptide use risks potential effects on structural integrity/dynamics. While incorporating noncanonical amino acids (ncAAs) into Env by amber stop-codon suppression, followed by click chemistry, offers a minimally invasive approach, this has proved to be technically challenging for HIV-1. Here, we develope an intact amber-free HIV-1 system that overcomes hurdles of preexisting viral amber codons. We achieved dual-ncAA incorporation into Env on amber-free virions, enabling single-molecule Förster resonance energy transfer (smFRET) studies of click-labeled Env that validated the previous peptide-based labeling approaches by confirming the intrinsic propensity of Env to dynamically sample multiple conformational states. Amber-free click-labeled Env also enabled real-time tracking of single virion internalization and trafficking in cells. Our system thus permits in-virus bioorthogonal labeling of proteins, compatible with studies of virus entry, trafficking, and egress from cells.
Collapse
Affiliation(s)
- Yuanyun Ao
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Levi Gifford
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yang Han
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Guohua Zhong
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Revansiddha Katte
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rajanya Bhattacharjee
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; International PhD Program of the Institute of Molecular Biology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie Sauve
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wenyi Qin
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Dibya Ghimire
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Md Anzarul Haque
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Edward A Lemke
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| |
Collapse
|
40
|
Stinson BM, Carney SM, Walter JC, Loparo JJ. Structural role for DNA Ligase IV in promoting the fidelity of non-homologous end joining. Nat Commun 2024; 15:1250. [PMID: 38341432 PMCID: PMC10858965 DOI: 10.1038/s41467-024-45553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Nonhomologous end joining (NHEJ), the primary pathway of vertebrate DNA double-strand-break (DSB) repair, directly re-ligates broken DNA ends. Damaged DSB ends that cannot be immediately re-ligated are modified by NHEJ processing enzymes, including error-prone polymerases and nucleases, to enable ligation. However, DSB ends that are initially compatible for re-ligation are typically joined without end processing. As both ligation and end processing occur in the short-range (SR) synaptic complex that closely aligns DNA ends, it remains unclear how ligation of compatible ends is prioritized over end processing. In this study, we identify structural interactions of the NHEJ-specific DNA Ligase IV (Lig4) within the SR complex that prioritize ligation and promote NHEJ fidelity. Mutational analysis demonstrates that Lig4 must bind DNA ends to form the SR complex. Furthermore, single-molecule experiments show that a single Lig4 binds both DNA ends at the instant of SR synapsis. Thus, Lig4 is poised to ligate compatible ends upon initial formation of the SR complex before error-prone processing. Our results provide a molecular basis for the fidelity of NHEJ.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Sean M Carney
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Kolbeck PJ, Tišma M, Analikwu BT, Vanderlinden W, Dekker C, Lipfert J. Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments. Nucleic Acids Res 2024; 52:59-72. [PMID: 38000393 PMCID: PMC10783501 DOI: 10.1093/nar/gkad1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently, DNA occurs in closed topological forms where topology and supercoiling add a global constraint to the interplay of binding-induced deformations and strain-modulated binding. Here, we present a quantitative model with a straight-forward numerical implementation of how the global constraints introduced by DNA topology modulate binding. We focus on fluorescent intercalators, which unwind DNA and enable direct quantification via fluorescence detection. Our model correctly describes bulk experiments using plasmids with different starting topologies, different intercalators, and over a broad range of intercalator and DNA concentrations. We demonstrate and quantitatively model supercoiling-dependent binding in a single-molecule assay, where we directly observe the different intercalator densities going from supercoiled to nicked DNA. The single-molecule assay provides direct access to binding kinetics and DNA supercoil dynamics. Our model has broad implications for the detection and quantification of DNA, including the use of psoralen for UV-induced DNA crosslinking to quantify torsional tension in vivo, and for the modulation of DNA binding in cellular contexts.
Collapse
Affiliation(s)
- Pauline J Kolbeck
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Brian T Analikwu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
42
|
Mahmoud R, Kalivarathan J, Castillo AJ, Wang S, Fuglestad B, Kanak MA, Dhakal S. Aptabinding of tumor necrosis factor-α (TNFα) inhibits its proinflammatory effects and alleviates islet inflammation. Biotechnol J 2024; 19:e2300374. [PMID: 37772688 DOI: 10.1002/biot.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
Pancreatic islet cell transplantation (ICT) has emerged as an effective therapy for diabetic patients lacking endogenous insulin production. However, the islet graft function is compromised by a nonspecific inflammatory and thrombotic reaction known as the instant blood-meditated inflammatory reaction (IBMIR). Here, we report the characterization of four single-stranded DNA aptamers that bind specifically to TNFα - a pivotal cytokine that causes proinflammatory signaling during the IBMIR process - using single molecule binding analysis and functional assays as a means to assess the aptamers' ability to block TNFα activity and inhibiting the downstream proinflammatory gene expression in the islets. Our single-molecule fluorescence analyses of mono- and multivalent aptamers showed that they were able to bind effectively to TNFα with monoApt2 exhibiting the strongest binding (Kd ∼ 0.02 ± 0.01 nM), which is ∼3 orders of magnitude smaller than the Kd of the other aptamers. Furthermore, the in vitro cell viability analysis demonstrated an optimal and safe dosage of 100 μM for monoApt2 compared to 50 μM for monoApt1 and significant protection from proinflammatory cytokine-mediated cell death. More interestingly, monoApt2 reversed the upregulation of IBMIR mediating genes induced by TNFα in the human islets, and this was comparable to established TNFα antagonists. Both monoaptamers showed high specificity and selectivity for TNFα. Collectively, these findings suggest the potential use of aptamers as anti-inflammatory and localized immune-modulating agents for cellular transplant therapy.
Collapse
Affiliation(s)
- Roaa Mahmoud
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jagan Kalivarathan
- Department of Surgery, Virginia Commonwealth University - School of Medicine, Virginia, USA
- Islet Cell Lab, Hume-Lee Transplant Center, VCU Health System, Richmond, Virginia, USA
| | - Abdul J Castillo
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sasha Wang
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mazhar A Kanak
- Department of Surgery, Virginia Commonwealth University - School of Medicine, Virginia, USA
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
43
|
Mazal H, Wieser FF, Sandoghdar V. Insights into protein structure using cryogenic light microscopy. Biochem Soc Trans 2023; 51:2041-2059. [PMID: 38015555 PMCID: PMC10754291 DOI: 10.1042/bst20221246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Fluorescence microscopy has witnessed many clever innovations in the last two decades, leading to new methods such as structured illumination and super-resolution microscopies. The attainable resolution in biological samples is, however, ultimately limited by residual motion within the sample or in the microscope setup. Thus, such experiments are typically performed on chemically fixed samples. Cryogenic light microscopy (Cryo-LM) has been investigated as an alternative, drawing on various preservation techniques developed for cryogenic electron microscopy (Cryo-EM). Moreover, this approach offers a powerful platform for correlative microscopy. Another key advantage of Cryo-LM is the strong reduction in photobleaching at low temperatures, facilitating the collection of orders of magnitude more photons from a single fluorophore. This results in much higher localization precision, leading to Angstrom resolution. In this review, we discuss the general development and progress of Cryo-LM with an emphasis on its application in harnessing structural information on proteins and protein complexes.
Collapse
Affiliation(s)
- Hisham Mazal
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Franz-Ferdinand Wieser
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
44
|
Chakraborty UK, Park Y, Sengupta K, Jung W, Joshi CP, Francis DH, Chen P. A 'through-DNA' mechanism for metal uptake-vs.-efflux regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570191. [PMID: 38105935 PMCID: PMC10723295 DOI: 10.1101/2023.12.05.570191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Transition metals like Zn are essential for all organisms including bacteria, but fluctuations of their concentrations in the cell can be lethal. Organisms have thus evolved complex mechanisms for cellular metal homeostasis. One mechanistic paradigm involves pairs of transcription regulators sensing intracellular metal concentrations to regulate metal uptake and efflux. Here we report that Zur and ZntR, a prototypical pair of regulators for Zn uptake and efflux in E. coli , respectively, can coordinate their regulation through DNA, besides sensing cellular Zn 2+ concentrations. Using a combination of live-cell single-molecule tracking and in vitro single-molecule FRET measurements, we show that unmetallated ZntR can enhance the unbinding kinetics of Zur from DNA by directly acting on Zur-DNA complexes, possibly through forming heteromeric ternary and quaternary complexes that involve both protein-DNA and protein-protein interactions. This 'through-DNA' mechanism may functionally facilitate the switching in Zn uptake regulation when bacteria encounter changing Zn environments; it could also be relevant for regulating the uptake-vs.-efflux of various metals across different bacterial species and yeast.
Collapse
|
45
|
Badieyan S, Lichon D, Andreas MP, Gillies JP, Peng W, Shi J, DeSantis ME, Aiken CR, Böcking T, Giessen TW, Campbell EM, Cianfrocco MA. HIV-1 binds dynein directly to hijack microtubule transport machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555335. [PMID: 37693451 PMCID: PMC10491134 DOI: 10.1101/2023.08.29.555335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viruses exploit host cytoskeletal elements and motor proteins for trafficking through the dense cytoplasm. Yet the molecular mechanism that describes how viruses connect to the motor machinery is unknown. Here, we demonstrate the first example of viral microtubule trafficking from purified components: HIV-1 hijacking microtubule transport machinery. We discover that HIV-1 directly binds to the retrograde microtubule-associated motor, dynein, and not via a cargo adaptor, as previously suggested. Moreover, we show that HIV-1 motility is supported by multiple, diverse dynein cargo adaptors as HIV-1 binds to dynein light and intermediate chains on dynein's tail. Further, we demonstrate that multiple dynein motors tethered to rigid cargoes, like HIV-1 capsids, display reduced motility, distinct from the behavior of multiple motors on membranous cargoes. Our results introduce a new model of viral trafficking wherein a pathogen opportunistically 'hijacks' the microtubule transport machinery for motility, enabling multiple transport pathways through the host cytoplasm.
Collapse
Affiliation(s)
| | - Drew Lichon
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael P Andreas
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Wang Peng
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Christopher R Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Tobias W Giessen
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Lu S, Chemla YR. Optical traps induce fluorophore photobleaching by two-photon excitation. Biophys J 2023; 122:4316-4325. [PMID: 37828742 PMCID: PMC10698272 DOI: 10.1016/j.bpj.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
Techniques combining optical tweezers with fluorescence microscopy have become increasingly popular. Unfortunately, the high-power, infrared lasers used to create optical traps can have a deleterious effect on dye stability. Previous studies have shown that dye photobleaching is enhanced by absorption of visible fluorescence excitation plus infrared trap photons, a process that can be significantly reduced by minimizing simultaneous exposure to both light sources. Here, we report another photobleaching pathway that results from direct excitation by the trapping laser alone. Our results show that this trap-induced fluorescence loss is a two-photon absorption process, as demonstrated by a quadratic dependence on the intensity of the trapping laser. We further show that, under conditions typical of many trap-based experiments, fluorescence emission of certain fluorophores near the trap focus can drop by 90% within 1 min. We investigate how photostability is affected by the choice of dye molecule, excitation and emission wavelength, and labeled molecule. Finally, we discuss the different photobleaching pathways in combined trap-fluorescence measurements, which guide the selection of optimal dyes and conditions for more robust experimental protocols.
Collapse
Affiliation(s)
- Suoang Lu
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yann R Chemla
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center of the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
47
|
Rashi, Kaur V, Devi A, Bain D, Sen T, Patra A. Probing the Fluorescence Intermittency of Bimetallic Nanoclusters using Single-Molecule Fluorescence Spectroscopy. J Phys Chem Lett 2023; 14:10166-10172. [PMID: 37925663 DOI: 10.1021/acs.jpclett.3c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Single-molecule spectroscopy (SMS) is a unique and competent technique to study molecule dynamics and sense biomolecules precisely. The design of an ultrahigh-stability single fluorophore probe with excellent photostability and long-lived dark transient states for single-molecule fluorescence microscopy is challenging. Here, we found that the photostability of bimetallic AuAg28 nanoclusters is better than monometallic Ag29 nanoclusters. The photon antibunching experiments unveiled exceptional brightness and remarkable photostability with high survival times of up to 218 s with minimal blinking. AuAg28 NCs exhibited longer "on" times and shorter "off" times as compared to Ag29 NCs. The statistical analysis was performed on at least 100 molecules that showed single-step photobleaching and almost a 5-fold enhancement in intensity on Au doping in Ag29 NCs. The distinctive and tunable photophysics of metal NCs can offer huge potential in pushing single-molecule dynamic measurements to be carried out biologically.
Collapse
Affiliation(s)
- Rashi
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
| | - Vishaldeep Kaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
| | - Aarti Devi
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
| | - Dipankar Bain
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
| | - Tapasi Sen
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
| | - Amitava Patra
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Mohali 140306, India
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
48
|
Hou Q, Chatterjee S, Lund PE, Suddala KC, Walter NG. Single-molecule FRET observes opposing effects of urea and TMAO on structurally similar meso- and thermophilic riboswitch RNAs. Nucleic Acids Res 2023; 51:11345-11357. [PMID: 37855661 PMCID: PMC10639078 DOI: 10.1093/nar/gkad866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Bacteria live in a broad range of environmental temperatures that require adaptations of their RNA sequences to maintain function. Riboswitches are regulatory RNAs that change conformation upon typically binding metabolite ligands to control bacterial gene expression. The paradigmatic small class-I preQ1 riboswitches from the mesophile Bacillus subtilis (Bsu) and the thermophile Thermoanaerobacter tengcongensis (Tte) adopt similar pseudoknot structures when bound to preQ1. Here, we use UV-melting analysis combined with single-molecule detected chemical denaturation by urea to compare the thermodynamic and kinetic folding properties of the two riboswitches, and the urea-countering effects of trimethylamine N-oxide (TMAO). Our results show that, first, the Tte riboswitch is more thermotolerant than the Bsu riboswitch, despite only subtle sequence differences. Second, using single-molecule FRET, we find that urea destabilizes the folded pseudoknot structure of both riboswitches, yet has a lower impact on the unfolding kinetics of the thermodynamically less stable Bsu riboswitch. Third, our analysis shows that TMAO counteracts urea denaturation and promotes folding of both the riboswitches, albeit with a smaller effect on the more stable Tte riboswitch. Together, these findings elucidate how subtle sequence adaptations in a thermophilic bacterium can stabilize a common RNA structure when a new ecological niche is conquered.
Collapse
Affiliation(s)
- Qian Hou
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, NY, NY 10021, USA
| | - Surajit Chatterjee
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Paul E Lund
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Krishna C Suddala
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
49
|
Wang PH, Nishikawa S, McGlynn SE, Fujishima K. One-Pot De Novo Synthesis of [4Fe-4S] Proteins Using a Recombinant SUF System under Aerobic Conditions. ACS Synth Biol 2023; 12:2887-2896. [PMID: 37467114 PMCID: PMC10594875 DOI: 10.1021/acssynbio.3c00155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 07/21/2023]
Abstract
Fe-S clusters are essential cofactors mediating electron transfer in respiratory and metabolic networks. However, obtaining active [4Fe-4S] proteins with heterologous expression is challenging due to (i) the requirements for [4Fe-4S] cluster assembly, (ii) the O2 lability of [4Fe-4S] clusters, and (iii) copurification of undesired proteins (e.g., ferredoxins). Here, we established a facile and efficient protocol to express mature [4Fe-4S] proteins in the PURE system under aerobic conditions. An enzyme aconitase and thermophilic ferredoxin were selected as model [4Fe-4S] proteins for functional verification. We first reconstituted the SUF system in vitro via a stepwise manner using the recombinant SUF subunits (SufABCDSE) individually purified from E. coli. Later, the incorporation of recombinant SUF helper proteins into the PURE system enabled mRNA translation-coupled [4Fe-4S] cluster assembly under the O2-depleted conditions. To overcome the O2 lability of [4Fe-4S] Fe-S clusters, an O2-scavenging enzyme cascade was incorporated, which begins with formate oxidation by formate dehydrogenase for NADH regeneration. Later, NADH is consumed by flavin reductase for FADH2 regeneration. Finally, bifunctional flavin reductase, along with catalase, removes O2 from the reaction while supplying FADH2 to the SufBC2D complex. These amendments enabled a one-pot, two-step synthesis of mature [4Fe-4S] proteins under aerobic conditions, yielding holo-aconitase with a maximum concentration of ∼0.15 mg/mL. This renovated system greatly expands the potential of the PURE system, paving the way for the future reconstruction of redox-active synthetic cells and enhanced cell-free biocatalysis.
Collapse
Affiliation(s)
- Po-Hsiang Wang
- Department
of Chemical Engineering and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
- Graduate
Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shota Nishikawa
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- School
of Life Science and Technology, Tokyo Institute
of Technology, Tokyo 152-8550, Japan
| | - Shawn Erin McGlynn
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Kosuke Fujishima
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Graduate
School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
50
|
Templeton C, Hamilton I, Russell R, Elber R. Impact of Ion-Mixing Entropy on Orientational Preferences of DNA Helices: FRET Measurements and Computer Simulations. J Phys Chem B 2023; 127:8796-8808. [PMID: 37815452 PMCID: PMC11341850 DOI: 10.1021/acs.jpcb.3c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Biological processes require DNA and RNA helices to pack together in specific interhelical orientations. While electrostatic repulsion between backbone charges is expected to be maximized when helices are in parallel alignment, such orientations are commonplace in nature. To better understand how the repulsion is overcome, we used experimental and computational approaches to investigate how the orientational preferences of DNA helices depend on the concentration and valence of mobile cations. We used Förster resonance energy transfer (FRET) to probe the relative orientations of two 24-bp helices held together via a freely rotating PEG linker. At low cation concentrations, the helices preferred more "cross"-like orientations over those closer to parallel, and this preference was reduced with increasing salt concentrations. The results were in good quantitative agreement with Poisson-Boltzmann (PB) calculations for monovalent salt (Na+). However, PB underestimated the ability of mixtures of monovalent and divalent ions (Mg2+) to reduce the conformational preference. As a complementary approach, we performed all-atom molecular dynamics (MD) simulations and found better agreement with the experimental results. While MD and PB predict similar electrostatic forces, MD predicts a greater accumulation of Mg2+ in the ion atmosphere surrounding the DNA. Mg2+ occupancy is predicted to be greater in conformations close to the parallel orientation than in conformations close to the crossed orientation, enabling a greater release of Na+ ions and providing an entropic gain (one bound ion for two released). MD predicts an entropy gain larger than that of PB because of the increased Mg2+ occupancy. The entropy changes have a negligible effect at low Mg2+ concentrations because the free energies are dominated by electrostatic repulsion. However, as the Mg2+ concentration increases, charge screening is more effective and the mixing entropy produces readily detectable changes in packing preferences. Our results underline the importance of mixing entropy of counterions in nucleic acid interactions and provide a new understanding on the impact of a mixed ion atmosphere on the packing of DNA helices.
Collapse
Affiliation(s)
- Clark Templeton
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Department of Physics, FU Berlin, 14195 Berlin, Germany
| | - Ian Hamilton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ron Elber
- Institute for Computational Engineering and Science, Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|