1
|
Knier AS, Olivier-Van Stichelen S. O-GlcNAcylation in Endocrinology: The Sweet Link. Endocrinology 2025; 166:bqaf072. [PMID: 40209111 PMCID: PMC12013285 DOI: 10.1210/endocr/bqaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/12/2025]
Abstract
O-GlcNAcylation is a dynamic posttranslational modification that involves the addition of N-acetylglucosamine (GlcNAc) to the serine and threonine residues of proteins. Over the past 4 decades, this modification has become increasingly recognized as having a critical influence in the field of endocrinology. The carefully controlled hormonal input for regulating sleep, mood, response to stress, growth, development, and metabolism are often associated with O-GlcNAc-dependent signaling. As protein O-GlcNAcylation patterns are heavily dependent on environmental glucose concentrations, hormone-secreting cells sense the changes in local environmental glucose concentrations and adjust hormone secretion accordingly. This ability of cells to sense nutritional cues and fine-tune hormonal production is particularly relevant toward maintaining a functional and responsive endocrine system, therefore emphasizing the importance of O-GlcNAc in the scope and application of endocrinology. This review examines how O-GlcNAcylation participates in hormonal homeostasis in different endocrine tissues and systems, from the pineal gland to the placenta, and underscores the significance of O-GlcNAc in the field of endocrinology.
Collapse
Affiliation(s)
- Adam Salm Knier
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Paes T, Hofland LJ, Iyer AM, Feelders RA. Epigenetic implications in the pathogenesis of corticotroph tumors. Pituitary 2025; 28:51. [PMID: 40257628 PMCID: PMC12011945 DOI: 10.1007/s11102-025-01522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Non-mutational epigenetic reprogramming is considered an important enabling characteristic of neoplasia. Corticotroph tumors and other subtypes of pituitary tumors are characterized by distinct epigenetic profiles. The DNA methylation profile is consistent with disease-specific gene expression, which highlights the importance of epigenetic changes in tumor formation and progression. Elucidating the epigenetic changes underlying tumorigenesis plays an important role in understanding the molecular pathogenesis of corticotroph tumors and may ultimately contribute to improving tumor-specific treatment. Here, we provide an overview of the epigenetic landscape of corticotroph tumors. We also review the role of epigenetics in silencing the expression of tumor suppressor genes and promoting oncogenes expression, which could potentially be involved in the pathogenesis of corticotroph tumors. We briefly discuss microRNAs and epigenetic aspects of POMC regulation. Lastly, since the epigenetic changes are reversible, we discuss drugs that target epigenetic modifiers that could potentially be used in the arsenal of Cushing's disease treatment modalities.
Collapse
Affiliation(s)
- Ticiana Paes
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
- Department of Internal Medicine, Roger Williams Medical Center, Providence, RI, USA
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands.
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Liu Y, Liu F, Li C, Zhang T, Han T, Dai Y, Huang N, Tang H, Wang X, Lin S, Xue L, Wu ZB. TRIM21-mediated ubiquitination and phosphorylation of ERK1/2 promotes cell proliferation and drug resistance in pituitary adenomas. Neuro Oncol 2025; 27:727-742. [PMID: 39533840 PMCID: PMC11889717 DOI: 10.1093/neuonc/noae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pituitary adenomas (PAs) are common intracranial tumors and the TRIM family plays a crucial role in cell proliferation and therapeutic resistance of tumors. However, the role of the TRIM family in PAs is not well recognized. METHODS CRISPR screening explored the role of the TRIM family in cell proliferation and drug resistance in PAs. In vitro and in vivo experiments were performed to evaluate the effects of Tripartite Motif Containing 21 (TRIM21). RNA-sequencing, mass spectrometry, immunoprecipitation, and ubiquitination experiments were performed to explore the molecular mechanism. NanoBiT assays were used to screen the drugs reducing TRIM21 expression. RESULTS CRISPR-Cas9 screens identified that TRIM21 facilitated cell proliferation and drug resistance in PAs. Mechanistically, TRIM21 interacted with ERK1/2 through PRY-SPRY domain, leading to ERK1/2 K27-linked ubiquitination. The ERK1/2 ubiquitination promotes the interaction between ERK1/2 and MEK1/2, thereby facilitating the phosphorylation of ERK1/2. However, an excess presence of TRIM21 suppressed the phosphorylation of ERK1/2 and cell proliferation via activating ERK1/2 negative feedback pathways. Importantly, TRIM21 was upregulated in dopamine-resistant prolactinomas and cabergoline-resistant MMQ cells. Furthermore, drug screening identified that Fimepinostat and Quisinostat, can reduce the protein levels of TRIM21, inhibit tumor progression, and increase drug sensitivity. CONCLUSIONS TRIM21 may represent a therapeutic target for tumors, and inhibiting TRIM21 could be a potential strategy for tumor treatment.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanbao Li
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Han
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobin Wang
- The First Affiliated Hospital, Henan University, Kaifeng, P.R. China
| | - Shaojian Lin
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xue
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Bao Wu
- The First Affiliated Hospital, Henan University, Kaifeng, P.R. China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Stojilkovic SS, Sokanovic SJ, Constantin S. What is known and unknown about the role of neuroendocrine genes Ptprn and Ptprn2. Front Endocrinol (Lausanne) 2025; 16:1531723. [PMID: 39926347 PMCID: PMC11802530 DOI: 10.3389/fendo.2025.1531723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The protein tyrosine phosphatase receptors N and N2 are encoded by the Ptprn and Ptprn2 genes expressed in neuroendocrine cells of the hypothalamus, pituitary gland, and diffuse neuroendocrine system, including the pancreas, lung, and intestine. Unlike other members of the protein tyrosine phosphatase receptor family, PTPRN and PTPRN2 lack protein tyrosine phosphatase activity due to mutation of two residues in their intracellular catalytic domains. However, during evolution these proteins acquired new cellular roles beyond tyrosine dephosphorylation in the centralized and diffuse neuroendocrine systems. Here we discuss the current understanding and lack of information about the actions of these proteins, focusing on neuroendocrine cells of the hypothalamus, pituitary, and pancreas.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | | | | |
Collapse
|
5
|
Mac TT, Fauquier T, Jullien N, Romanet P, Etchevers H, Barlier A, Castinetti F, Brue T. Modeling corticotroph deficiency with pituitary organoids supports the functional role of NFKB2 in human pituitary differentiation. eLife 2024; 12:RP90875. [PMID: 39607428 PMCID: PMC11604219 DOI: 10.7554/elife.90875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome results from NFKB2 heterozygous mutations, causing adrenocorticotropic hormone deficiency (ACTHD) and primary hypogammaglobulinemia. While NFKB signaling plays a crucial role in the immune system, its connection to endocrine symptoms is unclear. We established a human disease model to investigate the role of NFKB2 in pituitary development by creating pituitary organoids from CRISPR/Cas9-edited human induced pluripotent stem cells (hiPSCs). Introducing homozygous TBX19K146R/K146R missense pathogenic variant in hiPSC, an allele found in congenital isolated ACTHD, led to a strong reduction of corticotrophs number in pituitary organoids. Then, we characterized the development of organoids harboring NFKB2D865G/D865G mutations found in DAVID patients. NFKB2D865G/D865G mutation acted at different levels of development with mutant organoids displaying changes in the expression of genes involved on pituitary progenitor generation (HESX1, PITX1, LHX3), hypothalamic secreted factors (BMP4, FGF8, FGF10), epithelial-to-mesenchymal transition, lineage precursors development (TBX19, POU1F1) and corticotrophs terminal differentiation (PCSK1, POMC), and showed drastic reduction in the number of corticotrophs. Our results provide strong evidence for the direct role of NFKB2 mutations in the endocrine phenotype observed in patients leading to a new classification of a NFKB2 variant of previously unknown clinical significance as pathogenic in pituitary development.
Collapse
Affiliation(s)
- Thi Thom Mac
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Hanoi Medical University HospitalHanoiViet Nam
| | - Teddy Fauquier
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
| | - Nicolas Jullien
- Aix-Marseille University, CNRS, UMR7051, Institut de NeuroPhysiopathologieMarseilleFrance
| | - Pauline Romanet
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix-Marseille University, APHM, INSERM, MMG, Laboratory of Molecular Biology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| | - Heather Etchevers
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
| | - Anne Barlier
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix-Marseille University, APHM, INSERM, MMG, Laboratory of Molecular Biology, La Conception Hospital, Institut MarMaRaMarseilleFrance
- Aix Marseille University, APHM, INSERM, MMG, Department of Endocrinology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| | - Frederic Castinetti
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix Marseille University, APHM, INSERM, MMG, Department of Endocrinology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| | - Thierry Brue
- Aix-Marseille University, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRaMarseilleFrance
- Aix Marseille University, APHM, INSERM, MMG, Department of Endocrinology, La Conception Hospital, Institut MarMaRaMarseilleFrance
| |
Collapse
|
6
|
Constantin S, Sokanovic SJ, Mochimaru Y, Dams AL, Smiljanic K, Prévide RM, Nessa N, Carmona GN, Stojilkovic SS. Protein Tyrosine Phosphatase Receptors N and N2 Control Pituitary Melanotroph Development and POMC Expression. Endocrinology 2024; 165:bqae076. [PMID: 38923438 PMCID: PMC11242453 DOI: 10.1210/endocr/bqae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The neuroendocrine marker genes Ptprn and Ptprn2 encode protein tyrosine phosphatase receptors N and N2, 2 members of protein tyrosine phosphatase receptors void of enzymatic activity, and whose function and mechanism of action have not been elucidated. To explore the role(s) of Ptprn and Ptprn2 on the hypothalamic-pituitary-adrenal axis, we used mice in which both genes were knocked out (DKO). The focus in this study was on corticotrophs and melanotrophs from the anterior and intermediate lobes of the pituitary gland, respectively. In both sexes, DKO caused an increase in the expression of the corticotroph/melanotroph genes Pomc and Tbx19 and the melanotroph-specific gene Pax7. We also found in vivo and in vitro increased synthesis and release of beta-endorphin, alpha-melanocyte-stimulating hormone, and ACTH in DKO mice, which was associated with increased serum corticosterone levels and adrenal mass. DKO also increased the expression of other melanotroph-specific genes, but not corticotroph-specific genes. The dopaminergic pathway in the hypothalamus and dopaminergic receptors in melanotrophs were not affected in DKO mice. However, hyperplasia of the intermediate lobe was observed in DKO females and males, accompanied by increased proopiomelanocortin immunoreactivity per cell. These results indicate that protein tyrosine phosphatase receptor type N contributes to hypothalamic-pituitary-adrenal function by being involved in processes governing postnatal melanotroph development and Pomc expression.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Srdjan J Sokanovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yuta Mochimaru
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Aloa Lamarca Dams
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Rafael M Prévide
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Naseratun Nessa
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Gilberto N Carmona
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Liu X, Duan C, Yin X, Zhang L, Chen M, Zhao W, Li X, Liu Y, Zhang Y. Inhibition of Prolactin Affects Epididymal Morphology by Decreasing the Secretion of Estradiol in Cashmere Bucks. Animals (Basel) 2024; 14:1778. [PMID: 38929397 PMCID: PMC11201029 DOI: 10.3390/ani14121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Yanshan Cashmere bucks are seasonal breeding animals and an important national genetic resource. This study aimed to investigate the involvement of prolactin (PRL) in the epididymal function of bucks. Twenty eleven-month-old Cashmere bucks were randomly divided into a control (CON) group and a bromocriptine (BCR, a prolactin inhibitor, 0.06 mg/kg body weight (BW)) treatment group. The experiment was conducted from September to October 2020 in Qinhuangdao City, China, and lasted for 30 days. Blood was collected on the last day before the BCR treatment (day 0) and on the 15th and 30th days after the BCR treatment (days 15 and 30). On the 30th day, all bucks were transported to the local slaughterhouse, where epididymal samples were collected immediately after slaughter. The left epididymis was preserved in 4% paraformaldehyde for histological observation, and the right epididymis was immediately preserved in liquid nitrogen for RNA sequencing (RNA-seq). The results show that the PRL inhibitor reduced the serum PRL and estradiol (E2) concentrations (p < 0.05) and tended to decrease luteinizing hormone (LH) concentrations (p = 0.052) by the 30th day, but no differences (p > 0.05) occurred by either day 0 or 15. There were no differences (p > 0.05) observed in the follicle-stimulating hormone (FSH), testosterone (T), and dihydrotestosterone (DHT) concentrations between the two groups. The PRL receptor (PRLR) protein was mainly located in the cytoplasm and intercellular substance of the epididymal epithelial cells. The PRL inhibitor decreased (p < 0.05) the expression of the PRLR protein in the epididymis. In the BCR group, the height of the epididymal epithelium in the caput and cauda increased, as did the diameter of the epididymal duct in the caput (p < 0.05). However, the diameter of the cauda epididymal duct decreased (p < 0.05). Thereafter, a total of 358 differentially expressed genes (DEGs) were identified in the epididymal tissues, among which 191 were upregulated and 167 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that ESR2, MAPK10, JUN, ACTL7A, and CALML4 were mainly enriched in the estrogen signaling pathway, steroid binding, calcium ion binding, the GnRH signaling pathway, the cAMP signaling pathway, and the chemical carcinogenesis-reactive oxygen species pathway, which are related to epididymal function. In conclusion, the inhibition of PRL may affect the structure of the epididymis by reducing the expression of the PRLR protein and the secretion of E2. ESR2, MAPK10, JUN, ACTL7A, and CALML4 could be the key genes of PRL in its regulation of epididymal reproductive function.
Collapse
Affiliation(s)
- Xiaona Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China; (X.Y.); (X.L.)
| | - Lechao Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Meijing Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Wen Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China; (X.Y.); (X.L.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| |
Collapse
|
8
|
Paes T, Feelders RA, Hofland LJ. Epigenetic Mechanisms Modulated by Glucocorticoids With a Focus on Cushing Syndrome. J Clin Endocrinol Metab 2024; 109:e1424-e1433. [PMID: 38517306 PMCID: PMC11099489 DOI: 10.1210/clinem/dgae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
In Cushing syndrome (CS), prolonged exposure to high cortisol levels results in a wide range of devastating effects causing multisystem morbidity. Despite the efficacy of treatment leading to disease remission and clinical improvement, hypercortisolism-induced complications may persist. Since glucocorticoids use the epigenetic machinery as a mechanism of action to modulate gene expression, the persistence of some comorbidities may be mediated by hypercortisolism-induced long-lasting epigenetic changes. Additionally, glucocorticoids influence microRNA expression, which is an important epigenetic regulator as it modulates gene expression without changing the DNA sequence. Evidence suggests that chronically elevated glucocorticoid levels may induce aberrant microRNA expression which may impact several cellular processes resulting in cardiometabolic disorders. The present article reviews the evidence on epigenetic changes induced by (long-term) glucocorticoid exposure. Key aspects of some glucocorticoid-target genes and their implications in the context of CS are described. Lastly, the effects of epigenetic drugs influencing glucocorticoid effects are discussed for their ability to be potentially used as adjunctive therapy in CS.
Collapse
Affiliation(s)
- Ticiana Paes
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston 02115, MA, USA
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
9
|
Branham EM, McLean SA, Deliwala I, Mauck MC, Zhao Y, McKibben LA, Lee A, Spencer AB, Zannas AS, Lechner M, Danza T, Velilla MA, Hendry PL, Pearson C, Peak DA, Jones J, Rathlev NK, Linnstaedt SD. CpG Methylation Levels in HPA Axis Genes Predict Chronic Pain Outcomes Following Trauma Exposure. THE JOURNAL OF PAIN 2023; 24:1127-1141. [PMID: 36906051 PMCID: PMC10330094 DOI: 10.1016/j.jpain.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
Chronic post-traumatic musculoskeletal pain (CPTP) is a common outcome of traumatic stress exposure. Biological factors that influence the development of CPTP are poorly understood, though current evidence indicates that the hypothalamic-pituitary-adrenal (HPA) axis plays a critical role in its development. Little is known about molecular mechanisms underlying this association, including epigenetic mechanisms. Here, we assessed whether peritraumatic DNA methylation levels at 248 5'-C-phosphate-G-3' (CpG) sites in HPA axis genes (FKBP5, NR3C1, CRH, CRHR1, CRHR2, CRHBP, POMC) predict CPTP and whether identified CPTP-associated methylation levels influence expression of those genes. Using participant samples and data collected from trauma survivors enrolled into longitudinal cohort studies (n = 290), we used linear mixed modeling to assess the relationship between peritraumatic blood-based CpG methylation levels and CPTP. A total of 66 (27%) of the 248 CpG sites assessed in these models statistically significantly predicted CPTP, with the three most significantly associated CpG sites originating from the POMC gene region (ie, cg22900229 [β = .124, P < .001], cg16302441 [β = .443, P < .001], cg01926269 [β = .130, P < .001]). Among the genes analyzed, both POMC (z = 2.36, P = .018) and CRHBP (z = 4.89, P < .001) were enriched in CpG sites significantly associated with CPTP. Further, POMC expression was inversely correlated with methylation levels in a CPTP-dependent manner (6-months NRS<4: r = -.59, P < .001; 6-months NRS ≥ 4: r = -.18, P = .2312). Our results suggest that methylation of HPA axis genes including POMC and CRHBP predict risk for and may contribute to vulnerability to CPTP. PERSPECTIVE: Peritraumatic blood levels of CpG methylation sites in HPA axis genes, particularly CpG sites in the POMC gene, predict CPTP development. This data substantially advances our understanding of epigenetic predictors and potential mediators of CPTP, a highly common, morbid, and hard-to-treat form of chronic pain.
Collapse
Affiliation(s)
- Erica M Branham
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Samuel A McLean
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Department of Emergency Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ishani Deliwala
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew C Mauck
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Ying Zhao
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Lauren A McKibben
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Aaron Lee
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Alex B Spencer
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Anthony S Zannas
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina; Carolina Stress Initiative, University of North Carolina, Chapel Hill, North Carolina
| | - Megan Lechner
- Forensic Nursing Program, Memorial Health System, Colorado Springs, Colorado
| | - Teresa Danza
- Forensic Nursing Program, Albuquerque SANE Collaborative, Albuquerque, New Mexico
| | | | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Florida
| | - Claire Pearson
- Department of Emergency Medicine, Detroit Receiving, Detroit, Michigan
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jeffrey Jones
- Department of Emergency Medicine, Spectrum Health Butterworth Campus, Grand Rapids, Michigan
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Chan Medical School Baystate, Springfield, Massachusetts
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
10
|
Wu CLS, Cioanca AV, Gelmi MC, Wen L, Di Girolamo N, Zhu L, Natoli R, Conway RM, Petsoglou C, Jager MJ, McCluskey PJ, Madigan MC. The multifunctional human ocular melanocortin system. Prog Retin Eye Res 2023; 95:101187. [PMID: 37217094 DOI: 10.1016/j.preteyeres.2023.101187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Immune privilege in the eye involves physical barriers, immune regulation and secreted proteins that together limit the damaging effects of intraocular immune responses and inflammation. The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) normally circulates in the aqueous humour of the anterior chamber and the vitreous fluid, secreted by iris and ciliary epithelium, and retinal pigment epithelium (RPE). α-MSH plays an important role in maintaining ocular immune privilege by helping the development of suppressor immune cells and by activating regulatory T-cells. α-MSH functions by binding to and activating melanocortin receptors (MC1R to MC5R) and receptor accessory proteins (MRAPs) that work in concert with antagonists, otherwise known as the melanocortin system. As well as controlling immune responses and inflammation, a broad range of biological functions is increasingly recognised to be orchestrated by the melanocortin system within ocular tissues. This includes maintaining corneal transparency and immune privilege by limiting corneal (lymph)angiogenesis, sustaining corneal epithelial integrity, protecting corneal endothelium and potentially enhancing corneal graft survival, regulating aqueous tear secretion with implications for dry eye disease, facilitating retinal homeostasis via maintaining blood-retinal barriers, providing neuroprotection in the retina, and controlling abnormal new vessel growth in the choroid and retina. The role of melanocortin signalling in uveal melanocyte melanogenesis however remains unclear compared to its established role in skin melanogenesis. The early application of a melanocortin agonist to downregulate systemic inflammation used adrenocorticotropic hormone (ACTH)-based repository cortisone injection (RCI), but adverse side effects including hypertension, edema, and weight gain, related to increased adrenal gland corticosteroid production, impacted clinical uptake. Compared to ACTH, melanocortin peptides that target MC1R, MC3R, MC4R and/or MC5R, but not adrenal gland MC2R, induce minimal corticosteroid production with fewer adverse systemic effects. Pharmacological advances in synthesising MCR-specific targeted peptides provide further opportunities for treating ocular (and systemic) inflammatory diseases. Following from these observations and a renewed clinical and pharmacological interest in the diverse biological roles of the melanocortin system, this review highlights the physiological and disease-related involvement of this system within human eye tissues. We also review the emerging benefits and versatility of melanocortin receptor targeted peptides as non-steroidal alternatives for inflammatory eye diseases such as non-infectious uveitis and dry eye disease, and translational applications in promoting ocular homeostasis, for example, in corneal transplantation and diabetic retinopathy.
Collapse
Affiliation(s)
- Chieh-Lin Stanley Wu
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Optometry, Asia University, Taichung, Taiwan
| | - Adrian V Cioanca
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; John Curtin School of Medical Research, The Australian National University, ACT, Australia; ANU Medical School, The Australian National University, ACT, Australia
| | - Maria C Gelmi
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Li Wen
- New South Wales Organ and Tissue Donation Service, Sydney Hospital and Sydney Eye Hospital, NSW, 2000, Australia
| | - Nick Di Girolamo
- School of Biomedical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Riccardo Natoli
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; John Curtin School of Medical Research, The Australian National University, ACT, Australia; ANU Medical School, The Australian National University, ACT, Australia
| | - R Max Conway
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Constantinos Petsoglou
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; New South Wales Organ and Tissue Donation Service, Sydney Hospital and Sydney Eye Hospital, NSW, 2000, Australia
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Peter J McCluskey
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michele C Madigan
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
11
|
Manohar S, Chen GD, Li L, Liu X, Salvi R. Chronic stress induced loudness hyperacusis, sound avoidance and auditory cortex hyperactivity. Hear Res 2023; 431:108726. [PMID: 36905854 DOI: 10.1016/j.heares.2023.108726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Hyperacusis, a debilitating loudness intolerance disorder, has been linked to chronic stress and adrenal insufficiency. To investigate the role of chronic stress, rats were chronically treated with corticosterone (CORT) stress hormone. Chronic CORT produced behavioral evidence of loudness hyperacusis, sound avoidance hyperacusis, and abnormal temporal integration of loudness. CORT treatment did not disrupt cochlear or brainstem function as reflected by normal distortion product otoacoustic emissions, compound action potentials, acoustic startle reflexex, and auditory brainstem responses. In contrast, the evoked response from the auditory cortex was enhanced up to three fold after CORT treatment. This hyperactivity was associated with a significant increase in glucocorticoid receptors in auditory cortex layers II/III and VI. Basal serum CORT levels remained normal after chronic CORT stress whereas reactive serum CORT levels evoked by acute restraint stress were blunted (reduced) after chronic CORT stress; similar changes were observed after chronic, intense noise stress. Taken together, our results show for the first time that chronic stress can induce hyperacusis and sound avoidance. A model is proposed in which chronic stress creates a subclinical state of adrenal insufficiency that establishes the necessary conditions for inducing hyperacusis.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Li Li
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Xiaopeng Liu
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
12
|
Advances in Molecular Pathophysiology and Targeted Therapy for Cushing's Disease. Cancers (Basel) 2023; 15:cancers15020496. [PMID: 36672445 PMCID: PMC9857185 DOI: 10.3390/cancers15020496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cushing's disease is caused by autonomous secretion of adrenocorticotropic hormone (ACTH) from corticotroph pituitary neuroendocrine tumors. As a result, excess cortisol production leads to the overt manifestation of the clinical features of Cushing's syndrome. Severe complications have been reported in patients with Cushing's disease, including hypertension, menstrual disorders, hyperglycemia, osteoporosis, atherosclerosis, infections, and mental disorders. Cushing's disease presents with a variety of clinical features, ranging from overt to subtle. In this review, we explain recent advances in molecular insights and targeted therapy for Cushing's disease. The pathophysiological characteristics of hormone production and pituitary tumor cells are also explained. Therapies to treat the tumor growth in the pituitary gland and the autonomous hypersecretion of ACTH are discussed. Drugs that target corticotroph pituitary neuroendocrine tumors have been effective, including cabergoline, a dopamine receptor type 2 agonist, and pasireotide, a multi-receptor-targeted somatostatin analog. Some of the drugs that target adrenal hormones have shown potential therapeutic benefits. Advances in potential novel therapies for Cushing's disease are also introduced.
Collapse
|
13
|
Melmed S, Kaiser UB, Lopes MB, Bertherat J, Syro LV, Raverot G, Reincke M, Johannsson G, Beckers A, Fleseriu M, Giustina A, Wass JAH, Ho KKY. Clinical Biology of the Pituitary Adenoma. Endocr Rev 2022; 43:1003-1037. [PMID: 35395078 PMCID: PMC9695123 DOI: 10.1210/endrev/bnac010] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 02/06/2023]
Abstract
All endocrine glands are susceptible to neoplastic growth, yet the health consequences of these neoplasms differ between endocrine tissues. Pituitary neoplasms are highly prevalent and overwhelmingly benign, exhibiting a spectrum of diverse behaviors and impact on health. To understand the clinical biology of these common yet often innocuous neoplasms, we review pituitary physiology and adenoma epidemiology, pathophysiology, behavior, and clinical consequences. The anterior pituitary develops in response to a range of complex brain signals integrating with intrinsic ectodermal cell transcriptional events that together determine gland growth, cell type differentiation, and hormonal production, in turn maintaining optimal endocrine health. Pituitary adenomas occur in 10% of the population; however, the overwhelming majority remain harmless during life. Triggered by somatic or germline mutations, disease-causing adenomas manifest pathogenic mechanisms that disrupt intrapituitary signaling to promote benign cell proliferation associated with chromosomal instability. Cellular senescence acts as a mechanistic buffer protecting against malignant transformation, an extremely rare event. It is estimated that fewer than one-thousandth of all pituitary adenomas cause clinically significant disease. Adenomas variably and adversely affect morbidity and mortality depending on cell type, hormone secretory activity, and growth behavior. For most clinically apparent adenomas, multimodal therapy controlling hormone secretion and adenoma growth lead to improved quality of life and normalized mortality. The clinical biology of pituitary adenomas, and particularly their benign nature, stands in marked contrast to other tumors of the endocrine system, such as thyroid and neuroendocrine tumors.
Collapse
Affiliation(s)
| | - Ursula B Kaiser
- Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Beatriz Lopes
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome Bertherat
- Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Luis V Syro
- Hospital Pablo Tobon Uribe and Clinica Medellin - Grupo Quirónsalud, Medellin, Colombia
| | - Gerald Raverot
- Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| | - Martin Reincke
- University Hospital of LMU, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gudmundur Johannsson
- Sahlgrenska University Hospital & Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Andrea Giustina
- San Raffaele Vita-Salute University and IRCCS Hospital, Milan, Italy
| | | | - Ken K Y Ho
- The Garvan Institute of Medical Research and St. Vincents Hospital, Sydney, Australia
| |
Collapse
|
14
|
Characterization of CRH-Binding Protein (CRHBP) in Chickens: Molecular Cloning, Tissue Distribution and Investigation of Its Role as a Negative Feedback Regulator within the Hypothalamus–Pituitary–Adrenal Axis. Genes (Basel) 2022; 13:genes13101680. [PMID: 36292565 PMCID: PMC9601729 DOI: 10.3390/genes13101680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023] Open
Abstract
Corticotropin (ACTH) is a pituitary hormone playing important roles in stress response within the hypothalamus–pituitary–adrenal (HPA) axis. The biosynthesis and secretion of ACTH are controlled by multiple factors, including corticotropin-releasing hormone (CRH). As a key hypothalamus-derived regulator, CRH binds to corticotropin-releasing hormone receptor 1 (CRHR1) in the anterior pituitary gland to regulate ACTH synthesis and release. Thus, CRH-binding protein (CRHBP), which binds CRH with high affinity to inhibit CRH-induced ACTH secretion from pituitary cells, draws wide attention. In contrast to the extensive investigation of CRHBP in mammals and other lower vertebrates, the gene structure, tissue expression and physiological functions of CRHBP in birds remain largely unknown. In the present study, using chicken (c-) as our animal model, we examined the gene structure, tissue expression and functionality of CRHBP. Our results showed that: (1) cCRHBP cDNA encodes a 345 amino acid precursor, which shares high sequence identity with that of mammals, reptiles, frogs and fish; (2) cCRHBP is abundantly expressed in the brain (cerebrum and hypothalamus), pituitary and ovary; (3) cCRHBP inhibits the signaling of cCRHRs induced by cCRH, thus reducing the cCRH-induced ACTH secretion from cultured chick pituitary cells; (4) stress mediators (e.g., glucocorticoids) and stress significantly upregulate CRHBP mRNA expression in chickens, supporting its role as a negative feedback regulator in the HPA axis. The present study enriches our understanding of the conserved roles of CRHBP across vertebrates. In addition, chicken is an important poultry animal with multiple economic traits which are tightly controlled by the HPA axis. The characterization of the chicken CRHBP gene helps to reveal the molecular basis of the chicken HPA axis and is thus beneficial to the poultry industry.
Collapse
|
15
|
Zhou WX, Wang S, Wu TC, Cheng LC, Du Y, Wu W, Lin C, Li XY, Hu ZL. Gene expression and methylation profiles show the involvement of POMC in primary hyperparathyroidsm. J Transl Med 2022; 20:368. [PMID: 35974370 PMCID: PMC9382844 DOI: 10.1186/s12967-022-03568-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Primary hyperparathyroidism (PHPT) is mainly caused by parathyroid adenoma, which produces excess parathyroid hormones. Its pathogenic mechanisms have not yet been fully understood. To investigate the mechanism in the pathogenesis of PHPT, the transcriptome and genome-wide DNA methylation profiles of parathyroid adenoma were analyzed. The candidate genes that may be involved in the PHPT were verified via qRT-PCR, immunohistochemistry, western blot, and methylation-specific PCR. A total of 1650 differentially expressed genes and 2373 differentially methylated regions were identified. After the integration of its transcriptome and DNA methylation data, IL6, SYP, GNA01, and pro-opiomelanocortin (POMC) were the candidate genes that demonstrated a similar pattern between their mRNA expression and DNA methylation status. Of the 4 candidate genes, POMC, a pro-peptide which is processed to a range of bioactive peptide products like ACTH, was further confirmed to be expressed at low levels at both the mRNA and protein levels, which may be due to POMC promoter hypermethylation. Hypermethylation of the POMC promoter may contribute to its low expression, which may be involved in the pathogenesis of PHPT.
Collapse
Affiliation(s)
- Wen-Xuan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Shu Wang
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410000, Hunan, China
| | - Ting-Chao Wu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410000, Hunan, China
| | - Ling-Chao Cheng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yao Du
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410000, Hunan, China
| | - Wei Wu
- Department of Breast Thyroid Surgery of Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Chen Lin
- Department of Pathology, Xinjiang Medical University, Xinjiang, Urumqi, 830000, China.
| | - Xin-Ying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| | - Zhong-Liang Hu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410000, Hunan, China. .,Department of Pathology, Xinjiang Medical University, Xinjiang, Urumqi, 830000, China. .,Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
16
|
Stojilkovic SS, Previde RM, Sherman AS, Fletcher PA. Pituitary corticotroph identity and receptor-mediated signaling: A transcriptomics perspective. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25. [PMID: 36177190 PMCID: PMC9514143 DOI: 10.1016/j.coemr.2022.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent single-cell RNA sequencing has offered an unprecedented view of pituitary cell transcriptomic profiles. In this review, these new data are briefly discussed and compared with the classical literature, focusing on pituitary corticotrophs. These cells are introduced by discussing their marker genes, followed by a review of G protein-coupled receptor gene expression, heterotrimeric G protein genes, and genes encoding signaling pathways downstream of G proteins: adenylate cyclases, phosphodiesterases, phospholipases, and protein kinases. The expression patterns of enzyme-linked plasma membrane and nuclear hormone receptor genes was also analyzed. The overview of these selected groups of genes sheds new light on corticotrophic receptors and their signaling pathways and provides guidance for further basic and clinical research by identifying genes that not been studied so far.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: Stanko S. Stojilkovic ()
| | - Rafael M. Previde
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arthur S. Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Shipston MJ. Glucocorticoid action in the anterior pituitary gland: Insights from corticotroph physiology. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25:100358. [PMID: 36632471 PMCID: PMC9823093 DOI: 10.1016/j.coemr.2022.100358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The anterior pituitary is exposed to ultradian, circadian and stress-induced rhythms of circulating glucocorticoid hormones. Glucocorticoids feedback at the level of the pituitary corticotroph to control their own production through multiple mechanisms. This review highlights key insights from analysis of the dynamics of rapid and early glucocorticoid feedback that reveal both non-genomic and genomic mechanisms mediated by glucocorticoid receptors. Importantly, a common target is control of electrical excitability and calcium signalling although non-genomic effects may also involve control of hormone secretion distal to calcium signalling. Understanding the mechanisms and functional consequences of pulsatile glucocorticoid signalling in the anterior pituitary promises to elucidate the role of glucocorticoids in health and disease, as well as identifying potential diagnostic and therapeutic targets.
Collapse
|
18
|
Regazzo D, Mondin A, Scaroni C, Occhi G, Barbot M. The Role of Glucocorticoid Receptor in the Pathophysiology of Pituitary Corticotroph Adenomas. Int J Mol Sci 2022; 23:ijms23126469. [PMID: 35742910 PMCID: PMC9224504 DOI: 10.3390/ijms23126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocorticotropic Hormone (ACTH)-secreting pituitary adenomas are rare tumors characterized by autonomous ACTH secretion with a consequent increase in circulating cortisol levels. The resulting clinical picture is called Cushing’s disease (CD), a severe condition burdened with high morbidity and mortality. Apart from increased cortisol levels, CD patients exhibit a partial resistance to the negative glucocorticoid (GC) feedback, which is of paramount clinical utility, as the lack of suppression after dexamethasone administration is one of the mainstays for the differential diagnosis of CD. Since the glucocorticoid receptor (GR) is the main regulator of negative feedback of the hypothalamic–pituitary–adrenal axis in normal conditions, its implication in the pathophysiology of ACTH-secreting pituitary tumors is highly plausible. In this paper, we review GR function and structure and the mechanisms of GC resistance in ACTH-secreting pituitary tumors and assess the effects of the available medical therapies targeting GR on tumor growth.
Collapse
Affiliation(s)
- Daniela Regazzo
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Alessandro Mondin
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Gianluca Occhi
- Department of Biology, University of Padova, 35128 Padova, Italy;
| | - Mattia Barbot
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
- Correspondence:
| |
Collapse
|
19
|
Azeredo R, Machado M, Pereiro P, Barany A, Mancera JM, Costas B. Acute Inflammation Induces Neuroendocrine and Opioid Receptor Genes Responses in the Seabass Dicentrarchus labrax Brain. BIOLOGY 2022; 11:biology11030364. [PMID: 35336737 PMCID: PMC8945561 DOI: 10.3390/biology11030364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary It is generally accepted (in mammals and in teleost fish, too) that stressful conditions affect the performance of an immune response. What is still far from being known is at what extend does an immune process affects the neuroendocrine system. Vaccination for instance, is nowadays a common practice in aquaculture and little is known about its physiological implications other than immunization. Here is a first approach to the study of the European seabass’ brain gene expression patterns in response to a peripheral inflammatory process. Genes related to the stress response were focused, along with those related to the opioid system. Increased expression of certain genes suggests the activation of a stress response triggered by inflammatory signals. Additionally, contrasting expression patterns of the same gene (increased vs decreased) in the different brain regions (as well as the time needed for changes to happen) point at different functions. These results clearly show the reactivity of different brain responses to an immune response, highlighting the importance of further studies on downstream implications (behavior, feeding, welfare, reproduction). Abstract In fish, as observed in mammals, any stressful event affects the immune system to a larger or shorter extent. The neuroendocrine-immune axis is a bi-directional network of mobile compounds and their receptors that are shared between both systems (neuroendocrine and immune) and that regulate their respective responses. However, how and to what extent immunity modulates the neuroendocrine system is not yet fully elucidated. This study was carried out to understand better central gene expression response patterns in a high-valued farmed fish species to an acute peripheral inflammation, focusing on genes related to the hypothalamus-pituitary-interrenal axis and the opioid system. European seabass, Dicentrarchus labrax, were intra-peritoneally injected with either Freund’s Incomplete Adjuvant to induce a local inflammatory response or Hanks Balances Salt Solution to serve as the control. An undisturbed group was also included to take into account the effects due to handling procedures. To evaluate the outcomes of an acute immune response, fish were sampled at 4, 24, 48, and 72 h post-injection. The brain was sampled and dissected for isolation of different regions: telencephalon, optic tectum, hypothalamus, and pituitary gland. The expression of several genes related to the neuroendocrine response was measured by real-time PCR. Data were statistically analyzed by ANOVA and discriminant analyses to obtain these genes’ responsiveness for the different brain regions. Serotonergic receptors were upregulated in the telencephalon, whereas the optic tectum inhibited these transcription genes. The hypothalamus showed a somewhat delayed response in which serotonin and glucocorticoid receptors were concerned. Still, the hypothalamic corticotropin-releasing hormone played an important role in differentiating fish undergoing an inflammatory response from those not under such conditions. Opioid receptors gene expression increased in both the hypothalamus and the telencephalon, while in the optic tectum, most were downregulated. However, no changes in the pituitary gland were observed. The different brain regions under immune stimulation demonstrated clear, distinct responses regarding gene transcription rates as well as the time period needed for the effect to occur. Further, more integrative studies are required to associate functions to the evaluated genes more safely and better understand the triggering mechanisms.
Collapse
Affiliation(s)
- Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Correspondence: (R.A.); (B.C.)
| | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
| | - Patricia Pereiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Instituto de Investigaciones Marinas (IIM-CSIC), 36208 Vigo, Spain
| | - Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz, 11519 Puerto Real, Spain; (A.B.); (J.M.M.)
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz, 11519 Puerto Real, Spain; (A.B.); (J.M.M.)
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (R.A.); (B.C.)
| |
Collapse
|
20
|
Nitzsche AM, Fey K, Büttner K, Gröf M, Staszyk C. The Gingiva of Horses With Pituitary Pars Intermedia Dysfunction: A Macroscopic Anatomical Evaluation. Front Vet Sci 2022; 8:786971. [PMID: 35146012 PMCID: PMC8821874 DOI: 10.3389/fvets.2021.786971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Pituitary pars intermedia dysfunction (PPID) is a common neurodegenerative disease mainly in horses older than 15 years. The domestic equine population is following the same demographic change as that seen in humans; it is aging and veterinarians are asked to attend to geriatric horses more frequently. Common problems seen regularly in older equines are dental disorders and especially periodontal disease. As a systemic and endocrine disease, associated with delayed wound healing and impaired immune function, PPID should be considered before major dental treatment in aged equines is started. Possible negative effects of PPID on epithelial tissues could also affect the periodontium. Therefore, the aim of the present study was to identify gross changes in the gingiva associated with PPID. Fourteen horses with clinical signs of PPID and adenoma in the pituitary pars intermedia and 13 controls showing neither clinical signs nor PPID-associated histological changes in the pituitary gland were included. PPID-affected horses (26.9 ± 0.73 years) were significantly older than controls (20.0 ± 1.24 years). In the PPID-affected group, significantly more often an irregular and bulky appearance of the gingival texture was observed, as well as an irregular shape of the gingival margin. Furthermore, the sulcus gingivalis of cheek teeth frequently was deeper than 1 mm. These findings indicate a possible association between age, soft tissue alterations, and PPID and suggest a potential predisposition of PPID-affected horses for periodontal diseases.
Collapse
Affiliation(s)
- Anne Maria Nitzsche
- Equine Clinic, Internal Medicine, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
- *Correspondence: Anne Maria Nitzsche
| | - Kerstin Fey
- Equine Clinic, Internal Medicine, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Kathrin Büttner
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Manuela Gröf
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Justus-Liebig-University, Giessen, Germany
| | - Carsten Staszyk
- Faculty of Veterinary Medicine, Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
21
|
Massman LJ, Pereckas M, Zwagerman NT, Olivier-Van Stichelen S. O-GlcNAcylation Is Essential for Rapid Pomc Expression and Cell Proliferation in Corticotropic Tumor Cells. Endocrinology 2021; 162:6356179. [PMID: 34418053 PMCID: PMC8482966 DOI: 10.1210/endocr/bqab178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Pituitary adenomas have a staggering 16.7% lifetime prevalence and can be devastating in many patients because of profound endocrine and neurologic dysfunction. To date, no clear genomic or epigenomic markers correlate with their onset or severity. Herein, we investigate the impact of the O-GlcNAc posttranslational modification in their etiology. Found in more than 7000 human proteins to date, O-GlcNAcylation dynamically regulates proteins in critical signaling pathways, and its deregulation is involved in cancer progression and endocrine diseases such as diabetes. In this study, we demonstrated that O-GlcNAc enzymes were upregulated, particularly in aggressive adrenocorticotropin (ACTH)-secreting tumors, suggesting a role for O-GlcNAcylation in pituitary adenoma etiology. In addition to the demonstration that O-GlcNAcylation was essential for their proliferation, we showed that the endocrine function of pituitary adenoma is also dependent on O-GlcNAcylation. In corticotropic tumors, hypersecretion of the proopiomelanocortin (POMC)-derived hormone ACTH leads to Cushing disease, materialized by severe endocrine disruption and increased mortality. We demonstrated that Pomc messenger RNA is stabilized in an O-GlcNAc-dependent manner in response to corticotrophin-releasing hormone (CRH). By affecting Pomc mRNA splicing and stability, O-GlcNAcylation contributes to this new mechanism of fast hormonal response in corticotropes. Thus, this study stresses the essential role of O-GlcNAcylation in ACTH-secreting adenomas' pathophysiology, including cellular proliferation and hypersecretion.
Collapse
Affiliation(s)
- Logan J Massman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Michael Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Nathan T Zwagerman
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
- Correspondence: Stephanie Olivier-Van Stichelen, PhD, Department of Biochemistry, Medical College of Wisconsin, BSB355, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
22
|
Expression of candidate genes for residual feed intake in tropically adapted Bos taurus and Bos indicus bulls under thermoneutral and heat stress environmental conditions. J Therm Biol 2021; 99:102998. [PMID: 34420630 DOI: 10.1016/j.jtherbio.2021.102998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
The objectives of this study were to measure the relative expression of the ATP1A1, NR3C1, POMC, NPY, and LEP genes in Caracu (Bos taurus) and Nelore (Bos indicus) bulls submitted to feed efficiency tests at high environmental temperatures, and to evaluate differences in adaptability to tropical conditions between breeds. Thirty-five Caracu and 30 Nelore bulls were submitted to a feed efficiency test using automated feeding stations. At the end of the test, the animals were subjected to thermoneutral (TN) and heat stress (HS) conditions. Blood samples were collected after the exposure to the TN and HS conditions and the relative expression of genes was measured by qPCR. The bulls exhibited lower expression of ATP1A1 in the HS condition than in the TN condition (1.98 ± 0.27 and 2.86 ± 0.26, P = 0.02), while the relative expression of NR3C1, POMC, and LEP did not differ (P > 0.05) between climatic conditions. The breed and feed intake influenced NPY and LEP expression levels (P < 0.05). Different climate conditions associated with residual feed intake can modify the gene expression patterns of ATP1A1 and NPY. The association observed among all genes studied shows that they are involved in appetite control. Bos taurus and Bos indicus bulls exhibited similar adaptability to tropical climate conditions.
Collapse
|
23
|
Jaimes-Hoy L, Pérez-Maldonado A, Narváez Bahena E, de la Cruz Guarneros N, Rodríguez-Rodríguez A, Charli JL, Soberón X, Joseph-Bravo P. Sex Dimorphic Changes in Trh Gene Methylation and Thyroid-Axis Response to Energy Demands in Maternally Separated Rats. Endocrinology 2021; 162:bqab110. [PMID: 34043769 DOI: 10.1210/endocr/bqab110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis regulates energy balance through the pleiotropic action of thyroid hormones. HPT basal activity and stimulation by cold or voluntary exercise are repressed by previous chronic stress in adults. Maternal separation (MS) modifies HPT basal activity; we thus studied the response of the axis to energy demands and analyzed possible epigenetic changes on Trh promoter. Nonhandled (NH) or MS male Wistar rats were cold exposed 1 h at adulthood; Trh expression in the hypothalamic paraventricular nucleus (PVN) and serum thyrotropin (TSH) concentration were increased only in NH rats. Two weeks of voluntary exercise decreased fat mass and increased Trh expression, and thyroid hormones concentration changed proportionally to running distance in NH male rats and MS male rats. Although NH females ran more than MS and much more than males, exercise decreased body weight and fat mass only in NH rats with no change on any parameter of the HPT axis but increased Pomc expression in arcuate-nucleus of NH and Npy in MS females. Overall, the methylation pattern of PVN Trh gene promoter was similar in NH males and females; MS modified methylation of specific CpG sites, a thyroid hormone receptor (THR)-binding site present after the initiation site was hypomethylated in MS males; in MS females, the THR binding site of the proximal promoter (site 4) and 2 sites in the first intron were hypermethylated. Our studies showed that, in a sex-dimorphic manner, MS blunted the responses of HPT axis to energy demands in adult animals and caused methylation changes on Trh promoter that could alter T3 feedback.
Collapse
Affiliation(s)
- Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Adrián Pérez-Maldonado
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Elian Narváez Bahena
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Natalia de la Cruz Guarneros
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Xavier Soberón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
- Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| |
Collapse
|
24
|
Carney BC, Dougherty RD, Moffatt LT, Simbulan-Rosenthal CM, Shupp JW, Rosenthal DS. Promoter Methylation Status in Pro-opiomelanocortin Does Not Contribute to Dyspigmentation in Hypertrophic Scar. J Burn Care Res 2021; 41:339-346. [PMID: 31541238 DOI: 10.1093/jbcr/irz168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Burn injuries frequently result in hypertrophic scars (HTSs), specifically when excision and grafting are delayed due to limited resources or patient complications. In patient populations with dark baseline pigmentation, one symptom of HTS that often occurs is dyspigmentation. The mechanism behind dyspigmentation has not been explored, and, as such, prevention and treatment strategies for this morbidity are lacking. The mechanism by which cells make pigment is controlled at the apex of the pathway by pro-opiomelanocortin (POMC), which is cleaved to its products alpha-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropin hormone (ACTH). α-MSH and ACTH secreted by keratinocytes bind to melanocortin 1 receptor (MC1R), expressed on melanocytes, to initiate melanogenesis. POMC protein expression is upregulated in hyperpigmented scar compared to hypopigmented scar by an unknown mechanism in a Duroc pig model of HTS. POMC RNA levels, as well as the POMC gene promoter methylation status were investigated as a possible mechanism. DNA was isolated from biopsies obtained from distinct areas of hyper- or hypopigmented scar and normal skin. DNA was bisulfite-converted, and amplified using two sets of primers to observe methylation patterns in two different CpG islands near the POMC promoter. Amplicons were then sequenced and methylation patterns were evaluated. POMC gene expression was significantly downregulated in hypopigmented scar compared to normal skin, consistent with previously reported protein expression levels. There were significant changes in methylation of the POMC promoter; however, none that would account for the development of hyper- or hypopigmentation. Future work will focus on other areas of POMC transcriptional regulation.
Collapse
Affiliation(s)
- Bonnie C Carney
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC.,Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
| | - Ryan D Dougherty
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
| | - Lauren T Moffatt
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC.,Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
| | - Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
| | - Jeffrey W Shupp
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC.,Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC.,The Burn Center, MedStar Washington Hospital Center, Washington, DC.,Department of Surgery, Georgetown University School of Medicine, Washington, DC
| | - Dean S Rosenthal
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
25
|
Van Wyngene L, Vanderhaeghen T, Petta I, Timmermans S, Corbeels K, Van der Schueren B, Vandewalle J, Van Looveren K, Wallaeys C, Eggermont M, Dewaele S, Catrysse L, van Loo G, Beyaert R, Vangoitsenhoven R, Nakayama T, Tavernier J, De Bosscher K, Libert C. ZBTB32 performs crosstalk with the glucocorticoid receptor and is crucial in glucocorticoid responses to starvation. iScience 2021; 24:102790. [PMID: 34337361 PMCID: PMC8324811 DOI: 10.1016/j.isci.2021.102790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 03/25/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis forms a complex neuroendocrine system that regulates the body’s response to stress such as starvation. In contrast with the glucocorticoid receptor (GR), Zinc finger and BTB domain containing 32 (ZBTB32) is a transcription factor with poorly described functional relevance in physiology. This study shows that ZBTB32 is essential for the production of glucocorticoids (GCs) in response to starvation, since ZBTB32−/− mice fail to increase their GC production in the absence of nutrients. In terms of mechanism, GR-mediated upregulation of adrenal Scarb1 gene expression was absent in ZBTB32−/− mice, implicating defective cholesterol import as the cause of the poor GC synthesis. These lower GC levels are further associated with aberrations in the metabolic adaptation to starvation, which could explain the progressive weight gain of ZBTB32−/− mice. In conclusion, ZBTB32 performs a crosstalk with the GR in the metabolic adaptation to starvation via regulation of adrenal GC production. ZBTB32 is involved in the glucocorticoid production in response to starvation GR-mediated upregulation of adrenal Scarb1 regulates cholesterol import The weight gain of ZBTB32−/− mice is associated with aberrant metabolic adaptations
Collapse
Affiliation(s)
- Lise Van Wyngene
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Ioanna Petta
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium.,Department of Rheumatology, Ghent University, 9000 Ghent, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Katrien Corbeels
- Department of Chronic Diseases and Metabolism - Endocrinology, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Department of Chronic Diseases and Metabolism - Endocrinology, KU Leuven, Leuven, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Kelly Van Looveren
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Charlotte Wallaeys
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Melanie Eggermont
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Sylviane Dewaele
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Leen Catrysse
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Geert van Loo
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
| | - Roman Vangoitsenhoven
- Department of Chronic Diseases and Metabolism - Endocrinology, KU Leuven, Leuven, Belgium
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jan Tavernier
- Center for Medical Biotechnology, VIB Center for Medical Biotechnology, 9000 Ghent, Belgium.,Cytokine Receptor Laboratory (CRL), Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- Center for Medical Biotechnology, VIB Center for Medical Biotechnology, 9000 Ghent, Belgium.,Translational Nuclear Receptor Research Lab, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai,9000 Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Prévide RM, Wang K, Smiljanic K, Janjic MM, Nunes MT, Stojilkovic SS. Expression and Role of Thyrotropin Receptors in Proopiomelanocortin-Producing Pituitary Cells. Thyroid 2021; 31:850-858. [PMID: 33191870 PMCID: PMC8110008 DOI: 10.1089/thy.2020.0222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Thyrotropin (TSH) is well known as the hormone of the anterior pituitary thyrotrophs responsible for acting in the thyroid gland, where it stimulates synthesis and release of thyroid hormones through Gs and Gq/11 protein coupled TSH receptors (TSHRs). Methods: In this study, we examined whether the functional TSHRs are also expressed in cultured rat pituitary cells, using double immunocytochemistry, quantitative reverse transcription-polymerase chain reaction analysis, cAMP and hormone measurements, and single-cell calcium imaging. Results: Double immunocytochemistry revealed the expression of TSHRs in cultured corticotrophs and melanotrophs, in addition to previously identified receptors in folliculostellate cells. The functional coupling of these receptors to the Gq/11 signaling pathway was not observed, as demonstrated by the lack of TSH activation of IP3-dependent calcium mobilization in these cells when bathed in calcium-deficient medium. However, TSH increased cAMP production in a time- and concentration-dependent manner and facilitated calcium influx in single corticotrophs and melanotrophs, indicating their coupling to the Gs signaling pathway. Consistent with these findings, TSH stimulated adrenocorticotropin and β-endorphin release in male and female pituitary cells in a time- and concentration-dependent manner without affecting the expression of proopiomelanocortin gene. Conclusions: These results indicate that TSH is a potential paracrine modulator of anterior pituitary corticotrophs and melanotrophs, controlling the exocytotic but not the transcriptional pathway in a cAMP/calcium influx-dependent manner.
Collapse
Affiliation(s)
- Rafael Maso Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
- Address correspondence to: Rafael Maso Prévide, PhD, Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Room 8N240, 10 Center Drive, Bethesda, MD 20892-1829, USA
| | - Kai Wang
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Marija M. Janjic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Moisan MP. Sexual Dimorphism in Glucocorticoid Stress Response. Int J Mol Sci 2021; 22:ijms22063139. [PMID: 33808655 PMCID: PMC8003420 DOI: 10.3390/ijms22063139] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic stress is encountered in our everyday life and is thought to contribute to a number of diseases. Many of these stress-related disorders display a sex bias. Because glucocorticoid hormones are the main biological mediator of chronic stress, researchers have been interested in understanding the sexual dimorphism in glucocorticoid stress response to better explain the sex bias in stress-related diseases. Although not yet demonstrated for glucocorticoid regulation, sex chromosomes do influence sex-specific biology as soon as conception. Then a transient rise in testosterone start to shape the male brain during the prenatal period differently to the female brain. These organizational effects are completed just before puberty. The cerebral regions implicated in glucocorticoid regulation at rest and after stress are thereby impacted in a sex-specific manner. After puberty, the high levels of all gonadal hormones will interact with glucocorticoid hormones in specific crosstalk through their respective nuclear receptors. In addition, stress occurring early in life, in particular during the prenatal period and in adolescence will prime in the long-term glucocorticoid stress response through epigenetic mechanisms, again in a sex-specific manner. Altogether, various molecular mechanisms explain sex-specific glucocorticoid stress responses that do not exclude important gender effects in humans.
Collapse
|
28
|
Fukuoka H, Shichi H, Yamamoto M, Takahashi Y. The Mechanisms Underlying Autonomous Adrenocorticotropic Hormone Secretion in Cushing's Disease. Int J Mol Sci 2020; 21:ijms21239132. [PMID: 33266265 PMCID: PMC7730156 DOI: 10.3390/ijms21239132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cushing’s disease caused due to adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (ACTHomas) leads to hypercortisolemia, resulting in increased morbidity and mortality. Autonomous ACTH secretion is attributed to the impaired glucocorticoid negative feedback (glucocorticoid resistance) response. Interestingly, other conditions, such as ectopic ACTH syndrome (EAS) and non-neoplastic hypercortisolemia (NNH, also known as pseudo-Cushing’s syndrome) also exhibit glucocorticoid resistance. Therefore, to differentiate between these conditions, several dynamic tests, including those with desmopressin (DDAVP), corticotrophin-releasing hormone (CRH), and Dex/CRH have been developed. In normal pituitary corticotrophs, ACTH synthesis and secretion are regulated mainly by CRH and glucocorticoids, which are the ACTH secretion-stimulating and -suppressing factors, respectively. These factors regulate ACTH synthesis and secretion through genomic and non-genomic mechanisms. Conversely, glucocorticoid negative feedback is impaired in ACTHomas, which could be due to the overexpression of 11β-HSD2, HSP90, or TR4, or loss of expression of CABLES1 or nuclear BRG1 proteins. Genetic analysis has indicated the involvement of several genes in the etiology of ACTHomas, including USP8, USP48, BRAF, and TP53. However, the association between glucocorticoid resistance and these genes remains unclear. Here, we review the clinical aspects and molecular mechanisms of ACTHomas and compare them to those of other related conditions.
Collapse
Affiliation(s)
- Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
- Correspondence: ; Tel.: +81-78-382-5861; Fax: +81-78-382-2080
| | - Hiroki Shichi
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (H.S.); (Y.T.)
| | - Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Hospital, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (H.S.); (Y.T.)
- Department of Diabetes and Endocrinology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
29
|
Mens Sana in Corpore Sano: Does the Glycemic Index Have a Role to Play? Nutrients 2020; 12:nu12102989. [PMID: 33003562 PMCID: PMC7599769 DOI: 10.3390/nu12102989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Although diet interventions are mostly related to metabolic disorders, nowadays they are used in a wide variety of pathologies. From diabetes and obesity to cardiovascular diseases, to cancer or neurological disorders and stroke, nutritional recommendations are applied to almost all diseases. Among such disorders, metabolic disturbances and brain function and/or diseases have recently been shown to be linked. Indeed, numerous neurological functions are often associated with perturbations of whole-body energy homeostasis. In this regard, specific diets are used in various neurological conditions, such as epilepsy, stroke, or seizure recovery. In addition, Alzheimer’s disease and Autism Spectrum Disorders are also considered to be putatively improved by diet interventions. Glycemic index diets are a novel developed indicator expected to anticipate the changes in blood glucose induced by specific foods and how they can affect various physiological functions. Several results have provided indications of the efficiency of low-glycemic index diets in weight management and insulin sensitivity, but also cognitive function, epilepsy treatment, stroke, and neurodegenerative diseases. Overall, studies involving the glycemic index can provide new insights into the relationship between energy homeostasis regulation and brain function or related disorders. Therefore, in this review, we will summarize the main evidence on glycemic index involvement in brain mechanisms of energy homeostasis regulation.
Collapse
|
30
|
Lee DY, Brayer KJ, Mitani Y, Burns EA, Rao PH, Bell D, Williams MD, Ferrarotto R, Pytynia KB, El-Naggar AK, Ness SA. Oncogenic Orphan Nuclear Receptor NR4A3 Interacts and Cooperates with MYB in Acinic Cell Carcinoma. Cancers (Basel) 2020; 12:E2433. [PMID: 32867110 PMCID: PMC7565926 DOI: 10.3390/cancers12092433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
Acinic cell carcinoma (AcCC) is a morphologically distinctive salivary gland malignancy often associated with chromosome rearrangements leading to overexpression of the NR4A3 transcription factor. However, little is known about how NR4A3 contributes to AcCC biology. Detailed RNA-sequencing of 21 archived AcCC samples revealed fusion reads arising from recurrent t(4;9), t(9;12), t(8;9) or t(2;4) chromosomal translocations, which positioned highly active enhancers adjacent to the promoter of the NR4A3 gene or the closely related NR4A2 gene, resulting in their aberrant overexpression. Transcriptome analyses revealed several distinct subgroups of AcCC tumors, including a subgroup that overexpressed both NR4A3 and MSANTD3. A poor survival subset of the tumors with high-grade transformation expressed NR4A3 and POMC as well as MYB, an oncogene that is the major driver in a different type of salivary gland tumor, adenoid cystic carcinoma. The combination of NR4A3 and MYB showed cooperativity in regulating a distinct set of genes. In addition, the ligand binding domain of NR4A3 directly bound the Myb DNA binding domain. Transformation assays indicated that, while overexpressed NR4A3 was sufficient to generate transformed colonies, the combination of NR4A3 plus Myb was more potent, leading to anchorage-independent growth and increased cellular invasiveness. The results confirm that NR4A3 and NR4A2 are the main driver genes of AcCC and suggest that concurrent overexpression of NR4A3 and MYB defines a subset of AcCC patients with high-grade transformation that display exceptionally poor outcome.
Collapse
Affiliation(s)
- David Y. Lee
- Department of Internal Medicine, Division of Hematology/Oncology, Section of Radiation Oncology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.Y.L.); (E.A.B.)
| | - Kathryn J. Brayer
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Yoshitsugu Mitani
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.M.); (D.B.); (M.D.W.)
| | - Eric A. Burns
- Department of Internal Medicine, Division of Hematology/Oncology, Section of Radiation Oncology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.Y.L.); (E.A.B.)
| | - Pulivarthi H. Rao
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Diana Bell
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.M.); (D.B.); (M.D.W.)
| | - Michelle D. Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.M.); (D.B.); (M.D.W.)
| | - Renata Ferrarotto
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kristen B. Pytynia
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Adel K. El-Naggar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.M.); (D.B.); (M.D.W.)
| | - Scott A. Ness
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
31
|
García-Martínez A, Fuentes-Fayos AC, Fajardo C, Lamas C, Cámara R, López-Muñoz B, Aranda I, Luque RM, Picó A. Differential Expression of MicroRNAs in Silent and Functioning Corticotroph Tumors. J Clin Med 2020; 9:jcm9061838. [PMID: 32545591 DOI: 10.3390/jcm9061838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
The potential role of miRNAs in the silencing mechanisms of pituitary neuroendocrine tumors (PitNETs) has not been addressed. The aim of the present study was to evaluate the expression levels and the potential associated role of some miRNAs, pathways, and transcription factors in the silencing mechanisms of corticotroph tumors (CTs). Accordingly, the expression of miR-375, miR-383, miR-488, miR-200a and miR-103; of PKA, MAP3K8, MEK, MAPK3, NGFIB, NURR1, PITX1, and STAT3 were analyzed via qRT-PCR in 23 silent and 24 functioning CTs. miR-200a and miR-103 showed significantly higher expression in silent than in functioning CTs, even after eliminating the bias of tumor size, therefore enabling the differentiation between the two variants. Additionally, miR-383 correlated negatively with TBX19 in silent CTs, a transcription factor related with the processing of POMC that can participate in the silencing mechanisms of CTs. Finally, the gene expression levels of miR-488, miR-200a, and miR-103 were significantly higher in macroadenomas (functioning and silent) than in microadenomas. The evidence from this study indicates that miRNAs could be involved in the pathophysiology of CTs. The translational implications of these findings suggest that pharmacological treatments specifically targeting these miRNAs could become a promising therapeutic option for these patients.
Collapse
Affiliation(s)
- Araceli García-Martínez
- Research Laboratory, Alicante General University Hospital-Institute for Health and Biomedical Research (ISABIAL), CIBERER, 03010 Alicante, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology Physiology and Immunology, University of Cordoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Carmen Fajardo
- Endocrinology Department, Hospital Universitario de La Ribera, 46600 Alzira, Valencia, Spain
| | - Cristina Lamas
- Endocrinology Department, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Rosa Cámara
- Endocrinology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Beatriz López-Muñoz
- Endocrinology Department, Alicante General University Hospital-ISABIAL, 03010 Alicante, Spain
| | - Ignacio Aranda
- Pathology Department, Alicante General University Hospital-ISABIAL, 03010 Alicante, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology Physiology and Immunology, University of Cordoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Antonio Picó
- Endocrinology Department, Alicante General University Hospital-ISABIAL, Miguel Hernández University, CIBERER, 03010 Alicante, Spain
| |
Collapse
|
32
|
Hibara A, Yamaguchi T, Kojima M, Yamano Y, Higuchi M. Nicotine inhibits expression of Prrx1 in pituitary stem/progenitor cells through epigenetic regulation, leading to a delayed supply of growth-hormone-producing cells. Growth Horm IGF Res 2020; 51:65-74. [PMID: 32146343 DOI: 10.1016/j.ghir.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/27/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Nicotine, a toxic component of smoking, adversely affects animal growth and reproduction by decreasing secretion of anterior pituitary hormones. However, it has not been clarified whether nicotine inhibits the supply of endocrine cells in the pituitary gland. The present study investigated short- and long-term effects of persistent nicotine exposure on the pituitary glands of young animals. DESIGN Three-week-old male Wistar rats were exposed to nicotine (1 mg/kg body weight/day) for 7 days, and gene expression, cell numbers, and DNA methylation status were analyzed on the following day and 4 weeks after final treatments. RESULTS The expression level of the stem cell marker Sox2 was not changed by nicotine exposure throughout the experiment. On the other hand, nicotine inhibited expression of a progenitor cell marker, Prrx1, and growth hormone (Gh). Immunohistochemical analysis showed that the SOX2-positive cells positive for PRRX1 in nicotine-treated groups decreased to 61% (4-week-old) and 70% (8-week-old) of the saline-treated controls. In addition, the proportion of GH-positive cells in nicotine-treated group was 14% lower than that of saline-treated controls. Furthermore, first intron hypermethylation of Prrx1 was detected by a bisulfite sequence of genomic DNA from the anterior lobe of the rat pituitary gland. CONCLUSIONS We show that persistent nicotine exposure in young animals inhibits expression of Prrx1 in pituitary stem/progenitor cells through epigenetic regulation, leading to a delayed supply of GH-producing cells.
Collapse
Affiliation(s)
- Ayaka Hibara
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Takahiro Yamaguchi
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Miki Kojima
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Yoshiaki Yamano
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Masashi Higuchi
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan.
| |
Collapse
|
33
|
Summers KM, Bush SJ, Wu C, Su AI, Muriuki C, Clark EL, Finlayson HA, Eory L, Waddell LA, Talbot R, Archibald AL, Hume DA. Functional Annotation of the Transcriptome of the Pig, Sus scrofa, Based Upon Network Analysis of an RNAseq Transcriptional Atlas. Front Genet 2020; 10:1355. [PMID: 32117413 PMCID: PMC7034361 DOI: 10.3389/fgene.2019.01355] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
The domestic pig (Sus scrofa) is both an economically important livestock species and a model for biomedical research. Two highly contiguous pig reference genomes have recently been released. To support functional annotation of the pig genomes and comparative analysis with large human transcriptomic data sets, we aimed to create a pig gene expression atlas. To achieve this objective, we extended a previous approach developed for the chicken. We downloaded RNAseq data sets from public repositories, down-sampled to a common depth, and quantified expression against a reference transcriptome using the mRNA quantitation tool, Kallisto. We then used the network analysis tool Graphia to identify clusters of transcripts that were coexpressed across the merged data set. Consistent with the principle of guilt-by-association, we identified coexpression clusters that were highly tissue or cell-type restricted and contained transcription factors that have previously been implicated in lineage determination. Other clusters were enriched for transcripts associated with biological processes, such as the cell cycle and oxidative phosphorylation. The same approach was used to identify coexpression clusters within RNAseq data from multiple individual liver and brain samples, highlighting cell type, process, and region-specific gene expression. Evidence of conserved expression can add confidence to assignment of orthology between pig and human genes. Many transcripts currently identified as novel genes with ENSSSCG or LOC IDs were found to be coexpressed with annotated neighbouring transcripts in the same orientation, indicating they may be products of the same transcriptional unit. The meta-analytic approach to utilising public RNAseq data is extendable to include new data sets and new species and provides a framework to support the Functional Annotation of Animals Genomes (FAANG) initiative.
Collapse
Affiliation(s)
- Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Chunlei Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Andrew I. Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Emily L. Clark
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | | | - Lel Eory
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Lindsey A. Waddell
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Richard Talbot
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Alan L. Archibald
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
34
|
Leppert B, Strunz S, Seiwert B, Schlittenbauer L, Schlichting R, Pfeiffer C, Röder S, Bauer M, Borte M, Stangl GI, Schöneberg T, Schulz A, Karkossa I, Rolle-Kampczyk UE, Thürmann L, von Bergen M, Escher BI, Junge KM, Reemtsma T, Lehmann I, Polte T. Maternal paraben exposure triggers childhood overweight development. Nat Commun 2020; 11:561. [PMID: 32047148 PMCID: PMC7012887 DOI: 10.1038/s41467-019-14202-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
Parabens are preservatives widely used in consumer products including cosmetics and food. Whether low-dose paraben exposure may cause adverse health effects has been discussed controversially in recent years. Here we investigate the effect of prenatal paraben exposure on childhood overweight by combining epidemiological data from a mother–child cohort with experimental approaches. Mothers reporting the use of paraben-containing cosmetic products have elevated urinary paraben concentrations. For butyl paraben (BuP) a positive association is observed to overweight within the first eight years of life with a stronger trend in girls. Consistently, maternal BuP exposure of mice induces a higher food intake and weight gain in female offspring. The effect is accompanied by an epigenetic modification in the neuronal Pro-opiomelanocortin (POMC) enhancer 1 leading to a reduced hypothalamic POMC expression. Here we report that maternal paraben exposure may contribute to childhood overweight development by altered POMC-mediated neuronal appetite regulation. Parabens are preservatives widely used in consumer products including cosmetics and food. Here the authors demonstrate that maternal paraben exposure may contribute to childhood overweight development by an altered neuronal appetite regulation.
Collapse
Affiliation(s)
- Beate Leppert
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Sandra Strunz
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Department of Dermatology Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Bettina Seiwert
- Department for Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Linda Schlittenbauer
- Department for Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Rita Schlichting
- Department for Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christiane Pfeiffer
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stefan Röder
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Mario Bauer
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Michael Borte
- Children's Hospital, Municipal Hospital St. Georg, Leipzig, Germany
| | - Gabriele I Stangl
- Institute of Agriculture and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena, Leipzig, Germany
| | - Torsten Schöneberg
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Isabell Karkossa
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Loreen Thürmann
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Environmental Epigenetics and Lung Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Molecular Epidemiology, Berlin Institute of Health (BIH), Berlin, Germany
| | - Martin von Bergen
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Beate I Escher
- Department for Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kristin M Junge
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Thorsten Reemtsma
- Department for Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Irina Lehmann
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany. .,Environmental Epigenetics and Lung Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Molecular Epidemiology, Berlin Institute of Health (BIH), Berlin, Germany.
| | - Tobias Polte
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany. .,Department of Dermatology Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany.
| |
Collapse
|
35
|
Neou M, Villa C, Armignacco R, Jouinot A, Raffin-Sanson ML, Septier A, Letourneur F, Diry S, Diedisheim M, Izac B, Gaspar C, Perlemoine K, Verjus V, Bernier M, Boulin A, Emile JF, Bertagna X, Jaffrezic F, Laloe D, Baussart B, Bertherat J, Gaillard S, Assié G. Pangenomic Classification of Pituitary Neuroendocrine Tumors. Cancer Cell 2020; 37:123-134.e5. [PMID: 31883967 DOI: 10.1016/j.ccell.2019.11.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/07/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are common, with five main histological subtypes: lactotroph, somatotroph, and thyrotroph (POU1F1/PIT1 lineage); corticotroph (TBX19/TPIT lineage); and gonadotroph (NR5A1/SF1 lineage). We report a comprehensive pangenomic classification of PitNETs. PitNETs from POU1F1/PIT1 lineage showed an epigenetic signature of diffuse DNA hypomethylation, with transposable elements expression and chromosomal instability (except for GNAS-mutated somatotrophs). In TPIT lineage, corticotrophs were divided into three classes: the USP8-mutated with overt secretion, the USP8-wild-type with increased invasiveness and increased epithelial-mesenchymal transition, and the large silent tumors with gonadotroph transdifferentiation. Unexpected expression of gonadotroph markers was also found in GNAS-wild-type somatotrophs (SF1 expression), challenging the current definition of SF1/gonadotroph lineage. This classification improves our understanding and affects the clinical stratification of patients with PitNETs.
Collapse
Affiliation(s)
- Mario Neou
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Chiara Villa
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Department of Pathological Cytology and Anatomy, Foch Hospital, 92151 Suresnes, France; Department of Endocrinology, Sart Tilman B35, 4000 Liège, Belgium
| | - Roberta Armignacco
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Anne Jouinot
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Marie-Laure Raffin-Sanson
- Department of Endocrinology, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 92100 Boulogne Billancourt, France; UE4340, Université de Versailles Saint-Quentin-en-Yvelines Montigny-le-Bretonneux, 78000 Versailles, France
| | - Amandine Septier
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Franck Letourneur
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Plate-Forme Séquençage et Génomique (Genom'IC), INSERM U1016, Institut Cochin, 75014 Paris, France
| | - Ségolène Diry
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Marc Diedisheim
- Department of Diabetology, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France
| | - Brigitte Izac
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Plate-Forme Séquençage et Génomique (Genom'IC), INSERM U1016, Institut Cochin, 75014 Paris, France
| | - Cassandra Gaspar
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Sorbonne Université, Inserm, UMS PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, 75013 Paris, France
| | - Karine Perlemoine
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Victoria Verjus
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France
| | - Michèle Bernier
- Department of Pathological Cytology and Anatomy, Foch Hospital, 92151 Suresnes, France
| | - Anne Boulin
- Department of Diagnostic and Interventional Neuroradiology, Foch Hospital, 92151 Suresnes, France
| | - Jean-François Emile
- Department of Pathology, Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 92100 Boulogne Billancourt, France
| | - Xavier Bertagna
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France
| | - Florence Jaffrezic
- INRA, UMR 1313 GABI, Université Paris Saclay, AgroParisTech, 78352 Jouy-en-Josas, France
| | - Denis Laloe
- INRA, UMR 1313 GABI, Université Paris Saclay, AgroParisTech, 78352 Jouy-en-Josas, France
| | | | - Jérôme Bertherat
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France
| | - Stephan Gaillard
- Department of Neurosurgery, Foch Hospital, 92151 Suresnes, France
| | - Guillaume Assié
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes-Université de Paris, 75006 Paris, France; Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France.
| |
Collapse
|
36
|
Ciato D, Albani A. Molecular Mechanisms of Glucocorticoid Resistance in Corticotropinomas: New Developments and Drug Targets. Front Endocrinol (Lausanne) 2020; 11:21. [PMID: 32117053 PMCID: PMC7025590 DOI: 10.3389/fendo.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cushing's disease is characterized by excessive adrenocorticotropin hormone (ACTH) secretion caused by a corticotroph tumor of the pituitary gland, leading to hypercortisolism and increased morbidity and mortality. The molecular causes of the disease are not completely understood, therefore more research is needed to discover novel molecular targets and more effective treatments. To date, the SSTR-analog pasireotide is the only approved drug for Cushing's Disease treatment that is directly targeting the source of the disease. Targeting directly the activity of glucocorticoid receptor or the factors modulating it might be a new valid option for the medical management of Cushing's disease. Here, we briefly review the molecular mechanisms involved in the glucocorticoid negative feedback and glucocorticoid resistance and examine novel targets and therapies that might effectively restore glucocorticoid sensitivity.
Collapse
|
37
|
Makita K, Takayasu S, Usutani M, Nakada-Nakayama Y, Kageyama K, Sugawara A, Daimon M. O-linked β-N-acetylglucosamine transferase is involved in pro-opiomelanocortin gene expression in mouse pituitary corticotroph AtT-20 cells. Neurosci Lett 2019; 711:134407. [DOI: 10.1016/j.neulet.2019.134407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
|
38
|
Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease. Front Neuroendocrinol 2019; 54:100773. [PMID: 31344387 DOI: 10.1016/j.yfrne.2019.100773] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/07/2023]
Abstract
Proopiomelanocortin (POMC) is a key mediator of satiety. Epigenetic marks such as DNA methylation may modulate POMC expression and provide a biological link between early life exposures and later phenotype. Animal studies suggest epigenetic marks at POMC are influenced by maternal energy excess and restriction, prenatal stress and Triclosan exposure. Postnatal factors including energy excess, folate, vitamin A, conjugated linoleic acid and leptin may also affect POMC methylation. Recent human studies suggest POMC DNA methylation is influenced by maternal nutrition in early pregnancy and associated with childhood and adult obesity. Studies in children propose a link between POMC DNA methylation and elevated lipids and insulin, independent of body habitus. This review brings together evidence from animal and human studies and suggests that POMC is sensitive to nutritional programming and is associated with a wide range of weight-related and metabolic outcomes.
Collapse
|
39
|
Schalla MA, Stengel A. Activity Based Anorexia as an Animal Model for Anorexia Nervosa-A Systematic Review. Front Nutr 2019; 6:69. [PMID: 31165073 PMCID: PMC6536653 DOI: 10.3389/fnut.2019.00069] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder affecting around 1 per 100 persons. However, the knowledge about its underlying pathophysiology is limited. To address the need for a better understanding of AN, an animal model was established early on in the late 1960's: the activity-based anorexia (ABA) model in which rats have access to a running wheel combined with restricted food access leading to self-starving/body weight loss and hyperactivity. Both symptoms, separately or combined, can also be found in patients with AN. The aim of this systematic review was to compile the current knowledge about this animal model as well as to address gaps in knowledge. Using the data bases of PubMed, Embase and Web of science 102 publications were identified meeting the search criteria. Here, we show that the ABA model mimics core features of human AN and has been characterized with regards to brain alterations, hormonal changes as well as adaptations of the immune system. Moreover, pharmacological interventions in ABA animals and new developments, such as a chronic adaptation of the ABA model, will be highlighted. The chronic model might be well suited to display AN characteristics but should be further characterized. Lastly, limitations of the model will be discussed.
Collapse
Affiliation(s)
- Martha A Schalla
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Kameda H, Yamamoto M, Tone Y, Tone M, Melmed S. Proton Sensitivity of Corticotropin-Releasing Hormone Receptor 1 Signaling to Proopiomelanocortin in Male Mice. Endocrinology 2019; 160:276-291. [PMID: 30535142 PMCID: PMC6324021 DOI: 10.1210/en.2018-00920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
Abstract
Because an acidic cellular microenvironment is engendered by inflammation and may determine cell differentiation, we elucidated the impact of acidic conditions on induction of proopiomelanocortin (POMC) expression. Here, we demonstrate mechanisms for proton sensitivity of CRH receptor 1 (CRHR1) signaling to POMC and ACTH production. Low pH (6.8) resulted in doubling of POMC expression and ACTH production in pituitary cell line AtT-20 and in primary mouse pituitary cells. Using CRISPR knockout, we show that CRHR1 is necessary for acid-induced POMC expression, and this induction is mediated by CRHR1 histidine residues and calmodulin-dependent protein kinase II in both pituitary corticotroph cells and in nonpituitary cell lines expressing ectopic ACTH. In contrast, CRH ligand binding affinity to CRHR1 was decreased with acidic pH, implying that proton-induced POMC expression prevails in acidic conditions independently of CRH ligand binding. The results indicate that proton-induced CRHR1 signaling regulates ACTH production in response to an acidic microenvironment.
Collapse
Affiliation(s)
- Hiraku Kameda
- Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Masaaki Yamamoto
- Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yukiko Tone
- Research Division of Immunology, Pacific Heart Lung and Blood Institute, Los Angeles, California
| | - Masahide Tone
- Research Division of Immunology, Pacific Heart Lung and Blood Institute, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, California
- Correspondence: Shlomo Melmed, MD, Room 2015, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048. E-mail:
| |
Collapse
|
41
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
42
|
Weijing K, Liping Z, Tiantian Z, Pei Z, Yan M. A Case of Congenital Isolated Adrenocorticotropic Hormone Deficiency Caused by Two Novel Mutations in the TBX19 Gene. Front Endocrinol (Lausanne) 2019; 10:251. [PMID: 31057487 PMCID: PMC6482258 DOI: 10.3389/fendo.2019.00251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
Congenital isolated adrenocorticotropic hormone (ACTH) deficiency (CIAD) is a rare disorder which can result in 20% mortality in the neonatal period if misdiagnosed. A 2 years and 7 months old boy was hospitalized many times because of recurrent hypoglycemia. On initial physical examination, the patient showed special appearance and indications of fast growth (≥P97). Laboratory investigations revealed low levels of ACTH and cortisol in his plasma. Except thyroid-stimulating hormone, the anterior pituitary hormone concentrations were normal. Molecular data showed compound heterozygosity for two novel mutations in the TBX19 gene (encoding the transcription factor T-Box 19). Mutation c.205C>T was inherited from mother and the fragment deletion (from g.168,247,374 to g.168,278,264) was from father. Hydrocortisone replacement therapy was effective. We reported two novel TBX19 mutations, expanding the mutation spectrum of this disorder, in a CIAD patient who presented with special appearance, signs of fast growth, and thyroid-stimulating hormone derangement. In addition, for avoiding misdiagnosis, criterion for ACTH and cortisol detection of CIAD should be established.
Collapse
Affiliation(s)
- Kong Weijing
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zou Liping
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| | - Zhang Tiantian
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- Department of Pediatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhang Pei
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| | - Meng Yan
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Meng Yan
| |
Collapse
|
43
|
Ciato D, Li R, Monteserin Garcia JL, Papst L, D'Annunzio S, Hristov M, Tichomirowa MA, Belaya Z, Rozhinskaya L, Buchfelder M, Theodoropoulou M, Paez-Pereda M, Stalla GK. Inhibition of Heat Shock Factor 1 Enhances Repressive Molecular Mechanisms on the POMC Promoter. Neuroendocrinology 2019; 109:362-373. [PMID: 30995664 DOI: 10.1159/000500200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cushing's disease (CD) is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary tumours. They express high levels of heat shock protein 90 and heat shock factor 1 (HSF1) in comparison to the normal tissue counterpart, indicating activated cellular stress. AIMS Our objectives were: (1) to correlate HSF1 expression with clinical features and hormonal/radiological findings of CD, and (2) to investigate the effects of HSF1 inhibition as a target for CD treatment. PATIENTS/METHODS We examined the expression of total and pSer326HSF1 (marker for its transcriptional activation) by Western blot on eight human CD tumours and compared to the HSF1 status of normal pituitary. We screened a cohort of 45 patients with CD for HSF1 by immunohistochemistry and correlated the HSF1 immunoreactivity score with the available clinical data. We evaluated the effects of HSF1 silencing with RNA interference and the HSF1 inhibitor KRIBB11 in AtT-20 cells and four primary cultures of human corticotroph tumours. RESULTS We show that HSF1 protein is highly expressed and transcriptionally active in CD tumours in comparison to normal pituitary. The immunoreactivity score for HSF1 did not correlate with the typical clinical features of the disease. HSF1 inhibition reduced proopiomelanocortin (Pomc) transcription in AtT-20 cells. The HSF1 inhibitor KRIBB11 suppressed ACTH synthesis from 75% of human CD tumours in primary cell culture. This inhibitory action on Pomc transcription was mediated by increased glucocorticoid receptor and suppressed Nurr77/Nurr1 and AP-1 transcriptional activities. CONCLUSIONS These data show that HSF1 regulates POMC transcription. Pharmacological targeting of HSF1 may be a promising treatment option for the control of excess ACTH secretion in CD.
Collapse
Affiliation(s)
- Denis Ciato
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany,
| | - Ran Li
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lilia Papst
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sarah D'Annunzio
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University of Padua, Padua, Italy
| | - Michael Hristov
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria A Tichomirowa
- Service d'Endocrinologie, Centre Hospitalier du Nord, Ettelbruck, Luxembourg
| | - Zhanna Belaya
- The National Research Centre for Endocrinology, Moscow, Russian Federation
| | | | - Michael Buchfelder
- Neurochirurgische Klinik, Klinikum der Universität Erlangen, Erlangen, Germany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marcelo Paez-Pereda
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Günter Karl Stalla
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
- Medicover Neuroendocrinology, Munich, Germany
| |
Collapse
|
44
|
Rinne P, Lyytikäinen LP, Raitoharju E, Kadiri JJ, Kholova I, Kähönen M, Lehtimäki T, Oksala N. Pro-opiomelanocortin and its Processing Enzymes Associate with Plaque Stability in Human Atherosclerosis - Tampere Vascular Study. Sci Rep 2018; 8:15078. [PMID: 30305673 PMCID: PMC6180013 DOI: 10.1038/s41598-018-33523-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/27/2018] [Indexed: 02/08/2023] Open
Abstract
α-melanocyte-stimulating hormone (α-MSH) is processed from pro-opiomelanocortin (POMC) and mediates anti-inflammatory actions in leukocytes. α-MSH also promotes macrophage reverse cholesterol transport by inducing ATP-binding cassette transporters ABCA1 and ABCG1. Here we investigated the regulation of POMC and α-MSH expression in atherosclerosis. First, transcript levels of POMC and its processing enzymes were analyzed in human arterial plaques (n = 68) and non-atherosclerotic controls (n = 24) as well as in whole blood samples from coronary artery disease patients (n = 55) and controls (n = 45) by microarray. POMC expression was increased in femoral plaques compared to control samples as well as in unstable advanced plaques. α-MSH-producing enzyme, carboxypeptidase E, was down-regulated, whereas prolylcarboxypeptidase, an enzyme inactivating α-MSH, was up-regulated in unstable plaques compared to stable plaques, suggesting a possible reduction in intraplaque α-MSH levels. Second, immunohistochemical analyses revealed the presence of α-MSH in atherosclerotic plaques and its localization in macrophages and other cell types. Lastly, supporting the role of α-MSH in reverse cholesterol transport, POMC expression correlated with ABCA1 and ABCG1 in human plaque and whole blood samples. In conclusion, α-MSH is expressed in atherosclerotic plaques and its processing enzymes associate with plaque stability, suggesting that measures to enhance the local bioavailability of α-MSH might protect against atherosclerosis.
Collapse
Affiliation(s)
- Petteri Rinne
- Research Center for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - James J Kadiri
- Research Center for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ivana Kholova
- Department of Pathology, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Niku Oksala
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland. .,Department of Surgery, Tampere University Hospital, Tampere, Finland and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland and Finnish Cardiovascular Research Center-Tampere, Tampere, Finland.
| |
Collapse
|
45
|
Gounden V, Rampursat YD, Jialal I. Secretory tumors of the pituitary gland: a clinical biochemistry perspective. ACTA ACUST UNITED AC 2018; 57:150-164. [DOI: 10.1515/cclm-2018-0552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
Abstract
The pituitary gland is responsible for the production and/or secretion of various hormones that play a vital role in regulating endocrine function within the body. Secretory tumors of the anterior pituitary predominantly, pituitary adenomas, collectively account for 10%–25% of central nervous system tumors requiring surgical treatment. The most common secretory tumors are prolactinomas, which can be diagnosed by basal prolactin levels. Acromegaly can be diagnosed by basal insulin growth-like factor 1 levels and the failure of growth hormone (GH) to suppress during an oral glucose tolerance test. Cushing disease can be diagnosed by demonstrating hypercortisolemia evidenced by increased salivary cortisol levels in the evening, increased urine free cortisol excretion and failure of plasma cortisol to suppress following oral dexamethasone given overnight (1.0 mg). We also discuss the diagnosis of the rarer thyroid-stimulating hormone and gonadotrophin secretory tumors. Morbidity is associated with tumor occurrence, clinical sequelae as well as the related medical, surgical and radiological management. This review focuses on the pathogenesis of secretory tumors of the anterior pituitary with emphasis on molecular mechanisms associated with tumorigenesis and the major role of the clinical chemistry laboratory in diagnosis and management of these tumors.
Collapse
Affiliation(s)
- Verena Gounden
- Department of Chemical Pathology , University of KwaZulu Natal and National Health Laboratory Services, Inkosi Albert Luthuli Central Hospital , Durban , South Africa
| | - Yashna D. Rampursat
- Department of Chemical Pathology , University of KwaZulu Natal and National Health Laboratory Services, Inkosi Albert Luthuli Central Hospital , Durban , South Africa
| | - Ishwarlal Jialal
- California North-State University, College of Medicine , Elk Grove, CA 95757 , USA
- Director, Section of Clinical Chemistry, VA Medical Center , Sacramento, CA , USA
| |
Collapse
|
46
|
Saeger W, Müller M, Buslei R, Flitsch J, Fahlbusch R, Buchfelder M, Knappe UJ, Crock PA, Lüdecke DK. Recurrences of Pituitary Adenomas or Second De Novo Tumors: Comparisons with First Tumors. World Neurosurg 2018; 119:e118-e124. [PMID: 30026158 DOI: 10.1016/j.wneu.2018.07.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Recurrences of pituitary adenomas are not so rare. METHODS In the German Registry of Pituitary Tumors, more than 12,000 surgical specimens were collected between 1967 and 2012, of which 312 patients with altogether 334 recurrences (n = 646 specimens) were included in our study. RESULTS The histopathology of 162 recurrent adenomas could be compared with the original tumor and 37 second recurrences could be compared with the first recurrence. Comparing the proliferation index (Ki-67) of the original and the first recurrent tumor (n = 162), we found an unchanged index in 43 cases (26%), whereas in 69 cases (43%) the index increased and in 50 cases (31%) it decreased. Comparing the first with the second recurrence (n = 37), we found an unchanged index in 8 cases (22%), an increased index in 15 cases (40%), and a decreased index in 14 cases (38%). The third recurrence showed an unchanged index in 1 case (20%), an increased index in 2 cases (40%), and a decreased index in 2 cases (40%). p53 was unchanged in recurrences in 44% of cases, increased in 33%, and decreased in 22%. In 4 cases, adenomas developed into adenomas with strongly increased proliferation (formerly atypical adenomas, now aggressive adenomas) for the first recurrence, and 9 recurrences became aggressive adenomas. A change of tumor type without change of the common transcription factor occurred in 82 cases. CONCLUSIONS A second independent de novo adenoma was present in 10 cases, probably due to changes of transcription factors.
Collapse
Affiliation(s)
- Wolfgang Saeger
- Institute of Neuropathology, University of Hamburg, Hamburg, Germany.
| | - Maximilian Müller
- Institute of Neuropathology, University of Hamburg, Hamburg, Germany
| | - Rolf Buslei
- Institute of Pathology, SozialStiftung Bamberg, Bamberg, Germany
| | - Jörg Flitsch
- Clinic of Neurosurgery, University of Hamburg, Hamburg, Germany
| | | | - Michael Buchfelder
- Clinic of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrich J Knappe
- Department of Neurosurgery, Johannes-Wesling-Klinikum Minden, Minden, Germany
| | - Patricia A Crock
- Department of Paediatric Endocrinology, John Hunter Children's Hospital, University of Newcastle, Newcastle, Australia
| | | |
Collapse
|
47
|
Spencer RL, Chun LE, Hartsock MJ, Woodruff ER. Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Front Neuroendocrinol 2018; 49:52-71. [PMID: 29288075 DOI: 10.1016/j.yfrne.2017.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
Abstract
Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body. Stress-induced glucocorticoid secretion also modulates the state of these same cells in response to both physiological and psychological stressors. We review the strong functional interrelationships between glucocorticoids and the circadian system, and discuss how these interactions optimize the appropriate cellular and systems response to stress throughout the day. We also discuss clinical implications of this dual aspect of glucocorticoid signaling, especially for conditions of circadian and HPA axis dysregulation.
Collapse
Affiliation(s)
- Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lauren E Chun
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
48
|
The Effects of Smad3 on Adrenocorticotropic Hormone-Secreting Pituitary Adenoma Development, Cell Proliferation, Apoptosis, and Hormone Secretion. World Neurosurg 2018. [PMID: 29524699 DOI: 10.1016/j.wneu.2018.02.181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Down-regulation of mothers against decapentaplegic homolog 3 (Smad3) results in the formation of tumors both in vivo and in vitro. However, little is known about the effect of Smad3 on adrenocorticotropic hormone-secreting pituitary adenomas (ACTH-PAs). Our objective was to study the expression and effect of Smad3 in ACTH-PAs and its possible mechanisms. METHODS Smad3, COOH-terminally phosphorylated mothers against decapentaplegic homolog 3 (pSmad3), and mothers against decapentaplegic homolog 2 proteins (Smad2) were detected in samples from 5 normal anterior pituitaries and 18 ACTH-PAs by Western blot and immunohistochemical analysis. Then, Smad3 expression was up-regulated by Smad3-CMV plasmid or down-regulated by small interfering RNA in ACTH tumor cells (AtT-20) in vitro. Cell proliferation, apoptosis, ACTH level, and pSmad3, B-cell lymphoma/lewkmia-2 (BCL-2), and pro-opiomelanocortin (POMC) protein expression in the AtT-20 cells were measured to investigate the antitumor effects of Smad3. RESULTS Reduced expression of Smad3 and pSmad3 but unchanged Smad2 levels were found in ACTH-PAs compared with normal pituitaries. In vitro, the overexpression of Smad3 inhibited cell proliferation, promoted cell apoptosis, and decreased ACTH secretion; in contrast, Smad3 knockdown increased cell proliferation and decreased cell apoptosis but had no significant effect on ACTH secretion. At the same time, overexpression of Smad3 increased pSmad3 but inhibited BCL-2 and POMC protein expression. On the contrary, underexpression of Smad3 inhibited pSmad3 but promoted BCL-2 and POMC protein expression. CONCLUSIONS Smad3 is underexpressed in ACTH-PAs. Reversing the expression of Smad3 in AtT-20 cells could suppress cell growth, promote tumor apoptosis, and decrease ACTH secretion. Tumor suppression was possibly mediated by the promotion of pSmad3 and the reduction of BCL-2 and POMC expression.
Collapse
|
49
|
Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes. G3-GENES GENOMES GENETICS 2018; 8:859-873. [PMID: 29378821 PMCID: PMC5844307 DOI: 10.1534/g3.117.300508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.
Collapse
|
50
|
Rubinstein M, Low MJ. Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity. FEBS Lett 2017; 591:2593-2606. [PMID: 28771698 PMCID: PMC9975356 DOI: 10.1002/1873-3468.12776] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
A specter is haunting the world, the specter of obesity. During the last decade, this pandemia has skyrocketed threatening children, adolescents and lower income families worldwide. Although driven by an increase in the consumption of ultraprocessed edibles of poor nutritional value, the obesogenic changes in contemporary human lifestyle affect people differently, revealing that some individuals are more prone to develop increased adiposity. During the last years, we performed a variety of genetic, evolutionary, biochemical and behavioral experiments that allowed us to understand how a group of neurons present in the arcuate nucleus of the hypothalamus regulate the expression of the proopiomelanocortin (Pomc) gene and induce satiety. We disentangled the neuronal transcriptional code of Pomc by identifying the cis-acting regulatory elements and primary transcription factors controlling hypothalamic Pomc expression and determined their functional importance in the regulation of food intake and adiposity. Altogether, our studies reviewed here shed light on the power and limitations of the mammalian central satiety pathways and may contribute to the development of individual and collective strategies to reduce the debilitating effects of the self-induced obesity pandemia.
Collapse
Affiliation(s)
- Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|