1
|
Bagde PH, Kandpal M, Rani A, Kumar S, Mishra A, Jha HC. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J Cell Biochem 2025; 126:e70000. [PMID: 39887732 DOI: 10.1002/jcb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target. Notably, compared to healthy cells, cancer cells have a higher protein homeostasis requirement and a faster protein turnover rate. The ubiquitin-proteasome system (UPS) helps cancer cells increase rapidly and experience less apoptotic cell death. Therefore, understanding UPS is essential to design and discover some effective inhibitors for cancer therapy. Hereby, we have focused on the role of the 26S proteasome complex, mainly the UPS, in carcinogenesis and seeking potential therapeutic targets in treating numerous cancers.
Collapse
Affiliation(s)
- Pranit Hemant Bagde
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
2
|
Sokolowski EK, Kursawe R, Selvam V, Bhuiyan RM, Thibodeau A, Zhao C, Spracklen CN, Ucar D, Stitzel ML. Multi-omic human pancreatic islet endoplasmic reticulum and cytokine stress response mapping provides type 2 diabetes genetic insights. Cell Metab 2024; 36:2468-2488.e7. [PMID: 39383866 PMCID: PMC11798411 DOI: 10.1016/j.cmet.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Endoplasmic reticulum (ER) and inflammatory stress responses contribute to islet dysfunction in type 2 diabetes (T2D). Comprehensive genomic understanding of these human islet stress responses and whether T2D-associated genetic variants modulate them is lacking. Here, comparative transcriptome and epigenome analyses of human islets exposed ex vivo to these stressors revealed 30% of expressed genes and 14% of islet cis-regulatory elements (CREs) as stress responsive, modulated largely in an ER- or cytokine-specific fashion. T2D variants overlapped 86 stress-responsive CREs, including 21 induced by ER stress. We linked the rs6917676-T T2D risk allele to increased islet ER-stress-responsive CRE accessibility and allele-specific β cell nuclear factor binding. MAP3K5, the ER-stress-responsive putative rs6917676 T2D effector gene, promoted stress-induced β cell apoptosis. Supporting its pro-diabetogenic role, MAP3K5 expression correlated inversely with human islet β cell abundance and was elevated in T2D β cells. This study provides genome-wide insights into human islet stress responses and context-specific T2D variant effects.
Collapse
Affiliation(s)
- Eishani K Sokolowski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Vijay Selvam
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Redwan M Bhuiyan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Chi Zhao
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| |
Collapse
|
3
|
Chen H, Xiao J, Huang B, Que J, Liu M. Geraniol (GER) attenuated chronic sleep restriction (CSR)-induced neuroinflammation in adolescent mice. J Neuroimmunol 2024; 393:578400. [PMID: 38991453 DOI: 10.1016/j.jneuroim.2024.578400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Sleep insufficiency is a significant health problem worldwide, and adolescent sleep restriction (SR) could induce multiple neurodevelopmental disorders in the central nervous system (CNS). Microglial-mediated neuroinflammation plays a vital role in multiple neurological diseases, and recent research showed the regulation effect of immunoproteasome on microglia functions. Geraniol (GER), an important ingredient in many essential oils, possesses diverse pharmacological properties like anti-inflammatory and antioxidant. The present study was designed to evaluate the neuroprotective effect of GER on SR in adolescent mice and further investigate the underlying mechanisms. Our results displayed that 14 days of chronic sleep restriction (CSR) induced cognitive decline, and anxiety-like and attention-deficit behaviors, which were mitigated by GER pretreatment. GER administration also reversed microglial pro-inflammatory response under CSR stimulation in the anterior cingulate cortex (ACC) regions by reducing the expression and secretion of cytokines like IL-1β and TNF-α. Mechanism research showed that LMP7 mRNA was selectively up-regulated under CSR treatment but down-regulated by GER administration. Proteasome activity and protein expression of LMP7 were consistent with mRNA data. ONX-0914 was applied to inhibit LMP7 selectively, and data validated that GER might alleviate CSR-induced neuroinflammation by regulating LMP7. Our study provides evidence that LMP7 is a critical regulator of CSR-induced proinflammation, and geraniol might be a promising therapy against CSR-induced neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hengdao Chen
- Department of Anesthesiology and Perioperative Medicine, The 900 Hospital of the Joint Logistic Support Force of the People's Liberation Army of China, Fuzhou 350025, China
| | - Jinrong Xiao
- Department of Anesthesiology and Perioperative Medicine, The 900 Hospital of the Joint Logistic Support Force of the People's Liberation Army of China, Fuzhou 350025, China
| | - Bin Huang
- Department of Anesthesiology and Perioperative Medicine, The 900 Hospital of the Joint Logistic Support Force of the People's Liberation Army of China, Fuzhou 350025, China
| | - Jun Que
- Department of Anesthesiology and Perioperative Medicine, The 900 Hospital of the Joint Logistic Support Force of the People's Liberation Army of China, Fuzhou 350025, China
| | - Minsheng Liu
- Department of Anesthesiology and Perioperative Medicine, The 900 Hospital of the Joint Logistic Support Force of the People's Liberation Army of China, Fuzhou 350025, China.
| |
Collapse
|
4
|
Ott C. Mapping the interplay of immunoproteasome and autophagy in different heart failure phenotypes. Free Radic Biol Med 2024; 218:149-165. [PMID: 38570171 DOI: 10.1016/j.freeradbiomed.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Proper protein degradation is required for cellular protein homeostasis and organ function. Particularly, in post-mitotic cells, such as cardiomyocytes, unbalanced proteolysis due to inflammatory stimuli and oxidative stress contributes to organ dysfunction. To ensure appropriate protein turnover, eukaryotic cells exert two main degradation systems, the ubiquitin-proteasome-system and the autophagy-lysosome-pathway. It has been shown that proteasome activity affects the development of cardiac dysfunction differently, depending on the type of heart failure. Studies analyzing the inducible subtype of the proteasome, the immunoproteasome (i20S), demonstrated that the i20S plays a double role in diseased hearts. While i20S subunits are increased in cardiac hypertrophy, atrial fibrillation and partly in myocarditis, the opposite applies to diabetic cardiomyopathy and ischemia/reperfusion injury. In addition, the i20S appears to play a role in autophagy modulation depending on heart failure phenotype. This review summarizes the current literature on the i20S in different heart failure phenotypes, emphasizing the two faces of i20S in injured hearts. A selection of established i20S inhibitors is introduced and signaling pathways linking the i20S to autophagy are highlighted. Mapping the interplay of the i20S and autophagy in different types of heart failure offers potential approaches for developing treatment strategies against heart failure.
Collapse
Affiliation(s)
- Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Burov AV, Rodin AA, Karpov VL, Morozov AV. The Role of Ubiquitin-Proteasome System in the Biology of Stem Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2043-2053. [PMID: 38462448 DOI: 10.1134/s0006297923120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 03/12/2024]
Abstract
Selective degradation of cellular proteins by the ubiquitin-proteasome system (UPS) is one of the key regulatory mechanisms in eukaryotic cells. A growing body of evidence indicates that UPS is involved in the regulation of fundamental processes in mammalian stem cells, including proliferation, differentiation, cell migration, aging, and programmed cell death, via proteolytic degradation of key transcription factors and cell signaling proteins and post-translational modification of target proteins with ubiquitin. Studying molecular mechanisms of proteostasis in stem cells is of great importance for the development of new therapeutic approaches aimed at the treatment of autoimmune and neurodegenerative diseases, cancer, and other socially significant pathologies. This review discusses current data on the UPS functions in stem cells.
Collapse
Affiliation(s)
- Alexander V Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Andrey A Rodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vadim L Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Thomaidou S, Munoz Garcia A, de Lange S, Gan J, van der Slik AR, Hoeben RC, Roep BO, Carlotti F, Zaldumbide A. IFNɣ but not IFNα increases recognition of insulin defective ribosomal product-derived antigen to amplify islet autoimmunity. Diabetologia 2023; 66:2075-2086. [PMID: 37581620 PMCID: PMC10542729 DOI: 10.1007/s00125-023-05991-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
AIMS/HYPOTHESIS The inflammatory milieu characteristic of insulitis affects translation fidelity and generates defective ribosomal products (DRiPs) that participate in autoimmune beta cell destruction in type 1 diabetes. Here, we studied the role of early innate cytokines (IFNα) and late immune adaptive events (IFNɣ) in insulin DRiP-derived peptide presentation to diabetogenic CD8+ T cells. METHODS Single-cell transcriptomics of human pancreatic islets was used to study the composition of the (immuno)proteasome. Specific inhibition of the immunoproteasome catalytic subunits was achieved using siRNA, and antigenic peptide presentation at the cell surface of the human beta cell line EndoC-βH1 was monitored using peptide-specific CD8 T cells. RESULTS We found that IFNγ induces the expression of the PSMB10 transcript encoding the β2i catalytic subunit of the immunoproteasome in endocrine beta cells, revealing a critical role in insulin DRiP-derived peptide presentation to T cells. Moreover, we showed that PSMB10 is upregulated in a beta cell subset that is preferentially destroyed in the pancreases of individuals with type 1 diabetes. CONCLUSIONS/INTERPRETATION Our data highlight the role of the degradation machinery in beta cell immunogenicity and emphasise the need for evaluation of targeted immunoproteasome inhibitors to limit beta cell destruction in type 1 diabetes. DATA AVAILABILITY The single-cell RNA-seq dataset is available from the Gene Expression Omnibus (GEO) using the accession number GSE218316 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE218316 ).
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Amadeo Munoz Garcia
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine de Lange
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jin Gan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno R van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart O Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
Rashid MU, Lorzadeh S, Gao A, Ghavami S, Coombs KM. PSMA2 knockdown impacts expression of proteins involved in immune and cellular stress responses in human lung cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166617. [PMID: 36481484 DOI: 10.1016/j.bbadis.2022.166617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Proteasome subunit alpha type-2 (PSMA2) is a critical component of the 20S proteasome, which is the core particle of the 26S proteasome complex and is involved in cellular protein quality control by recognizing and recycling defective proteins. PSMA2 expression dysregulation has been detected in different human diseases and viral infections. No study yet has reported PSMA2 knockdown (KD) effects on the cellular proteome. METHODS We used SOMAScan, an aptamer-based multiplexed technique, to measure >1300 human proteins to determine the impact of PSMA2 KD on A549 human lung epithelial cells. RESULTS PSMA2 KD resulted in significant dysregulation of 52 cellular proteins involved in different bio-functions, including cellular movement and development, cell death and survival, and cancer. The immune system and signal transduction were the most affected cellular functions. PSMA2 KD caused dysregulation of several signaling pathways involved in immune response, cytokine signaling, organismal growth and development, cellular stress and injury (including autophagy and unfolded protein response), and cancer responses. CONCLUSIONS In summary, this study helps us better understand the importance of PSMA2 in different cellular functions, signaling pathways, and human diseases.
Collapse
Affiliation(s)
- Mahamud-Ur Rashid
- University of Manitoba, Department of Medical Microbiology & Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Kevin M Coombs
- University of Manitoba, Department of Medical Microbiology & Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada; Children's Hospital Research Institute of Manitoba, Room 513, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
8
|
Benaglio P, Zhu H, Okino ML, Yan J, Elgamal R, Nariai N, Beebe E, Korgaonkar K, Qiu Y, Donovan MK, Chiou J, Wang G, Newsome J, Kaur J, Miller M, Preissl S, Corban S, Aylward A, Taipale J, Ren B, Frazer KA, Sander M, Gaulton KJ. Type 1 diabetes risk genes mediate pancreatic beta cell survival in response to proinflammatory cytokines. CELL GENOMICS 2022; 2:100214. [PMID: 36778047 PMCID: PMC9903835 DOI: 10.1016/j.xgen.2022.100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/17/2022] [Accepted: 10/15/2022] [Indexed: 11/13/2022]
Abstract
We combined functional genomics and human genetics to investigate processes that affect type 1 diabetes (T1D) risk by mediating beta cell survival in response to proinflammatory cytokines. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) in beta cells using ATAC-seq and snATAC-seq and linked them to target genes using co-accessibility and HiChIP. Using a genome-wide CRISPR screen in EndoC-βH1 cells, we identified 867 genes affecting cytokine-induced survival, and genes promoting survival and up-regulated in cytokines were enriched at T1D risk loci. Using SNP-SELEX, we identified 2,229 variants in cytokine-responsive cCREs altering transcription factor (TF) binding, and variants altering binding of TFs regulating stress, inflammation, and apoptosis were enriched for T1D risk. At the 16p13 locus, a fine-mapped T1D variant altering TF binding in a cytokine-induced cCRE interacted with SOCS1, which promoted survival in cytokine exposure. Our findings reveal processes and genes acting in beta cells during inflammation that modulate T1D risk.
Collapse
Affiliation(s)
- Paola Benaglio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Han Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mei-Lin Okino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jian Yan
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- School of Medicine, Northwest University, Xi’an, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Ruth Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Naoki Nariai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elisha Beebe
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Katha Korgaonkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Yunjiang Qiu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Joshua Chiou
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jacklyn Newsome
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jaspreet Kaur
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Sierra Corban
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Aylward
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Kelly A. Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Maike Sander
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Giusti L, Tesi M, Ciregia F, Marselli L, Zallocco L, Suleiman M, De Luca C, Del Guerra S, Zuccarini M, Trerotola M, Eizirik DL, Cnop M, Mazzoni MR, Marchetti P, Lucacchini A, Ronci M. The Protective Action of Metformin against Pro-Inflammatory Cytokine-Induced Human Islet Cell Damage and the Mechanisms Involved. Cells 2022; 11:2465. [PMID: 35954309 PMCID: PMC9368307 DOI: 10.3390/cells11152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Metformin, a drug widely used in type 2 diabetes (T2D), has been shown to protect human β-cells exposed to gluco- and/or lipotoxic conditions and those in islets from T2D donors. We assessed whether metformin could relieve the human β-cell stress induced by pro-inflammatory cytokines (which mediate β-cells damage in type 1 diabetes, T1D) and investigated the underlying mechanisms using shotgun proteomics. Human islets were exposed to 50 U/mL interleukin-1β plus 1000 U/mL interferon-γ for 48 h, with or without 2.4 µg/mL metformin. Glucose-stimulated insulin secretion (GSIS) and caspase 3/7 activity were studied, and a shotgun label free proteomics analysis was performed. Metformin prevented the reduction of GSIS and the activation of caspase 3/7 induced by cytokines. Proteomics analysis identified more than 3000 proteins in human islets. Cytokines alone altered the expression of 244 proteins (145 up- and 99 down-regulated), while, in the presence of metformin, cytokine-exposure modified the expression of 231 proteins (128 up- and 103 downregulated). Among the proteins inversely regulated in the two conditions, we found proteins involved in vesicle motility, defense against oxidative stress (including peroxiredoxins), metabolism, protein synthesis, glycolysis and its regulation, and cytoskeletal proteins. Metformin inhibited pathways linked to inflammation, immune reactions, mammalian target of rapamycin (mTOR) signaling, and cell senescence. Some of the changes were confirmed by Western blot. Therefore, metformin prevented part of the deleterious actions of pro-inflammatory cytokines in human β-cells, which was accompanied by islet proteome modifications. This suggests that metformin, besides use in T2D, might be considered for β-cell protection in other types of diabetes, possibly including early T1D.
Collapse
Affiliation(s)
- Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Guerra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mariachiara Zuccarini
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Trerotola
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maurizio Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
Blood Immunoproteasome Activity Is Regulated by Sex, Age and in Chronic Inflammatory Diseases: A First Population-Based Study. Cells 2021; 10:cells10123336. [PMID: 34943847 PMCID: PMC8699521 DOI: 10.3390/cells10123336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno- and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression.
Collapse
|
11
|
Krishnan R, Kim JO, Jang YS, Oh MJ. Proteasome subunit beta type-8 from sevenband grouper negatively regulates cytokine responses by interfering NF-κB signaling upon nervous necrosis viral infection. FISH & SHELLFISH IMMUNOLOGY 2021; 113:118-124. [PMID: 33848637 DOI: 10.1016/j.fsi.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
During viral infection, proper regulation of immune signaling is essential to ensure successful clearance of virus. Immunoproteasome is constitutively expressed and gets induced during viral infection by interferon signaling and contributes to regulate proinflammatory cytokine production and activation of the NF-κB pathway. In this study, we identified Hs-PSMB8, a member of the proteasome β-subunits (PSMB) family, as a negative regulator of NF-κB responses during NNV infection. The transient expression of Hs-PSMB8 delayed the appearance of cytopathic effect (CPE) and showed a higher viral load. The Hs-PSMB8 interacted with NNV which was confirmed using immunocolocalization and co-IP. Overexpression of Hs-PSMB8 diminished virus induced activation of the NF-κB promoters and downregulated the activation of IL-1β, TNFα, IL6, IL8, IFNγ expression upon NNV infection. Collectively, our results demonstrate that PSMB8 is an important regulator of NF-κB signaling during NNV infection in sevenband grouper.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Jong-Oh Kim
- Institute of Marine Biotechnology, Pukyong National University, Busan, Republic of Korea.
| | - Yo-Seb Jang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
12
|
Carré A, Mallone R. Making Insulin and Staying Out of Autoimmune Trouble: The Beta-Cell Conundrum. Front Immunol 2021; 12:639682. [PMID: 33854508 PMCID: PMC8039383 DOI: 10.3389/fimmu.2021.639682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/12/2021] [Indexed: 12/28/2022] Open
Abstract
Autoimmune type 1 diabetes (T1D) results from the intricate crosstalk of various immune cell types. CD8+ T cells dominate the pro-inflammatory milieu of islet infiltration (insulitis), and are considered as key effectors of beta-cell destruction, through the recognition of MHC Class I-peptide complexes. The pathways generating MHC Class I-restricted antigens in beta cells are poorly documented. Given their specialized insulin secretory function, the associated granule processing and degradation pathways, basal endoplasmic reticulum stress and susceptibility to additional stressors, alternative antigen processing and presentation (APP) pathways are likely to play a significant role in the generation of the beta-cell immunopeptidome. As direct evidence is missing, we here intersect the specificities of beta-cell function and the literature about APP in other cellular models to generate some hypotheses on APPs relevant to beta cells. We further elaborate on the potential role of these pathways in T1D pathogenesis, based on the current knowledge of antigens presented by beta cells. A better understanding of these pathways may pinpoint novel mechanisms amenable to therapeutic targeting to modulate the immunogenicity of beta cells.
Collapse
Affiliation(s)
- Alexia Carré
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
13
|
Andersen PAK, Petrenko V, Rose PH, Koomen M, Fischer N, Ghiasi SM, Dahlby T, Dibner C, Mandrup-Poulsen T. Proinflammatory Cytokines Perturb Mouse and Human Pancreatic Islet Circadian Rhythmicity and Induce Uncoordinated β-Cell Clock Gene Expression via Nitric Oxide, Lysine Deacetylases, and Immunoproteasomal Activity. Int J Mol Sci 2020; 22:E83. [PMID: 33374803 PMCID: PMC7795908 DOI: 10.3390/ijms22010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic β-cell-specific clock knockout mice develop β-cell oxidative-stress and failure, as well as glucose-intolerance. How inflammatory stress affects the cellular clock is under-investigated. Real-time recording of Per2:luciferase reporter activity in murine and human pancreatic islets demonstrated that the proinflammatory cytokine interleukin-1β (IL-1β) lengthened the circadian period. qPCR-profiling of core clock gene expression in insulin-producing cells suggested that the combination of the proinflammatory cytokines IL-1β and interferon-γ (IFN-γ) caused pronounced but uncoordinated increases in mRNA levels of multiple core clock genes, in particular of reverse-erythroblastosis virus α (Rev-erbα), in a dose- and time-dependent manner. The REV-ERBα/β agonist SR9009, used to mimic cytokine-mediated Rev-erbα induction, reduced constitutive and cytokine-induced brain and muscle arnt-like 1 (Bmal1) mRNA levels in INS-1 cells as expected. SR9009 induced reactive oxygen species (ROS), reduced insulin-1/2 (Ins-1/2) mRNA and accumulated- and glucose-stimulated insulin secretion, reduced cell viability, and increased apoptosis levels, reminiscent of cytokine toxicity. In contrast, low (<5,0 μM) concentrations of SR9009 increased Ins-1 mRNA and accumulated insulin-secretion without affecting INS-1 cell viability, mirroring low-concentration IL-1β mediated β-cell stimulation. Inhibiting nitric oxide (NO) synthesis, the lysine deacetylase HDAC3 and the immunoproteasome reduced cytokine-mediated increases in clock gene expression. In conclusion, the cytokine-combination perturbed the intrinsic clocks operative in mouse and human pancreatic islets and induced uncoordinated clock gene expression in INS-1 cells, the latter effect associated with NO, HDAC3, and immunoproteasome activity.
Collapse
Affiliation(s)
- Phillip Alexander Keller Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, D05.2147c Rue Michel-Servet, 1 CH-1211 Geneva 4, Switzerland; (V.P.); (C.D.)
| | - Peter Horskjær Rose
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Melissa Koomen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Nico Fischer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Tina Dahlby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, D05.2147c Rue Michel-Servet, 1 CH-1211 Geneva 4, Switzerland; (V.P.); (C.D.)
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark; (P.A.K.A.); (P.H.R.); (M.K.); (N.F.); (S.M.G.); (T.D.)
| |
Collapse
|
14
|
Mabbott NA, Bradford BM, Pal R, Young R, Donaldson DS. The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. Int J Mol Sci 2020; 21:E7299. [PMID: 33023255 PMCID: PMC7582561 DOI: 10.3390/ijms21197299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (B.M.B.); (R.P.); (R.Y.); (D.S.D.)
| | | | | | | | | |
Collapse
|
15
|
Khilji MS, Bresson SE, Verstappen D, Pihl C, Andersen PAK, Agergaard JB, Dahlby T, Bryde TH, Klindt K, Nielsen CK, Walentinsson A, Zivkovic D, Bousquet MP, Tyrberg B, Richardson SJ, Morgan NG, Mandrup-Poulsen T, Marzec MT. The inducible β5i proteasome subunit contributes to proinsulin degradation in GRP94-deficient β-cells and is overexpressed in type 2 diabetes pancreatic islets. Am J Physiol Endocrinol Metab 2020; 318:E892-E900. [PMID: 32255680 DOI: 10.1152/ajpendo.00372.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proinsulin is a misfolding-prone protein, and its efficient breakdown is critical when β-cells are confronted with high-insulin biosynthetic demands, to prevent endoplasmic reticulum stress, a key trigger of secretory dysfunction and, if uncompensated, apoptosis. Proinsulin degradation is thought to be performed by the constitutively expressed standard proteasome, while the roles of other proteasomes are unknown. We recently demonstrated that deficiency of the proinsulin chaperone glucose-regulated protein 94 (GRP94) causes impaired proinsulin handling and defective insulin secretion associated with a compensated endoplasmic reticulum stress response. Taking advantage of this model of restricted folding capacity, we investigated the role of different proteasomes in proinsulin degradation, reasoning that insulin secretory dynamics require an inducible protein degradation system. We show that the expression of only one enzymatically active proteasome subunit, namely, the inducible β5i-subunit, was increased in GRP94 CRISPR/Cas9 knockout (KO) cells. Additionally, the level of β5i-containing intermediate proteasomes was significantly increased in these cells, as was β5i-related chymotrypsin-like activity. Moreover, proinsulin levels were restored in GRP94 KO upon β5i small interfering RNA-mediated knockdown. Finally, the fraction of β-cells expressing the β5i-subunit is increased in human islets from type 2 diabetes patients. We conclude that β5i is an inducible proteasome subunit dedicated to the degradation of mishandled proinsulin.
Collapse
Affiliation(s)
- Muhammad Saad Khilji
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Emilie Bresson
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Danielle Verstappen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Radboud Universiteit, Nijmegen, The Netherlands
| | - Celina Pihl
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Phillip Alexander Keller Andersen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jette Bach Agergaard
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Dahlby
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tenna Holgersen Bryde
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Klindt
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Kronborg Nielsen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Walentinsson
- Translational Science and Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Dusan Zivkovic
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Björn Tyrberg
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Thomas Mandrup-Poulsen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michal Tomasz Marzec
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism, and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Homma T, Fujii J. Emerging connections between oxidative stress, defective proteolysis, and metabolic diseases. Free Radic Res 2020; 54:931-946. [PMID: 32308060 DOI: 10.1080/10715762.2020.1734588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
17
|
Accelerated onset of CNS prion disease in mice co-infected with a gastrointestinal helminth pathogen during the preclinical phase. Sci Rep 2020; 10:4554. [PMID: 32165661 PMCID: PMC7067812 DOI: 10.1038/s41598-020-61483-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/27/2020] [Indexed: 01/12/2023] Open
Abstract
Prion infections in the central nervous system (CNS) can cause extensive neurodegeneration. Systemic inflammation can affect the progression of some neurodegenerative disorders. Therefore, we used the gastrointestinal helminth pathogen Trichuris muris to test the hypothesis that a chronic systemic inflammatory response to a gastrointestinal infection would similarly affect CNS prion disease pathogenesis. Mice were injected with prions directly into the CNS and subsequently orally co-infected with T. muris before the onset of clinical signs. We show that co-infection with a low dose of T. muris that leads to the development of a chronic T helper cell type 1-polarized systemic immune response accelerated the onset of clinical prion disease. In contrast, co-infection with a high dose of T. muris that induces a T helper cell type 2-polarized immune response did not affect prion disease pathogenesis. The reduced survival times in mice co-infected with a low dose of T. muris on d 105 after CNS prion infection coincided with enhanced astrocyte activation in the brain during the preclinical phase. These data aid our understanding of how systemic inflammation may augment the progression of neurodegeneration in the CNS.
Collapse
|
18
|
Khilji MS, Verstappen D, Dahlby T, Burstein Prause MC, Pihl C, Bresson SE, Bryde TH, Keller Andersen PA, Klindt K, Zivkovic D, Bousquet-Dubouch MP, Tyrberg B, Mandrup-Poulsen T, Marzec MT. The intermediate proteasome is constitutively expressed in pancreatic beta cells and upregulated by stimulatory, low concentrations of interleukin 1 β. PLoS One 2020; 15:e0222432. [PMID: 32053590 PMCID: PMC7018053 DOI: 10.1371/journal.pone.0222432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
A central and still open question regarding the pathogenesis of autoimmune diseases, such as type 1 diabetes, concerns the processes that underlie the generation of MHC-presented autoantigenic epitopes that become targets of autoimmune attack. Proteasomal degradation is a key step in processing of proteins for MHC class I presentation. Different types of proteasomes can be expressed in cells dictating the repertoire of peptides presented by the MHC class I complex. Of particular interest for type 1 diabetes is the proteasomal configuration of pancreatic β cells, as this might facilitate autoantigen presentation by β cells and thereby their T-cell mediated destruction. Here we investigated whether so-called inducible subunits of the proteasome are constitutively expressed in β cells, regulated by inflammatory signals and participate in the formation of active intermediate or immuno-proteasomes. We show that inducible proteasomal subunits are constitutively expressed in human and rodent islets and an insulin-secreting cell-line. Moreover, the β5i subunit is incorporated into active intermediate proteasomes that are bound to 19S or 11S regulatory particles. Finally, inducible subunit expression along with increase in total proteasome activities are further upregulated by low concentrations of IL-1β stimulating proinsulin biosynthesis. These findings suggest that the β cell proteasomal repertoire is more diverse than assumed previously and may be highly responsive to a local inflammatory islet environment.
Collapse
Affiliation(s)
- Muhammad Saad Khilji
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Danielle Verstappen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Radboud Universiteit, Nijmegen, Netherlands
| | - Tina Dahlby
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Celina Pihl
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Emilie Bresson
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tenna Holgersen Bryde
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Phillip Alexander Keller Andersen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Klindt
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dusan Zivkovic
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Björn Tyrberg
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Mandrup-Poulsen
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michal Tomasz Marzec
- Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
19
|
Kors S, Geijtenbeek K, Reits E, Schipper-Krom S. Regulation of Proteasome Activity by (Post-)transcriptional Mechanisms. Front Mol Biosci 2019; 6:48. [PMID: 31380390 PMCID: PMC6646590 DOI: 10.3389/fmolb.2019.00048] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Intracellular protein synthesis, folding, and degradation are tightly controlled processes to ensure proper protein homeostasis. The proteasome is responsible for the degradation of the majority of intracellular proteins, which are often targeted for degradation via polyubiquitination. However, the degradation rate of proteins is also affected by the capacity of proteasomes to recognize and degrade these substrate proteins. This capacity is regulated by a variety of proteasome modulations including (1) changes in complex composition, (2) post-translational modifications, and (3) altered transcription of proteasomal subunits and activators. Various diseases are linked to proteasome modulation and altered proteasome function. A better understanding of these modulations may offer new perspectives for therapeutic intervention. Here we present an overview of these three proteasome modulating mechanisms to give better insight into the diversity of proteasomes.
Collapse
Affiliation(s)
- Suzan Kors
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Bugliani M, Syed F, Paula FMM, Omar BA, Suleiman M, Mossuto S, Grano F, Cardarelli F, Boggi U, Vistoli F, Filipponi F, De Simone P, Marselli L, De Tata V, Ahren B, Eizirik DL, Marchetti P. DPP-4 is expressed in human pancreatic beta cells and its direct inhibition improves beta cell function and survival in type 2 diabetes. Mol Cell Endocrinol 2018; 473:186-193. [PMID: 29409957 DOI: 10.1016/j.mce.2018.01.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/20/2017] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
It has been reported that the incretin system, including regulated GLP-1 secretion and locally expressed DPP-4, is present in pancreatic islets. In this study we comprehensively evaluated the expression and role of DPP-4 in islet alpha and beta cells from non-diabetic (ND) and type 2 diabetic (T2D) individuals, including the effects of its inhibition on beta cell function and survival. Isolated islets were prepared from 25 ND and 18 T2D organ donors; studies were also performed with the human insulin-producing EndoC-βH1 cells. Morphological (including confocal microscopy), ultrastructural (electron microscopy, EM), functional (glucose-stimulated insulin secretion), survival (EM and nuclear dyes) and molecular (RNAseq, qPCR and western blot) studies were performed under several different experimental conditions. DPP-4 co-localized with glucagon and was also expressed in human islet insulin-containing cells. Furthermore, DPP-4 was expressed in EndoC-βH1 cells. The proportions of DPP-4 positive alpha and beta cells and DPP-4 gene expression were significantly lower in T2D islets. A DPP-4 inhibitor protected ND human beta cells and EndoC-βH1 cells against cytokine-induced toxicity, which was at least in part independent from GLP1 and associated with reduced NFKB1 expression. Finally, DPP-4 inhibition augmented glucose-stimulated insulin secretion, reduced apoptosis and improved ultrastructure in T2D beta cells. These results demonstrate the presence of DPP-4 in human islet alpha and beta cells, with reduced expression in T2D islets, and show that DPP-4 inhibition has beneficial effects on human ND and T2D beta cells. This suggests that DPP-4, besides playing a role in incretin effects, directly affects beta cell function and survival.
Collapse
Affiliation(s)
- Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Farooq Syed
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Flavia M M Paula
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Bilal A Omar
- Lund University, Department of Clinical Sciences, Lund Sweden
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Sandra Mossuto
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Francesca Grano
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Francesco Cardarelli
- National Enterprise for NanoScience and NanoTechnology (NEST), CNR and Scuola Normale Superiore, Pisa, Italy
| | - Ugo Boggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fabio Vistoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Franco Filipponi
- Department of Surgical Pathology, Medicine, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo De Simone
- Department of Surgical Pathology, Medicine, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Bo Ahren
- Lund University, Department of Clinical Sciences, Lund Sweden
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy.
| |
Collapse
|
21
|
Thomaidou S, Zaldumbide A, Roep BO. Islet stress, degradation and autoimmunity. Diabetes Obes Metab 2018; 20 Suppl 2:88-94. [PMID: 30230178 PMCID: PMC6174957 DOI: 10.1111/dom.13387] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
β-cell destruction in type 1 diabetes (T1D) results from the effect of inflammation and autoimmunity. In response to inflammatory signals, islet cells engage adaptive mechanisms to restore and maintain cellular homeostasis. Among these mechanisms, the unfolded protein response (UPR) leads to a reduction of the general protein translation rate, increased production of endoplasmic reticulum chaperones and the initiation of degradation by activation of the ER associated degradation pathway (ERAD) in which newly synthetized proteins are ubiquitinylated and processed through the proteasome. This adaptive phase is also believed to play a critical role in the development of autoimmunity by the generation of neoantigens. While we have previously investigated the effect of stress on transcription, translation and post-translational events as possible source for neoantigens, the participation of the degradation machinery, yet crucial in the generation of antigenic peptides, remains to be investigated in the context of T1D pathology. In this review, we will describe the relation between the unfolded protein response and the Ubiquitin Proteasome System (UPS) and address the role of the cellular degradation machinery in the generation of antigens. Learning from tumour immunology, we propose how these processes may unmask β-cells by triggering the generation of aberrant peptides recognized by the immune cells.
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Bart O. Roep
- Department of Immunohematology and Blood bank Leiden University Medical CenterLeiden University Medical CenterLeidenThe Netherlands
- Department of Diabetes ImmunologyDiabetes & Metabolism Research Institute at the Beckman Research InstituteDuarteCalifornia
| |
Collapse
|
22
|
Immunoproteasomes as a novel antiviral mechanism in rhinovirus-infected airways. Clin Sci (Lond) 2018; 132:1711-1723. [PMID: 29980604 DOI: 10.1042/cs20180337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022]
Abstract
Rhinovirus (RV) infection is involved in acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). RV primarily infects upper and lower airway epithelium. Immunoproteasomes (IP) are proteolytic machineries with multiple functions including the regulation of MHC class I antigen processing during viral infection. However, the role of IP in RV infection has not been explored. We sought to investigate the expression and function of IP during airway RV infection. Primary human tracheobronchial epithelial (HTBE) cells were cultured at air-liquid interface (ALI) and treated with RV16, RV1B, or interferon (IFN)-λ in the absence or presence of an IP inhibitor (ONX-0914). IP gene (i.e. LMP2) deficient mouse tracheal epithelial cells (mTECs) were cultured for the mechanistic studies. LMP2-deficient mouse model was used to define the in vivo role of IP in RV infection. IP subunits LMP2 and LMP7, antiviral genes MX1 and OAS1 and viral load were measured. Both RV16 and RV1B significantly increased the expression of LMP2 and LMP7 mRNA and proteins, and IFN-λ mRNA in HTBE cells. ONX-0914 down-regulated MX1 and OAS1, and increased RV16 load in HTBE cells. LMP2-deficient mTECs showed a significant increase in RV1B load compared with the wild-type (WT) cells. LMP2-deficient (compared with WT) mice increased viral load and neutrophils in bronchoalveolar lavage (BAL) fluid after 24 h of RV1B infection. Mechanistically, IFN-λ induction by RV infection contributed to LMP2 and LMP7 up-regulation in HTBE cells. Our data suggest that IP are induced during airway RV infection, which in turn may serve as an antiviral and anti-inflammatory mechanism.
Collapse
|
23
|
Anti-viral immune response in the lung and thymus: Molecular characterization and expression analysis of immunoproteasome subunits LMP2, LMP7 and MECL-1 in pigs. Biochem Biophys Res Commun 2018; 502:472-478. [DOI: 10.1016/j.bbrc.2018.05.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
|
24
|
Kronenberg-Versteeg D, Eichmann M, Russell MA, de Ru A, Hehn B, Yusuf N, van Veelen PA, Richardson SJ, Morgan NG, Lemberg MK, Peakman M. Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes. Diabetes 2018; 67:687-696. [PMID: 29343547 DOI: 10.2337/db17-0021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/10/2018] [Indexed: 11/13/2022]
Abstract
The signal peptide region of preproinsulin (PPI) contains epitopes targeted by HLA-A-restricted (HLA-A0201, A2402) cytotoxic T cells as part of the pathogenesis of β-cell destruction in type 1 diabetes. We extended the discovery of the PPI epitope to disease-associated HLA-B*1801 and HLA-B*3906 (risk) and HLA-A*1101 and HLA-B*3801 (protective) alleles, revealing that four of six alleles present epitopes derived from the signal peptide region. During cotranslational translocation of PPI, its signal peptide is cleaved and retained within the endoplasmic reticulum (ER) membrane, implying it is processed for immune recognition outside of the canonical proteasome-directed pathway. Using in vitro translocation assays with specific inhibitors and gene knockout in PPI-expressing target cells, we show that PPI signal peptide antigen processing requires signal peptide peptidase (SPP). The intramembrane protease SPP generates cytoplasm-proximal epitopes, which are transporter associated with antigen processing (TAP), ER-luminal epitopes, which are TAP independent, each presented by different HLA class I molecules and N-terminal trimmed by ER aminopeptidase 1 for optimal presentation. In vivo, TAP expression is significantly upregulated and correlated with HLA class I hyperexpression in insulin-containing islets of patients with type 1 diabetes. Thus, PPI signal peptide epitopes are processed by SPP and loaded for HLA-guided immune recognition via pathways that are enhanced during disease pathogenesis.
Collapse
Affiliation(s)
- Deborah Kronenberg-Versteeg
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K.
- National Institute for Health Research, Biomedical Research Centre at Guy's and St. Thomas' Hospital Foundation Trust and King's College London, London, U.K
| | - Martin Eichmann
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| | - Mark A Russell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Arnoud de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Beate Hehn
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Norkhairin Yusuf
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, U.K
- National Institute for Health Research, Biomedical Research Centre at Guy's and St. Thomas' Hospital Foundation Trust and King's College London, London, U.K
| |
Collapse
|
25
|
Perone MJ, Gimeno ML, Fuertes F. Immunomodulatory Properties and Potential Therapeutic Benefits of Muse Cells Administration in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:115-129. [PMID: 30484226 DOI: 10.1007/978-4-431-56847-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is well established the link between inflammation and the development of insulin resistance and pathogenesis of type 2 diabetes. Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β cells mediated by autoreactive T lymphocytes and pro-inflammatory agents. Therefore, developing new strategies to efficiently control dysregulated inflammation could have substantial benefits in the treatment of diabetes. Recently, a novel population of non-tumorigenic pluripotent stem cells, named multilineage-differentiating stress-enduring (Muse) cells, was discovered. Muse cells secrete significant amounts of TGF-β1, a key cytokine governing down-modulation of T lymphocytes and macrophages. In this chapter, we discuss the immunomodulatory properties of Muse cells as well as the molecular mechanism of TGF-β1 as mediator of Muse cell action. We also describe the role of certain cytokines/growth factors highly expressed in Muse cells as potential mediators of their effects. Finally, we provide evidence of the beneficial effects of adipose tissue-derived Muse cells in an experimental mice model of type 1 diabetes.
Collapse
Affiliation(s)
- Marcelo Javier Perone
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - María Laura Gimeno
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| |
Collapse
|