1
|
Wu H, Li J, Jiang K, Li Y, Yu Z, Wang B, Zhou B, Zhang X, Tang N, Li Z. Characterization of Leptin and Leptin Receptor Gene in the Siberian Sturgeon ( Acipenser baerii): Molecular Cloning, Tissue Distribution, and Its Involvement in Feeding Regulation. Int J Mol Sci 2025; 26:1968. [PMID: 40076594 PMCID: PMC11900199 DOI: 10.3390/ijms26051968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Leptin is an adipokine known as a regulator of feeding and metabolism in mammals. Previous studies on fish have revealed its role in food intake regulation in limited teleosts. However, its specific function in Siberian sturgeon, an ancient Chondrostei fish, remains poorly understood. This study represents the first successful cloning of sequences for leptin and leptin receptors in Siberian sturgeon, achieved using RT-PCR. The predicted leptin sequence in this species consists of 168 amino acids that exhibit low identity with other fish species, except within the Acipenseriformes order. Tissue distribution analysis revealed a high expression of Siberian sturgeon leptin mRNA in the liver and lepr mRNA in the hypothalamus. Fasting differentially affected the expression of leptin and lepr mRNA, with decreased levels in the hypothalamus and increased levels in the liver (leptin: 3-15 days; lepr: 6-15 days). Recombinant Siberian sturgeon leptin (Ssleptin) was produced via E. coli expression, and intraperitoneal injection (100 ng/g BW) significantly inhibited food intake. The anorectic effect was correlated with changes in hypothalamic gene expression, including downregulation of orexigenic factors (agrp, orexin, npy, and ghrelin) and upregulation of anorexigenic factors (pomc, mch, and insulin). Meanwhile, the peripheral administration of Ssleptin promoted the expression of resistin in the liver and concurrently increased cck and pyy mRNA levels in the valvular intestine. Furthermore, Ssleptin injection stimulated the expression of hypothalamic lepr, jak2, akt, and ampkα2 mRNA. These findings suggest that leptin plays a significant role in the feeding control of Siberian sturgeon and provide new insights into the evolutionary function of leptin in fish.
Collapse
Affiliation(s)
- Hongwei Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, China; (H.W.)
| | - Jiamei Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, China; (H.W.)
| | - Kezhen Jiang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, China; (H.W.)
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, China; (H.W.)
| | - Zhaoxiong Yu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, China
| | - Bin Wang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, China
| | - Bo Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, China; (H.W.)
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, China; (H.W.)
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, China; (H.W.)
| |
Collapse
|
2
|
Kotańska M, Zadrożna M, Kubacka M, Mika K, Szczepańska K, Nowak B, Alesci A, Miller A, Lauriano ER, Kieć-Kononowicz K. The Effect of KSK-94, a Dual Histamine H 3 and Sigma-2 Receptor Ligand, on Adipose Tissue in a Rat Model of Developing Obesity. Pharmaceuticals (Basel) 2024; 17:858. [PMID: 39065709 PMCID: PMC11280160 DOI: 10.3390/ph17070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Numerous studies highlight the critical role that neural histamine plays in feeding behavior, which is controlled by central histamine H3 and H1 receptors. This is the fundamental motivation for the increased interest in creating histamine H3 receptor antagonists as anti-obesity medications. On the other hand, multiple other neurotransmitter systems have been identified as pharmacotherapeutic targets for obesity, including sigma-2 receptor systems. Interestingly, in our previous studies in the rat excessive eating model, we demonstrated a significant reduction in the development of obesity using dual histamine H3/sigma-2 receptor ligands. Moreover, we showed that compound KSK-94 (structural analog of Abbott's A-331440) reduced the number of calories consumed, and thus acted as an anorectic compound. Therefore, in this study, we extended the previous research and studied the influence of KSK-94 on adipose tissue collected from animals from our previous experiment. METHODS Visceral adipose tissue was collected from four groups of rats (standard diet + vehicle, palatable diet + vehicle, palatable diet + KSK-94, and palatable diet + bupropion/naltrexone) and subjected to biochemical, histopathological, and immunohistochemical studies. RESULTS The obtained results clearly indicate that compound KSK-94 prevented the hypertrophy and inflammation of visceral adipose tissue, normalized the levels of leptin, resistin and saved the total reduction capacity of adipose tissue, being more effective than bupropion/naltrexon in these aspects. Moreover, KSK-94 may induce browning of visceral white adipose tissue. CONCLUSION Our study suggests that dual compounds with a receptor profile like KSK-94, i.e., targeting histamine H3 receptor and, to a lesser extent, sigma-2 receptor, could be attractive therapeutic options for patients at risk of developing obesity or with obesity and some metabolic disorders. However, more studies are required to determine its safety profile and the exact mechanism of action of KSK-94.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland;
| | - Monika Zadrożna
- Department of Cytobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland; (M.Z.); (B.N.)
| | - Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland;
| | - Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland;
| | - Katarzyna Szczepańska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland;
| | - Barbara Nowak
- Department of Cytobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland; (M.Z.); (B.N.)
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, I-98166 Messina, Italy; (A.A.); (E.R.L.)
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, I-98168 Messina, Italy;
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, I-98166 Messina, Italy; (A.A.); (E.R.L.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland;
| |
Collapse
|
3
|
Dietzsch AN, Al-Hasani H, Altschmied J, Bottermann K, Brendler J, Haendeler J, Horn S, Kaczmarek I, Körner A, Krause K, Landgraf K, Le Duc D, Lehmann L, Lehr S, Pick S, Ricken A, Schnorr R, Schulz A, Strnadová M, Velluva A, Zabri H, Schöneberg T, Thor D, Prömel S. Dysfunction of the adhesion G protein-coupled receptor latrophilin 1 (ADGRL1/LPHN1) increases the risk of obesity. Signal Transduct Target Ther 2024; 9:103. [PMID: 38664368 PMCID: PMC11045723 DOI: 10.1038/s41392-024-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.
Collapse
Affiliation(s)
- André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Joachim Altschmied
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Bottermann
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Brendler
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Judith Haendeler
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology, Rheumatology, Leipzig University Medical Center, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Laura Lehmann
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Stephanie Pick
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Rene Schnorr
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Martina Strnadová
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Heba Zabri
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Aljubouri TRS, Al-Shuhaib MBS. The identification of a novel SNP in the resistin (RETN) gene associated with growth traits in Karakul and Awassi sheep. Trop Anim Health Prod 2023; 55:165. [PMID: 37084102 DOI: 10.1007/s11250-023-03595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Resistin is one of the most important adipocytokines in mammalian cells due to its involvement in insulin resistance, obesity, and autoimmune diseases. Resistin is encoded by RETN gene that is primarily expressed in adipose tissues. Mutations in this gene have been associated with several productive traits in animals. This study was conducted to assess the possible biomarker capacity of RETN by evaluating its association with growth traits in two economically important sheep in the Middle East. Genotyping was conducted using PCR-single strand conformation polymorphism (SSCP), and the polymorphism of RETN was associated with several growth traits for three months intervals starting from birth until one year of age. In a total of 190 Karakul sheep and 245 Awassi sheep, only one SNP (233A > C) was detected in the RETN gene. The identified novel SNP showed significant associations with all growth traits at the ages of six, nine, and twelve months. At the age of six months onward, lambs with AC and CC genotypes showed respectively lower body weight and length, chest and abdominal circumferences, and wither and rump heights than those with AA genotype. Due to the remarkable association between RETN;233A > C and lower growth traits, this genotype is suggested as a promising marker to assess growth traits in Karakul and Awassi sheep. This is the first study that demonstrated the importance of RETN as a possible tool for evaluating growth traits in two breeds of sheep with a possibility to be applied to other breeds via large-scale association analysis.
Collapse
Affiliation(s)
- Thamer R S Aljubouri
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil, 51001, Iraq
| | - Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil, 51001, Iraq.
| |
Collapse
|
5
|
Abd Elhameed NE, Abdelaziz RM, Bakry M, Hamada M. Resistin gene expression: Novel study in dromedary camel (Camelus dromedarius). BULGARIAN JOURNAL OF VETERINARY MEDICINE 2023; 26:208-216. [DOI: 10.15547/bjvm.2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Resistin, an adipocyte-specific hormone involved in insulin resistance and adipocyte differentiation, was initially identified in adipose tissue and macrophages. The physiological role of this molecule in camels remains largely unexplored. This study analysed for the first time blood and tissue levels of resistin as well as expression of resistin gene by real time PCR in adipose tissue (hump, visceral & epididymal) and different muscles (gastrocnemius, heart and caecum) in dromedary camels. The results revealed that resistin concentration was significantly (P<0.01) higher in epididymal adipose tissue as compared to other tissues and the lowest concentration was detected in serum. Additionally, the differential mRNA expression levels of resistin gene showed the highest expression level in epididymal adipose tissue as compared to other tissues. In conclusion, the results demonstrated for the first time that resistin was expressed in different tissues of dromedary camels. These data underscore an important facet of the physiological role of resistin as a factor involved in insulin resistance and glucose metabolism in camels.
Collapse
Affiliation(s)
- N. E. Abd Elhameed
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - R. M. Abdelaziz
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M. Bakry
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M. Hamada
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Miller-Kasprzak E, Musialik K, Kręgielska-Narożna M, Szulińska M, Bogdański P. The Relation between Resistin (-420C/G) Single Nucleotide Variant, Resistin Serum Concentration, Carbohydrate, and Lipid Parameters and Fried Food Taste Preference in Patients with Hypertriglyceridemia. Nutrients 2022; 14:nu14235092. [PMID: 36501122 PMCID: PMC9738212 DOI: 10.3390/nu14235092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Resistin is a proinflammatory adipokine involved in metabolic disorders. Its interplay with hypertriglyceridemia remains to be elucidated. We aimed to evaluate the relationship between resistin (-420C/G) single nucleotide variant (SNV) and metabolic parameters and preference for fried food consumption in hypertriglyceridemia. METHODS The study enrolled 179 hypertriglyceridemic (HTG) and 182 normotriglyceridemic (NTG) patients. Anthropometric measurements, serum resistin, insulin and fasting glucose concentration, a homeostatic model assessment-insulin resistance (HOMA-IR), triglycerides (TG), cholesterol concentration, and fried food taste preference (FP) or other cooking methods preference (OP) were assessed in the study. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism. RESULTS HTG and NTG groups did not differ significantly in serum resistin concentration; HTG individuals demonstrated significantly increased serum levels of TG, glucose, total cholesterol (TCH), and HOMA-IR and decreased HDL cholesterol. Resistin, insulin, glucose, HOMA-IR, and cholesterol fractions were similar among particular resistin genotypes in HTG, NTG, FP, or OP groups. TG and TCH concentrations differ significantly among CG and CC genotypes in the FP group. Considering the FP group, GG and CG genotypes appeared more frequently in hyperlipidemic (OR 2.6 95% CI; 1.16-5.82; p = 0.01; significant after Bonferroni correction) than in NTG patients. Multivariable logistic regression models showed that the G allele and CG genotype of SNV (-420C/G), adjusted for selected confounders such as fried food preference, increased the odds of hypertriglyceridemia about twofold. CONCLUSIONS Allele G and CG genotype of resistin SNV (-420C/G) are linked with the preference for fried food taste in hypertriglyceridemic patients.
Collapse
|
7
|
Idrizaj E, Garella R, Nistri S, Squecco R, Baccari MC. Evidence that resistin acts on the mechanical responses of the mouse gastric fundus. Front Physiol 2022; 13:930197. [PMID: 35910552 PMCID: PMC9334560 DOI: 10.3389/fphys.2022.930197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Resistin, among its several actions, has been reported to exert central anorexigenic effects in rodents. Some adipokines which centrally modulate food intake have also been reported to affect the activity of gastric smooth muscle, whose motor responses represent a source of peripheral signals implicated in the control of the hunger-satiety cycle through the gut-brain axis. On this basis, in the present experiments, we investigated whether resistin too could affect the mechanical responses in the mouse longitudinal gastric fundal strips. Electrical field stimulation (EFS) elicited tetrodotoxin- and atropine-sensitive contractile responses. Resistin reduced the amplitude of the EFS-induced contractile responses. This effect was no longer detected in the presence of L-NNA, a nitric oxide (NO) synthesis inhibitor. Resistin did not influence the direct muscular response to methacholine. In the presence of carbachol and guanethidine, EFS elicited inhibitory responses whose amplitude was increased by resistin. L-NNA abolished the inhibitory responses evoked by EFS, indicating their nitrergic nature. In the presence of L-NNA, resistin did not have any effect on the EFS-evoked inhibitory responses. Western blot and immunofluorescence analysis revealed a significant increase in neuronal nitric oxide synthase (nNOS) expression in neurons of the myenteric plexus following resistin exposure. In conclusion, the present results offer the first evidence that resistin acts on the gastric fundus, likely through a modulatory action on the nitrergic neurotransmission.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
- *Correspondence: Eglantina Idrizaj, ; Maria Caterina Baccari,
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
- *Correspondence: Eglantina Idrizaj, ; Maria Caterina Baccari,
| |
Collapse
|
8
|
Estienne A, Ramé C, Ganier P, Chahnamian M, Barbe A, Grandhaye J, Dubois JP, Batailler M, Migaud M, Lecompte F, Adriaensen H, Froment P, Dupont J. Chemerin impairs food intake and body weight in chicken: Focus on hypothalamic neuropeptides gene expression and AMPK signaling pathway. Gen Comp Endocrinol 2021; 304:113721. [PMID: 33493505 DOI: 10.1016/j.ygcen.2021.113721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Unlike mammals, the role of adipokines and more particularly of chemerin in the regulation of food intake is totally unknown in avian species. Here we investigated the effect of chemerin on the food and water consumption and on the body weight in chicken. We studied the effects on the plasma glucose and insulin concentrations and the hypothalamic neuropeptides and AMPK signaling pathway. Female broiler chickens were intraperitoneally injected, daily for 13 days with either vehicle (saline; n = 25) or chemerin (8 μg/kg; n = 25 and 16 μg/kg; n = 25). Food and water intakes were recorded 24 h after each administration. Overnight fasted animals were sacrificed at day 13 (D13), 24 h after the last injection and hypothalamus and left cerebral hemispheres were collected. Chemerin and its receptors protein levels were determined by western-blot. Gene expression of neuropeptide Y (Npy), agouti-related peptide (Agrp), corticotrophin releasing hormone (Crh), pro-opiomelanocortin (Pomc), cocaine and amphetamine-regulated transcript (Cart) and Taste 1 Receptor Member 1 (Tas1r1) were evaluated by RT-qPCR. In chicken, we found that the protein amount of chemerin, CCRL2 and GPR1 was similar in left cerebral hemisphere and hypothalamus whereas CMKLR1 was higher in hypothalamus. Chemerin administration (8 and 16 μg/kg) decreased both food intake and body weight compared to vehicle without affecting water intake and the size or volume of different brain subdivisions as determined by magnetic resonance imaging. It also increased plasma insulin levels whereas glucose levels were decreased. These data were associated with an increase in Npy and Agrp expressions and a decrease in Crh, Tas1r1 mRNA expression within the hypothalamus. Furthermore, chemerin decreased hypothalamic CMKLR1 protein expression and AMPK activation. Taken together, these results support that chemerin could be a peripheral appetite-regulating signal through modulation of hypothalamic peptides expression in chicken.
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Patrice Ganier
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Marine Chahnamian
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Alix Barbe
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Jean-Philippe Dubois
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Martine Batailler
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Martine Migaud
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - François Lecompte
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Hans Adriaensen
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France Université François Rabelais de Tours F-37041 Tours, France IFCE F-37380 Nouzilly, France.
| |
Collapse
|
9
|
Badoer E. Cardiovascular and Metabolic Crosstalk in the Brain: Leptin and Resistin. Front Physiol 2021; 12:639417. [PMID: 33679451 PMCID: PMC7930826 DOI: 10.3389/fphys.2021.639417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 01/17/2023] Open
Abstract
Leptin and resistin are cytokines whose plasma levels correlate with adiposity. Leptin is a hormone synthesised and released from adipocytes and can be transported into the brain. Resistin is produced in adipocytes in rodents and in macrophages in humans, particularly macrophages that have infiltrated adipose tissue. Both hormones can act within the brain to influence sympathetic nerve activity. Leptin appears to have a generalised sympatho-excitatory actions whilst resistin appears to increase sympathetic nerve activity affecting the cardiovascular system but inhibits sympathetic nerve activity to brown adipose tissue, which contrasts with leptin. Since both hormones can be elevated in conditions of metabolic dysfunction, interactions/crosstalk between these two hormones in the brain is a real possibility. This review describes the current knowledge regarding such crosstalk within the central nervous system. The evidence suggests that with respect to sympathetic nerve activity, crosstalk between leptin and resistin can elicit enhanced sympatho-excitatory responses to the kidneys. In contrast, with respect to food intake, resistin has weaker effects, but in regard to insulin secretion and thermogenesis, leptin and resistin have opposing actions. Thus, in conditions in which there is increased resistin and leptin levels, the result of crosstalk in the central nervous system could contribute to worse cardiovascular and metabolic complications.
Collapse
Affiliation(s)
- Emilio Badoer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Dong TS, Vu JP, Oh S, Sanford D, Pisegna JR, Germano P. Intraperitoneal Treatment of Kisspeptin Suppresses Appetite and Energy Expenditure and Alters Gastrointestinal Hormones in Mice. Dig Dis Sci 2020; 65:2254-2263. [PMID: 31729619 DOI: 10.1007/s10620-019-05950-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Kisspeptin is a neuropeptide that plays an integral role in the regulation of energy intake and reproduction by acting centrally on the hypothalamus-pituitary-gonadal axis. Our current study explores for the first time the effects of a pharmacological treatment of intraperitoneal kisspeptin-10 on murine feeding behavior, respirometry parameters, energy balance, and metabolic hormones. METHODS Two groups (n = 16) of age- and sex-matched C57BL/6 wild-type adult mice were individually housed in metabolic cages and intraperitoneally injected with either kisspeptin-10 (2 nmol in 200 µl of saline) (10 µM) or vehicle before the beginning of a dark-phase cycle. Microstructure of feeding and drinking behavior, respirometry gases, respiratory quotient (RQ), total energy expenditure (TEE), metabolic hormones, oral glucose tolerance, and lipid profiles were measured. RESULTS Intraperitoneal treatment with kisspeptin-10 caused a significant reduction in food intake, meal frequency, meal size, and eating rate. Kisspeptin-10 significantly decreased TEE during both the dark and light phase cycles, while also increasing the RQ during the dark-phase cycle. In addition, mice injected with kisspeptin-10 had significantly higher plasma levels of insulin (343.8 pg/ml vs. 106.4 pg/ml; p = 0.005), leptin (855.5 pg/ml vs. 173.1 pg/ml; p = 0.02), resistin (9411.1 pg/ml vs. 4116.5 pg/ml; p = 0.001), and HDL (147.6 mg/dl vs 97.1 mg/dl; p = 0.04). CONCLUSION A pharmacological dose of kisspeptin-10 significantly altered metabolism by suppressing food intake, meal size, eating rate, and TEE while increasing the RQ. These changes were linked to increased levels of insulin, leptin, resistin, and HDL. The current results suggest that a peripheral kisspeptin treatment could alter metabolism and energy homeostasis by suppressing appetite, food intake, and fat accumulation.
Collapse
Affiliation(s)
- Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - John P Vu
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- AbbVie, Sunnyvale, CA, USA
| | - Suwan Oh
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Daniel Sanford
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Joseph R Pisegna
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine and Human Genetics, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
11
|
Tang N, Liu Y, Tian Z, Xu S, Wang M, Chen H, Wang B, Li Y, Wang Y, Yang S, Zhao L, Chen D, Li Z. Characterization, tissue distribution of resistin gene and the effect of fasting and refeeding on resistin mRNA expression in Siberian sturgeon (Acipenser baerii). JOURNAL OF FISH BIOLOGY 2020; 97:508-514. [PMID: 32447775 DOI: 10.1111/jfb.14406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Resistin as an adipokine identified from rodents in 2001 is involved in many biological processes. However, little is known about this gene in fish. We cloned Siberian sturgeon (Acipenser baerii) resistin cDNA of 795 base pairs, encoding 107 amino acids, which showed 38-40% identity to human and rodents. Real-time quantitative PCR showed that the resistin gene was widely distributed in tissues of Siberian sturgeon, with the highest expression in liver. After fasting for 1, 3, 6 and 10 days, the expression of the resistin gene in the liver of Siberian sturgeon decreased significantly, and after refeeding on the 10 days of fasting the resistin mRNA expression increased rapidly, suggesting that resistin may play an important role in liver in response to starvation. Taken together, these results suggest that resistin may be involved in the regulation of energy homeostasis in liver.
Collapse
Affiliation(s)
- Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanlin Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ya Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Song Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liulan Zhao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Akbari A, Jelodar G. Cardiovascular responses produced by resistin injected into paraventricular nucleus mediated by the glutamatergic and CRFergic transmissions within rostral ventrolateral medulla. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:344-353. [PMID: 32440321 PMCID: PMC7229507 DOI: 10.22038/ijbms.2019.40316.9547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/23/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Resistin, as a 12.5 kDa cysteine-rich polypeptide, is expressed in hypothalamus and regulates sympathetic nerve activity. It is associated with obesity, metabolic syndrome and cardiovascular diseases. In this study, we investigated the neural pathway of cardiovascular responses induced by injection of resistin into paraventricular nucleus (PVN) with rostral ventrolateral medulla (RVLM). MATERIALS AND METHODS Adult male rats were anesthetized with urethane (1.4 g/kg intraperitoneally). Resistin (3 µg/1 µl/rat) was first injected into PVN, and the glutamatergic, corticotrophin-releasing factor (CRF)-ergic and angiotensinogenic transmission was inhibited by injecting of their antagonist in RVLM. Arterial pressure (AP) and heart rate (HR) were monitored before and after the injection. RESULTS The results showed that resistin injection into PVN significantly increased AP and HR compared to control group and prior to its injection (P<0.05). Injection of AP5 ((2R)-amino-5-phosphonovaleric acid; (2R)-amino-5-phosphonopentanoate) (50 nM/rat), losartan (10 nM/rat) and astressin (50 nM/rat) into RVLM reduced cardiovascular responses produced by injected resistin into PVN. Injection of AP5+losartan or astressin+losartan or astressin+AP5 into RVLM could significantly reduce cardiovascular responses produced by resistin compared to before injection (P<0.05). Furthermore, the depressor responses generated by AP5+losartan injected into RVLM were significantly stronger than the depressor responses generated by AP5+astressin and/or astressin+losartan injected into RVLM (P<0.05). CONCLUSION It can be concluded that glutamatergic and CRFergic transmissions have crucial contribution to cardiovascular responses produced by resistin. The results provided new and potentially important insight regarding neural transmission when the plasma level of resistin increases; this reveals the role of resistin in cardiovascular responses such as metabolic syndrome and hypertension.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamali Jelodar
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
13
|
Dall'Aglio C, Scocco P, Maranesi M, Petrucci L, Acuti G, De Felice E, Mercati F. Immunohistochemical identification of resistin in the uterus of ewes subjected to different diets: Preliminary results. Eur J Histochem 2019; 63. [PMID: 31060349 PMCID: PMC6509476 DOI: 10.4081/ejh.2019.3020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
Resistin is a polypeptide hormone of the adipokine-family, primarily, but not exclusively, produced by the adipose tissue. Recent studies suggested that resistin may affect the male and female reproductive activity. The study aim was to immunohistochemically evaluate the presence and distribution of resistin in the ovine uterus. Uterine samples were collected from two groups of ewes at the end of an experimental trial during which the animals of the first group (CTRL) were fed only by grazing while those of the second one (EXP) were supplemented with barley and corn. Using a monoclonal antibody against resistin, tested by Western Blot, the immunopositive reaction was identified in the cytoplasm of epithelial lining cells and uterine glands. The endogenous production of resistin seemed to be affected by different diet, as evidenced by staining differences between the CTRL and EXP groups. Our findings support the existence of a peripheral resistin system in the sheep uterus. It is possible that this system is involved in the functionality of the uterus, which is also affected by the animal’s nutritional status.
Collapse
|
14
|
Benomar Y, Taouis M. Molecular Mechanisms Underlying Obesity-Induced Hypothalamic Inflammation and Insulin Resistance: Pivotal Role of Resistin/TLR4 Pathways. Front Endocrinol (Lausanne) 2019; 10:140. [PMID: 30906281 PMCID: PMC6418006 DOI: 10.3389/fendo.2019.00140] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Low-grade inflammation and insulin resistance are among the clinical features of obesity that are thought to promote the progressive onset of type 2 diabetes. However, the underlying mechanisms linking these disorders remain not fully understood. Recent reports pointed out hypothalamic inflammation as a major step in the onset of obesity-induced insulin resistance. In light of the increasing prevalence of obesity and T2D, two worldwide public health concerns, deciphering mechanisms implicated in hypothalamic inflammation constitutes a major challenge in the field of insulin-resistance/obesity. Several clinical and experimental studies have identified resistin as a key hormone linking insulin-resistance to obesity, notably through the activation of Toll Like Receptor (TLR) 4 signaling pathways. In this review, we present an overview of the molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance with peculiar focus on the role of resistin/TLR4 signaling pathway.
Collapse
|
15
|
Neuroendocrinology of Adipose Tissue and Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2018; 19:49-70. [PMID: 28933061 DOI: 10.1007/978-3-319-63260-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Food intake and energy expenditure are closely regulated by several mechanisms which involve peripheral organs and nervous system, in order to maintain energy homeostasis.Short-term and long-term signals express the size and composition of ingested nutrients and the amount of body fat, respectively. Ingested nutrients trigger mechanical forces and gastrointestinal peptide secretion which provide signals to the brain through neuronal and endocrine pathways. Pancreatic hormones also play a role in energy balance exerting a short-acting control regulating the start, end, and composition of a meal. In addition, insulin and leptin derived from adipose tissue are involved in long-acting adiposity signals and regulate body weigh as well as the amount of energy stored as fat over time.This chapter focuses on the gastrointestinal-, pancreatic-, and adipose tissue-derived signals which are integrated in selective orexigenic and anorexigenic brain areas that, in turn, regulate food intake, energy expenditure, and peripheral metabolism.
Collapse
|
16
|
Gaspar RC, Muñoz VR, Formigari GP, Kuga GK, Nakandakari SCBR, Botezelli JD, da Silva AS, Cintra DE, de Moura LP, Ropelle ER, Pauli JR. Acute physical exercise increases the adaptor protein APPL1 in the hypothalamus of obese mice. Cytokine 2018; 110:87-93. [PMID: 29705396 DOI: 10.1016/j.cyto.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/02/2018] [Accepted: 04/12/2018] [Indexed: 01/24/2023]
|
17
|
Alsuhaymi N, Habeeballah H, Stebbing MJ, Badoer E. High Fat Diet Decreases Neuronal Activation in the Brain Induced by Resistin and Leptin. Front Physiol 2017; 8:867. [PMID: 29234283 PMCID: PMC5712409 DOI: 10.3389/fphys.2017.00867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023] Open
Abstract
Resistin and leptin are adipokines which act in the brain to regulate metabolic and cardiovascular functions which in some instances are similar, suggesting activation of some common brain pathways. High-fat feeding can reduce the number of activated neurons observed following the central administration of leptin in animals, but the effects on resistin are unknown. The present work compared the distribution of neurons in the brain that are activated by centrally administered resistin, or leptin alone, and, in combination, in rats fed a high fat (HFD) compared to a normal chow diet (ND). Immunohistochemistry for the protein, Fos, was used as a marker of activated neurons. The key findings are (i) following resistin or leptin, either alone or combined, in rats fed the HFD, there were no significant increases in the number of activated neurons in the paraventricular and arcuate nuclei, and in the lateral hypothalamic area (LHA). This contrasted with observations in rats fed a normal chow diet; (ii) in the OVLT and MnPO of HFD rats there were significantly less activated neurons compared to ND following the combined administration of resistin and leptin; (iii) In the PAG, RVMM, and NTS of HFD rats there were significantly less activated neurons compared to ND following resistin. The results suggest that the sensitivity to resistin in the brain was reduced in rats fed a HFD. This has similarities with leptin but there were instances where there was reduced sensitivity to resistin with no significant effects following leptin. This suggests diet influences neuronal effects of resistin.
Collapse
Affiliation(s)
- Naif Alsuhaymi
- Neuropharmacology and Neuroinflammation, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hamza Habeeballah
- Neuropharmacology and Neuroinflammation, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Martin J Stebbing
- Neuropharmacology and Neuroinflammation, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Emilio Badoer
- Neuropharmacology and Neuroinflammation, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Abstract
Our understanding of adipose tissue as an endocrine organ has been transformed over the last 20 years. During this time, a number of adipocyte-derived factors or adipokines have been identified. This article will review evidence for how adipokines acting via the central nervous system (CNS) regulate normal physiology and disease pathology. The reported CNS-mediated effects of adipokines are varied and include the regulation of energy homeostasis, autonomic nervous system activity, the reproductive axis, neurodevelopment, cardiovascular function, and cognition. Due to the wealth of information available and the diversity of their known functions, the archetypal adipokines leptin and adiponectin will be focused on extensively. Other adipokines with established CNS actions will also be discussed. Due to the difficulties associated with studying CNS function on a molecular level in humans, the majority of our knowledge, and as such the studies described in this paper, comes from work in experimental animal models; however, where possible the relevant data from human studies are also highlighted. © 2017 American Physiological Society. Compr Physiol 7:1359-1406, 2017.
Collapse
Affiliation(s)
- Craig Beall
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Lydia Hanna
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Kate L J Ellacott
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| |
Collapse
|
19
|
Habeeballah H, Alsuhaymi N, Stebbing MJ, Jenkins TA, Badoer E. Central Administration of Insulin and Leptin Together Enhance Renal Sympathetic Nerve Activity and Fos Production in the Arcuate Nucleus. Front Physiol 2017; 7:672. [PMID: 28119622 PMCID: PMC5220017 DOI: 10.3389/fphys.2016.00672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
There is considerable interest in the central actions of insulin and leptin. Both induce sympatho-excitation. This study (i) investigated whether centrally administered leptin and insulin together elicits greater increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) than when given alone, and (ii) quantified the number of activated neurons in brain regions influencing SNA, to identify potential central sites of interaction. In anesthetised (urethane 1.4–1.6 g/kg iv) male Sprague-Dawley rats, RSNA, MAP, and HR were recorded following intracerebroventricular (ICV) saline (control; n = 5), leptin (7 μg; n = 5), insulin (500 mU; n = 4) and the combination of leptin and insulin; (n = 4). Following leptin or insulin alone, RSNA was significantly increased (74 and 62% respectively). MAP responses were not significantly different between the groups. Insulin alone significantly increased HR. Leptin alone also increased HR but it was significantly less than following insulin alone (P < 0.005). When leptin and insulin were combined, the RSNA increase (124%) was significantly greater than the response to either alone. There were no differences between the groups in MAP responses, however, the increase in HR induced by insulin was attenuated by leptin. Of the brain regions examined, only in the arcuate nucleus did leptin and insulin together increase the number of Fos-positive cell nuclei significantly more than leptin or insulin alone. In the lamina terminalis and rostroventrolateral medulla, leptin and insulin together increased Fos, but the effect was not greater than leptin alone. The results suggest that when central leptin and insulin levels are elevated, the sympatho-excitatory response in RSNA will be greater. The arcuate nucleus may be a common site of cardiovascular integration.
Collapse
Affiliation(s)
- Hamza Habeeballah
- School of Health and Biomedical Sciences, RMIT University , Melbourne, VIC, Australia
| | - Naif Alsuhaymi
- School of Health and Biomedical Sciences, RMIT University , Melbourne, VIC, Australia
| | - Martin J Stebbing
- School of Health and Biomedical Sciences, RMIT University , Melbourne, VIC, Australia
| | - Trisha A Jenkins
- School of Health and Biomedical Sciences, RMIT University , Melbourne, VIC, Australia
| | - Emilio Badoer
- School of Health and Biomedical Sciences, RMIT University , Melbourne, VIC, Australia
| |
Collapse
|
20
|
Habeeballah H, Alsuhaymi N, Stebbing MJ, Jenkins TA, Badoer E. Central leptin and resistin combined elicit enhanced central effects on renal sympathetic nerve activity. Exp Physiol 2016; 101:791-800. [PMID: 27151838 DOI: 10.1113/ep085723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/03/2016] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Leptin and resistin act centrally to increase renal sympathetic nerve activity (RSNA). We investigated whether a combination of resistin and leptin could induce a greater response than either alone. We also used Fos protein to quantify the number of activated neurons in the brain. What is the main finding and its importance? A combination of leptin and resistin induced a greater increase in RSNA than either hormone alone. This was correlated with a greater number of activated neurons in the arcuate nucleus than with either hormone alone. Leptin and resistin act centrally to increase renal sympathetic nerve activity (RSNA). We investigated whether a combination of resistin and leptin could induce a greater response than either alone. Mean arterial pressure, heart rate and RSNA were recorded before and for 3 h after intracerebroventricular saline (control; n = 5), leptin (7 μg; n = 5), resistin (7 μg; n = 4) and leptin administered 15 min after resistin (n = 6). Leptin alone and resistin alone significantly increased RSNA (74 ± 17 and 50 ± 14%, respectively; P < 0.0001 compared with saline). When leptin and resistin were combined, there was a significantly greater increase in RSNA (163 ± 23%) compared with either hormone alone (P < 0.0001). Maximal responses of mean arterial pressure and heart rate were not significantly different between groups. We also used Fos protein to quantify the number of activated neurons in the brain. Compared with controls, there were significant increases in numbers of Fos-positive neurons in the arcuate and hypothalamic paraventricular nuclei when leptin or resistin was administered alone or when they were combined, and in the lamina terminalis when leptin and resistin were combined. Only in the arcuate nucleus was the increase significantly greater compared with either hormone alone. The findings show that a combination of leptin and resistin induces a greater RSNA increase and a greater number of activated neurons in the arcuate nucleus than with either hormone alone. Given that leptin makes an important contribution to the elevated RSNA observed in obese and overweight conditions, the increased concentrations of leptin and resistin may mean that the contribution of leptin to the elevated RSNA in those conditions is enhanced.
Collapse
Affiliation(s)
- Hamza Habeeballah
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Naif Alsuhaymi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Martin J Stebbing
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Trisha A Jenkins
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Emilio Badoer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Huang X, Yang Z. Resistin's, obesity and insulin resistance: the continuing disconnect between rodents and humans. J Endocrinol Invest 2016; 39:607-15. [PMID: 26662574 DOI: 10.1007/s40618-015-0408-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/24/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE This review aimed to discuss the conflicting findings from resistin research in rodents and humans as well as recent advances in our understanding of resistin's role in obesity and insulin resistance. METHODS A comprehensive review and synthesis of resistin's role in obesity and insulin resistance as well as conflicting findings from resistin research in rodents and humans. RESULTS In rodents, resistin is increased in high-fat/high-carbohydrate-fed, obese states characterized by impaired glucose uptake and insulin sensitivity. Resistin plays a causative role in the development of insulin resistance in rodents via 5' AMP-activated protein kinase (AMPK)-dependent and AMPK-independent suppressor of cytokine signaling-3 (SOCS-3) signaling. In contrast to rodents, human resistin is primarily secreted by peripheral-blood mononuclear cells (PBMCs) as opposed to white adipocytes. Circulating resistin levels have been positively associated with central/visceral obesity (but not BMI) as well as insulin resistance, while other studies show no such association. Human resistin has a role in pro-inflammatory processes that have been conclusively associated with obesity and insulin resistance. PBMCs, as well as vascular cells, have been identified as the primary targets of resistin's pro-inflammatory activity via nuclear factor-κB (NF-κB, p50/p65) and other signaling pathways. CONCLUSION Mounting evidence reveals a continuing disconnect between resistin's role in rodents and humans due to significant differences between these two species with respect to resistin's gene and protein structure, differential gene regulation, tissue-specific distribution, and insulin resistance induction as well as a paucity of evidence regarding the resistin receptor and downstream signaling mechanisms of action.
Collapse
Affiliation(s)
- X Huang
- Department of Radiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Department of Internal Medicine, Hechuan Hospital of First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Z Yang
- Department of Internal Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Benomar Y, Amine H, Crépin D, Al Rifai S, Riffault L, Gertler A, Taouis M. Central Resistin/TLR4 Impairs Adiponectin Signaling, Contributing to Insulin and FGF21 Resistance. Diabetes 2016; 65:913-26. [PMID: 26740596 DOI: 10.2337/db15-1029] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/20/2015] [Indexed: 11/13/2022]
Abstract
Adiponectin, an insulin-sensitizing hormone, and resistin, known to promote insulin resistance, constitute a potential link between obesity and type 2 diabetes. In addition, fibroblast growth factor (FGF)21 has effects similar to those of adiponectin in regulating glucose and lipid metabolism and insulin sensitivity. However, the interplay between adiponectin, FGF21, and resistin signaling pathways during the onset of insulin resistance is unknown. Here, we investigated whether central resistin promotes insulin resistance through the impairment of adiponectin and FGF21 signaling. We show that chronic intracerebroventricular resistin infusion downregulated both hypothalamic and hepatic APPL1, a key protein in adiponectin signaling, associated with decreased Akt-APPL1 interaction and an increased Akt association with its endogenous inhibitor tribbles homolog 3. Resistin treatment also decreased plasma adiponectin levels and reduced both hypothalamic and peripheral expression of adiponectin receptors. Additionally, we report that intracerebroventricular resistin increased plasma FGF21 levels and downregulated its receptor components in the hypothalamus and peripheral tissues, promoting FGF21 resistance. Interestingly, we also show that resistin effects were abolished in TLR4 knockout mice and in neuronal cells expressing TLR4 siRNAs. Our study reveals a novel mechanism of insulin resistance onset orchestrated by a central resistin-TLR4 pathway that impairs adiponectin signaling and promotes FGF21 resistance.
Collapse
Affiliation(s)
- Yacir Benomar
- UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, Orsay, France Department of Molecules and Circuits, CNRS UMR 9197, Molecular Neuroendocrinology of Food Intake, Paris-Saclay Institute of Neuroscience, Orsay, France
| | - Hamza Amine
- UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, Orsay, France Department of Molecules and Circuits, CNRS UMR 9197, Molecular Neuroendocrinology of Food Intake, Paris-Saclay Institute of Neuroscience, Orsay, France
| | - Délphine Crépin
- UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, Orsay, France Department of Molecules and Circuits, CNRS UMR 9197, Molecular Neuroendocrinology of Food Intake, Paris-Saclay Institute of Neuroscience, Orsay, France
| | - Sarah Al Rifai
- UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, Orsay, France Department of Molecules and Circuits, CNRS UMR 9197, Molecular Neuroendocrinology of Food Intake, Paris-Saclay Institute of Neuroscience, Orsay, France
| | - Laure Riffault
- UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, Orsay, France Department of Molecules and Circuits, CNRS UMR 9197, Molecular Neuroendocrinology of Food Intake, Paris-Saclay Institute of Neuroscience, Orsay, France
| | - Arieh Gertler
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mohammed Taouis
- UMR 9197, Molecular Neuroendocrinology of Food Intake, University Paris-Sud, Orsay, France Department of Molecules and Circuits, CNRS UMR 9197, Molecular Neuroendocrinology of Food Intake, Paris-Saclay Institute of Neuroscience, Orsay, France
| |
Collapse
|
23
|
Badoer E, Kosari S, Stebbing MJ. Resistin, an Adipokine with Non-Generalized Actions on Sympathetic Nerve Activity. Front Physiol 2015; 6:321. [PMID: 26617526 PMCID: PMC4639629 DOI: 10.3389/fphys.2015.00321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/23/2015] [Indexed: 12/18/2022] Open
Abstract
The World Health Organization has called obesity a global epidemic. There is a strong association between body weight gain and blood pressure. A major determinant of blood pressure is the level of activity in sympathetic nerves innervating cardiovascular organs. A characteristic of obesity, in both humans and in animal models, is an increase in sympathetic nerve activity to the skeletal muscle vasculature and to the kidneys. Obesity is now recognized as a chronic, low level inflammatory condition, and pro-inflammatory cytokines are elevated including those produced by adipose tissue. The most well-known adipokine released from fat tissue is leptin. The adipokine, resistin, is also released from adipose tissue. Resistin can act in the central nervous system to influence the sympathetic nerve activity. Here, we review the effects of resistin on sympathetic nerve activity and compare them with leptin. We build an argument that resistin and leptin may have complex interactions. Firstly, they may augment each other as both are excitatory on sympathetic nerves innervating cardiovascular organs; In contrast, they could antagonize each other's actions on brown adipose tissue, a key metabolic organ. These interactions may be important in conditions in which leptin and resistin are elevated, such as in obesity.
Collapse
Affiliation(s)
- Emilio Badoer
- School of Medical Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| | - Samin Kosari
- School of Medical Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| | - Martin J Stebbing
- School of Medical Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
24
|
Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M. The brain and brown fat. Ann Med 2015; 47:150-68. [PMID: 24915455 PMCID: PMC4438385 DOI: 10.3109/07853890.2014.919727] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. BAT is regulated by the sympathetic nervous system (SNS), which activates lipolysis and mitochondrial uncoupling in brown adipocytes. For many years, BAT was considered to be important only in small mammals and newborn humans, but recent data have shown that BAT is also functional in adult humans. On the basis of this evidence, extensive research has been focused on BAT function, where new molecules, such as irisin and bone morphogenetic proteins, particularly BMP7 and BMP8B, as well as novel central factors and new regulatory mechanisms, such as orexins and the canonical ventomedial nucleus of the hypothalamus (VMH) AMP- activated protein kinase (AMPK)-SNS-BAT axis, have been discovered and emerged as potential drug targets to combat obesity. In this review we provide an overview of the complex central regulation of BAT and how different neuronal cell populations co-ordinately work to maintain energy homeostasis.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela, 15782 , Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Quiñones M, Al-Massadi O, Fernø J, Nogueiras R. Cross-talk between SIRT1 and endocrine factors: effects on energy homeostasis. Mol Cell Endocrinol 2014; 397:42-50. [PMID: 25109279 DOI: 10.1016/j.mce.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
The mammalian sirtuins (SIRT1-7) are a family of highly conserved nicotine adenine dinucleotide (NAD(+))-dependent deacetylases that act as cellular sensors to detect energy availability. SIRT1 is a multifaceted protein that is involved in a wide variety of cellular processes. SIRT1 is activated in response to caloric restriction, acting on multiple targets in a wide range of tissues. SIRT1 regulates the role of multiple hormones implicated in energy balance, including glucose and lipid metabolism. Here, we review the relevant role of SIRT1 as a mediator of endocrine function of several hormones to modulate energy balance. In addition, we analyze the potential of targeting SIRT1 for the treatment of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mar Quiñones
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain.
| | - Omar Al-Massadi
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain
| | - Johan Fernø
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
26
|
Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 2014; 5:63. [PMID: 24808888 PMCID: PMC4010764 DOI: 10.3389/fneur.2014.00063] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis.
Collapse
Affiliation(s)
- Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Marchiò
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neuropediatric Unit, Department of Medical and Surgical Sciences for Children and Adults, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| | - Elena Timofeeva
- Département Psychiatrie et Neurosciences, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| |
Collapse
|
27
|
Abstract
The prevalence of obesity continues to increase and has reached epidemic proportions. Accumulating data over the past few decades have given us key insights and broadened our understanding of the peripheral and central regulation of energy homeostasis. Despite this, the currently available pharmacological treatments, reducing body weight, remain limited due to poor efficacy and side effects. The gastric peptide ghrelin has been identified as the only orexigenic hormone from the periphery to act in the hypothalamus to stimulate food intake. Recently, a role for ghrelin and its receptor at the interface between homeostatic control of appetite and reward circuitries modulating the hedonic aspects of food has also emerged. Nonhomeostatic factors such as the rewarding and motivational value of food, which increase with food palatability and caloric content, can override homeostatic control of food intake. This nonhomeostatic decision to eat leads to overconsumption beyond nutritional needs and is being recognized as a key component in the underlying causes for the increase in obesity incidence worldwide. In addition, the hedonic feeding behavior has been linked to food addiction and an important role for ghrelin in the development of addiction has been suggested. Moreover, plasma ghrelin levels are responsive to conditions of stress, and recent evidence has implicated ghrelin in stress-induced food-reward behavior. The prominent role of the ghrelinergic system in the regulation of feeding gives rise to it as an effective target for the development of successful antiobesity pharmacotherapies that not only affect satiety but also selectively modulate the rewarding properties of food and reduce the desire to eat.
Collapse
|
28
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The alarming prevalence of obesity has led to a better understanding of the molecular mechanisms controlling energy homeostasis. Regulation of energy intake and expenditure is more complex than previously thought, being influenced by signals from many peripheral tissues. In this sense, a wide variety of peripheral signals derived from different organs contributes to the regulation of body weight and energy expenditure. Besides the well-known role of insulin and adipokines, such as leptin and adiponectin, in the regulation of energy homeostasis, signals from other tissues not previously thought to play a role in body weight regulation have emerged in recent years. The role of fibroblast growth factor 21 (FGF21), insulin-like growth factor 1 (IGF-I), and sex hormone-binding globulin (SHBG) produced by the liver in the regulation of body weight and insulin sensitivity has been recently described. Moreover, molecules expressed by skeletal muscle such as myostatin have also been involved in adipose tissue regulation. Better known is the involvement of ghrelin, cholecystokinin, glucagon-like peptide 1 (GLP-1) and PYY(3-36), produced by the gut, in energy homeostasis. Even the kidney, through the production of renin, appears to regulate body weight, with mice lacking this hormone exhibiting resistance to diet-induced obesity. In addition, the skeleton has recently emerged as an endocrine organ, with effects on body weight control and glucose homeostasis through the actions of bone-derived factors such as osteocalcin and osteopontin. The comprehension of these signals will help in a better understanding of the aetiopathology of obesity, contributing to the potential development of new therapeutic targets aimed at tackling excess body fat accumulation.
Collapse
|
30
|
AL-Suhaimi EA, Shehzad A. Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity. Eur J Med Res 2013; 18:12. [PMID: 23634778 PMCID: PMC3655867 DOI: 10.1186/2047-783x-18-12] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue is still regarded as a principle site for lipid storage and mobilizing tissue with an important role in the control of energy homeostasis. Additionally, adipose tissue-secreted hormones such as leptin, visfatin, resistin, apelin, omentin, sex steroids, and various growth factors are now regarded as a functional part of the endocrine system. These hormones also play an important role in the immune system. Several in vitro and in vivo studies have suggested the complex role of adipocyte-derived hormones in immune system and inflammation. Adipokines mediate beneficial and detrimental effects in immunity and inflammation. Many of these adipocytokines have a physiological role in metabolism. The uncontrolled secretions of several adipocytokines were associated with the stimulation of inflammatory processes leading to metabolic disorders including obesity, atherosclerosis, insulin resistance and type 2 diabetes. Obesity leads to the dysfunction of adipocytes andcorrelated with the imbalance of adipokines levels. In obese and diabetic conditions, leptin deficiency inhibited the Jak/Stat3/PI3K and insulin pathways. In this review, ample evidence exists to support the recognition of the adipocyte's role in various tissues and pathologies. New integral insights may add dimensions to translate any potential agents into the future clinical armamentarium of chronic endocrine metabolic and inflammatory diseases. Functional balance of both adipocytes and immune cells is important to exert their effects on endocrine metabolic disorders; furthermore, adipose tissue should be renamed not only as a functional part of the endocrine system but also as a new part of the immune system.
Collapse
Affiliation(s)
- Ebtesam A AL-Suhaimi
- Department of Biology, Sciences College, University of Dammam, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
31
|
Martos-Moreno G, Kopchick J, Argente YJ. [Adipokines in healthy and obese children]. An Pediatr (Barc) 2013; 78:189.e1-189.e15. [PMID: 23228441 PMCID: PMC4307602 DOI: 10.1016/j.anpedi.2012.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 01/14/2023] Open
Abstract
The worldwide increase in the prevalence of obesity in children and adolescents during the last decades, as well as the mounting evidence indicating that obesity is associated with an increased incidence of comorbidities and the risk of premature death, resulting in a high economic impact, has stimulated obesity focused research. These studies have highlighted the prominent endocrine activity of adipose tissue, which is exerted through the synthesis and secretion of a wide variety of peptides and cytokines, called adipokines. This review presents a summary of the current knowledge and most relevant studies of adipokine dynamics and actions in children, focusing on the control of energy homeostasis, metabolic regulation (particularly carbohydrate metabolism), and inflammation. The particularities of adipose secretion and actions in healthy children, from birth to adolescence, and the modifications induced by early onset obesity are highlighted.
Collapse
Affiliation(s)
- G.A. Martos-Moreno
- Hospital Infantil Universitario Niño Jesús. Servicio de Endocrinología. Instituto de Investigación La Princesa. Madrid. España
- Universidad Autónoma de Madrid. Servicio de Pediatría. Madrid, España
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III. Madrid. España
- Edison Biotechnology Institute, Konneker Research Laboratories, Ohio University. Athens, Ohio, USA
| | - J.J. Kopchick
- Edison Biotechnology Institute, Konneker Research Laboratories, Ohio University. Athens, Ohio, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine. Ohio University, Athens, Ohio, USA
| | - y J. Argente
- Hospital Infantil Universitario Niño Jesús. Servicio de Endocrinología. Instituto de Investigación La Princesa. Madrid. España
- Universidad Autónoma de Madrid. Servicio de Pediatría. Madrid, España
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III. Madrid. España
| |
Collapse
|
32
|
Martos-Moreno GÁ, Barrios V, Chowen JA, Argente J. Adipokines in childhood obesity. VITAMINS AND HORMONES 2013; 91:107-42. [PMID: 23374715 DOI: 10.1016/b978-0-12-407766-9.00006-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The worldwide increase in the prevalence of obesity in children and adolescents during the past decades, in addition to mounting evidence indicating that obesity is associated with an increased incidence of comorbidities and the risk of premature death, resulting in a high economical impact, has stimulated obesity-focused research. These studies have highlightened the prominent endocrine activity of adipose tissue, which is exerted through the synthesis and secretion of a wide variety of peptides and cytokines, called adipokines. In the present review, we have summarized the current knowledge and most relevant studies of adipokine dynamics and actions in children, focusing on the control of energy homeostasis, metabolic regulation (particularly, carbohydrate metabolism), and inflammation. The particularities of adipose secretion and actions in healthy children, from birth to adolescence, and the modifications induced by early-onset obesity are highlighted.
Collapse
Affiliation(s)
- Gabriel Ángel Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Benomar Y, Gertler A, De Lacy P, Crépin D, Ould Hamouda H, Riffault L, Taouis M. Central resistin overexposure induces insulin resistance through Toll-like receptor 4. Diabetes 2013; 62:102-14. [PMID: 22961082 PMCID: PMC3526022 DOI: 10.2337/db12-0237] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Resistin promotes both inflammation and insulin resistance associated with energy homeostasis impairment. However, the resistin receptor and the molecular mechanisms mediating its effects in the hypothalamus, crucial for energy homeostasis control, and key insulin-sensitive tissues are still unknown. In the current study, we report that chronic resistin infusion in the lateral cerebral ventricle of normal rats markedly affects both hypothalamic and peripheral insulin responsiveness. Central resistin treatment inhibited insulin-dependent phosphorylation of insulin receptor (IR), AKT, and extracellular signal-related kinase 1/2 associated with reduced IR expression and with upregulation of suppressor of cytokine signaling-3 and phosphotyrosine phosphatase 1B, two negative regulators of insulin signaling. Additionally, central resistin promotes the activation of the serine kinases Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase, enhances the serine phosphorylation of insulin receptor substrate-1, and increases the expression of the proinflammatory cytokine interleukin-6 in the hypothalamus and key peripheral insulin-sensitive tissues. Interestingly, we also report for the first time, to our knowledge, the direct binding of resistin to Toll-like receptor (TLR) 4 receptors in the hypothalamus, leading to the activation of the associated proinflammatory pathways. Taken together, our findings clearly identify TLR4 as the binding site for resistin in the hypothalamus and bring new insight into the molecular mechanisms involved in resistin-induced inflammation and insulin resistance in the whole animal.
Collapse
Affiliation(s)
- Yacir Benomar
- Unité Mixte de Recherche 8195, University Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique, Center of Neurosciences Paris-Sud, Unité Mixte de Recherche 8195, Orsay, France
| | - Arieh Gertler
- Faculty of Agricultural, Food and Environmental Quality Sciences, The Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Delphine Crépin
- Unité Mixte de Recherche 8195, University Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique, Center of Neurosciences Paris-Sud, Unité Mixte de Recherche 8195, Orsay, France
| | - Hassina Ould Hamouda
- Unité Mixte de Recherche 8195, University Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique, Center of Neurosciences Paris-Sud, Unité Mixte de Recherche 8195, Orsay, France
| | - Laure Riffault
- Unité Mixte de Recherche 8195, University Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique, Center of Neurosciences Paris-Sud, Unité Mixte de Recherche 8195, Orsay, France
| | - Mohammed Taouis
- Unité Mixte de Recherche 8195, University Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique, Center of Neurosciences Paris-Sud, Unité Mixte de Recherche 8195, Orsay, France
- Corresponding author: Mohammed Taouis,
| |
Collapse
|
34
|
Abstract
Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using (13)C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-(13)C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-(13)C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the glutamate-glutamine-GABA cycle.
Collapse
Affiliation(s)
- Teresa C. Delgado
- Intermediary Metabolism Group, Center for Neurosciences and Cell Biology of Coimbra, Coimbra, Portugal
- *Correspondence: Teresa C. Delgado, Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal e-mail:
| |
Collapse
|
35
|
Kosari S, Rathner JA, Badoer E. Central resistin enhances renal sympathetic nerve activity via phosphatidylinositol 3-kinase but reduces the activity to brown adipose tissue via extracellular signal-regulated kinase 1/2. J Neuroendocrinol 2012; 24:1432-9. [PMID: 22702339 DOI: 10.1111/j.1365-2826.2012.02352.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resistin is an adipokine, originally identified in adipose tissue, and its plasma levels are elevated in obesity. Characteristics of obesity include impaired metabolic regulation and cardiovascular dysfunction, such as increased sympathetic nerve activity (SNA) to the kidney and skeletal muscle vasculature. Resistin can affect energy homeostasis through central mechanisms that include reduced food intake and reduced thermogenesis, and can also increase lumbar SNA via a central action. The present study investigated: (i) the effect of centrally-administered resistin on SNA targeting the kidney and (ii) the intracellular signalling pathways mediating the changes in SNA innervating the kidney and brown adipose tissue (BAT) induced by resistin. Intracerebroventricular resistin (7 μg) injected into overnight fasted, anaesthetised rats induced a significant increase in renal SNA by approximately 40%. This response was prevented when phosphatidylinositol 3-kinase (PI3K) was inhibited by i.c.v. administration of LY294002 (5 μg). Resistin reduced BAT SNA and this response was delayed by 150 min when extracellular-regulated kinase (ERK)1/2 was inhibited by i.c.v. administration of U0126. The findings indicate that resistin increases renal SNA via PI3K and reduces BAT SNA via ERK1/2.
Collapse
Affiliation(s)
- S Kosari
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
36
|
Kosari S, Rathner JA, Chen F, Kosari S, Badoer E. Centrally administered resistin enhances sympathetic nerve activity to the hindlimb but attenuates the activity to brown adipose tissue. Endocrinology 2011; 152:2626-33. [PMID: 21586564 DOI: 10.1210/en.2010-1492] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Resistin, an adipokine, is believed to act in the brain to influence energy homeostasis. Plasma resistin levels are elevated in obesity and are associated with metabolic and cardiovascular disease. Increased muscle sympathetic nerve activity (SNA) is a characteristic of obesity, a risk factor for diabetes and cardiovascular disease. We hypothesized that resistin affects SNA, which contributes to metabolic and cardiovascular dysfunction. Here we investigated the effects of centrally administered resistin on SNA to muscle (lumbar) and brown adipose tissue (BAT), outputs that influence cardiovascular and energy homeostasis. Overnight-fasted rats were anesthetized, and resistin (7 μg) was administered into the lateral cerebral ventricle (intracerebroventricular). The lumbar sympathetic nerve trunk or sympathetic nerves supplying BAT were dissected free, and nerve activity was recorded. Arterial blood pressure, heart rate, body core temperature, and BAT temperature were also recorded. Responses to resistin or vehicle were monitored for 4 h after intracerebroventricular administration. Acutely administered resistin increased lumbar SNA but decreased BAT SNA. Mean arterial pressure and heart rate, however, were not significantly affected by resistin. BAT temperature was significantly reduced by resistin, and there was a concomitant fall in body temperature. The findings indicate that resistin has differential effects on SNA to tissues involved in metabolic and cardiovascular regulation. The decreased BAT SNA and the increased lumbar SNA elicited by resistin suggest that it may contribute to the increased muscle SNA and reduced energy expenditure observed in obesity and diabetes.
Collapse
Affiliation(s)
- S Kosari
- School of Medical Sciences, Royal Melbourne Institute of Technology University, P.O. Box 71, Bundoora 3083, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
37
|
Kiewiet RM, Hazell MJ, van Aken MO, van der Weerd K, Visser JA, Themmen APN, van der Lely AJ. Acute effects of acylated and unacylated ghrelin on total and high molecular weight adiponectin inmorbidly obese subjects. J Endocrinol Invest 2011; 34:434-8. [PMID: 20959720 DOI: 10.1007/bf03346709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Energy homeostasis and body weight are regulated by a highly complex network involving the brain, the digestive tract, and white adipose tissue (WAT). Knowledge about signaling pathways connecting digestive tract and WAT is limited. Gut hormone ghrelin and adipokine adiponectin are both decreased in obesity and they share a potent effect on insulin sensitivity: both adiponectin and the combination of acylated (AG) and unacylated ghrelin (UAG) improve insulin sensitivity. AIM In the present study, we evaluated whether acute administration of UAG alone or combined with AG affects adiponectin concentrations. SUBJECTS AND METHODS Eight morbidly obese non-diabetic subjects were treated with either UAG 200 μg, UAG 100 μg + AG 100 μg (Comb), or placebo in 3 episodes in a double blind randomized cross-over design. Study medication was administered as single iv bolus injections at 09:00 h after an overnight fast. High molecular weight (HMW) and total adiponectin, glucose, insulin, and total ghrelin and AG were measured up to 1 h after administration. RESULTS HMW and total adiponectin concentrations did not change after administration of either UAG or Comb, nor were they different from placebo. Insulin concentrations decreased significantly after acute administration of Comb, reaching a minimum at 20 min: 58.2 ± 3.9% of baseline. CONCLUSIONS Acute iv administration of UAG and the combination of UAG and AG in morbidly obese non-diabetic subjects without overt diabetes does not affect total or HMW adiponectin concentrations, neither directly nor indirectly by changing insulin concentrations.
Collapse
Affiliation(s)
- R M Kiewiet
- Division of Endocrinology, Department of Internal Medicine, Erasmus University Medical Centre, CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Maillard V, Froment P, Ramé C, Uzbekova S, Elis S, Dupont J. Expression and effect of resistin on bovine and rat granulosa cell steroidogenesis and proliferation. Reproduction 2011; 141:467-79. [PMID: 21239528 DOI: 10.1530/rep-10-0419] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Resistin, initially identified in adipose tissue and macrophages, was implicated in insulin resistance. Recently, its mRNA was found in hypothalamo-pituitary axis and rat testis, leading us to hypothesize that resistin may be expressed in ovary. In this study, we determined in rats and cows 1) the characterization of resistin in ovary by RT-PCR, immunoblotting, and immunohistochemistry and 2) the effects of recombinant resistin (10, 100, 333, and 667 ng/ml) ± IGF1 (76 ng/ml) on steroidogenesis, proliferation, and signaling pathways of granulosa cells (GC) measured by enzyme immunoassay, [(3)H]thymidine incorporation, and immunoblotting respectively. We observed that resistin mRNA and protein were present in several bovine and rat ovarian cells. Nevertheless, only bovine GC abundantly expressed resistin mRNA and protein. Resistin treatment decreased basal but not IGF1-induced progesterone (P<0.05; whatever the dose) and estradiol (P<0.005; for 10 and 333 ng/ml) production by bovine GC. In rats, resistin (10 ng/ml) increased basal and IGF1-induced progesterone secretion (P<0.0001), without effect on estradiol release. We found no effect of resistin on rat GC proliferation. Conversely, in cows, resistin increased basal proliferation (P<0.0001; for 100-667 ng/ml) and decreased IGF1-induced proliferation of GC (P<0.0001; for 10-333 ng/ml) associated with a decrease in cyclin D2 protein level (P<0.0001). Finally, resistin stimulated AKT and p38-MAPK phosphorylation in both species, ERK1/2-MAPK phosphorylation in rats and had the opposite effect on the AMPK pathway (P<0.05). In conclusion, our results show that resistin is expressed in rat and bovine ovaries. Furthermore, it can modulate GC functions in basal state or in response to IGF1 in vitro.
Collapse
Affiliation(s)
- Virginie Maillard
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, Institut National de la Recherche Agronomique, F-37 380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
39
|
Ochner CN, Gibson C, Shanik M, Goel V, Geliebter A. Changes in neurohormonal gut peptides following bariatric surgery. Int J Obes (Lond) 2010; 35:153-66. [PMID: 20625384 DOI: 10.1038/ijo.2010.132] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rising prevalence of obesity has reached pandemic proportions, with an associated cost estimated at up to 7% of health expenditures worldwide. Bariatric surgery is currently the only effective long-term treatment for obesity and obesity-related co-morbidities in clinically severely obese patients. However, the precise physiological mechanisms underlying the postsurgical reductions in caloric intake and body weight are poorly comprehended. It has been suggested that changes in hormones involved in hunger, food intake and satiety via the neurohormonal network may contribute to the efficacy of bariatric procedures. In this review, we consider how gastrointestinal hormone concentrations, involved in appetite and body weight regulation via the gut-brain axis, are altered by different bariatric procedures. Special emphasis is placed on neurohormonal changes following Roux-en-Y gastric bypass surgery, which is the most common and effective procedure used today.
Collapse
Affiliation(s)
- C N Ochner
- New York Obesity Research Center, Department of Medicine, St Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY 10025, USA.
| | | | | | | | | |
Collapse
|
40
|
Lopaschuk GD, Ussher JR, Jaswal JS. Targeting intermediary metabolism in the hypothalamus as a mechanism to regulate appetite. Pharmacol Rev 2010; 62:237-64. [PMID: 20392806 DOI: 10.1124/pr.109.002428] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The central nervous system mediates energy balance (energy intake and energy expenditure) in the body; the hypothalamus has a key role in this process. Recent evidence has demonstrated an important role for hypothalamic malonyl CoA in mediating energy balance. Malonyl CoA is generated by the carboxylation of acetyl CoA by acetyl CoA carboxylase and is then either incorporated into long-chain fatty acids by fatty acid synthase, or converted back to acetyl-CoA by malonyl CoA decarboxylase. Increased hypothalamic malonyl CoA is an indicator of energy surplus, resulting in a decrease in food intake and an increase in energy expenditure. In contrast, a decrease in hypothalamic malonyl CoA signals an energy deficit, resulting in an increased appetite and a decrease in body energy expenditure. A number of hormonal and neural orexigenic and anorexigenic signaling pathways have now been shown to be associated with changes in malonyl CoA levels in the arcuate nucleus (ARC) of the hypothalamus. Despite compelling evidence that malonyl CoA is an important mediator in the hypothalamic ARC control of food intake and regulation of energy balance, the mechanism(s) by which this occurs has not been established. Malonyl CoA inhibits carnitine palmitoyltransferase-1 (CPT-1), and it has been proposed that the substrate of CPT-1, long-chain acyl CoA(s), may act as a mediator(s) of appetite and energy balance. However, recent evidence has challenged the role of long-chain acyl CoA(s) in this process, as well as the involvement of CPT-1 in hypothalamic malonyl CoA signaling. A better understanding of how malonyl CoA regulates energy balance should provide novel approaches to targeting intermediary metabolism in the hypothalamus as a mechanism to control appetite and body weight. Here, we review the data supporting an important role for malonyl CoA in mediating hypothalamic control of energy balance, and recent evidence suggesting that targeting malonyl CoA synthesis or degradation may be a novel approach to favorably modify appetite and weight gain.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- 423 Heritage Medical Research Center, University of Alberta, Edmonton, Canada T6G2S2.
| | | | | |
Collapse
|
41
|
Kim DH, Woods SC, Seeley RJ. Peptide designed to elicit apoptosis in adipose tissue endothelium reduces food intake and body weight. Diabetes 2010; 59:907-15. [PMID: 20103704 PMCID: PMC2844838 DOI: 10.2337/db09-1141] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Because adipose tissue is highly vascularized, modifying adipose tissue vasculature may provide a novel method for reducing body fat. A peptide sequence that elicits apoptosis of endothelium in white fat potently reduced body weight. We sought to determine how inhibiting adipose tissue vasculature changes key aspects of energy balance regulation and the neuroendocrine system that maintains energy balance. RESEARCH DESIGN AND METHODS Lean and obese mice or rats were treated with proapoptotic peptide for 4 or 27 days. Daily energy intake and expenditure were measured in mice on a low- (LFD) or high-fat diet (HFD) and in rats on a HFD. A conditioned taste aversion test was performed to assess whether proapoptotic peptide produces visceral illness. Hypothalamic neuropeptide Y, agouti-related peptide, and proopiomelanocoritin (POMC) mRNA expression and plasma leptin levels were evaluated. RESULTS Proapoptotic peptide completely reversed HFD-induced obesity in mice and reduced body weight in mice and rats on a HFD but not in those on a LFD. Fat loss occurred with no change of energy expenditure but reduced food intake that occurred without signs of illness and despite reduced circulating leptin and reduced hypothalamic POMC gene expression, indicating that the decrease in food intake is independent of the action of leptin. CONCLUSIONS These experiments provide compelling evidence for a previously unknown relationship between the status of adipose tissue vasculature and the regulation of food intake.
Collapse
Affiliation(s)
- Dong-Hoon Kim
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Stephen C. Woods
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio
| | - Randy J. Seeley
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
- Corresponding author: Randy J. Seeley,
| |
Collapse
|
42
|
Nogueiras R, López M, Diéguez C. Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obes Rev 2010; 11:185-201. [PMID: 19845870 DOI: 10.1111/j.1467-789x.2009.00669.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.
Collapse
Affiliation(s)
- R Nogueiras
- Department of Physiology, School of Medicine-Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
43
|
Rodríguez-Pacheco F, Vázquez-Martínez R, Martínez-Fuentes AJ, Pulido MR, Gahete MD, Vaudry H, Gracia-Navarro F, Diéguez C, Castaño JP, Malagón MM. Resistin regulates pituitary somatotrope cell function through the activation of multiple signaling pathways. Endocrinology 2009; 150:4643-52. [PMID: 19589870 DOI: 10.1210/en.2009-0116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adipokine resistin is an insulin-antagonizing factor that also plays a regulatory role in inflammation, immunity, food intake, and gonadal function. Although adipose tissue is the primary source of resistin, it is also expressed in other tissues and organs, including the pituitary. However, there is no information on whether resistin, as described previously for other adipokines such as leptin and adiponectin, could regulate this gland. Likewise, the molecular basis of resistin actions remains largely unexplored. Here we show that administration of resistin to dispersed rat anterior pituitary cells increased GH release in both the short (4 h) and long (24 h) term, decreased mRNA levels of the receptor of the somatotrope regulator ghrelin, and increased free cytosolic Ca(2+) concentration in single somatotropes. By means of a pharmacological approach, we found that the stimulatory action of resistin occurs through a Gs protein-dependent mechanism and that the adenylate cyclase/cAMP/protein kinase A pathway, the phosphatidylinositol 3-kinase/Akt pathway, protein kinase C, and extracellular Ca(2+) entry through L-type voltage-sensitive Ca(2+) channels are essential players in mediating the effects of resistin on somatotropes. Taken together, our results demonstrate for the first time a regulatory role for resistin on somatotrope function and provide novel insights on the intracellular mechanisms activated by this protein.
Collapse
|
44
|
Cifani C, Durocher Y, Pathak A, Penicaud L, Smih F, Massi M, Rouet P, Polidori C. Possible common central pathway for resistin and insulin in regulating food intake. Acta Physiol (Oxf) 2009; 196:395-400. [PMID: 19183337 DOI: 10.1111/j.1748-1716.2008.01949.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Adipose tissue has been the object of intense research in the field of obesity and diabetes diseases in the last decade. Examination of adipocyte-secreted peptides led to the identification of a unique polypeptide, resistin (RSTN), which has been suggested as a link between obesity and diabetes. RSTN plays a clearly documented role in blocking insulin (INS)-induced hypoglycaemia. As brain injection of INS affects feeding behaviour, we studied the possible interaction between INS and RSTN in food-deprived rats, measuring effects on food intake. In addition, we examined how RSTN might affect neuropeptide Y (NPY)-induced feeding, as studies have shown that rat RSTN can interfere with the NPY system. METHODS Overnight food-deprived rats were injected into the third brain ventricle (3V) with either INS (10 or 20 mUI), RSTN (0.1-0.4 nmol/rat), or saline before access to food. Another group of rats was injected into the 3V with RSTN alone, NPY alone or RSTN plus NPY. Their food intake and body weight were measured. RESULTS Our results confirm the hypophagic effect of RSTN on food deprivation-induced food intake, and more importantly, show that RSTN neither potentiates nor blocks the effects of INS on food intake, but does reduce the hyperphagic effect of NPY. CONCLUSION The observation that RSTN does not modify feeding INS-induced hypophagia, but does influence NPY-induced feeding, points to the possibility that RSTN may be involved in control of food intake through an NPY-ergic mechanism as INS.
Collapse
Affiliation(s)
- C Cifani
- Department of Experimental Medicine and Public Health, University of Camerino, 62032 Camerino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Resistin differentially modulates neuropeptide gene expression and AMP-activated protein kinase activity in N-1 hypothalamic neurons. Brain Res 2009; 1294:52-60. [PMID: 19646421 DOI: 10.1016/j.brainres.2009.07.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/17/2009] [Accepted: 07/21/2009] [Indexed: 11/24/2022]
Abstract
Intraventricular resistin is known to reduce food intake, modify hypothalamic gene expression (e.g. NPY, POMC) and influence the activity of novel metabolic enzymes (e.g. 5'AMP-activated protein kinase; AMPK) in the rodent brain. Previously we demonstrated that the hypothalamus, and the N-1 hypothalamic neuronal cell line, also expressed several adipokines, including resistin and adiponectin (ADPN). These data suggested that they might also impact brain function and metabolism. We used the N-1 hypothalamic neuronal cell line to examine NPY, AgRP, POMC, and ADPN expression following acute resistin treatment (45 min; 100 ng/mL and 1000 ng/mL). The total and phosphorylated levels of AMPKalpha and acetyl-CoA carboxylase (ACC) were subsequently assessed using Western blot analysis. Parallel investigations were also conducted following a) resistin overexpression, or b) after the RNAi-mediated attenuation of resistin mRNA in N-1 neurons. Resistin overexpression lowered POMC (-35%, p<0.01), ADPN (-23%, p<0.05) and NPY (-36%, p<0.05) mRNA as evaluated using realtime RT-PCR, although AgRP remained unchanged, and significant increases in pAMPKalpha and pACC were detected (+47% and +34% respectively, p<0.001). In contrast recombinant resistin only significantly increased the level of pAMPKalpha (+31%; p<0.05), but failed to significantly modify gene expression, in N-1 neurons. Conversely the RNAi-mediated silencing of resistin expression increased AgRP (+37%, p<0.05), POMC (+66%, p<0.0001), ADPN (+87%, p<0.0001), whereas NPY was reduced (-22%, p<0.01) along with pAMPKalpha and pACC (-43% and -35% respectively, p<0.001). In summary, these in vitro data suggest that endogenous resistin might be capable of fine-tuning the expression and enzymatic activity of various hypothalamic targets previously implicated in the delicate homeostatic control of food intake. As such, resistin may be part of an autocrine/paracrine loop, which may in turn contribute to some of the reported effects of resistin on energy metabolism.
Collapse
|
46
|
Valenzuela B A, Sanhueza C J. El tejido adiposo: algo más que un reservorio de energía. GRASAS Y ACEITES 2009. [DOI: 10.3989/gya.043209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Neuroendocrine and physiological regulation of intake with particular reference to domesticated ruminant animals. Nutr Res Rev 2009; 21:207-34. [PMID: 19087372 DOI: 10.1017/s0954422408138744] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The central nervous system undertakes the homeostatic role of sensing nutrient intake and body reserves, integrating the information, and regulating energy intake and/or energy expenditure. Few tasks regulated by the brain hold greater survival value, particularly important in farmed ruminant species, where the demands of pregnancy, lactation and/or growth are not easily met by often bulky plant-based and sometimes nutrient-sparse diets. Information regarding metabolic state can be transmitted to the appetite control centres of the brain by a diverse array of signals, such as stimulation of the vagus nerve, or metabolic 'feedback' factors derived from the pituitary gland, adipose tissue, stomach/abomasum, intestine, pancreas and/or muscle. These signals act directly on the neurons located in the arcuate nucleus of the medio-basal hypothalamus, a key integration, and hunger (orexigenic) and satiety (anorexigenic) control centre of the brain. Interest in human obesity and associated disorders has fuelled considerable research effort in this area, resulting in increased understanding of chronic and acute factors influencing feed intake. In recent years, research has demonstrated that these results have relevance to animal production, with genetic selection for production found to affect orexigenic hormones, feeding found to reduce the concentration of acute controllers of orexigenic signals, and exogenous administration of orexigenic hormones (i.e. growth hormone or ghrelin) reportedly increasing DM intake in ruminant animals as well as single-stomached species. The current state of knowledge on factors influencing the hypothalamic orexigenic and anorexigenic control centres is reviewed, particularly as it relates to domesticated ruminant animals, and potential avenues for future research are identified.
Collapse
|
48
|
Brown R, Imran SA, Wilkinson M. Lipopolysaccharide (LPS) stimulates adipokine and socs3 gene expression in mouse brain and pituitary gland in vivo, and in N-1 hypothalamic neurons in vitro. J Neuroimmunol 2009; 209:96-103. [PMID: 19261336 DOI: 10.1016/j.jneuroim.2009.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/28/2009] [Accepted: 02/02/2009] [Indexed: 12/25/2022]
Abstract
Adipokines that modulate metabolic and inflammatory responses, such as resistin (rstn) and fasting-induced adipose factor (fiaf), are also expressed in mouse brain and pituitary gland. Since lipopolysaccharide (LPS)-induced endotoxinemia provokes an anorectic response via a hypothalamic-dependent mechanism we hypothesized that LPS would also modify hypothalamic adipokine expression. Challenging male CD-1 mice with LPS (5 mg/kg; s.c.) significantly reduced bodyweight (24 h) and realtime RT-PCR revealed time- and tissue-dependent increases in rstn, fiaf and suppressor of cytokine signaling-3 (socs-3) mRNA in hypothalamic, pituitary, cortical and adipose tissues. Gene expression was rapidly increased (3-6 h) in the hypothalamus and pituitary, but returned to normal within 24 h. In contrast, with the exception of rstn in fat, the expression of target genes remained elevated in cortex and visceral fat at 24 h post-injection. In order to more specifically examine the hypothalamic response to LPS we investigated its effects directly on N-1 hypothalamic neurons in vitro. LPS (25 microg/mL; 3 h) had no effect on rstn mRNA, but significantly stimulated fiaf and socs-3 expression. Although various toll-like receptor 4 (TLR4) antagonists (parthenolide, PD098059, and SB202190) did not prevent the LPS-induced increases in fiaf and socs-3, they did partially attenuate its stimulatory effects. We conclude that LPS treatment increases the expression of central, and possibly neuronal, adipokine genes which may influence local tissue repair and function, but could also have downstream consequences on the hypothalamic control of appetite and energy metabolism following an inflammatory insult.
Collapse
Affiliation(s)
- Russell Brown
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Dalhousie University, c/o IWK Health Centre, Nova Scotia, Canada.
| | | | | |
Collapse
|
49
|
Abstract
The hypothalamus is a specialised area in the brain that integrates the control of energy homeostasis, regulating both food intake and energy expenditure. The classical theory for hypothalamic feeding control is mainly based on the relationship between peripheral signals and neurotransmitters/neuromodulators in the central nervous system. Thus, hypothalamic neurons respond to peripheral signals, such as hormones and nutrients, by modifying the synthesis of neuropeptides. Despite the well-established role of these hypothalamic networks, increasing evidence indicates that the modulation of lipid metabolism in the hypothalamus plays a critical role in feeding control. In fact, the pharmacologic and genetic targeting of key enzymes from these pathways, such as AMP-activated protein kinase, acetyl-CoA carboxylase, carnitine palmitoyltransferase 1, fatty acid synthase, and malonyl-CoA decarboxylase, has a profound effect on food intake and body weight. Here, we review what is currently known about the relationship between hypothalamic lipid metabolism and whole body energy homeostasis. Defining these novel mechanisms may offer new therapeutic targets for the treatment of obesity and its associated pathologies.
Collapse
Affiliation(s)
- Carlos Diéguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela
- CIBER ‘Fisiopatología de la Obesidad y Nutrición’, Instituto de Salud Carlos III, Santiago de Compostela
| | - Gema Frühbeck
- CIBER ‘Fisiopatología de la Obesidad y Nutrición’, Instituto de Salud Carlos III, Santiago de Compostela
- Metabolic Research Laboratory, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
| | - Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela
- CIBER ‘Fisiopatología de la Obesidad y Nutrición’, Instituto de Salud Carlos III, Santiago de Compostela
- *Miguel López, PhD, Department of Physiology, School of Medicine, University of Santiago de Compostela, S. Francisco s/n 15782, Santiago de Compostela (A Coruβa), Spain, Tel. +34 981-582658, Fax -574145,
| |
Collapse
|
50
|
Hillemacher T, Weinland C, Heberlein A, Gröschl M, Schanze A, Frieling H, Wilhelm J, Kornhuber J, Bleich S. Increased levels of adiponectin and resistin in alcohol dependence--possible link to craving. Drug Alcohol Depend 2009; 99:333-7. [PMID: 18818026 DOI: 10.1016/j.drugalcdep.2008.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/16/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
Recent studies suggested a role of appetite regulating peptides like leptin and ghrelin in alcohol dependence and particularly in the neurobiology of alcohol craving. Aim of the present study was to investigate alterations of the adipocytokines adiponectin and resistin in alcohol-dependent patients. We analyzed a sample of 88 patients at admission for alcohol detoxification and after 1 week of withdrawal treatment in comparison to 89 healthy controls. Adiponectin and resistin serum levels were measured using commercial ELISA kits. The extent of alcohol craving was obtained using the Obsessive Compulsive Drinking Scale (OCDS). Adiponectin and resistin serum levels were significantly elevated in patients with alcohol dependence at both dates (admission and after 1 week of treatment) compared to healthy controls. Adiponectin decreased significantly during the course of withdrawal (T=3.44, p=0.001) while resistin serum levels showed a slight increase (T=-1.83, p=0.071). In a multivariate approach the extent of alcohol craving was significantly associated with adiponectin but not with resistin serum levels in male patients (Beta=-0.255, p=0.025). Results for female patients were not significant. Our findings provide first evidence for an alteration of the adipocytokines adiponectin and resistin during alcohol withdrawal. Furthermore, adiponectin may be involved in the neurobiology of alcohol craving, possibly via its effects on the hypothalamic circuits.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|