1
|
Götz C, Montenarh M. Protein kinase CK2 contributes to glucose homeostasis. Biol Chem 2025:hsz-2024-0158. [PMID: 39910713 DOI: 10.1515/hsz-2024-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
In the early days of CK2 research, it was already published that the affinity of CK2 for its substrate casein was affected by insulin. Subsequent to the discovery of inhibitors of CK2 kinase activity, it was shown that CK2 has an influence on hormones that regulate glucose homeostasis and on enzymes that influence glucose metabolism in pancreatic islet cells as well as in hormone-sensitive target cells. This regulation includes the influence on transcription factors and thereby, gene expression, as well as direct modulation of the catalytic activity. The used CK2 inhibitors, especially the older ones, show a broad range of specificity, selectivity and off-target effects. Recently applied methods to down-regulate the expression of individual CK2 subunits using siRNA or CRISPR/Cas9 technology have contributed to the improvement of specificity. It was shown that inhibition of CK2 kinase activity or knock-down or knock-out of CK2α leads to an elevated synthesis and secretion of insulin in pancreatic β-cells and a down-regulation of the synthesis and secretion of glucagon from pancreatic α-cells. In the present review CK2-dependent molecular mechanisms will be addressed which contribute to the maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, D-66421 Homburg, Germany
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, D-66421 Homburg, Germany
| |
Collapse
|
2
|
Ruiz-Otero N, Tessem JS, Banerjee RR. Pancreatic islet adaptation in pregnancy and postpartum. Trends Endocrinol Metab 2024; 35:834-847. [PMID: 38697900 DOI: 10.1016/j.tem.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Pancreatic islets, particularly insulin-producing β-cells, are central regulators of glucose homeostasis capable of responding to a variety of metabolic stressors. Pregnancy is a unique physiological stressor, necessitating the islets to adapt to the complex interplay of maternal and fetal-placental factors influencing the metabolic milieu. In this review we highlight studies defining gestational adaptation mechanisms within maternal islets and emerging studies revealing islet adaptations during the early postpartum and lactation periods. These include adaptations in both β and in 'non-β' islet cells. We also discuss insights into how gestational and postpartum adaptation may inform pregnancy-specific and general mechanisms of islet responses to metabolic stress and contribute to investigation of gestational diabetes.
Collapse
Affiliation(s)
- Nelmari Ruiz-Otero
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84601, USA
| | - Ronadip R Banerjee
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
3
|
Löhn M, Wirth KJ. Potential pathophysiological role of the ion channel TRPM3 in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the therapeutic effect of low-dose naltrexone. J Transl Med 2024; 22:630. [PMID: 38970055 PMCID: PMC11227206 DOI: 10.1186/s12967-024-05412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease with a broad overlap of symptomatology with Post-COVID Syndrome (PCS). Despite the severity of symptoms and various neurological, cardiovascular, microvascular, and skeletal muscular findings, no biomarkers have been identified. The Transient receptor potential melastatin 3 (TRPM3) channel, involved in pain transduction, thermosensation, transmitter and neuropeptide release, mechanoregulation, vasorelaxation, and immune defense, shows altered function in ME/CFS. Dysfunction of TRPM3 in natural killer (NK) cells, characterized by reduced calcium flux, has been observed in ME/CFS and PCS patients, suggesting a role in ineffective pathogen clearance and potential virus persistence and autoimmunity development. TRPM3 dysfunction in NK cells can be improved by naltrexone in vitro and ex vivo, which may explain the moderate clinical efficacy of low-dose naltrexone (LDN) treatment. We propose that TRPM3 dysfunction may have a broader involvement in ME/CFS pathophysiology, affecting other organs. This paper discusses TRPM3's expression in various organs and its potential impact on ME/CFS symptoms, with a focus on small nerve fibers and the brain, where TRPM3 is involved in presynaptic GABA release.
Collapse
Affiliation(s)
- Matthias Löhn
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany.
| | - Klaus Josef Wirth
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany.
- Mitodicure GmbH, D-65830, Kriftel, Germany.
| |
Collapse
|
4
|
Roelens R, Peigneur ANF, Voets T, Vriens J. Neurodevelopmental disorders caused by variants in TRPM3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119709. [PMID: 38522727 DOI: 10.1016/j.bbamcr.2024.119709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Developmental and epileptic encephalopathies (DEE) are a broad and varied group of disorders that affect the brain and are characterized by epilepsy and comorbid intellectual disability (ID). These conditions have a broad spectrum of symptoms and can be caused by various underlying factors, including genetic mutations, infections, and other medical conditions. The exact cause of DEE remains largely unknown in the majority of cases. However, in around 25 % of patients, rare nonsynonymous coding variants in genes encoding ion channels, cell-surface receptors, and other neuronally expressed proteins are identified. This review focuses on a subgroup of DEE patients carrying variations in the gene encoding the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel, where recent data indicate that gain-of-function of TRPM3 channel activity underlies a spectrum of dominant neurodevelopmental disorders.
Collapse
Affiliation(s)
- Robbe Roelens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Ana Nogueira Freitas Peigneur
- Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Sasso EM, Muraki K, Eaton-Fitch N, Smith P, Jeremijenko A, Griffin P, Marshall-Gradisnik S. Investigation into the restoration of TRPM3 ion channel activity in post-COVID-19 condition: a potential pharmacotherapeutic target. Front Immunol 2024; 15:1264702. [PMID: 38765011 PMCID: PMC11099221 DOI: 10.3389/fimmu.2024.1264702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/09/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Recently, we reported that post COVID-19 condition patients also have Transient Receptor Potential Melastatin 3 (TRPM3) ion channel dysfunction, a potential biomarker reported in natural killer (NK) cells from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients. As there is no universal treatment for post COVID-19 condition, knowledge of ME/CFS may provide advances to investigate therapeutic targets. Naltrexone hydrochloride (NTX) has been demonstrated to be beneficial as a pharmacological intervention for ME/CFS patients and experimental investigations have shown NTX restored TRPM3 function in NK cells. This research aimed to: i) validate impaired TRPM3 ion channel function in post COVID-19 condition patients compared with ME/CFS; and ii) investigate NTX effects on TRPM3 ion channel activity in post COVID-19 condition patients. Methods Whole-cell patch-clamp was performed to characterize TRPM3 ion channel activity in freshly isolated NK cells of post COVID-19 condition (N = 9; 40.56 ± 11.26 years), ME/CFS (N = 9; 39.33 ± 9.80 years) and healthy controls (HC) (N = 9; 45.22 ± 9.67 years). NTX effects were assessed on post COVID-19 condition (N = 9; 40.56 ± 11.26 years) and HC (N = 7; 45.43 ± 10.50 years) where NK cells were incubated for 24 hours in two protocols: treated with 200 µM NTX, or non-treated; TRPM3 channel function was assessed with patch-clamp protocol. Results This investigation confirmed impaired TRPM3 ion channel function in NK cells from post COVID-19 condition and ME/CFS patients. Importantly, PregS-induced TRPM3 currents were significantly restored in NTX-treated NK cells from post COVID-19 condition compared with HC. Furthermore, the sensitivity of NK cells to ononetin was not significantly different between post COVID-19 condition and HC after treatment with NTX. Discussion Our findings provide further evidence identifying similarities of TRPM3 ion channel dysfunction between ME/CFS and post COVID-19 condition patients. This study also reports, for the first time, TRPM3 ion channel activity was restored in NK cells isolated from post COVID-19 condition patients after in vitro treatment with NTX. The TRPM3 restoration consequently may re-establish TRPM3-dependent calcium (Ca2+) influx. This investigation proposes NTX as a potential therapeutic intervention and TRPM3 as a treatment biomarker for post COVID-19 condition.
Collapse
Affiliation(s)
- Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Andrew Jeremijenko
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Paul Griffin
- Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Kang RB, Lee J, Varela M, Li Y, Rosselot C, Zhang T, Karakose E, Stewart AF, Scott DK, Garcia-Ocana A, Lu G. Human Pancreatic α-Cell Heterogeneity and Trajectory Inference Analysis Using Integrated Single Cell- and Single Nucleus-RNA Sequencing Platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567715. [PMID: 38014078 PMCID: PMC10680843 DOI: 10.1101/2023.11.19.567715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Prior studies have shown that pancreatic α-cells can transdifferentiate into β-cells, and that β-cells de-differentiate and are prone to acquire an α-cell phenotype in type 2 diabetes (T2D). However, the specific human α-cell and β-cell subtypes that are involved in α-to-β-cell and β-to-α-cell transitions are unknown. Here, we have integrated single cell RNA sequencing (scRNA-seq) and single nucleus RNA-seq (snRNA-seq) of isolated human islets and human islet grafts and provide additional insight into α-β cell fate switching. Using this approach, we make seven novel observations. 1) There are five different GCG -expressing human α-cell subclusters [α1, α2, α-β-transition 1 (AB-Tr1), α-β-transition 2 (AB-Tr2), and α-β (AB) cluster] with different transcriptome profiles in human islets from non-diabetic donors. 2) The AB subcluster displays multihormonal gene expression, inferred mostly from snRNA-seq data suggesting identification by pre-mRNA expression. 3) The α1, α2, AB-Tr1, and AB-Tr2 subclusters are enriched in genes specific for α-cell function while AB cells are enriched in genes related to pancreatic progenitor and β-cell pathways; 4) Trajectory inference analysis of extracted α- and β-cell clusters and RNA velocity/PAGA analysis suggests a bifurcate transition potential for AB towards both α- and β-cells. 5) Gene commonality analysis identifies ZNF385D, TRPM3, CASR, MEG3 and HDAC9 as signature for trajectories moving towards β-cells and SMOC1, PLCE1, PAPPA2, ZNF331, ALDH1A1, SLC30A8, BTG2, TM4SF4, NR4A1 and PSCK2 as signature for trajectories moving towards α-cells. 6) Remarkably, in contrast to the events in vitro , the AB subcluster is not identified in vivo in human islet grafts and trajectory inference analysis suggests only unidirectional transition from α-to-β-cells in vivo . 7) Analysis of scRNA-seq datasets from adult human T2D donor islets reveals a clear unidirectional transition from β-to-α-cells compatible with dedifferentiation or conversion into α-cells. Collectively, these studies show that snRNA-seq and scRNA-seq can be leveraged to identify transitions in the transcriptional status among human islet endocrine cell subpopulations in vitro , in vivo , in non-diabetes and in T2D. They reveal the potential gene signatures for common trajectories involved in interconversion between α- and β-cells and highlight the utility and power of studying single nuclear transcriptomes of human islets in vivo . Most importantly, they illustrate the importance of studying human islets in their natural in vivo setting.
Collapse
|
7
|
Zhao C, MacKinnon R. Structural and functional analyses of a GPCR-inhibited ion channel TRPM3. Neuron 2023; 111:81-91.e7. [PMID: 36283409 DOI: 10.1016/j.neuron.2022.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
G-protein coupled receptors (GPCRs) govern the physiological response to stimuli by modulating the activity of downstream effectors, including ion channels. TRPM3 is an ion channel inhibited by GPCRs through direct interaction with G protein (Gβγ) released upon their activation. This GPCR-TRPM3 signaling pathway contributes to the analgesic effect of morphine. Here, we characterized Gβγ inhibition of TRPM3 using electrophysiology and single particle cryo-electron microscopy (cryo-EM). From electrophysiology, we obtained a half inhibition constant (IC50) of ∼240 nM. Using cryo-EM, we determined structures of mouse TRPM3 expressed in human cells with and without Gβγ and with and without PIP2, a lipid required for TRPM3 activity, at resolutions of 2.7-4.7 Å. Gβγ-TRPM3 interfaces vary depending on PIP2 occupancy; however, in all cases, Gβγ appears loosely attached to TRPM3. The IC50 in electrophysiology experiments raises the possibility that additional unknown factors may stabilize the TRPM3-Gβγ complex.
Collapse
Affiliation(s)
- Chen Zhao
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, the Rockefeller University, New York, NY 10065, United States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, the Rockefeller University, New York, NY 10065, United States.
| |
Collapse
|
8
|
Glucose Homeostasis and Pancreatic Islet Size Are Regulated by the Transcription Factors Elk-1 and Egr-1 and the Protein Phosphatase Calcineurin. Int J Mol Sci 2023; 24:ijms24010815. [PMID: 36614256 PMCID: PMC9821712 DOI: 10.3390/ijms24010815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatic β-cells synthesize and secrete insulin. A key feature of diabetes mellitus is the loss of these cells. A decrease in the number of β-cells results in decreased biosynthesis of insulin. Increasing the number of β-cells should restore adequate insulin biosynthesis leading to adequate insulin secretion. Therefore, identifying proteins that regulate the number of β-cells is a high priority in diabetes research. In this review article, we summerize the results of three sophisticated transgenic mouse models showing that the transcription factors Elk-1 and Egr-1 and the Ca2+/calmodulin-regulated protein phosphatase calcineurin control the formation of sufficiently large pancreatic islets. Impairment of the biological activity of Egr-1 and Elk-1 in pancreatic β-cells leads to glucose intolerance and dysregulation of glucose homeostasis, the process that maintains glucose concentration in the blood within a narrow range. Transgenic mice expressing an activated calcineurin mutant also had smaller islets and showed hyperglycemia. Calcineurin induces dephosphorylation of Elk-1 which subsequently impairs Egr-1 biosynthesis and the biological functions of Elk-1 and Egr-1 to regulate islet size and glucose homeostasis.
Collapse
|
9
|
Shan Y, Cole SA, Haack K, Melton PE, Best LG, Bizon C, Kobes S, Köroğlu Ç, Baier LJ, Hanson RL, Sanna S, Li Y, Franceschini N. Association of protein function-altering variants with cardiometabolic traits: the strong heart study. Sci Rep 2022; 12:9317. [PMID: 35665752 PMCID: PMC9167281 DOI: 10.1038/s41598-022-12866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
Clinical and biomarker phenotypic associations for carriers of protein function-altering variants may help to elucidate gene function and health effects in populations. We genotyped 1127 Strong Heart Family Study participants for protein function-altering single nucleotide variants (SNV) and indels selected from a low coverage whole exome sequencing of American Indians. We tested the association of each SNV/indel with 35 cardiometabolic traits. Among 1206 variants (average minor allele count = 20, range of 1 to 1064), ~ 43% were not present in publicly available repositories. We identified seven SNV-trait significant associations including a missense SNV at ABCA10 (rs779392624, p = 8 × 10-9) associated with fasting triglycerides, which gene product is involved in macrophage lipid homeostasis. Among non-diabetic individuals, missense SNVs at four genes were associated with fasting insulin adjusted for BMI (PHIL, chr6:79,650,711, p = 2.1 × 10-6; TRPM3, rs760461668, p = 5 × 10-8; SPTY2D1, rs756851199, p = 1.6 × 10-8; and TSPO, rs566547284, p = 2.4 × 10-6). PHIL encoded protein is involved in pancreatic β-cell proliferation and survival, and TRPM3 protein mediates calcium signaling in pancreatic β-cells in response to glucose. A genetic risk score combining increasing insulin risk alleles of these four genes was associated with 53% (95% confidence interval 1.09, 2.15) increased odds of incident diabetes and 83% (95% confidence interval 1.35, 2.48) increased odds of impaired fasting glucose at follow-up. Our study uncovered novel gene-trait associations through the study of protein-coding variants and demonstrates the advantages of association screenings targeting diverse and high-risk populations to study variants absent in publicly available repositories.
Collapse
Affiliation(s)
- Yue Shan
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Phillip E Melton
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University and Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
- Menzies Medical Research Institute, University of Tasmania, Hobart, TAS, Australia
| | - Lyle G Best
- Missouri Breaks Industries Research Inc, Eagle Butte, SD, USA
| | - Christopher Bizon
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, NIDDK, NIH, Bethesda, USA
| | - Çiğdem Köroğlu
- Phoenix Epidemiology and Clinical Research Branch, NIDDK, NIH, Bethesda, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, NIDDK, NIH, Bethesda, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, NIDDK, NIH, Bethesda, USA
| | - Serena Sanna
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Istituto Di Ricerca Genetica E Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Monserrato, Italy
| | - Yun Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Departments of Genetics and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Zhang X, Chen F, Qian C, Lu B. TRPM3 antagonist Ononetin exerts anti-cancer effects on non-small cell lung cancer (NSCLC) by suppressing TGF-β signaling. Biochem Biophys Res Commun 2022. [DOI: 10.1016/j.bbrc.2022.04.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Fan HM, Mitchell AL, Bellafante E, McIlvride S, Primicheru LI, Giorgi M, Eberini I, Syngelaki A, Lövgren-Sandblom A, Jones P, McCance D, Sukumar N, Periyathambi N, Weldeselassie Y, Hunt KF, Nicolaides KH, Andersson D, Bevan S, Seed PT, Bewick GA, Bowe JE, Fraternali F, Saravanan P, Marschall HU, Williamson C. Sulfated Progesterone Metabolites That Enhance Insulin Secretion via TRPM3 Are Reduced in Serum From Women With Gestational Diabetes Mellitus. Diabetes 2022; 71:837-852. [PMID: 35073578 PMCID: PMC8965673 DOI: 10.2337/db21-0702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 12/02/2022]
Abstract
Serum progesterone sulfates were evaluated in the etiology of gestational diabetes mellitus (GDM). Serum progesterone sulfates were measured using ultra-performance liquid chromatography-tandem mass spectrometry in four patient cohorts: 1) the Hyperglycemia and Adverse Pregnancy Outcomes study; 2) London-based women of mixed ancestry and 3) U.K.-based women of European ancestry with or without GDM; and 4) 11-13 weeks pregnant women with BMI ≤25 or BMI ≥35 kg/m2 with subsequent uncomplicated pregnancies or GDM. Glucose-stimulated insulin secretion (GSIS) was evaluated in response to progesterone sulfates in mouse islets and human islets. Calcium fluorescence was measured in HEK293 cells expressing transient receptor potential cation channel subfamily M member 3 (TRPM3). Computer modeling using Molecular Operating Environment generated three-dimensional structures of TRPM3. Epiallopregnanolone sulfate (PM5S) concentrations were reduced in GDM (P < 0.05), in women with higher fasting plasma glucose (P < 0.010), and in early pregnancy samples from women who subsequently developed GDM with BMI ≥35 kg/m2 (P < 0.05). In islets, 50 µmol/L PM5S increased GSIS by at least twofold (P < 0.001); isosakuranetin (TRPM3 inhibitor) abolished this effect. PM5S increased calcium influx in TRPM3-expressing HEK293 cells. Computer modeling and docking showed identical positioning of PM5S to the natural ligand in TRPM3. PM5S increases GSIS and is reduced in GDM serum. The activation of GSIS by PM5S is mediated by TRPM3 in both mouse and human islets.
Collapse
Affiliation(s)
- Hei Man Fan
- School of Life Course Sciences, King’s College London, London, U.K
| | | | - Elena Bellafante
- School of Life Course Sciences, King’s College London, London, U.K
| | - Saraid McIlvride
- School of Life Course Sciences, King’s College London, London, U.K
| | - Laura I. Primicheru
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, U.K
| | - Mirko Giorgi
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, U.K
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milan La Statale, Milan, Italy
| | - Argyro Syngelaki
- School of Life Course Sciences, King’s College London, London, U.K
| | | | - Peter Jones
- School of Life Course Sciences, King’s College London, London, U.K
| | - David McCance
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, U.K
| | - Nithya Sukumar
- Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, U.K
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Nishanthi Periyathambi
- Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, U.K
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Yonas Weldeselassie
- Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, U.K
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, U.K
| | | | | | - David Andersson
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, U.K
| | - Stuart Bevan
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, U.K
| | - Paul T. Seed
- School of Life Course Sciences, King’s College London, London, U.K
| | - Gavin A. Bewick
- School of Life Course Sciences, King’s College London, London, U.K
| | - James E. Bowe
- School of Life Course Sciences, King’s College London, London, U.K
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, U.K
| | - Ponnusamy Saravanan
- Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, U.K
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Catherine Williamson
- School of Life Course Sciences, King’s College London, London, U.K
- Corresponding author: Catherine Williamson,
| |
Collapse
|
12
|
Matos GM, Andersson B, Islam MS. Expression of Transient Receptor Potential Channel Genes and Their Isoforms in Alpha-Cells and Beta-Cells of Human Islets of Langerhans. J Diabetes Res 2022; 2022:3975147. [PMID: 35967128 PMCID: PMC9365613 DOI: 10.1155/2022/3975147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Expression of the transient receptor potential (TRP) channel genes and their isoforms in the alpha-cells and the beta-cells of the human islets of Langerhans has not been studied in detail. In this study, we have analyzed the RNA sequencing data obtained from purified human alpha-cells and beta-cells to identify the genes and their isoforms that are expressed differentially in these two cell types. We found that TRPC1, TRPC4, TRPC7, TRPM3, and TRPML1 were differentially expressed in these two cell types. TRPC1, TRPM3, and TRPML1 were expressed at a higher level in the beta-cells than in the alpha-cells. TRPC4 and TRPC7 were expressed at a higher level in the alpha-cells than in the beta-cells. The TRPC4-206 isoform was expressed at a 45-fold higher level in the alpha-cells compared to the beta-cells. Expression of TRPM3-202 was 200-fold and TRPM3-209 was 25-fold higher in the beta-cells than in the alpha-cells. Our study has demonstrated the relative abundance of expression of the TRP channel genes and their isoforms in the human alpha-cells and the beta-cells.
Collapse
Affiliation(s)
- Gabriel M. Matos
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Md. Shahidul Islam
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Department of Emergency Care and Internal Medicine, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
13
|
Thiel G, Backes TM, Guethlein LA, Rössler OG. Critical Protein-Protein Interactions Determine the Biological Activity of Elk-1, a Master Regulator of Stimulus-Induced Gene Transcription. Molecules 2021; 26:molecules26206125. [PMID: 34684708 PMCID: PMC8541449 DOI: 10.3390/molecules26206125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Elk-1 is a transcription factor that binds together with a dimer of the serum response factor (SRF) to the serum-response element (SRE), a genetic element that connects cellular stimulation with gene transcription. Elk-1 plays an important role in the regulation of cellular proliferation and apoptosis, thymocyte development, glucose homeostasis and brain function. The biological function of Elk-1 relies essentially on the interaction with other proteins. Elk-1 binds to SRF and generates a functional ternary complex that is required to activate SRE-mediated gene transcription. Elk-1 is kept in an inactive state under basal conditions via binding of a SUMO-histone deacetylase complex. Phosphorylation by extracellular signal-regulated protein kinase, c-Jun N-terminal protein kinase or p38 upregulates the transcriptional activity of Elk-1, mediated by binding to the mediator of RNA polymerase II transcription (Mediator) and the transcriptional coactivator p300. Strong and extended phosphorylation of Elk-1 attenuates Mediator and p300 recruitment and allows the binding of the mSin3A-histone deacetylase corepressor complex. The subsequent dephosphorylation of Elk-1, catalyzed by the protein phosphatase calcineurin, facilitates the re-SUMOylation of Elk-1, transforming Elk-1 back to a transcriptionally inactive state. Thus, numerous protein–protein interactions control the activation cycle of Elk-1 and are essential for its biological function.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany; (T.M.B.); (O.G.R.)
- Correspondence: ; Tel.: +49-6841-1626506; Fax: +49-6841-1626500
| | - Tobias M. Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany; (T.M.B.); (O.G.R.)
| | - Lisbeth A. Guethlein
- Department of Structural Biology and Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Oliver G. Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany; (T.M.B.); (O.G.R.)
| |
Collapse
|
14
|
Backes TM, Langfermann DS, Lesch A, Rössler OG, Laschke MW, Vinson C, Thiel G. Regulation and function of AP-1 in insulinoma cells and pancreatic β-cells. Biochem Pharmacol 2021; 193:114748. [PMID: 34461116 DOI: 10.1016/j.bcp.2021.114748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Cav1.2 L-type voltage-gated Ca2+ channels play a central role in pancreatic β-cells by integrating extracellular signals with intracellular signaling events leading to insulin secretion and altered gene transcription. Here, we investigated the intracellular signaling pathway following stimulation of Cav1.2 Ca2+ channels and addressed the function of the transcription factor activator protein-1 (AP-1) in pancreatic β-cells of transgenic mice. Stimulation of Cav1.2 Ca2+ channels activates AP-1 in insulinoma cells. Pharmacological and genetic experiments identified c-Jun N-terminal protein kinase as a signal transducer connecting Cav1.2 Ca2+ channel activation with gene transcription. Moreover, the basic region-leucine zipper proteins ATF2 and c-Jun or c-Jun-related proteins were involved in stimulus-transcription coupling. We addressed the functions of AP-1 in pancreatic β-cells analyzing a newly generated transgenic mouse model. These transgenic mice expressed A-Fos, a mutant of c-Fos that attenuates DNA binding of c-Fos dimerization partners. In insulinoma cells, A-Fos completely blocked AP-1 activation following stimulation of Cav1.2 Ca2+ channels. The analysis of transgenic A-Fos-expressing mice revealed that the animals displayed impaired glucose tolerance. Thus, we show here for the first time that AP-1 controls an important function of pancreatic β-cells in vivo, the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Tobias M Backes
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Daniel S Langfermann
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Andrea Lesch
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Matthias W Laschke
- Saarland University Medical Faculty, Institute for Clinical and Experimental Surgery, D-66421 Homburg, Germany
| | | | - Gerald Thiel
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany.
| |
Collapse
|
15
|
Abstract
Already for centuries, humankind is driven to understand the physiological and pathological mechanisms that occur in our brains. Today, we know that ion channels play an essential role in the regulation of neural processes and control many functions of the central nervous system. Ion channels present a diverse group of membrane-spanning proteins that allow ions to penetrate the insulating cell membrane upon opening of their channel pores. This regulated ion permeation results in different electrical and chemical signals that are necessary to maintain physiological excitatory and inhibitory processes in the brain. Therefore, it is no surprise that disturbances in the functions of cerebral ion channels can result in a plethora of neurological disorders, which present a tremendous health care burden for our current society. The identification of ion channel-related brain disorders also fuel the research into the roles of ion channel proteins in various brain states. In the last decade, mounting evidence has been collected that indicates a pivotal role for transient receptor potential (TRP) ion channels in the development and various physiological functions of the central nervous system. For instance, TRP channels modulate neurite growth, synaptic plasticity and integration, and are required for neuronal survival. Moreover, TRP channels are involved in numerous neurological disorders. TRPM3 belongs to the melastatin subfamily of TRP channels and represents a non-selective cation channel that can be activated by several different stimuli, including the neurosteroid pregnenolone sulfate, osmotic pressures and heat. The channel is best known as a peripheral nociceptive ion channel that participates in heat sensation. However, recent research identifies TRPM3 as an emerging new player in the brain. In this review, we summarize the available data regarding the roles of TRPM3 in the brain, and correlate these data with the neuropathological processes in which this ion channel may be involved.
Collapse
Affiliation(s)
- Katharina Held
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine and VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Balázs István Tóth
- Laboratory of Cellular and Molecular Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Loviscach L, Backes TM, Langfermann DS, Ulrich M, Thiel G. Zn 2+ ions inhibit gene transcription following stimulation of the Ca 2+ channels Ca v1.2 and TRPM3. Metallomics 2020; 12:1735-1747. [PMID: 33030499 DOI: 10.1039/d0mt00180e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zinc, a trace element, is necessary for the correct structure and function of many proteins. Therefore, Zn2+ has to be taken up by the cells, using specific Zn2+ transporters or Ca2+ channels. In this study, we have focused on two Ca2+ channels, the L-type voltage-gated Cav1.2 channel and the transient receptor potential channel TRPM3. Stimulation of either channel induces an intracellular signaling cascade leading to the activation of the transcription factor AP-1. The influx of Ca2+ ions into the cytoplasm is essential for this activity. We asked whether extracellular Zn2+ ions affect Cav1.2 or TRPM3-induced gene transcription following stimulation of the channels. The results show that extracellular Zn2+ ions reduced the activation of AP-1 by more than 80% following stimulation of either voltage-gated Cav1.2 channels or TRPM3 channels. Experiments performed with cells maintained in Ca2+-free medium revealed that Zn2+ ions cannot replace Ca2+ ions in inducing gene transcription via stimulation of Cav1.2 and TRPM3 channels. Re-addition of Ca2+ ions to the cell culture medium, however, restored the ability of these Ca2+ channels to induce a signaling cascade leading to the activation of AP-1. Secretory cells, including neurons and pancreatic β-cells, release Zn2+ ions during exocytosis. We propose that the released Zn2+ ions function as a negative feedback loop for stimulus-induced exocytosis by inhibiting Ca2+ channel signaling.
Collapse
Affiliation(s)
- Louisa Loviscach
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | | | | | | | | |
Collapse
|
17
|
Ramírez-Barrantes R, Carvajal-Zamorano K, Rodriguez B, Cordova C, Lozano C, Simon F, Díaz P, Muñoz P, Marchant I, Latorre R, Castillo K, Olivero P. TRPV1-Estradiol Stereospecific Relationship Underlies Cell Survival in Oxidative Cell Death. Front Physiol 2020; 11:444. [PMID: 32528302 PMCID: PMC7265966 DOI: 10.3389/fphys.2020.00444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
17β-estradiol is a neuronal survival factor against oxidative stress that triggers its protective effect even in the absence of classical estrogen receptors. The polymodal transient receptor potential vanilloid subtype 1 (TRPV1) channel has been proposed as a steroid receptor implied in tissue protection against oxidative damage. We show here that TRPV1 is sufficient condition for 17β-estradiol to enhance metabolic performance in injured cells. Specifically, in TRPV1 expressing cells, the application of 17β-estradiol within the first 3 h avoided H2O2-dependent mitochondrial depolarization and the activation of caspase 3/7 protecting against the irreversible damage triggered by H2O2. Furthermore, 17β-estradiol potentiates TRPV1 single channel activity associated with an increased open probability. This effect was not observed after the application of 17α-estradiol. We explored the TRPV1-Estrogen relationship also in primary culture of hippocampal-derived neurons and observed that 17β-estradiol cell protection against H2O2-induced damage was independent of estrogen receptors pathway activation, membrane started and stereospecific. These results support the role of TRPV1 as a 17β-estradiol-activated ionotropic membrane receptor coupling with mitochondrial function and cell survival.
Collapse
Affiliation(s)
- Ricardo Ramírez-Barrantes
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Tecnología Médica, Universidad Andrés Bello, Viña del Mar, Chile
| | - Karina Carvajal-Zamorano
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Belen Rodriguez
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Cordova
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlo Lozano
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Paula Díaz
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Muñoz
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Ivanny Marchant
- Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Olivero
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
18
|
Webster CM, Tworig J, Caval-Holme F, Morgans CW, Feller MB. The Impact of Steroid Activation of TRPM3 on Spontaneous Activity in the Developing Retina. eNeuro 2020; 7:ENEURO.0175-19.2020. [PMID: 32238415 PMCID: PMC7177749 DOI: 10.1523/eneuro.0175-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
In the central nervous system, melastatin transient receptor potential (TRPM) channels function as receptors for the neurosteroid pregnenolone sulfate (PregS). The expression and function of TRPM3 has been explored in adult retina, although its role during development is unknown. We found, during the second postnatal week in mice, TRPM3 immunofluorescence labeled distinct subsets of inner retinal neurons, including a subset of retinal ganglion cells (RGCs), similar to what has been reported in the adult. Labeling for a TRPM3 promoter-driven reporter confirmed expression of the TRPM3 gene in RGCs and revealed additional expression in nearly all Müller glial cells. Using two-photon calcium imaging, we show that PregS and the synthetic TRPM3 agonist CIM0216 (CIM) induced prolonged calcium transients in RGCs, which were mostly absent in TRPM3 knock-out (KO) mice. These prolonged calcium transients were not associated with strong membrane depolarizations but induced c-Fos expression. To elucidate the impact of PregS-activation of TRPM3 on retinal circuits we took two sets of physiological measurements. First, PregS induced a robust increase in the frequency but not amplitude of spontaneous postsynaptic currents (PSCs). This increase was absent in the TRPM3 KO mice. Second, PregS induced a small increase in cell participation and duration of retinal waves, but this modulation persisted in TRPM3 KO mice, indicating PregS was acting on wave generating circuits independent of TRPM3 channels. Though baseline frequency of retinal waves was slightly reduced in the TRPM3 KO mice, other properties of waves were indistinguishable from wildtype. Together, these results indicate that the presence of neurosteroids impact spontaneous synaptic activity and retinal waves during development via both TRPM3-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Corey M Webster
- Department of Molecular and Cell Biology, University of California. Berkeley, Berkeley, CA 94720-3200
| | - Joshua Tworig
- Department of Molecular and Cell Biology, University of California. Berkeley, Berkeley, CA 94720-3200
| | - Franklin Caval-Holme
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3200
| | - Catherine W Morgans
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California. Berkeley, Berkeley, CA 94720-3200
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3200
| |
Collapse
|
19
|
Li W, Yang FQ, Sun CM, Huang JH, Zhang HM, Li X, Wang GC, Zhang N, Che JP, Zhang WT, Yan Y, Yao XD, Peng B, Zheng JH, Liu M. circPRRC2A promotes angiogenesis and metastasis through epithelial-mesenchymal transition and upregulates TRPM3 in renal cell carcinoma. Am J Cancer Res 2020; 10:4395-4409. [PMID: 32292503 PMCID: PMC7150475 DOI: 10.7150/thno.43239] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Circular RNAs (circRNAs) have been identified as essential regulators in a plethora of cancers. Nonetheless, the mechanistic functions of circRNAs in Renal Cell Carcinoma (RCC) remain largely unknown. Methods: In this study, we aimed to identify novel circRNAs that regulate RCC epithelial-mesenchymal transition (EMT), and to subsequently determine their regulatory mechanisms and clinical significance. Results: circPRRC2A was identified by circRNA microarray and validated by qRT-PCR. The role of circPRRC2A in RCC metastasis was evaluated both in vitro and in vivo. We found that increased expression of circPRRC2A is positively associated with advanced clinical stage and worse survivorship in RCC patients. Mechanistically, our results indicate that circPRRC2A prevents the degradation of TRPM3, a tissue-specific oncogene, mRNA by sponging miR-514a-5p and miR-6776-5p. Moreover, circPRRC2A promotes tumor EMT and aggressiveness in patients with RCC. Conclusions: These findings infer the exciting possibility that circPRRC2A may be exploited as a therapeutic and prognostic target for RCC patients.
Collapse
|
20
|
Shiels A. TRPM3_miR-204: a complex locus for eye development and disease. Hum Genomics 2020; 14:7. [PMID: 32070426 PMCID: PMC7027284 DOI: 10.1186/s40246-020-00258-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
First discovered in a light-sensitive retinal mutant of Drosophila, the transient receptor potential (TRP) superfamily of non-selective cation channels serve as polymodal cellular sensors that participate in diverse physiological processes across the animal kingdom including the perception of light, temperature, pressure, and pain. TRPM3 belongs to the melastatin sub-family of TRP channels and has been shown to function as a spontaneous calcium channel, with permeability to other cations influenced by alternative splicing and/or non-canonical channel activity. Activators of TRPM3 channels include the neurosteroid pregnenolone sulfate, calmodulin, phosphoinositides, and heat, whereas inhibitors include certain drugs, plant-derived metabolites, and G-protein subunits. Activation of TRPM3 channels at the cell membrane elicits a signal transduction cascade of mitogen-activated kinases and stimulus response transcription factors. The mammalian TRPM3 gene hosts a non-coding microRNA gene specifying miR-204 that serves as both a tumor suppressor and a negative regulator of post-transcriptional gene expression during eye development in vertebrates. Ocular co-expression of TRPM3 and miR-204 is upregulated by the paired box 6 transcription factor (PAX6) and mutations in all three corresponding genes underlie inherited forms of eye disease in humans including early-onset cataract, retinal dystrophy, and coloboma. This review outlines the genomic and functional complexity of the TRPM3_miR-204 locus in mammalian eye development and disease.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., Box 8096, St. Louis, MO, 63110, USA.
| |
Collapse
|
21
|
Cabanas H, Muraki K, Balinas C, Eaton-Fitch N, Staines D, Marshall-Gradisnik S. Validation of impaired Transient Receptor Potential Melastatin 3 ion channel activity in natural killer cells from Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis patients. Mol Med 2019; 25:14. [PMID: 31014226 PMCID: PMC6480905 DOI: 10.1186/s10020-019-0083-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis (CFS/ME) is a complex multifactorial disorder of unknown cause having multi-system manifestations. Although the aetiology of CFS/ME remains elusive, immunological dysfunction and more particularly reduced cytotoxic activity in natural killer (NK) cells is the most consistent laboratory finding. The Transient Receptor Potential (TRP) superfamily of cation channels play a pivotal role in the pathophysiology of immune diseases and are therefore potential therapeutic targets. We have previously identified single nucleotide polymorphisms in TRP genes in peripheral NK cells from CFS/ME patients. We have also described biochemical pathway changes and calcium signaling perturbations in NK cells from CFS/ME patients. Notably, we have previously reported a decrease of TRP cation channel subfamily melastatin member 3 (TRPM3) function in NK cells isolated from CFS/ME patients compared with healthy controls after modulation with pregnenolone sulfate and ononetin using a patch-clamp technique. In the present study, we aim to confirm the previous results describing an impaired TRPM3 activity in a new cohort of CFS/ME patients using a whole cell patch-clamp technique after modulation with reversible TRPM3 agonists, pregnenolone sulfate and nifedipine, and an effective TRPM3 antagonist, ononetin. Indeed, no formal research has commented on using pregnenolone sulfate or nifedipine to treat CFS/ME patients while there is evidence that clinicians prescribe calcium channel blockers to improve different symptoms. Methods Whole-cell patch-clamp technique was used to measure TRPM3 activity in isolated NK cells from twelve age- and sex-matched healthy controls and CFS/ME patients, after activation with pregnenolone sulfate and nifedipine and inhibition with ononetin. Results We confirmed a significant reduction in amplitude of TRPM3 currents after pregnenolone sulfate stimulation in isolated NK cells from another cohort of CFS/ME patients compared with healthy controls. The pregnenolone sulfate-evoked ionic currents through TRPM3 channels were again significantly modulated by ononetin in isolated NK cells from healthy controls compared with CFS/ME patients. In addition, we used nifedipine, another reversible TRPM3 agonist to support the previous findings and found similar results confirming a significant loss of the TRPM3 channel activity in CFS/ME patients. Conclusions Impaired TRPM3 activity was validated in NK cells isolated from CFS/ME patients using different pharmacological tools and whole-cell patch-clamp technique as the gold standard for ion channel research. This investigation further helps to establish TRPM3 channels as a prognostic marker and/ or a potential therapeutic target for CFS/ME.
Collapse
Affiliation(s)
- H Cabanas
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia. .,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4222, Australia. .,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia.
| | - K Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Chikusa, Nagoya, Japan.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - C Balinas
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4222, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - N Eaton-Fitch
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4222, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - D Staines
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4222, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - S Marshall-Gradisnik
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4222, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
22
|
Cabanas H, Muraki K, Eaton N, Balinas C, Staines D, Marshall-Gradisnik S. Loss of Transient Receptor Potential Melastatin 3 ion channel function in natural killer cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients. Mol Med 2018; 24:44. [PMID: 30134818 PMCID: PMC6092868 DOI: 10.1186/s10020-018-0046-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023] Open
Abstract
Background Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME) is a debilitating disorder that is accompanied by reduced cytotoxic activity in natural killer (NK) cells. NK cells are an essential innate immune cell, responsible for recognising and inducing apoptosis of tumour and virus infected cells. Calcium is an essential component in mediating this cellular function. Transient Receptor Potential Melastatin 3 (TRPM3) cation channels have an important regulatory role in mediating calcium influx to help maintain cellular homeostasis. Several single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in patients with CFS/ME and have been proposed to correlate with illness presentation. Moreover, a significant reduction in both TRPM3 surface expression and intracellular calcium mobilisation in NK cells has been found in CFS/ME patients compared with healthy controls. Despite the functional importance of TRPM3, little is known about the ion channel function in NK cells and the epiphenomenon of CFS/ME. The objective of the present study was to characterise the TRPM3 ion channel function in NK cells from CFS/ME patients in comparison with healthy controls using whole cell patch-clamp techniques. Methods NK cells were isolated from 12 age- and sex-matched healthy controls and CFS patients. Whole cell electrophysiology recording has been used to assess TRPM3 ion channel activity after modulation with pregnenolone sulfate and ononetin. Results We report a significant reduction in amplitude of TRPM3 current after pregnenolone sulfate stimulation in isolated NK cells from CFS/ME patients compared with healthy controls. In addition, we found pregnenolone sulfate-evoked ionic currents through TRPM3 channels were significantly modulated by ononetin in isolated NK cells from healthy controls compared with CFS/ME patients. Conclusions TRPM3 activity is impaired in CFS/ME patients suggesting changes in intracellular Ca2+ concentration, which may impact NK cellular functions. This investigation further helps to understand the intracellular-mediated roles in NK cells and confirm the potential role of TRPM3 ion channels in the aetiology and pathomechanism of CFS/ME.
Collapse
Affiliation(s)
- Hélène Cabanas
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia. .,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Chikusa, Nagoya, Japan
| | - Natalie Eaton
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Cassandra Balinas
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Donald Staines
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
23
|
Thiel G, Rubil S, Lesch A, Guethlein LA, Rössler OG. Transient receptor potential TRPM3 channels: Pharmacology, signaling, and biological functions. Pharmacol Res 2017; 124:92-99. [DOI: 10.1016/j.phrs.2017.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022]
|
24
|
Thiel G, Lesch A, Rubil S, Backes TM, Rössler OG. Regulation of Gene Transcription Following Stimulation of Transient Receptor Potential (TRP) Channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:167-189. [PMID: 29305012 DOI: 10.1016/bs.ircmb.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transient receptor potential (TRP) channels belong to a heterogeneous superfamily of cation channels that are involved in the regulation of numerous biological functions, including regulation of Ca2+ and glucose homeostasis, tumorigenesis, temperature, and pain sensation. To understand the functions of TRP channels, their associated intracellular signaling pathways and molecular targets have to be identified on the cellular level. Stimulation of TRP channels frequently induces an influx of Ca2+ ions into the cells and the subsequent activation of protein kinases. These intracellular signal transduction pathways ultimately induce changes in the gene expression pattern of the cells. Here, we review the effects of TRPC6, TRPM3, and TRPV1 channel stimulation on the activation of the stimulus-responsive transcription factors AP-1, CREB, Egr-1, Elk-1, and NFAT. Following activation, these transcription factors induce the transcription of delayed response genes. We propose that many biological functions of TRP channels can be explained by the activation of stimulus-responsive transcription factors and their delayed response genes. The proteins encoded by those delayed response genes may be responsible for the biochemical and physiological changes following TRP channel activation.
Collapse
Affiliation(s)
- Gerald Thiel
- Saarland University Medical Faculty, Homburg, Germany.
| | - Andrea Lesch
- Saarland University Medical Faculty, Homburg, Germany
| | - Sandra Rubil
- Saarland University Medical Faculty, Homburg, Germany
| | | | | |
Collapse
|
25
|
Lesch A, Rössler OG, Thiel G. Extracellular Signal-Regulated Protein Kinase, c-Jun N-Terminal Protein Kinase, and Calcineurin Regulate Transient Receptor Potential M3 (TRPM3) Induced Activation of AP-1. J Cell Biochem 2017; 118:2409-2419. [PMID: 28112420 DOI: 10.1002/jcb.25904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/20/2017] [Indexed: 12/27/2022]
Abstract
Stimulation of transient receptor potential M3 (TRPM3) cation channels with pregnenolone sulfate induces an influx of Ca2+ ions into the cells and a rise in the intracellular Ca2+ concentration, leading to the activation of the activator protein-1 (AP-1) transcription factor. Here, we show that expression of a constitutively active mutant of the Ca2+ /calmodulin-dependent protein phosphatase calcineurin attenuated pregnenolone sulfate-induced AP-1 activation in TRPM3-expressing cells. Likewise, expression of the regulatory B subunit of calcineurin reduced AP-1 activity in the cells following stimulation of TRPM3 channels. MAP kinase phosphatase-1 has been shown to attenuate TRPM3-mediated AP-1 activation. Here, we show that pregnenolone sulfate-induced stimulation of TRPM3 triggers the phosphorylation and activation of the MAP kinase extracellular signal-regulated protein kinase (ERK1/2). Pharmacological and genetic experiments revealed that stimulation of ERK1/2 is essential for the activation of AP-1 in cells expressing stimulated TRPM3 channels. ERK1/2 is required for the activation of the transcription factor c-Jun, a key component of the AP-1 transcription factor, and regulates c-Fos promoter activity. In addition, we identified c-Jun N-terminal protein kinase (JNK1/2) as a second signal transducer of activated TRPM3 channels. Together, the data show that calcineurin and the protein kinases ERK1/2 and JNK1/2 are important regulators within the signaling cascade connecting TRPM3 channel stimulation with increased AP-1-regulated transcription. J. Cell. Biochem. 118: 2409-2419, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrea Lesch
- Saarland University, Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Saarland University, Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Gerald Thiel
- Saarland University, Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| |
Collapse
|
26
|
Vaňková M, Hill M, Velíková M, Včelák J, Vacínová G, Dvořáková K, Lukášová P, Vejražková D, Rusina R, Holmerová I, Jarolímová E, Vaňková H, Kancheva R, Bendlová B, Stárka L. Preliminary evidence of altered steroidogenesis in women with Alzheimer's disease: Have the patients "OLDER" adrenal zona reticularis? J Steroid Biochem Mol Biol 2016; 158:157-177. [PMID: 26704533 DOI: 10.1016/j.jsbmb.2015.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) represents more than half of total dementias. Various factors including altered steroid biosynthesis may participate in its pathophysiology. We investigated how the circulating steroids (measured by GC-MS and RIA) may be altered in the presence of AD. Sixteen women with AD and 22 age- and BMI-corresponding controls aged over 65 years were enrolled in the study. The steroid levels (47 steroids and steroid polar conjugates) and their ratios in AD female patients indicated increased CYP11A1 activity, weakened activity of the CYP17A1C17,20 lyase metabolic step and attenuated sulfotransferase SULT2A1 activity at higher activity of the CYP17A1 17-hydroxylase step. The patients showed diminished HSD3B2 activity for C21 steroids, abated conversion of 17-hydroxyprogesterone to cortisol, and significantly elevated cortisol. The women with AD had also attenuated steroid 7α-hydroxylation forming immunoprotective Δ(5)-C19 steroids, attenuated aromatase activity forming estradiol that induces autoimmunity and a shift from the 3β-hydroxy-5α/β-reduced C19 steroids to their neuroinhibitory and antiinflammatory GABAergic 3α-hydroxy- counterparts and showed higher levels of the 3α-hydroxy-5α/β-reduced C21 steroids and pregnenolone sulfate (improves cognitive abilities but may be both protective and excitotoxic). Our preliminary data indicated functioning of alternative "backdoor" pathway in women with AD showing higher levels of both 5α/β-reduced C21 steroids but reduced levels of both 5α/β-reduced C21 steroids, which implied that the alternative "backdoor" pathway might include both 5α- and 5β-reduced steroids. Our study suggested relationships between AD status in women based on the age of subjects and levels of 10 steroids measured by GC-MS.
Collapse
Affiliation(s)
- Markéta Vaňková
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Marta Velíková
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Josef Včelák
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Gabriela Vacínová
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | | | - Petra Lukášová
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | | | - Robert Rusina
- Department of Neurology, Thomayer's Hospital, Vídeňská 800, Prague 140 59, Czech Republic.
| | - Iva Holmerová
- Faculty of Humanities, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic.
| | - Eva Jarolímová
- Faculty of Humanities, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic.
| | - Hana Vaňková
- Faculty of Humanities, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic; Third Faculty of Medicine, Charles University in Prague, Ovocný trh 5, Prague 110 00, Czech Republic.
| | - Radmila Kancheva
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Běla Bendlová
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| | - Luboslav Stárka
- Institute of Endocrinology, Národní 8, Prague 116 94, Czech Republic.
| |
Collapse
|
27
|
Badheka D, Borbiro I, Rohacs T. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel. ACTA ACUST UNITED AC 2016; 146:65-77. [PMID: 26123195 PMCID: PMC4485020 DOI: 10.1085/jgp.201411336] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PI(4,5)P2 is required for TRPM3 activity, establishing its role as a crucial cofactor for the entire TRPM channel family. Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5′-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily.
Collapse
Affiliation(s)
- Doreen Badheka
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Istvan Borbiro
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Tibor Rohacs
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
28
|
Calcium Entry Through Thermosensory Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:265-304. [PMID: 27161233 DOI: 10.1007/978-3-319-26974-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ThermoTRPs are unique channels that mediate Na(+) and Ca(2+) currents in response to changes in ambient temperature. In combination with their activation by other physical and chemical stimuli, they are considered key integrators of environmental cues into neuronal excitability. Furthermore, roles of thermoTRPs in non-neuronal tissues are currently emerging such as insulin secretion in pancreatic β-cells, and links to cancer. Calcium permeability through thermoTRPs appears a central hallmark for their physiological and pathological activities. Moreover, it is currently being proposed that beyond working as a second messenger, Ca(2+) can function locally by acting on protein complexes near the membrane. Interestingly, thermoTRPs can enhance and expand the inherent plasticity of signalplexes by conferring them temperature, pH and lipid regulation through Ca(2+) signalling. Thus, unveiling the local role of Ca(2+) fluxes induced by thermoTRPs on the dynamics of membrane-attached signalling complexes as well as their significance in cellular processes, are central issues that will expand the opportunities for therapeutic intervention in disorders involving dysfunction of thermoTRP channels.
Collapse
|
29
|
Rubil S, Rössler OG, Thiel G. CREB, AP-1, ternary complex factors and MAP kinases connect transient receptor potential melastatin-3 (TRPM3) channel stimulation with increased c-Fos expression. Br J Pharmacol 2015; 173:305-18. [PMID: 26493679 DOI: 10.1111/bph.13372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The rise in intracellular Ca(2+) stimulates the expression of the transcription factor c-Fos. Depending on the mode of entry of Ca(2+) into the cytosol, distinct signal transducers and transcription factors are required. Here, we have analysed the signalling pathway connecting a Ca(2+) influx via activation of transient receptor potential melastatin-3 (TRPM3) channels with enhanced c-Fos expression. EXPERIMENTAL APPROACH Transcription of c-Fos promoter/reporter genes that were integrated into the chromatin via lentiviral gene transfer was analysed in HEK293 cells overexpressing TRPM3. The transcriptional activation potential of c-Fos was measured using a GAL4-c-Fos fusion protein. KEY RESULTS The signalling pathway connecting TRPM3 stimulation with enhanced c-Fos expression requires the activation of MAP kinases. On the transcriptional level, three Ca(2+) -responsive elements, the cAMP-response element and the binding sites for the serum response factor (SRF) and AP-1, are essential for the TRPM3-mediated stimulation of the c-Fos promoter. Ternary complex factors are additionally involved in connecting TRPM3 stimulation with the up-regulation of c-Fos expression. Stimulation of TRPM3 channels also increases the transcriptional activation potential of c-Fos. CONCLUSIONS AND IMPLICATIONS Signalling molecules involved in connecting TRPM3 with the c-Fos gene are MAP kinases and the transcription factors CREB, SRF, AP-1 and ternary complex factors. As c-Fos constitutes, together with other basic region leucine zipper transcription factors, the AP-1 transcription factor complex, the results of this study explain TRPM3-induced activation of AP-1 and connects TRPM3 with the biological functions regulated by AP-1.
Collapse
Affiliation(s)
- Sandra Rubil
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
30
|
Marshall-Gradisnik SM, Smith P, Brenu EW, Nilius B, Ramos SB, Staines DR. Examination of Single Nucleotide Polymorphisms (SNPs) in Transient Receptor Potential (TRP) Ion Channels in Chronic Fatigue Syndrome Patients. ACTA ACUST UNITED AC 2015. [DOI: 10.4137/iii.s25147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background The transient receptor potential (TRP) superfamily in humans comprises 27 cation channels with permeability to monovalent and divalent cations. These channels are widely expressed within humans on cells and tissues and have significant sensory and regulatory roles on most physiological functions. Chronic fatigue syndrome (CFS) is an unexplained disorder with multiple physiological impairments. OBJECTIVES The purpose of this study was to determine the role of TRPs in CFS. Methods The study comprised 115 CFS patients (age = 48.68 ± 1.06 years) and 90 nonfatigued controls (age = 46.48 ± 1.22 years). CFS patients were defined according to the 1994 Center for Disease Prevention and Control criteria for CFS. A total of 240 single nucleotide polymorphisms (SNPs) for 21 mammalian TRP ion channel genes ( TRPA1, TRPC1, TRPC2, TRPC3, TRPC4, TRPC6, TRPC7, TRPM1, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6) were examined via the Agena Biosciences iPLEX Gold assay. Statistical analysis was performed using the PLINK analysis software. Results Thirteen SNPs were significantly associated with CFS patients compared with the controls. Nine of these SNPs were associated with TRPM3 (rs12682832; P < 0.003, rs11142508; P < 0.004, rs1160742; P < 0.08, rs4454352; P < 0.013, rs1328153; P < 0.013, rs3763619; P < 0.014, rs7865858; P ≤ 0.021, rs1504401; P ≤ 0041, rs10115622; P ≤ 0.050), while the remainder were associated with TRPA1 (rs2383844; P ≤ 0.040, rs4738202; P ≤ 0.018) and TRPC4 (rs6650469; P ≤ 0.016, rs655207; P ≤ 0.018). Conclusion The data from this pilot study suggest an association between TRP ion channels, predominantly TRPM3 and CFS. This and other TRPs identified may contribute to the etiology and pathomechanism of CFS.
Collapse
Affiliation(s)
- Sonya M. Marshall-Gradisnik
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Peter Smith
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Ekua W. Brenu
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven, Belgium
| | - Sandra B. Ramos
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Donald R. Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
31
|
Lesch A, Hui X, Lipp P, Thiel G. Transient receptor potential melastatin-3 (TRPM3)-induced activation of AP-1 requires Ca2+ ions and the transcription factors c-Jun, ATF2, and ternary complex factor. Mol Pharmacol 2015; 87:617-28. [PMID: 25576487 DOI: 10.1124/mol.114.095695] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The steroid pregnenolone sulfate activates the transcription factor activator protein-1 (AP-1) via stimulation of transient receptor potential melastatin-3 (TRPM3) channels. Here, we show that the signaling pathway requires an influx of Ca(2+) ions into the cells and a rise in the intracellular Ca(2+) levels. The upregulation of AP-1 was attenuated in cells that overexpressed mitogen activated protein kinase phosphatase-1, indicating that Ca(2+) ions prolong the signaling cascade via activation of mitogen activated protein kinases. On the transcriptional level, expression of a dominant-negative mutant of the basic region leucine zipper protein c-Jun, a major constituent of the AP-1 transcription factor complex, or expression of a c-Jun-specific short hairpin RNA attenuated pregnenolone sulfate-induced AP-1 activation. In addition, stimulation of TRPM3 channels increased the transcriptional activation potential of the basic region leucine zipper protein ATF2. Inhibition of ATF2 target gene expression via expression of a dominant-negative mutant of ATF2 or expression of an ATF2-specific short hairpin RNA interfered with TRPM3-mediated stimulation of AP-1. Moreover, we show that a dominant-negative mutant of the ternary complex factor (TCF) Elk-1 attenuated the upregulation of AP-1 following stimulation of TRPM3 channels. Thus, c-Jun, ATF2, and TCFs are required to connect the intracellular signaling cascade elicited by activation of TRPM3 channels with enhanced transcription of AP-1-regulated genes. We conclude that pregnenolone sulfate-induced TRPM3 channel activation changes the gene expression pattern of the cells by activating transcription of c-Jun-, ATF2-, and TCF-controlled genes.
Collapse
Affiliation(s)
- Andrea Lesch
- Department of Medical Biochemistry and Molecular Biology (A.L., G.T.) and Department of Anatomy and Cell Biology, University of Saarland Medical Faculty, Homburg, Germany (X.H., P.L.)
| | - Xin Hui
- Department of Medical Biochemistry and Molecular Biology (A.L., G.T.) and Department of Anatomy and Cell Biology, University of Saarland Medical Faculty, Homburg, Germany (X.H., P.L.)
| | - Peter Lipp
- Department of Medical Biochemistry and Molecular Biology (A.L., G.T.) and Department of Anatomy and Cell Biology, University of Saarland Medical Faculty, Homburg, Germany (X.H., P.L.)
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology (A.L., G.T.) and Department of Anatomy and Cell Biology, University of Saarland Medical Faculty, Homburg, Germany (X.H., P.L.)
| |
Collapse
|
32
|
Thermosensitive transient receptor potential (TRP) channel agonists and their role in mechanical, thermal and nociceptive sensations as assessed using animal models. CHEMOSENS PERCEPT 2015; 8:96-108. [PMID: 26388966 DOI: 10.1007/s12078-015-9176-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The present paper summarizes research using animal models to investigate the roles of thermosensitive transient receptor potential (TRP) channels in somatosensory functions including touch, temperature and pain. We present new data assessing the effects of eugenol and carvacrol, agonists of the warmth-sensitive TRPV3, on thermal, mechanical and pain sensitivity in rats. METHODS Thermal sensitivity was assessed using a thermal preference test, which measured the amount of time the animal occupied one of two adjacent thermoelectric plates set at different temperatures. Pain sensitivity was assessed as an increase in latency of hindpaw withdrawal away from a noxious thermal stimulus directed to the plantar hindpaw (Hargreaves test). Mechanical sensitivity was assessed by measuring the force exerted by an electronic von Frey filament pressed against the plantar surface that elicited withdrawal. RESULTS Topical application of eugenol and carvacrol did not significantly affect thermal preference, although there was a trend toward avoidance of the hotter surface in a 30 vs. 45°C preference test for rats treated with 1 or 10% eugenol and carvacrol. Both eugenol and carvacrol induced a concentration-dependent increase in thermal withdrawal latency (analgesia), with no significant effect on mechanosensitivity. CONCLUSIONS The analgesic effect of eugenol and carvacrol is consistent with previous studies. The tendency for these chemicals to increase the avoidance of warmer temperatures suggests a possible role for TRPV3 in warmth detection, also consistent with previous studies. Additional roles of other thermosensitive TRP channels (TRPM8 TRPV1, TRPV2, TRPV4, TRPM3, TRPM8, TRPA1, TRPC5) in touch, temperature and pain are reviewed.
Collapse
|
33
|
Hill M, Dušková M, Stárka L. Dehydroepiandrosterone, its metabolites and ion channels. J Steroid Biochem Mol Biol 2015; 145:293-314. [PMID: 24846830 DOI: 10.1016/j.jsbmb.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
This review is focused on the physiological and pathophysiological relevance of steroids influencing the activities of the central and peripheral nervous systems with regard to their concentrations in body fluids and tissues in various stages of human life like the fetal development or pregnancy. The data summarized in this review shows that DHEA and its unconjugated and sulfated metabolites are physiologically and pathophysiologically relevant in modulating numerous ion channels and participate in vital functions of the human organism. DHEA and its unconjugated and sulfated metabolites including 5α/β-reduced androstane steroids participate in various physiological and pathophysiological processes like the management of GnRH cyclic release, regulation of glandular and neurotransmitter secretions, maintenance of glucose homeostasis on one hand and insulin insensitivity on the other hand, control of skeletal muscle and smooth muscle activities including vasoregulation, promotion of tolerance to ischemia and other neuroprotective effects. In respect of prevalence of steroid sulfates over unconjugated steroids in the periphery and the opposite situation in the CNS, the sulfated androgens and androgen metabolites reach relevance in peripheral organs. The unconjugated androgens and estrogens are relevant in periphery and so much the more in the CNS due to higher concentrations of most unconjugated steroids in the CNS tissues than in circulation and peripheral organs. This article is part of a Special Issue entitled "Essential role of DHEA".
Collapse
Affiliation(s)
- M Hill
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - M Dušková
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - L Stárka
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| |
Collapse
|
34
|
Lesch A, Rubil S, Thiel G. Activation and inhibition of transient receptor potential TRPM3-induced gene transcription. Br J Pharmacol 2014; 171:2645-58. [PMID: 24895737 DOI: 10.1111/bph.12524] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential-3 (TRPM3) channels function as Ca2+ permeable cation channels. While the natural ligands for these channels are still unknown, several compounds have been described that either activate or inhibit TRPM3 channel activity. experimental approach: We assessed TRPM3-mediated gene transcription, which relies on the induction of intracellular signalling to the nucleus following activation of TRPM3 channels. Activator protein-1 (AP-1) and Egr-1-responsive reporter genes were integrated into the chromatin of the cells. This strategy enabled us to analyse gene transcription of the AP-1 and Egr-1-responsive reporter genes that were packed into an ordered chromatin structure. KEY RESULTS The neurosteroid pregnenolone sulfate strikingly up-regulated AP-1 and Egr-1 transcriptional activity, while nifedipine and D-erythro-sphingosine, also putative activators of TRPM3 channels, exhibited either no or TRPM3-independent effects on gene transcription. In addition, pregnenolone sulfate robustly enhanced the transcriptional activation potential of the ternary complex factor Elk-1. Pregnenolone sulfate-induced activation of gene transcription was blocked by treatment with mefenamic acid and, to a lesser extent, by the polyphenol naringenin. In contrast, progesterone, pregnenolone and rosiglitazone reduced AP-1 activity in the cells, but had no inhibitory effect on Egr-1 activity in pregnenolone sulfate-stimulated cells. CONCLUSION AND IMPLICATIONS Pregnenolone sulfate is a powerful activator of TRPM3-mediated gene transcription, while transcription is completely inhibited by mefenamic acid in cells expressing activated TRPM3 channels. Both compounds are valuable tools for further investigating the biological functions of TRPM3 channels.
Collapse
|
35
|
Wu SW, Fenwick AJ, Peters JH. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons. Physiol Behav 2014; 136:179-84. [PMID: 25290762 DOI: 10.1016/j.physbeh.2014.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 09/29/2014] [Indexed: 01/07/2023]
Abstract
Obesity results from the chronic imbalance between food intake and energy expenditure. To maintain homeostasis, the brainstem nucleus of the solitary tract (NTS) integrates peripheral information from visceral organs and initiates reflex pathways that control food intake and other autonomic functions. This peripheral-to-central neural communication occurs through activation of vagal afferent neurons which converge to form the solitary tract (ST) and synapse with strong glutamatergic contacts onto NTS neurons. Vagal afferents release glutamate containing vesicles via three distinct pathways (synchronous, asynchronous, and spontaneous) providing multiple levels of control through fast synaptic neurotransmission at ST-NTS synapses. While temperature at the NTS is relatively constant, vagal afferent neurons express an array of thermosensitive ion channels named transient receptor potential (TRP) channels. Here we review the evidence that TRP channels pre-synaptically control quantal glutamate release and examine the potential roles of TRP channels in vagally mediated satiety signaling. We summarize the current literature that TRP channels contribute to asynchronous and spontaneous release of glutamate which can distinctly influence the transfer of information across the ST-NTS synapse. In other words, multiple glutamate vesicle release pathways, guided by afferent TRP channels, provide for robust while adaptive neurotransmission and expand our understanding of vagal afferent signaling.
Collapse
Affiliation(s)
- Shaw-wen Wu
- Dept. of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Axel J Fenwick
- Dept. of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - James H Peters
- Dept. of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
36
|
Thiel G, Müller I, Rössler OG. Expression, signaling and function of Egr transcription factors in pancreatic β-cells and insulin-responsive tissues. Mol Cell Endocrinol 2014; 388:10-9. [PMID: 24631481 DOI: 10.1016/j.mce.2014.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/26/2014] [Accepted: 03/03/2014] [Indexed: 12/15/2022]
Abstract
Egr-1 and the related zinc finger transcription factors Egr-2, Egr-3, and Egr-4 are stimulated by many extracellular signaling molecules and represent a convergence point for intracellular signaling cascades. Egr-1 expression is induced in insulinoma cells and pancreatic β-cells following stimulation with either glucose, or pregnenolone sulfate. Moreover, stimulation of Gαq and Gαs-coupled receptors enhances EGR-1 gene transcription. Functional studies revealed that Egr transcription factors control insulin biosynthesis via regulation of Pdx-1 expression. Glucose homeostasis and pancreatic islet size are regulated by Egr transcription factors, indicating that these proteins control central physiological parameters regulated by pancreatic β-cells. In addition, Egr-1 is an integral part of the insulin receptor signaling cascade in insulin-responsive tissues and influences insulin resistance.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany.
| | - Isabelle Müller
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| |
Collapse
|