1
|
Pan B, Chai J, Fei K, Zheng T, Jiang Y. Dynamic changes in the transcriptome and metabolome of pig ovaries across developmental stages and gestation. BMC Genomics 2024; 25:1193. [PMID: 39695358 DOI: 10.1186/s12864-024-11122-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The ovary is a central organ in the reproductive system that produces oocytes and synthesizes and secretes steroid hormones. Healthy development and regular cyclical change in the ovary is crucial for regulating reproductive processes. However, the key genes and metabolites that regulate ovarian development and pregnancy have not been fully elucidated. This study conducted high-throughput RNA sequencing and untargeted metabolite profiling of the ovarian tissues from Chenghua pigs at four stages, including postnatal day 3 (D3), puberty at the age of about 125 days (Pub), sexual maturity at the age of about 365 days (Y1), and 105 days after pregnancy at the age of about 360 days (Pre). RESULTS A total of 9,264 and 1,593 differentially expressed genes (DEGs) were identified during ovarian development and pregnancy. Several key genes involved in ovarian development, including SQLE, HMGCS1, MSMO1, SCARB1, CYP11A1, HSD3B1, HSD17B1, and SERPINE1 were identified. Similarly, LUM, FN1, PLAUR, SELP, SDC1, and VCAN were considered to be associated with pregnancy maintenance. Overexpression of HSD17B1 in granulosa cells significantly upregulated estrogen synthesis-related genes (HSD3B1, CYP11A1, and STAR); meanwhile, overexpression of PLAUR promotes granulosa cell proliferation. Furthermore, 66, 24, 77, and 7 differentially expressed miRNAs (DEMis) were found, leading to the selection of key miRNAs such as ssc-miR-206, ssc-miR-107, ssc-miR-429, ssc-miR-210, and ssc-miR-133a-3p by differential miRNA-targeted mRNA interaction network; meanwhile, ssc-miR-133a-3p was validated to have a targeting relationship with KCNA1 by dual-luciferase reporter systems assay. At the metabolic levels, androstenedione, 17a-hydroxyprogesterone, dehydroepiandrosterone, and progesterone were identified, with their synthesis regulated by these DEGs in the ovarian steroidogenesis pathway. Furthermore, treatment of cells with androstenedione upregulated the expression of HSD3B1, CYP11A1, and STAR. CONCLUSIONS This study revealed the dynamic changes in the transcriptome and metabolome of pig ovaries across developmental stages and gestation, indicating that it may provide new theoretical insights for improving sow fertility.
Collapse
Affiliation(s)
- Binyun Pan
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Jin Chai
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, , Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Lei L, Ikami K, Diaz Miranda EA, Ko S, Wilson F, Abbott H, Pandoy R, Jin S. The mouse Balbiani body regulates primary oocyte quiescence via RNA storage. Commun Biol 2024; 7:1247. [PMID: 39358443 PMCID: PMC11447053 DOI: 10.1038/s42003-024-06900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
In mammalian females, the transition from dormancy in primordial follicles to follicular development is critical for maintaining ovarian function and reproductive longevity. In mice, the quiescent primary oocyte of the primordial follicle contains a Balbiani body (B-body), an organelle aggregate comprised of a spherical structure of Golgi complexes. Here we show that the structure of the B-body is maintained by microtubules and actin. The B-body stores mRNA-capping enzyme and 597 mRNAs associated with mRNA-decapping enzyme 1 A (DCP1A). Gene ontology analysis results indicate that proteins encoded by these mRNAs function in enzyme binding, cellular component organization and packing of telomere ends. Pharmacological depolymerization of microtubules or actin led to B-body disassociation and nascent protein synthesis around the dissociated B-bodies within three hours. An increased number of activated developing follicles were observed in ovaries with prolonged culture and the in vivo mouse model. Our results indicate that the mouse B-body is involved in the activation of dormant primordial follicles likely via translation of the B-body-associated RNAs in primary oocytes.
Collapse
Affiliation(s)
- Lei Lei
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA.
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Kanako Ikami
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Buck Institute for Research on Aging, Novato, California, 94949, USA
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, 95616, USA
| | - Edgar Andres Diaz Miranda
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Sooah Ko
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Faith Wilson
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ronald Pandoy
- Buck Institute for Research on Aging, Novato, California, 94949, USA
| | - Shiying Jin
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Zhang J, Xia W, Zhou J, Qin S, Lin L, Zhao T, Wang H, Mi C, Hu Y, Chen Z, Zhu T, Yang X, Zhang T, Xia G, Ke Y, Wang C. Participation of preovulatory follicles in the activation of primordial follicles in mouse ovaries. Int J Biol Sci 2024; 20:3863-3880. [PMID: 39113716 PMCID: PMC11302884 DOI: 10.7150/ijbs.95020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
The mechanisms behind the selection and initial recruitment of primordial follicles (PmFs) from the non-growing PmF pool during each estrous cycle in females remain largely unknown. This study demonstrates that PmFs closest to the ovulatory follicle are preferentially activated in mouse ovaries under physiological conditions. PmFs located within 40 μm of the ovulatory follicles were more likely to be activated compared to those situated further away during the peri-ovulation period. Repeated superovulation treatments accelerated the depletion of the PmF reserve, whereas continuous suppression of ovulation delayed PmF reserve consumption. Spatial transcriptome sequencing of peri-ovulatory follicles revealed that ovulation primarily induces the degradation and remodeling of the extracellular matrix (ECM). This ECM degradation reduces mechanical stress around PmFs, thereby triggering their activation. Specifically, Cathepsin L (CTSL), a cysteine proteinase and lysosomal enzyme involved in ECM degradation, initiates the activation of PmFs adjacent to ovulatory follicles in a distance-dependent manner. These findings highlight the link between ovulation and selective PmF activation, and underscore the role of CTSL in this process under physiological conditions.
Collapse
Affiliation(s)
- Jingwen Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenzhe Xia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- School of Life Sciences and Medicine, Shandong University of Technology, Shandong 255049, China
| | - Shaogang Qin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lin Lin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ting Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huarong Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Chen Mi
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yifan Hu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zixuan Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianhua Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Guoliang Xia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuwen Ke
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Camozzi MGM, Saturnino KC, Machado MRF, Gastal GDA, Moreira CN, Alves BG. Cystic endometrial hyperplasia-pyometra syndrome impairs the preantral follicle reserve in domestic bitches (Canis familiaris). Reprod Biol 2023; 23:100813. [PMID: 37832392 DOI: 10.1016/j.repbio.2023.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Cystic endometrial hyperplasia (CEH)-pyometra syndrome is the most common uterine pathological condition reported in breeding bitches, however, their described effects on fertility are limited to uterine disorders and conception rates. As the preantral follicle population represents the available reserve of gametes recruited during the lifespan, the aim of this study was to evaluate the effects of CEH-pyometra syndrome on the: (i) preantral follicle morphology, (ii) developing follicle rates, and (iii) preantral follicle and stromal cell densities. Ovarian fragments from bitches subjected to elective or therapeutic ovariohysterectomy were allocated according to uterine diagnosis as follows: control (n = 7, clinically healthy), CEH-mucometra (n = 8, uterine lumen filled with a sterile mucus), and pyometra (n = 17, presence of a purulent mucus) groups. Overall, the control group had 3.4 and 4.1-fold higher probability (P < 0.0001) of the presence of normal preantral follicles compared with CEH-mucometra and pyometra groups, respectively. Moreover, ovarian fragments from the pyometra group showed an increase in the percentage of developing follicles (P < 0.05) compared to the control. Both CEH-mucometra and pyometra groups showed lower (P < 0.05) preantral follicle and stromal cell densities (P < 0.05) compared to the control. In summary, the CEH-pyometra syndrome decreased the percentage of morphologically normal follicles and enhanced the developing follicle rates. Additionally, a reduction of preantral follicle and stromal cell densities suggests that the inappropriate uterine environment induced by CEH-pyometra syndrome can lead to premature depletion of ovarian reserve.
Collapse
Affiliation(s)
- Mylene G M Camozzi
- Postgraduate Program in Animal Bioscience, Federal University of Jataí, GO, Brazil
| | - Klaus C Saturnino
- Postgraduate Program in Animal Bioscience, Federal University of Jataí, GO, Brazil
| | - Mônica R F Machado
- Postgraduate Program in Animal Bioscience, Federal University of Jataí, GO, Brazil
| | - Gustavo D A Gastal
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| | - Cecília N Moreira
- Postgraduate Program in Animal Bioscience, Federal University of Jataí, GO, Brazil
| | - Benner G Alves
- Postgraduate Program in Animal Bioscience, Federal University of Jataí, GO, Brazil; Conception Biosciences Inc., Berkeley, CA, USA.
| |
Collapse
|
5
|
Liu Q, Liu X, Wang G, Wu F, Hou Y, Liu H. Genome-wide DNA methylation analysis of Astragalus and Danshen on the intervention of myofibroblast activation in idiopathic pulmonary fibrosis. BMC Pulm Med 2023; 23:325. [PMID: 37667288 PMCID: PMC10478235 DOI: 10.1186/s12890-023-02601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF), a chronic progressive interstitial lung disease of unknown etiology, is characterized by continuous damage to alveolar epithelial cells, abnormal repair of alveolar tissue, and alveolar wall scar formation. Currently, the recommended treatment for IPF in Western medicine is relatively limited. In contrast, traditional Chinese medicine and compound prescriptions show advantages in the diagnosis and treatment of IPF, which can be attributed to their multi-channel and multi-target characteristics and minimal side-effects. The purpose of this study was to further corroborate the effectiveness and significance of the traditional Chinese medications Astragalus and Danshen in IPF treatment. METHODS We performed whole-genome methylation analysis on nine rat lung tissue samples to determine the epigenetic variation between IPF and non-fibrotic lungs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and quantitative reverse transcription polymerase chain reactions. RESULTS We identified differentially methylated regions and 105 associated key functional genes in samples related to IPF and Chinese medicine treatment. Based on the methylation levels and gene expression profiles between the Chinese medicine intervention and pulmonary fibrosis model groups, we speculated that Astragalus and Salvia miltiorrhiza (traditionally known as Danshen) act on the Isl1, forkhead box O3, and Sonic hedgehog genes via regulation at transcriptional and epigenetic levels during IPF. CONCLUSIONS These findings provide novel insights into the epigenetic regulation of IPF, indicate the effectiveness of Astragalus and Danshen in treating IPF, and suggest several promising therapeutic targets for preventing and treating IPF.
Collapse
Affiliation(s)
- Qingyin Liu
- Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, University Science Park, Changqing District, Jinan City, 250355, China
| | - Xue Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China
| | - Guoyu Wang
- Capital Medical University, No. 10, Xizhang Road, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Fan Wu
- Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, University Science Park, Changqing District, Jinan City, 250355, China
| | - Yuan Hou
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China
| | - Huaman Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China.
| |
Collapse
|
6
|
Chen W, E Q, Sun B, Zhang P, Li N, Fei S, Wang Y, Liu S, Liu X, Zhang X. PARP1-catalyzed PARylation of YY1 mediates endoplasmic reticulum stress in granulosa cells to determine primordial follicle activation. Cell Death Dis 2023; 14:524. [PMID: 37582914 PMCID: PMC10427711 DOI: 10.1038/s41419-023-05984-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
Although only a small number of primordial follicles are known to be selectively activated during female reproductive cycles, the mechanisms that trigger this recruitment remain largely uncharacterized. Misregulated activation of primordial follicles may lead to the exhaustion of the non-renewable pool of primordial follicles, resulting in premature ovarian insufficiency. Here, we found that poly(ADP-ribose) polymerase 1 (PARP1) enzymatic activity in the surrounding granulosa cells (GCs) in follicles determines the subpopulation of the dormant primordial follicles to be awakened. Conversely, specifically inhibiting PARP1 in oocytes in an in vitro mouse follicle reconstitution model does not affect primordial follicle activation. Further analysis revealed that PARP1-catalyzed transcription factor YY1 PARylation at Y185 residue facilitates YY1 occupancy at Grp78 promoter, a key molecular chaperone of endoplasmic reticulum stress (ERS), and promotes Grp78 transcription in GCs, which is required for GCs maintaining proper ERS during primordial follicle activation. Inhibiting PARP1 prevents the loss of primordial follicle pool by attenuating the excessive ERS in GCs under fetal bisphenol A exposure. Together, we demonstrate that PARP1 in GCs acts as a pivotal modulator to determine the fate of the primordial follicles and may represent a novel therapeutic target for the retention of primordial follicle pool in females.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiukai E
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Bo Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
- Department of Obstetrics and Gynecology, the Affiliated Jiangning Hospital of Nanjing Medical University, 211166, Nanjing, China
| | - Pengxue Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Nan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shujia Fei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yingnan Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuting Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoqiu Liu
- College of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| | - Xuesen Zhang
- College of Basic Medical Science, China Medical University, Shenyang, 110122, China.
- Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, 211166, China.
| |
Collapse
|
7
|
Valtetsiotis K, Valsamakis G, Charmandari E, Vlahos NF. Metabolic Mechanisms and Potential Therapeutic Targets for Prevention of Ovarian Aging: Data from Up-to-Date Experimental Studies. Int J Mol Sci 2023; 24:9828. [PMID: 37372976 DOI: 10.3390/ijms24129828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Female infertility and reproduction is an ongoing and rising healthcare issue, resulting in delaying the decision to start a family. Therefore, in this review, we examine potential novel metabolic mechanisms involved in ovarian aging according to recent data and how these mechanisms may be addressed through new potential medical treatments. We examine novel medical treatments currently available based mostly on experimental stem cell procedures as well as caloric restriction (CR), hyperbaric oxygen treatment and mitochondrial transfer. Understanding the connection between metabolic and reproductive pathways has the potential to offer a significant scientific breakthrough in preventing ovarian aging and prolonging female fertility. Overall, the field of ovarian aging is an emerging field that may expand the female fertility window and perhaps even reduce the need for artificial reproductive techniques.
Collapse
Affiliation(s)
- Konstantinos Valtetsiotis
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Georgios Valsamakis
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Evangelia Charmandari
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Nikolaos F Vlahos
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| |
Collapse
|
8
|
Biswas A, Ng BH, Prabhakaran VS, Chan CJ. Squeezing the eggs to grow: The mechanobiology of mammalian folliculogenesis. Front Cell Dev Biol 2022; 10:1038107. [PMID: 36531957 PMCID: PMC9756970 DOI: 10.3389/fcell.2022.1038107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 08/25/2023] Open
Abstract
The formation of functional eggs (oocyte) in ovarian follicles is arguably one of the most important events in early mammalian development since the oocytes provide the bulk genetic and cytoplasmic materials for successful reproduction. While past studies have identified many genes that are critical to normal ovarian development and function, recent studies have highlighted the role of mechanical force in shaping folliculogenesis. In this review, we discuss the underlying mechanobiological principles and the force-generating cellular structures and extracellular matrix that control the various stages of follicle development. We also highlight emerging techniques that allow for the quantification of mechanical interactions and follicular dynamics during development, and propose new directions for future studies in the field. We hope this review will provide a timely and useful framework for future understanding of mechano-signalling pathways in reproductive biology and diseases.
Collapse
Affiliation(s)
- Arikta Biswas
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Boon Heng Ng
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Wei W, Komatsu K, Osuka S, Murase T, Bayasula B, Nakanishi N, Nakamura T, Goto M, Iwase A, Masubuchi S, Kajiyama H. Tamoxifen Activates Dormant Primordial Follicles in Mouse Ovaries. Reprod Sci 2022; 29:3404-3412. [PMID: 35212933 PMCID: PMC9734234 DOI: 10.1007/s43032-022-00896-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Our previous study found that 17β-estradiol (E2) suppresses primordial follicle activation and growth in cultured mouse ovaries. In this study, we administered tamoxifen, an estrogen receptor antagonist, into the abdominal cavity of mice to clarify the relationship between primordial follicle activation and the physiological concentration of E2 in mouse ovaries. The results showed that tamoxifen promoted primordial follicle activation. Administration of tamoxifen promoted degradation of the extracellular matrix surrounding primordial follicles in the ovaries. Furthermore, tamoxifen decreased the expression of stefin A, an inhibitor of cathepsins that digest some proteins and extracellular matrix, in the ovaries. Mechanical stress produced by the extracellular matrix reportedly suppresses the activation of primordial follicles. The collective results show that tamoxifen can promote primordial follicle activation through the degradation of the extracellular matrix surrounding primordial follicles. Our results indicate that E2 suppresses primordial follicle activation in vivo and that tamoxifen may be useful as a therapeutic agent against infertility.
Collapse
Affiliation(s)
- Wei Wei
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Kouji Komatsu
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
- Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Bayasula Bayasula
- Bell Research Center for Reproductive Health and Cancer, Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Satoru Masubuchi
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
10
|
Gonfloni S, Jodice C, Gustavino B, Valentini E. DNA Damage Stress Response and Follicle Activation: Signaling Routes of Mammalian Ovarian Reserve. Int J Mol Sci 2022; 23:14379. [PMID: 36430860 PMCID: PMC9693393 DOI: 10.3390/ijms232214379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Chemotherapy regimens and radiotherapy are common strategies to fight cancer. In women, these therapies may cause side effects such as premature ovarian insufficiency (POI) and infertility. Clinical strategies to protect the ovarian reserve from the lethal effect of cancer therapies needs better understanding of the mechanisms underlying iatrogenic loss of follicle reserve. Recent reports demonstrate a critical role for p53 and CHK2 in the oocyte response to different DNA stressors, which are commonly used to treat cancer. Here we review the molecular mechanisms underlying the DNA damage stress response (DDR) and discuss crosstalk between DDR and signaling pathways implicated in primordial follicle activation.
Collapse
Affiliation(s)
- Stefania Gonfloni
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Carla Jodice
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Bianca Gustavino
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Elvia Valentini
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy
- PhD Program in Cellular and Molecular Biology, 00133 Rome, Italy
| |
Collapse
|
11
|
Di Berardino C, Peserico A, Capacchietti G, Zappacosta A, Bernabò N, Russo V, Mauro A, El Khatib M, Gonnella F, Konstantinidou F, Stuppia L, Gatta V, Barboni B. High-Fat Diet and Female Fertility across Lifespan: A Comparative Lesson from Mammal Models. Nutrients 2022; 14:nu14204341. [PMID: 36297035 PMCID: PMC9610022 DOI: 10.3390/nu14204341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Female reproduction focuses mainly on achieving fully grown follicles and competent oocytes to be successfully fertilized, as well as on nourishing the developing offspring once pregnancy occurs. Current evidence demonstrates that obesity and/or high-fat diet regimes can perturbate these processes, leading to female infertility and transgenerational disorders. Since the mechanisms and reproductive processes involved are not yet fully clarified, the present review is designed as a systematic and comparative survey of the available literature. The available data demonstrate the adverse influences of obesity on diverse reproductive processes, such as folliculogenesis, oogenesis, and embryo development/implant. The negative reproductive impact may be attributed to a direct action on reproductive somatic and germinal compartments and/or to an indirect influence mediated by the endocrine, metabolic, and immune axis control systems. Overall, the present review highlights the fragmentation of the current information limiting the comprehension of the reproductive impact of a high-fat diet. Based on the incidence and prevalence of obesity in the Western countries, this topic becomes a research challenge to increase self-awareness of dietary reproductive risk to propose solid and rigorous preventive dietary regimes, as well as to develop targeted pharmacological interventions.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alex Zappacosta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Francesca Gonnella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fani Konstantinidou
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
12
|
Bridge-Comer PE, Vickers MH, Morton-Jones J, Spada A, Rong J, Reynolds CM. Maternal intake of fructose or artificial sweetener during pregnancy and lactation has persistent effects on metabolic and reproductive health of dams post-weaning. J Dev Orig Health Dis 2022; 13:642-649. [PMID: 35322784 DOI: 10.1017/s2040174422000022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As rates of obesity, diabetes, and related comorbidities have increased, the consumption of artificial sweeteners (ASs) as sugar substitutes has also risen in popularity as they are perceived as a healthier alternative to sugar sweetened products. However, there is conflicting evidence regarding the impact of AS intake on metabolic and reproductive health. Glucose intolerance during pregnancy due to intake of sugar sweetened foods can result in an increased risk for the development of type 2 diabetes post-pregnancy. However, limited information exists on the impact of AS intake during pregnancy and lactation on the mother's health in later life. We hypothesised both AS and fructose would impair metabolic health post-partum (PP) following maternal consumption during pregnancy and lactation. Female C57Bl/6 mice received a standard control diet ad libitum with either water (CD), fructose (Fr; 34.7 mm intake), or AS (AS;12.5 mm Acesulfame-K) throughout pregnancy and lactation. Post-weaning, AS and Fr dams were fed the CD diet for the remainder of the experiment. Oral glucose tolerance tests were undertaken 8 weeks PP and dams were humanely killed at 9 weeks PP, with adipose tissue and ovaries collected for analysis. Experimental diets did not influence maternal bodyweight. At 8 weeks PP, increased glucose intolerance was evident in both AS and Fr dams. Adipocyte size was significantly increased in both the AS and Fr groups PP. Further, in the ovary, AS increased expression of genes associated with follicular development and ovulation. Therefore, ASs may not represent beneficial substitutes to fructose during pregnancy, with the potential to increase the risk of T2DM in later life in mothers.
Collapse
Affiliation(s)
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Ana Spada
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jing Rong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
- School of Public Health, Physiotherapy and Sports Science, Conway Institute, Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Ghezelayagh Z, Abtahi NS, Rezazadeh Valojerdi M, Ebrahimi B. The effect of mTOR activation and PTEN inhibition on human primordial follicle activation in ovarian tissue culture. J Assist Reprod Genet 2022; 39:1739-1747. [PMID: 35819576 PMCID: PMC9428071 DOI: 10.1007/s10815-022-02537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/06/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The effect of PTEN inhibitor (Bpv(HOpic); Bpv) and mTOR activators (phosphatidic acid (PA) and propranolol (PP)), were evaluated on the activation and subsequent development of human primordial follicles in ovarian tissue culture. METHODS Slow frozen-thawed human ovarian cortical strips were incubated for 24 h in different groups: (1) Control (base medium), (2) Bpv (100 µM), (3) PA (200 µM), (4) PA + PP (50 µm), and (5) Bpv + PA + PP. Afterward, the medium was exchanged, and all groups were cultured without stimulators for 6 additional days. The proportion of normal and degenerated follicles, estradiol secretion, and expression of RPS6, FOXO3a, and AKT proteins was evaluated and compared between groups. RESULTS After 24 h of culture, there was no significant difference between the proportion of primordial and growing follicles in either of the experimental groups. This non-significant change was also observed for the phosphorylated protein to total protein ratios of RPS6, FOXO3a, and AKT proteins. After 7 days of culture, the proportion of the transitional follicles was significantly higher in comparison to the primordial follicles for the PA, PA + PP, and Bpv + PA + PP groups. The estradiol level was significantly higher on the last day compared to the first day, in PA, PA + PP, and Bpv + PA + PP groups. Hormonal secretion was significantly higher in the PA and PA + PP groups and lower in the Bpv and Bpv + PA + PP groups compared to the control on day 7 of culture. CONCLUSION Temporary in vitro treatment of human ovarian tissue with mTOR activators enhances the initiation of primordial follicle development and positively influences steroidogenesis after short-term culture.
Collapse
Affiliation(s)
- Zeinab Ghezelayagh
- grid.417689.5Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran ,grid.417689.5Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naeimeh Sadat Abtahi
- grid.417689.5Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- grid.412266.50000 0001 1781 3962Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Ebrahimi
- grid.417689.5Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Abstract
Decades of work using various model organisms have resulted in an exciting and emerging field of oocyte maturation. High levels of insulin and active mammalian target of rapamycin signals, indicative of a good nutritional environment, and hormones such as gonadotrophin, indicative of the growth of the organism, work together to control oocyte maturation to ensure that reproduction happens at the right timing under the right conditions. In the wild, animals often face serious challenges to maintain oocyte quiescence under long-term unfavorable conditions in the absence of mates or food. Failure to maintain oocyte quiescence will result in activation of oocytes at the wrong time and thus lead to exhaustion of the oocyte pool and sterility of the organism. In this review, we discuss the shared mechanisms in oocyte quiescence and awakening and a conserved role of noradrenergic signals in maintenance of the quiescent oocyte pool under unfavorable conditions in simple model organisms.
Collapse
Affiliation(s)
- Jeongho Kim
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Young-Jai You
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Premature ovarian insufficiency: pathogenesis and therapeutic potential of mesenchymal stem cell. J Mol Med (Berl) 2021; 99:637-650. [PMID: 33641066 DOI: 10.1007/s00109-021-02055-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Primary ovarian insufficiency (POI) is defined as a reduction in ovarian function before the expected age of menopause. POI is known to increase the risk of cardiovascular disorders, osteoporosis, cognitive decline, and mood disorders, resulting in a reduced quality of life. Appropriate hormone replacement for premenopausal women decreases these adverse health risks and improves quality of life for women with POI, but does not prolong life expectancy. The potential etiologies of POI include chromosomal abnormalities and genetic mutations, autoimmune factors, and iatrogenic causes, including surgery, chemotherapy, and radiation therapy. A major association is suggested to exist between reproductive longevity and the DNA damage pathway response genes. DNA damage and repair in ovarian granulosa cells is strongly associated with POI. Depletion of oocytes with damaged DNA occurs through different cell death mechanisms, such as apoptosis, autophagy, and necroptosis, mediated by the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/forkhead transcription factors 3 (FOXO3) pathway. Mesenchymal stem cells (MSCs) are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues. Transplantation of MSCs has been shown to functionally restore ovarian reserve in a POI mouse model. Recent advances in stem cell therapy are likely to be translated to new therapeutic options bringing new hope to patients with POI. The aim of this review is to summarize the pathogenic mechanisms that involve cell death and DNA damage and repair pathways and to discuss the stem cell-based therapies as potential therapeutic options for this gynecologic pathology.
Collapse
|
16
|
Wang W, Todorov P, Isachenko E, Rahimi G, Mallmann P, Wang M, Isachenko V. In vitro activation of cryopreserved ovarian tissue: A single-arm meta-analysis and systematic review. Eur J Obstet Gynecol Reprod Biol 2021; 258:258-264. [PMID: 33485262 DOI: 10.1016/j.ejogrb.2021.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Primordial follicles in premature ovarian failure (POF) patients are very difficult to be activated spontaneously, so that mature oocytes are difficult to be obtained for in vitro fertilization. The aim of our review is to analyze and to systematize the published data regarding effectiveness of different strategies for in vitro activation of cryopreserved ovarian tissue. STUDY DESIGN According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a review of the literature was performed for all relevant full-text articles published in PubMed in English. Meta-analysis conducted using STATA 14.0. The random-effects model was used to combine 8 study results because the examination of heterogeneity was minimal. RESULTS One hundred and seventy seven patients after in vitro activation treatment (IVA) of ovarian tissue had accumulatively 26 pregnancies through IVF or natural pregnancy and then produced 18 live births. The random-effects model showed that the total clinical pregnancy and baby born rates reported in 8 studies evidence about effectiveness of IVA. CONCLUSION In vitro activation of primordial follicles as a new potential treatment for ovarian disorder patients, can be a promising option for fertility preservation. Drug-free activation of ovarian tissue in comparison with drug-included activation seemed to be more efficient.
Collapse
Affiliation(s)
- Wanxue Wang
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction, Tzarigradsko Shosse 73, 1113, Sofia, Bulgaria.
| | - Evgenia Isachenko
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| | - Gohar Rahimi
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| | - Peter Mallmann
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| | - Mengying Wang
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| | - Vladimir Isachenko
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| |
Collapse
|
17
|
Liu D, Tu X, Huang C, Yuan Y, Wang Y, Liu X, He W. Adoptive transfers of CD4 + CD25 + Tregs partially alleviate mouse premature ovarian insufficiency. Mol Reprod Dev 2020; 87:887-898. [PMID: 32741069 DOI: 10.1002/mrd.23404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/10/2020] [Accepted: 07/19/2020] [Indexed: 12/30/2022]
Abstract
This study was designed to investigate the protective effect of CD4+ CD25+ regulatory T cells (Tregs) against zona pellucida glycoprotein 3 peptide (pZP3) immunization-induced premature ovarian insufficiency (POI) in mice. A mouse POI model was induced by two subcutaneous injections of pZP3 (50 nmol/L). Mice in the pZP3-Treg group were intraperitoneally injected with 5 × 105 CD4+ CD25+ Tregs after the POI model was established. Sex hormone levels, follicle numbers, apoptotic events, and the Akt/FOXO3a signaling pathway molecules in the ovaries were assessed. Compared with control group, the weight of ovaries in both pZP3 group and pZP3-Treg group was decreased and no difference was found between them. The number of follicles in the Treg transferred mice, like in pZP3 group, was significantly reduced compared to the control group, but showed a modest improvement when compared the pZP3 group alone. Significantly lower serum concentrations of follicle-stimulating hormone, luteinizing hormone, and anti-zona pellucida antibodies (AZPAbs) were found, while the concentrations of estradiol and anti-Mullerian hormone increased. In mechanism, Treg cell transfer to ZP3 treated mice restored the levels of Caspase3 to control levels, and partially restored Bax, however, had no effect on Bcl-2. Moreover, Treg cell transfer to ZP3 treated mice partially restored the levels of Akt and FOXO3a, and partially restored the ratios of p-Akt/Akt and p-FOXO3a/FOXO3a. In conclusion, Treg cells improved some aspects of ZP3-induced POI which may be mediate by suppressing ovarian cells apoptosis and involving the Akt/FOXO3a signaling pathway. Therefore, Treg cells may be protective against autoimmune POI.
Collapse
Affiliation(s)
- Dan Liu
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaojuan Tu
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Chuanmengyuan Huang
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China.,Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuncang Yuan
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Xiaona Liu
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Wei He
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
PTEN and FOXO3 expression in the prenatal and postnatal human ovary. J Assist Reprod Genet 2020; 37:1613-1622. [PMID: 32424736 DOI: 10.1007/s10815-020-01790-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The objective of this study was to analyse the expression and cellular localization of FOXO3, pFOXO3 and PTEN throughout human ovary development both before and after birth. METHODS Foetal, pubertal and adult paraffin-embedded ovarian samples were analysed by immunohistochemistry for cellular localization of FOXO3, pFOXO3 and PTEN proteins. Protein and mRNA expression were analysed by western blot and real time PCR, respectively, from fresh biopsies. RESULTS PTEN was not detected by immunohistochemistry in germ cells and follicles of foetal, pubertal and adult ovaries. Occasional PTEN immunoreactive granulosa cells were found in atretic antral follicles in the adult ovary. Western blot analysis showed low levels of PTEN protein. Nuclear FOXO3-expressing primordial follicles represented a variable proportion of the ovarian reserve. The presence of FOXO3-expressing primordial follicles was very low in foetal ovary; although always represented in a low proportion, prevalence increased during pubertal and adult life. CONCLUSION Our results seem to indicate that two subpopulations of primordial follicles, i.e. nuclear FOXO3-expressing and no FOXO3-expressing primordial follicles are found in the postnatal human ovary. This scenario suggests that FOXO3 could be acting as in the mouse model, preventing primordial follicle activation. However, the strategy would not be an "all or nothing" system as in mouse ovary but rather a selected subpopulation of primordial follicles preserved to ensure long-term fertility.
Collapse
|
19
|
Lobo IKC, Nascimento ÁRD, Yamagishi MEB, Guiguen Y, Silva GFD, Severac D, Amaral ADC, Reis VR, Almeida FLD. Transcriptome of tambaqui Colossoma macropomum during gonad differentiation: Different molecular signals leading to sex identity. Genomics 2020; 112:2478-2488. [PMID: 32027957 DOI: 10.1016/j.ygeno.2020.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Tambaqui (Colossoma macropomum) is the major native species in Brazilian aquaculture, and we have shown that females exhibit a higher growth compared to males, opening up the possibility for the production of all-female population. To date, there is no information on the sex determination and differentiation molecular mechanisms of tambaqui. In the present study, transcriptome sequencing of juvenile trunks was performed to understand the molecular network involved in the gonadal sex differentiation. The results showed that before differentiation, components of the Wnt/β-catenin pathway, fox and fst genes imprint female sex development, whereas antagonistic pathways (gsk3b, wt1 and fgfr2), sox9 and genes for androgen synthesis indicate male differentiation. Hence, in undifferentiated tambaqui, the Wnt/β-catenin exerts a role on sex differentiation, either upregulated in female-like individuals, or antagonized in male-like individuals.
Collapse
Affiliation(s)
| | | | | | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France.
| | | | - Dany Severac
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Aldessandro da Costa Amaral
- Programa de Pós-graduação em Ciências Pesqueiras nos Trópicos, Universidade Federal do Amazonas, Manaus, Brazil
| | - Vanessa Ribeiro Reis
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Manaus, Brazil
| | | |
Collapse
|
20
|
Sekulovski N, Whorton AE, Shi M, Hayashi K, MacLean JA. Periovulatory insulin signaling is essential for ovulation, granulosa cell differentiation, and female fertility. FASEB J 2020; 34:2376-2391. [PMID: 31908002 PMCID: PMC7781071 DOI: 10.1096/fj.201901791r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Recent studies have demonstrated an essential role for insulin signaling in folliculogenesis as conditional ablation of Igf1r in primary follicles elicits defective follicle-stimulating hormone responsiveness blocking development at the preantral stage. Thus the potential role of insulin action in the periovulatory window and in the corpus luteum is unknown. To examine this, we generated conditional Insr,Igf1r, and double receptor knockout mice driven by Pgr-Cre. These models escape the preantral follicle block and in response to superovulatory gonadotropins exhibit normal distribution of ovarian follicles and corpora lutea. However, single ablation of Igf1r leads to subfertility and mice lacking both receptors are infertile. Double knockout mice have impaired oocyte development and ovulation. While some oocytes are released and fertilized, subsequent embryo development is retarded, and the embryos potentially fail to thrive due to lack of luteal support. In support of this, we found reduced expression of key enzymes in the steroid synthesis pathway and reduced serum progesterone. In addition to metabolic and steroidogenic pathways, RNA-sequencing analysis revealed transcription factor-3 as an important transcription factor downstream of insulin signaling. Collectively, these results highlight the importance of growth factors of the insulin family during two distinct windows of follicular development, ovulation, and luteinization.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| |
Collapse
|
21
|
Primordial follicle reserve, DNA damage and macrophage infiltration in the ovaries of the long-living Ames dwarf mice. Exp Gerontol 2020; 132:110851. [PMID: 31987917 DOI: 10.1016/j.exger.2020.110851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/07/2023]
Abstract
The aim of this study was to evaluate the effect of growth hormone (GH) deficiency in primordial follicle reserve, DNA damage and macrophage infiltration in the ovaries of young mice. Ovaries from six-month-old GH-deficient Ames Dwarf (df/df) and Normal (N/df) mice were used. The number of primordial follicles was higher in df/df mice (p = 0.0026). Also, df/df mice had a lower number of primary (p = 0.023), secondary (p = 0.0052) and tertiary (p = 0.019) follicles. These findings indicate a slower rate of primordial follicle activation in df/df mice. Female df/df mice had decreased γH2AX foci intensity in oocytes of primordial (p = 0.015) and primary (p = 0.0004) follicles compared to N/df mice. Also, df/df mice had reduced γH2AX intensity in granulosa cells of primordial (p = 0.0002) and primary (p < 0.0001) follicles. Overall, this indicate to us that df/df mice accumulate less DNA damage in the ovarian reserve compared to N/df mice. Additionally, macrophage infiltration was also reduced in ovaries of df/df mice compared to N/df mice (p = 0.033). Interestingly, df/df mice had a reduced number of granulosa cells around primordial (p = 0.0024) and primary (p = 0.007) follicles compared to N/df mice. Also, df/df mice had a small diameter of primordial follicle nuclei (p = 0.0093), secondary follicle oocyte (p = 0.046) and tertiary follicle (p = 0.012). This points to the role of granulosa cell proliferation and oocyte growth for primordial follicle activation. The current study points to the role of the GH/IGF-I axis in extending lifespan of reproductive health, along with maintenance of oocyte DNA integrity and reduced ovarian inflammation.
Collapse
|
22
|
Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt Signalling and DNA Damage in the Oocyte: Implications for Primordial Follicle Activation, Oocyte Quality and Ageing. Cells 2020; 9:200. [PMID: 31947601 PMCID: PMC7016612 DOI: 10.3390/cells9010200] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
The preservation of genome integrity in the mammalian female germline from primordial follicle arrest to activation of growth to oocyte maturation is fundamental to ensure reproductive success. As oocytes are formed before birth and may remain dormant for many years, it is essential that defence mechanisms are monitored and well maintained. The phosphatase and tensin homolog of chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) is a major signalling pathway governing primordial follicle recruitment and growth. This pathway also contributes to cell growth, survival and metabolism, and to the maintenance of genomic integrity. Accelerated primordial follicle activation through this pathway may result in a compromised DNA damage response (DDR). Additionally, the distinct DDR mechanisms in oocytes may become less efficient with ageing. This review considers DNA damage surveillance mechanisms and their links to the PTEN/PI3K/Akt signalling pathway, impacting on the DDR during growth activation of primordial follicles, and in ovarian ageing. Targeting DDR mechanisms within oocytes may be of value in developing techniques to protect ovaries against chemotherapy and in advancing clinical approaches to regulate primordial follicle activation.
Collapse
Affiliation(s)
- Mila Maidarti
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
- Obstetrics and Gynaecology Department, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
| | - Evelyn E. Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
23
|
Bezerra MÉS, Barberino RS, Menezes VG, Gouveia BB, Macedo TJS, Santos JMS, Monte APO, Barros VRP, Matos MHT. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway. Reprod Fertil Dev 2019; 30:1503-1513. [PMID: 29843892 DOI: 10.1071/rd17332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/18/2018] [Indexed: 11/23/2022] Open
Abstract
We investigated the effects of insulin-like growth factor 1 (IGF-1) on the morphology and follicular activation of ovine preantral follicles cultured in situ and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway is involved in IGF-1 action in the sheep ovary. Ovine ovarian fragments were fixed for histological and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) analyses (fresh control) or cultured in supplemented alpha-minimum essential medium (α-MEM+; control) or α-MEM+ with IGF-1 (1, 10, 50, 100 or 200ngmL-1) for 7 days. Follicles were classified as normal or atretic, primordial or growing and the oocyte and follicle diameters were measured. DNA fragmentation was evaluated by TUNEL assay. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was performed on the fresh control, α-MEM+ and 100ngmL-1 IGF-1 samples. Inhibition of PI3K activity was performed through pretreatment with the PI3K inhibitor LY294002 and phosphorylated AKT (pAKT) expression was analysed after culture in the absence or presence of LY294002. IGF-1 at 100ngmL-1 increased (P<0.05) follicular activation compared with α-MEM+ and decreased TUNEL-positive cells (P<0.05) compared with other treatments. PCNA-positive cells also increased (P<0.05) in 100ngmL-1 IGF-1. LY294002 significantly inhibited follicular activation stimulated by α-MEM+ and 100ngmL-1 IGF-1 and reduced pAKT expression in follicles. Overall, IGF-1 at 100ngmL-1 promoted primordial follicle activation, cell proliferation and reduced DNA fragmentation after in situ culture through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Maria É S Bezerra
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Vanúzia G Menezes
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Bruna B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Taís J S Macedo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Jamile M S Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Alane P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Vanessa R P Barros
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Maria H T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| |
Collapse
|
24
|
Regan SLP, Knight PG, Yovich JL, Leung Y, Arfuso F, Dharmarajan A. Involvement of Bone Morphogenetic Proteins (BMP) in the Regulation of Ovarian Function. VITAMINS AND HORMONES 2018; 107:227-261. [PMID: 29544632 DOI: 10.1016/bs.vh.2018.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Primordial germ cells migrate to the fetal gonads and proliferate during gestation to generate a fixed complement of primordial follicles, the so-called ovarian reserve. Primordial follicles comprise an oocyte arrested at the diplotene stage of meiosis, surrounded by a layer of pregranulosa cells. Activation of primordial follicles to grow beyond this arrested stage is of particular interest because, once activated, they are subjected to regulatory mechanisms involved in growth, selection, maturation, and ultimately, ovulation or atresia. The vast majority of follicles succumb to atresia and are permanently lost from the quiescent or growing pool of follicles. The bone morphogenetic proteins (BMPs), together with other intraovarian growth factors, are intimately involved in regulation of follicle recruitment, dominant follicle selection, ovulation, and atresia. Activation of primordial follicles appears to be a continuous process, and the number of small antral follicles at the beginning of the menstrual cycle provides an indirect indication of ovarian reserve. Continued antral follicle development during the follicular phase of the menstrual cycle is driven by follicle stimulating hormone (FSH) and luteinizing hormone (LH) in conjunction with many intraovarian growth factors and inhibitors interrelated in a complex web of regulatory balance. The BMP signaling system has a major intraovarian role in many species, including the human, in the generation of transcription factors that influence proliferation, steroidogenesis, cell differentiation, and maturation prior to ovulation, as well as formation of corpora lutea after ovulation. At the anterior pituitary level, BMPs also contribute to the regulation of gonadotrophin production.
Collapse
Affiliation(s)
- Sheena L P Regan
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.
| | - Phil G Knight
- School of Biological Sciences, Hopkins Building, University of Reading, Reading, United Kingdom
| | - John L Yovich
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; PIVET Medical Centre, Perth, WA, Australia
| | - Yee Leung
- Western Australian Gynaecologic Cancer Service, King Edward Memorial Hospital for Women, Perth, WA, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
25
|
Saccon TD, Moreira F, Cruz LA, Mondadori RG, Fang Y, Barros CC, Spinel L, Bartke A, Masternak MM, Schneider A. Ovarian aging and the activation of the primordial follicle reserve in the long-lived Ames dwarf and the short-lived bGH transgenic mice. Mol Cell Endocrinol 2017; 455:23-32. [PMID: 27771355 PMCID: PMC5397383 DOI: 10.1016/j.mce.2016.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 10/15/2016] [Indexed: 12/09/2022]
Abstract
The aim of this study was to evaluate the effect of growth hormone (GH) in the maintenance of the ovarian primordial follicle reserve. Ovaries from 16 mo old GH-deficient Ames Dwarf (df/df) and Normal (N/df) mice were used. A subgroup of df/df and N mice received GH or saline injections for six weeks starting at 14 mo of age. In addition, ovaries from 12 mo old mice overexpressing bovine GH (bGH) and controls were used. df/df mice had higher number of primordial and total follicles than N/df mice (p < 0.05), while GH treatment decreased follicle counts in both genotypes (p < 0.05). In addition, bGH mice had lower number of primordial and total follicles than the controls (p < 0.05). pFoxO3a levels were higher in mice treated with GH and in bGH mice (p < 0.05) when comparing with age match controls. These results indicate that increased circulating GH is associated with a reduced ovarian primordial follicle reserve and increased pFoxO3a content in oocytes.
Collapse
Affiliation(s)
- Tatiana D Saccon
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fabiana Moreira
- Campus Araquari, Instituto Federal Catarinense, Araquari, SC, Brazil
| | - Luis A Cruz
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rafael G Mondadori
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Yimin Fang
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carlos C Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - L Spinel
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - A Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| | - A Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil; College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
26
|
Zhou S, Yan W, Shen W, Cheng J, Xi Y, Yuan S, Fu F, Ding T, Luo A, Wang S. Low expression of SEMA6C accelerates the primordial follicle activation in the neonatal mouse ovary. J Cell Mol Med 2017; 22:486-496. [PMID: 28881413 PMCID: PMC5742695 DOI: 10.1111/jcmm.13337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
The primordial follicle assembly, activation and the subsequent development are critical processes for female reproduction. A limited number of primordial follicles are activated to enter the growing follicle pool each wave, and the primordial follicle pool progressively diminishes over a woman's life‐time. The number of remaining primordial follicles represents the ovarian reserve. Identification and functional investigation of the factors involved in follicular initial recruitment will be of great significance to the understanding of the female reproduction process and ovarian ageing. In this study, we aimed to study whether and how semaphorin 6C (Sema6c) regulated the primordial follicle activation in the neonatal mouse ovary. The attenuation of SEMA6C expression by SiRNA accelerated the primordial follicle activation in the in vitro ovary culture system. PI3K‐AKT‐rpS6 pathway was activated when SEMA6C expression was down‐regulated. And the LY294002 could reverse the effect of low SEMA6C expression on primordial follicle activation. Our findings revealed that Sema6c was involved in the activation of primordial follicles, and the down‐regulation of SEMA6C led to massive primordial follicle activation by interacting with the PI3K‐AKT‐rpS6 pathway, which might also provide valuable information for understanding premature ovarian failure and ovarian ageing.
Collapse
Affiliation(s)
- Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Cheng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yueyue Xi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
27
|
Cho SH, An HJ, Kim KA, Ko JJ, Kim JH, Kim YR, Ahn EH, Rah H, Lee WS, Kim NK. Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells. PLoS One 2017; 12:e0183479. [PMID: 28841705 PMCID: PMC5571913 DOI: 10.1371/journal.pone.0183479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/05/2017] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs post-transcriptionally regulate gene expression in animals and plants. The aim of this study was to identify new target genes for microRNA polymorphisms (miR-146aC>G and miR-196a2T>C) in primary ovarian insufficiency (POI). We cloned and transfected miR-146aC>G and miR-196a2T>C into human granulosa cells and used microarrays and qPCR-arrays to examine the changes in the messenger RNA expression profile. We show miR-146aC>G and miR-196a2T>C change the mRNA expression patterns in granulosa cell. In each case, mRNAs were up or down-regulated after treatments with miR-146a C or G and miR-196a2 T or C. We found that miR-146a led to a significantly altered regulation of the mRNA levels of FOXO3, FOXL2 and CCND2 compared to controls. We also found that the polymorphisms of miR-146a led to a significantly altered regulation of CCND2 and FOXO3. Our results suggest that miR-146aC>G and miR-196a2T>C can regulate the levels of many of their target transcripts. In addition, specific target genes of miR-146aC>G polymorphisms may be involved in granulosa cell regulation.
Collapse
Affiliation(s)
- Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Kyung Ah Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Jung Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, School of Medicine, CHA University, Seongnam, South Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, School of Medicine, CHA University, Seongnam, South Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, School of Medicine, CHA University, Seongnam, South Korea
| | - HyungChul Rah
- Healthcare Bigdata Linkage Platform Team, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, School of Medicine, CHA University, Seoul, South Korea
- * E-mail: , (NKK); (WSL)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
- * E-mail: , (NKK); (WSL)
| |
Collapse
|
28
|
Bastu E, Zeybek U, Gurel Gurevin E, Yüksel Ozgor B, Celik F, Okumus N, Demiral I, Dural O, Celik C, Bulut H, Ilkay Armutak E, Baysal B, Buyru F, Yeh J. Effects of Irisin and Exercise on Metabolic Parameters and Reproductive Hormone Levels in High-Fat Diet-Induced Obese Female Mice. Reprod Sci 2017; 25:281-291. [DOI: 10.1177/1933719117711264] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ercan Bastu
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Umit Zeybek
- Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ebru Gurel Gurevin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Bahar Yüksel Ozgor
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Faruk Celik
- Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nazli Okumus
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Irem Demiral
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Ozlem Dural
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Cem Celik
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Huri Bulut
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Elif Ilkay Armutak
- Department of Histology and Embryology, Faculty of Veterinary, Istanbul University, Istanbul, Turkey
| | - Bulent Baysal
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Faruk Buyru
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - John Yeh
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
DAS DEBABRATA, ARUR SWATHI. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol Reprod Dev 2017; 84:444-459. [PMID: 28379636 PMCID: PMC5477485 DOI: 10.1002/mrd.22806] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin-mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin-signaling pathway. The molecular determinants of the insulin-signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals-yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin-mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin's unique role in specific reproductive processes.
Collapse
Affiliation(s)
- DEBABRATA DAS
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - SWATHI ARUR
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
30
|
Zhao Y, Zhang Y, Li J, Zheng N, Xu X, Yang J, Xia G, Zhang M. MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling. J Cell Physiol 2017; 233:226-237. [PMID: 28218391 DOI: 10.1002/jcp.25868] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/17/2017] [Indexed: 12/13/2022]
Abstract
The majority of ovarian primordial follicles are preserved in a dormant state to maintain the female reproductive lifespan, and only a few primordial follicles are activated to enter the growing follicle pool in each wave. Recent studies have shown that primordial follicular activation depends on mammalian target of rapamycin complex 1 (mTORC1)-KIT ligand (KITL) signaling in pre-granulosa cells and its receptor (KIT)-phosphoinositol 3 kinase (PI3K) signaling in oocytes. However, the upstream regulator of mTORC1 signaling is unclear. The results of the present study showed that the phosphorylated mitogen-activated protein kinase3/1 (MAPK3/1) protein is expressed in some primordial follicles and all growing follicles. Culture of 3 days post-parturition (dpp) ovaries with the MAPK3/1 signaling inhibitor U0126 significantly reduced the number of activated follicles and was accompanied by dramatically reduced granulosa cell proliferation and increased oocyte apoptosis. Western blot and immunofluorescence analyses showed that U0126 significantly decreased the phosphorylation levels of Tsc2, S6K1, and rpS6 and the expression of KITL, indicating that U0126 inhibits mTORC1-KITL signaling. Furthermore, U0126 decreased the phosphorylation levels of Akt, resulting in a decreased number of oocytes with Foxo3 nuclear export. To further investigate MAPK3/1 signaling in primordial follicle activation, we used phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitor bpV(HOpic) to promote primordial follicle activation. In this model, U0126 also inhibited the activation of primordial follicles and mTORC1 signaling. Thus, these results suggest that MAPK3/1 participates in primordial follicle activation through mTORC1-KITL signaling.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yu Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jia Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Nana Zheng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoting Xu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jing Yang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Guoliang Xia
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
31
|
Schneider A, Matkovich SJ, Saccon T, Victoria B, Spinel L, Lavasani M, Bartke A, Golusinski P, Masternak MM. Ovarian transcriptome associated with reproductive senescence in the long-living Ames dwarf mice. Mol Cell Endocrinol 2017; 439:328-336. [PMID: 27663076 PMCID: PMC5123904 DOI: 10.1016/j.mce.2016.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
The aim of the current work was to evaluate the ovarian follicle reserve and the ovarian transcriptome in Ames dwarf (df/df) mice. The results suggest a delayed ovarian aging in df/df mice compared to normal (N) mice. Although a high number of genes were differentially expressed during aging of N mice, only a small fraction of these changed with aging in df/df mice. These alterations involved more than 500 categorized biological processes. The majority of these biological processes, including inflammatory/immune responses, were up-regulated with aging in N mice, while old df/df mice were characterized by down-regulation of these same processes in comparison to age matched N mice. However, biological processes related to DNA damage and repairing were commonly down-regulated with aging in both genotypes. In conclusion, delayed ovarian aging in long-living df/df mice was associated with reduced expression of genes related to the inflammatory and immune responses.
Collapse
Affiliation(s)
- Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil; College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.
| | - Scot J Matkovich
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tatiana Saccon
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Berta Victoria
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Lina Spinel
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Mitra Lavasani
- Rehabilitation Institute of Chicago, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Pawel Golusinski
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA; Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznan, Poland; Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland.
| |
Collapse
|
32
|
Huang P, Zhou Z, Shi F, Shao G, Wang R, Wang J, Wang K, Ding W. Effects of the IGF-1/PTEN/Akt/FoxO signaling pathway on male reproduction in rats subjected to water immersion and restraint stress. Mol Med Rep 2016; 14:5116-5124. [PMID: 27779666 PMCID: PMC5355674 DOI: 10.3892/mmr.2016.5880] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/03/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to determine the effects of the insulin-like growth factor 1 (IGF-1)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/Akt/forkhead box (FoxO) signaling pathway on male reproduction in rats subjected to water immersion and restraint stress (WRS). Sperm morphology, sperm malformation rate, and serum testosterone concentration were analyzed following WRS. In addition, the expression levels and immunolocalization of IGF-1, PTEN, Akt and FoxO proteins, as well as the rate of cell apoptosis in rat testes, were investigated. The results indicated that sperm malformation rate, serum testosterone concentration, and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were increased in the testes after WRS. Furthermore, IGF-1 and FoxO1 proteins were predominantly localized in the sperm cytoplasm during the late stages of spermatogenesis. FoxO1 protein was also localized in Leydig cell cytoplasm. PTEN and total Akt proteins were predominantly expressed in the cytoplasm of Leydig cells and spermatogonia. PTEN protein was also detected in vascular endothelial cells. In addition, IGF-1, PTEN, Akt1, Akt2, FoxO3 and FoxO4 gene expression levels were upregulated following WRS, and peaked after 7 h of WRS. During the recovery period, the expression levels of these genes gradually returned to normal levels. The present study demonstrated that WRS induced sperm damage in the testes. In addition, the results indicated that the IGF-1/PTEN/Akt/FoxO signaling pathway may serve an anti-stress role in the testes of rats subjected to WRS.
Collapse
Affiliation(s)
- Pan Huang
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhengrong Zhou
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Fangxiong Shi
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Genbao Shao
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ran Wang
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jintian Wang
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Kangxin Wang
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei Ding
- Department of Animal Husbandry and Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, Jiangsu 212400, P.R. China
| |
Collapse
|
33
|
Wu Y, Zhang Z, Liao X, Qi L, Liu Y, Wang Z. Effect of high-fat diet-induced obesity on the Akt/FoxO/Smad signaling pathway and the follicular development of the mouse ovary. Mol Med Rep 2016; 14:3894-900. [PMID: 27574010 DOI: 10.3892/mmr.2016.5671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/10/2016] [Indexed: 11/06/2022] Open
Abstract
Obesity has a negative effect on ovarian functions, which is reported to increase the risk of infertility. The mechanism underlying obesity‑induced infertility is not yet clear. The present study established a high‑fat diet (HFD)‑induced obesity mouse model to elucidate the mechanisms underlying the effect of HFD‑induced obesity on follicular development in the mouse ovary. The 4‑week‑old female mice were fed with HFD or normal control (NC) diet for 15 or 20 weeks. Body mass index was used to demonstrate that the mice were obese following HFD treatment. The follicular development of the ovaries from the HFD group mice was retarded in a time‑dependent manner, as demonstrated by morphological and histological examination of the ovaries. Further investigation via western blot analysis demonstrated that the activity of the transcription factor, forkhead box O3a (FoxO3a), was increased by HFD through downregulated FoxO3a phosphorylation, which may contribute to the inhibited development of ovarian follicles. To determine the regulatory mechanism of FoxO3 on the follicular development, the expression levels of FoxO3a target protein, Smad1/5/8, were also determined and there was significant decrease in phosphorylated Smad1/5/8 in the ovaries from the HFD group compared with the NC group, indicating that FoxO3a/Smad1/5/8 may be important in the regulation of follicular development. The expression levels of the upstream regulator of FoxO3a, Akt, were also examined and it was demonstrated that Akt phosphorylation was significantly reduced in the HFD group compared with the NC group, indicating that Akt/FoxO3a may be also involved in follicular development. Together, the experiments demonstrated that HFD‑induced obesity affected the activity of the Akt/FoxO3a/Smad1/5/8 signaling pathway in a time‑dependent manner during the follicular development of the mouse ovary, leading to abnormal follicular development. These findings may provide part of a theoretical basis for the clinical prevention and treatment of obesity-associated female infertility.
Collapse
Affiliation(s)
- Yanqing Wu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Xinghui Liao
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Lingbin Qi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Yiping Liu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
34
|
Saatcioglu HD, Cuevas I, Castrillon DH. Control of Oocyte Reawakening by Kit. PLoS Genet 2016; 12:e1006215. [PMID: 27500836 PMCID: PMC4976968 DOI: 10.1371/journal.pgen.1006215] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/02/2016] [Indexed: 12/11/2022] Open
Abstract
In mammals, females are born with finite numbers of oocytes stockpiled as primordial follicles. Oocytes are “reawakened” via an ovarian-intrinsic process that initiates their growth. The forkhead transcription factor Foxo3 controls reawakening downstream of PI3K-AKT signaling. However, the identity of the presumptive upstream cell surface receptor controlling the PI3K-AKT-Foxo3 axis has been questioned. Here we show that the receptor tyrosine kinase Kit controls reawakening. Oocyte-specific expression of a novel constitutively-active KitD818V allele resulted in female sterility and ovarian failure due to global oocyte reawakening. To confirm this result, we engineered a novel loss-of-function allele, KitL. Kit inactivation within oocytes also led to premature ovarian failure, albeit via a contrasting phenotype. Despite normal initial complements of primordial follicles, oocytes remained dormant with arrested oocyte maturation. Foxo3 protein localization in the nucleus versus cytoplasm explained both mutant phenotypes. These genetic studies provide formal genetic proof that Kit controls oocyte reawakening, focusing future investigations into the causes of primary ovarian insufficiency and ovarian aging. In mammals, oocyte reawakening controls female fertility, the onset of the menopause, and thus, overall aging. We demonstrate here through complementary genetic experiments that Kit is the upstream receptor regulating oocyte reawakening. Although other cell surface receptors have been proposed as candidates, the data have remained contradictory, and definitive genetic evidence in support of any one receptor has been lacking. We engineered two novel Kit alleles in mice, one an activating (gain-of-function) mutation, the other an inactivating (loss-of-function) mutation. These alleles permitted us to conduct elegant genetic experiments whereby Kit was activated or inactivated in the oocytes of newborn mice. The results were complementary and striking. Oocyte-specific Kit activation resulted in female sterility due to reawakening of all oocytes, leading to premature ovarian failure. In contrast, Kit inactivation also led to female sterility and ovarian failure, but through a contrasting and opposite phenotype: a complete failure of primordial follicle reawakening. Additional studies demonstrated that Foxo3, a known regulator of reawakening, was the mediator of both phenotypes, linking our findings to prior discoveries. These complementary genetic experiments thus definitively incriminate Kit as the upstream receptor regulating reawakening.
Collapse
Affiliation(s)
- Hatice Duygu Saatcioglu
- Department of Pathology and Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ileana Cuevas
- Department of Pathology and Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Diego H. Castrillon
- Department of Pathology and Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
|
36
|
Bertoldo MJ, Bernard J, Duffard N, Tsikis G, Alves S, Calais L, Uzbekova S, Monniaux D, Mermillod P, Locatelli Y. Inhibitors of c-Jun phosphorylation impede ovine primordial follicle activation. Mol Hum Reprod 2016; 22:338-49. [PMID: 26908644 DOI: 10.1093/molehr/gaw012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/20/2016] [Indexed: 12/23/2022] Open
Abstract
STUDY HYPOTHESIS Is the c-Jun-N-terminal kinase (JNK) pathway implicated in primordial follicle activation? STUDY FINDING Culture of ovine ovarian cortex in the presence of two different c-Jun phosphorylation inhibitors impeded pre-antral follicle activation. WHAT IS KNOWN ALREADY Despite its importance for fertility preservation therapies, the mechanisms of primordial follicle activation are poorly understood. Amongst different signalling pathways potentially involved, the JNK pathway has been previously shown to be essential for cell cycle progression and pre-antral follicle development in mice. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Ovine ovarian cortex pieces were cultured with varying concentrations of SP600125, JNK inhibitor VIII or anti-Mullerian hormone (AMH) in the presence of FSH for 9 days. Follicular morphometry and immunohistochemistry for proliferating cell nuclear antigen (PCNA), apoptosis and follicle activation (Foxo3a) were assessed. MAIN RESULTS AND THE ROLE OF CHANCE Inhibition of primordial follicle activation occurred in the presence of SP600125, JNK inhibitor VIII and AMH when compared with controls (all P < 0.05) after 2 days of culture. However, only in the highest concentrations used was the inhibition of activation associated with induction of follicular apoptosis (P < 0.05). In growing follicles, PCNA antigen expression was reduced when the JNK inhibitors or AMH were used (P < 0.05 versus control), indicating reduced proliferation of the somatic compartment. LIMITATIONS, REASONS FOR CAUTION Although we evaluated the effects of inhibition of c-Jun phosphorylation on primordial follicle development, we did not determine the cellular targets and mechanism of action of the inhibitors. WIDER IMPLICATIONS OF THE FINDINGS These results are the first to implicate the JNK pathway in primordial follicle activation and could have significant consequences for the successful development of fertility preservation strategies and our understanding of primordial follicle activation. LARGE SCALE DATA n/a. STUDY FUNDING AND COMPETING INTERESTS Dr Michael J. Bertoldo and the laboratories involved in the present study were supported by a grant from 'Région Centre' (CRYOVAIRE, Grant number #320000268). There are no conflicts of interest to declare.
Collapse
Affiliation(s)
- Michael J Bertoldo
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales, Sydney, Australia
| | - Jérémy Bernard
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France MNHN, Laboratoire de la Réserve de la Haute Touche, Obterre 36290, France
| | - Nicolas Duffard
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France MNHN, Laboratoire de la Réserve de la Haute Touche, Obterre 36290, France
| | - Guillaume Tsikis
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France CNRS, UMR7247, Nouzilly 37380, France Université François Rabelais de Tours, Tours 37041, France IFCE, Nouzilly 37380, France
| | - Sabine Alves
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France CNRS, UMR7247, Nouzilly 37380, France Université François Rabelais de Tours, Tours 37041, France IFCE, Nouzilly 37380, France
| | - Laure Calais
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France
| | - Svetlana Uzbekova
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France CNRS, UMR7247, Nouzilly 37380, France Université François Rabelais de Tours, Tours 37041, France IFCE, Nouzilly 37380, France
| | - Danielle Monniaux
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France CNRS, UMR7247, Nouzilly 37380, France Université François Rabelais de Tours, Tours 37041, France IFCE, Nouzilly 37380, France
| | - Pascal Mermillod
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France CNRS, UMR7247, Nouzilly 37380, France Université François Rabelais de Tours, Tours 37041, France IFCE, Nouzilly 37380, France
| | - Yann Locatelli
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France MNHN, Laboratoire de la Réserve de la Haute Touche, Obterre 36290, France CNRS, UMR7247, Nouzilly 37380, France Université François Rabelais de Tours, Tours 37041, France IFCE, Nouzilly 37380, France
| |
Collapse
|
37
|
Ezzati MM, Baker MD, Saatcioglu HD, Aloisio GM, Pena CG, Nakada Y, Cuevas I, Carr BR, Castrillon DH. Regulation of FOXO3 subcellular localization by Kit ligand in the neonatal mouse ovary. J Assist Reprod Genet 2015; 32:1741-7. [PMID: 26507072 DOI: 10.1007/s10815-015-0589-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Foxo3 protein is required in the oocyte nucleus for the maintenance of primordial follicles in a dormant state. PI3K/AKT-dependent phosphorylation of Foxo3 leads to its relocalization to the cytoplasm and subsequent follicular activation. However, the nature of the upstream signals controlling Foxo3 activity and subcellular localization remains unknown. We aimed to study the in vitro effects of Kit ligand (stem cell factor) on the subcellular localization of Foxo3 in primordial follicles within the postnatal mouse ovary. METHODS This was an in vitro study using explants of intact neonatal mouse ovaries. The study was performed in laboratory animal facility and basic science research laboratory at a University Hospital. The animals used for this study were FVB mice. Neonatal FVB mice ovaries at postnatal day 7 (PD7) were harvested and incubated in culture medium (DMEM) at 37 °C and 5 % CO(2) for 60-90 min with (n = 3) or without (n = 3) Kit ligand at 150 ng/mL (8 nM). Similar experimental conditions were used to establish a dose-response curve for the effects of Kit ligand and assess the effects of imatinib (small molecule inhibitor of the Kit receptor). Immunofluorescence was used to identify the subcellular location of Foxo3 in oocytes. Proportions of cytoplasmic versus nuclear Foxo3 in primordial follicles were determined. RESULTS Kit ligand treatment increased the cytoplasmic localization of Foxo3 from 40 % in the untreated ovaries to 74 % in the treated group (p = 0.007 in paired samples and p = 0.03 in unpaired samples). Furthermore, this effect was reversible with imatinib (p = 0.005). A dose-response curve for Kit ligand treatment showed that maximum effect was seen at 150 ng/mL. CONCLUSION Kit ligand treatment in vitro increases the proportion of cytoplasmic Foxo3 in primordial follicles at PD7, lending support to the idea that Kit receptor/ligand controls Foxo3 activity in the context of primordial follicle activation.
Collapse
Affiliation(s)
- M Max Ezzati
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390-9072, USA.
- Palo Alto Medical Foundation, Palo Alto, CA, USA.
| | - Michael D Baker
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390-9072, USA
| | - Hatice D Saatcioglu
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390-9072, USA
| | - Gina M Aloisio
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390-9072, USA
| | - Christopher G Pena
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390-9072, USA
| | - Yuji Nakada
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390-9072, USA
| | - Ileana Cuevas
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390-9072, USA
| | - Bruce R Carr
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390-9072, USA
| | - Diego H Castrillon
- Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75390-9072, USA.
| |
Collapse
|
38
|
Kuscu N, Celik-Ozenci C. FOXO1, FOXO3, AND FOXO4 are differently expressed during mouse oocyte maturation and preimplantation embryo development. Gene Expr Patterns 2015; 18:16-20. [PMID: 25929834 DOI: 10.1016/j.gep.2015.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 02/02/2023]
Abstract
Preimplantation embryo development is affected by its environment. FoxO transcription factors are regulated by PI3K/Akt signaling pathway that essentially supports growth and development. FoxO transcription factors are at the interface of crucial cellular processes, orchestrating programs of gene expression that regulate apoptosis, cell-cycle arrest, oxidative stress resistance, DNA repair, glucose metabolism, and differentiation. In the presence of growth factors, FoxO transcription factors are localized in the cytoplasm, whereas under stress conditions they move to the nucleus and trigger transcriptional activities of their target genes. The aim of the present study is to investigate whether FoxO transcription factors are present during in vivo oocyte maturation and preimplantation embryo development. Presence and localizations of FoxO1, FoxO3 and FoxO4 proteins have been determined with immunofluorescence staining. Our results have confirmed that FoxO1, FoxO3 and FoxO4 proteins are differentially expressed in prophase I, metaphase I, metaphase II oocytes, as well as in fertilized oocyte, 2-cell embryo, 4-cell embryo, 8-cell embryo, morula, and blastocyst. FoxOs translocate to nucleus in embryos with developmental delay. Our findings indicate that FoxO transcription factors are present during both oocyte and embryo in vivo maturation and provide fundamental knowledge that FoxOs may regulate in vitro embryo development under stress conditions.
Collapse
Affiliation(s)
- Nilay Kuscu
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070 Antalya, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070 Antalya, Turkey.
| |
Collapse
|
39
|
Kim SY, Ebbert K, Cordeiro MH, Romero M, Zhu J, Serna VA, Whelan KA, Woodruff TK, Kurita T. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinology 2015; 156:1464-76. [PMID: 25594701 PMCID: PMC4399322 DOI: 10.1210/en.2014-1926] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we explored the effects of oocytic phosphoinositide 3-kinase (PI3K) activation on folliculogensis by generating transgenic mice, in which the oocyte-specific Cre-recombinase induces the expression of constitutively active mutant PI3K during the formation of primordial follicles. The ovaries of neonatal transgenic (Cre+) mice showed significantly reduced apoptosis in follicles, which resulted in an excess number of follicles per ovary. Thus, the elevation of phosphatidylinositol (3,4,5)-trisphosphate levels within oocytes promotes the survival of follicles during neonatal development. Despite the increase in AKT phosphorylation, primordial follicles in neonatal Cre+ mice remained dormant demonstrating a nuclear accumulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). These primordial follicles containing a high level of nuclear PTEN persisted in postpubertal females, suggesting that PTEN is the dominant factor in the maintenance of female reproductive lifespan through the regulation of primordial follicle recruitment. Although the oocytic PI3K activity and PTEN levels were elevated, the activation of primordial follicles and the subsequent accumulation of antral follicles with developmentally competent oocytes progressed normally in prepubertal Cre+ mice. However, mature Cre+ female mice were anovulatory. Because postnatal day 50 Cre+ mice released cumulus-oocyte complexes with developmentally competent oocytes in response to super-ovulation treatment, the anovulatory phenotype was not due to follicular defects but rather endocrine abnormalities, which were likely caused by the excess number of overgrown follicles. Our current study has elucidated the critical role of oocytic PI3K activity in follicular function, as well as the presence of a PTEN-mediated mechanism in the prevention of immature follicle activation.
Collapse
Affiliation(s)
- So-Youn Kim
- Division of Reproductive Science in Medicine (S.K., K.E., M.H.C., M.R., J.Z., K.A.W., T.K.W.), Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; and Department of Molecular and Cellular Biochemistry (V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Makker A, Goel MM, Mahdi AA. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: an update. J Mol Endocrinol 2014; 53:R103-18. [PMID: 25312969 DOI: 10.1530/jme-14-0220] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormalities in ovarian function, including defective oogenesis and folliculogenesis, represent a key female reproductive deficiency. Accumulating evidence in the literature has shown that the PI3K/PTEN/Akt and TSC/mTOR signaling pathways are critical regulators of ovarian function including quiescence, activation, and survival of primordial follicles, granulosa cell proliferation and differentiation, and meiotic maturation of oocytes. Dysregulation of these signaling pathways may contribute to infertility caused by impaired follicular development, intrafollicular oocyte development, and ovulation. This article reviews the current state of knowledge of the functional role of the PI3K/PTEN/Akt and TSC/mTOR pathways during mammalian oogenesis and folliculogenesis and their association with female infertility.
Collapse
Affiliation(s)
- Annu Makker
- Post-Graduate Department of PathologyDepartment of BiochemistryKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Madhu Mati Goel
- Post-Graduate Department of PathologyDepartment of BiochemistryKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Post-Graduate Department of PathologyDepartment of BiochemistryKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
41
|
Yuan J, Tao W, Cheng Y, Huang B, Wang D. Genome-wide identification, phylogeny, and gonadal expression of fox genes in Nile tilapia, Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1239-1252. [PMID: 24526262 DOI: 10.1007/s10695-014-9919-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
The fox genes play important roles in various biological processes, including sexual development. In the present study, we isolated 65 fox genes, belonging to 18 subfamilies named A-R, from Nile tilapia through genome-wide screening. Twenty-four of them have two or three (foxm1) copies. Furthermore, 16, 25, 68, and 45 fox members were isolated from nematodes, protochordates, teleosts, and tetrapods, respectively. Phylogenetic analyses indicated fox gene family had undergone three expansions parallel to the three rounds of genome duplication during evolution. We also analyzed the clustered fox genes and found that apparent linkage duplication existed in teleosts, which further supported fish-specific genome duplication hypothesis. In addition, species- and lineage-specific duplication is another reason for fox gene family expansion. Based on the four pairs of XX and XY gonadal transcriptome data from four critical developmental stages, we analyzed the expression profile of all fox genes and identified sexually dimorphic fox genes at each stage. All fox genes were detected in gonads, with 15 of them at the background expression level (total read per kb per million reads, RPKM < 10), 29 at moderate expression level (10 < total RPKM < 100), and 21 at high expression level (total RPKM > 100). There are 27, 24, 28, and 9 sexually dimorphic fox genes at 5, 30, 90, and 180 days after hatching (dah), respectively. foxq1a, foxf1, foxr1, and foxr1 were identified as the most differentially expressed genes at each stage. foxl2 was characterized as XX-dominant gene, while foxd5, foxi3, foxn3, foxj1a, foxj3b, and foxo6b were characterized as XY-dominant genes. qPCR and in situ hybridization of foxh1 and foxj1a were performed to confirm the expression profiles and to validate the transcriptome data. Our results suggest that fox genes might play important roles in sex determination and gonadal development in teleosts.
Collapse
Affiliation(s)
- Jing Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Baker MD, Ezzati M, Aloisio GM, Tarnawa ED, Cuevas I, Nakada Y, Castrillon DH. The small GTPase Rheb is required for spermatogenesis but not oogenesis. Reproduction 2014; 147:615-25. [PMID: 24713393 DOI: 10.1530/rep-13-0304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The process of germ cell development is under the tight control of various signaling pathways, among which the PI3K-Akt-mTOR pathway is of critical importance. Previous studies have demonstrated sex-specific roles for several components of this pathway. In the current study, we aimed to evaluate the role of Rheb, a member of the small GTPase superfamily and a critical component for mTORC1 activation, in male and female gametogenesis. The function of Rheb in development and the nervous system has been extensively studied, but little is known about its role in the germ line. We have exploited genetic approaches in the mouse to study the role of Rheb in the germ line and have identified an essential role in spermatogenesis. Conditional knockout (cKO) of Rheb in the male germ line resulted in severe oligoasthenoteratozoospermia and male sterility. More detailed phenotypic analyses uncovered an age-dependent meiotic progression defect combined with subsequent abnormalities in spermiogenesis as evidenced by abnormal sperm morphology. In the female, however, germ-cell specific inactivation of Rheb was not associated with any discernible abnormality; these cKO mice were fertile with morphologically unremarkable ovaries, normal primordial follicle formation, and subsequent follicle maturation. The absence of an abnormal ovarian phenotype is striking given previous studies demonstrating a critical role for the mTORC1 pathway in the maintenance of primordial follicle pool. In conclusion, our findings demonstrate an essential role of Rheb in diverse aspects of spermatogenesis but suggest the existence of functionally redundant factors that can compensate for Rheb deficiency within oocytes.
Collapse
|
43
|
Hanna CB, Hennebold JD. Ovarian germline stem cells: an unlimited source of oocytes? Fertil Steril 2014; 101:20-30. [PMID: 24382341 DOI: 10.1016/j.fertnstert.2013.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/28/2022]
Abstract
While there has been progress in directing the development of embryonic stem cells and induced pluripotent stem cells toward a germ cell state, their ability to serve as a source of functional oocytes in a clinically relevant model or situation has yet to be established. Recent studies suggest that the adult mammalian ovary is not endowed with a finite number of oocytes, but instead possesses stem cells that contribute to their renewal. The ability to isolate and promote the growth and development of such ovarian germline stem cells (GSCs) would provide a novel means to treat infertility in women. Although such ovarian GSCs are well characterized in nonmammalian model organisms, the findings that support the existence of adult ovarian GSCs in mammals have been met with considerable evidence that disputes their existence. This review details the lessons provided by model organisms that successfully utilize ovarian GSCs to allow for a continual and high level of female germ cell production throughout their life, with a specific focus on the cellular mechanisms involved in GSC self-renewal and oocyte development. Such an overview of the role that oogonial stem cells play in maintaining fertility in nonmammalian species serves as a backdrop for the data generated to date that supports or disputes the existence of GSCs in mammals as well as the future of this area of research in terms of its potential for any application in reproductive medicine.
Collapse
Affiliation(s)
- Carol B Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon.
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
44
|
Wang ZP, Mu XY, Guo M, Wang YJ, Teng Z, Mao GP, Niu WB, Feng LZ, Zhao LH, Xia GL. Transforming growth factor-β signaling participates in the maintenance of the primordial follicle pool in the mouse ovary. J Biol Chem 2014; 289:8299-311. [PMID: 24515103 DOI: 10.1074/jbc.m113.532952] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Physiologically, only a few primordial follicles are activated to enter the growing follicle pool each wave. Recent studies in knock-out mice show that early follicular activation depends on signaling from the tuberous sclerosis complex, the mammalian target of rapamycin complex 1 (mTORC1), phosphatase and tensin homolog deleted on chromosome 10, and phosphatidylinositol 3-kinase (PI3K) pathways. However, the manner in which these pathways are normally regulated, and whether or not TGF-β acts on them are poorly understood. So, this study aims to identify whether or not TGF-β acts on the process. Ovary organ culture experiments showed that the culture of 18.5 days post-coitus (dpc) ovaries with TGF-β1 reduced the total population of oocytes and activated follicles, accelerated oocyte growth was observed in ovaries treated with TGF-βR1 inhibitor 2-(5-chloro-2-fluorophenyl)pteridin-4-yl]pyridin-4-yl-amine (SD208) compared with control ovaries, the down-regulation of TGF-βR1 gene expression also activated early primordial follicle oocyte growth. We further showed that there was dramatically more proliferation of granulosa cells in SD208-treated ovaries and less proliferation in TGF-β1-treated ovaries. Western blot and morphological analyses indicated that TGF-β signaling manipulated primordial follicle growth through tuberous sclerosis complex/mTORC1 signaling in oocytes, and the mTORC1-specific inhibitor rapamycin could partially reverse the stimulated effect of SD208 on the oocyte growth and decreased the numbers of growing follicles. In conclusion, our results suggest that TGF-β signaling plays an important physiological role in the maintenance of the dormant pool of primordial follicles, which functions through activation of p70 S6 kinase 1 (S6K1)/ribosomal protein S6 (rpS6) signaling in mouse ovaries.
Collapse
Affiliation(s)
- Zheng-Pin Wang
- From the State Key Laboratory of Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Ovarian reserve and its utilization, over a reproductive life span, are determined by genetic, epigenetic, and environmental factors. The establishment of the primordial follicle pool and the rate of primordial follicle activation have been under intense study to determine genetic factors that affect reproductive lifespan. Much has been learned from transgenic animal models about the developmental origins of the primordial follicle pool and mechanisms that lead to primordial follicle activation, folliculogenesis, and the maturation of a single oocyte with each menstrual cycle. Recent genome-wide association studies on the age of human menopause have identified approximately 20 loci, and shown the importance of factors involved in double-strand break repair and immunology. Studies to date from animal models and humans show that many genes determine ovarian aging, and that there is no single dominant allele yet responsible for depletion of the ovarian reserve. Personalized genomic approaches will need to take into account the high degree of genetic heterogeneity, family pedigree, and functional data of the genes critical at various stages of ovarian development to predict women's reproductive life span.
Collapse
Affiliation(s)
- Michelle A Wood
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | |
Collapse
|
46
|
Tarnawa ED, Baker MD, Aloisio GM, Carr BR, Castrillon DH. Gonadal expression of Foxo1, but not Foxo3, is conserved in diverse Mammalian species. Biol Reprod 2013; 88:103. [PMID: 23486915 DOI: 10.1095/biolreprod.112.105791] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Foxos are key effectors of the PI3K/Akt signaling pathway and regulate diverse physiologic processes. Two of these factors, Foxo1 and Foxo3, serve specific roles in reproduction in the mouse. Foxo3 is required for suppression of primordial follicle activation in females, while Foxo1 regulates spermatogonial stem cell maintenance in males. In the mouse ovary, Foxo1 is highly expressed in somatic cells (but not in oocytes), suggesting an important functional role for Foxo1 in these cells. Given that invertebrate model species such as Caenorhabditis elegans and Drosophila melanogaster harbor a single ancestral Foxo homolog, these observations suggest that gene duplication conferred a selective advantage by permitting the Foxos to adopt distinct roles in oogenesis and spermatogenesis. Our objective was to determine if the remarkably specific expression patterns of Foxo1 and Foxo3 in mouse gonads (and, by inference, Foxo function) are conserved in diverse mammalian species. Western blotting was used to validate isoform-specific antibodies in rodents, companion animals, farm animals, nonhuman primates, and humans. Following validation of each antibody, immunohistochemistry was performed to ascertain Foxo1 and Foxo3 gonadal expression patterns. While Foxo1 expression in spermatogonia and granulosa cells was conserved in each species evaluated, Foxo3 expression in oocytes was not. Our findings suggest that Foxo3 is not uniquely required for primordial follicle maintenance in nonrodent species and that other Foxos, particularly Foxo1, may contribute to oocyte maintenance in a functionally redundant manner.
Collapse
Affiliation(s)
- Edward D Tarnawa
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | | | | | | | | |
Collapse
|
47
|
Evron A, Blumenfeld Z. Ovarian Stem Cells-the Pros and Cons. CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2013; 7:43-7. [PMID: 24453518 PMCID: PMC3888079 DOI: 10.4137/cmrh.s11086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The potential for postnatal de novo oogenesis in mammals and in humans has become very controversial in the fields of reproductive science and biology. Historically, it has been thought that females of most mammalian species lose the ability to produce oocytes at birth. A contemporary understanding of stem cell biology together with novel experimental methods has challenged the model of a prenatal fixed ovarian primordial follicle pool that declines with age. Researchers have suggested replenishment of post-natal oocytes by germ-line stem cells (GSCs). According to this theory, GSCs produce oocytes and primordial follicles throughout the lifetime of the adult female. This review describes recent approaches supporting the revolutionary idea of de novo oogenesis in mammals and humans of reproductive-age and provides counter arguments from opponents of this novel and innovative concept.
Collapse
Affiliation(s)
- Ayelet Evron
- 8 Ha'Aliyah St., Reproductive Endocrinology Dept. OB/GYN, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Zeev Blumenfeld
- 8 Ha'Aliyah St., Reproductive Endocrinology Dept. OB/GYN, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
48
|
Huang L, Wang ZB, Jiang ZZ, Hu MW, Lin F, Zhang QH, Luo YB, Hou Y, Zhao Y, Fan HY, Schatten H, Sun QY. Specific disruption of Tsc1 in ovarian granulosa cells promotes ovulation and causes progressive accumulation of corpora lutea. PLoS One 2013; 8:e54052. [PMID: 23335988 PMCID: PMC3545997 DOI: 10.1371/journal.pone.0054052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/05/2012] [Indexed: 12/14/2022] Open
Abstract
Tuberous sclerosis complex 1 (Tsc1) is a tumor suppressor negatively regulating mammalian target of rapamycin complex 1 (mTORC1). It is reported that mice lacking Tsc1 gene in oocytes show depletion of primordial follicles, resulting in premature ovarian failure and subsequent infertility. A recent study indicated that deletion of Tsc1 in somatic cells of the reproductive tract caused infertility of female mice. However, it is not known whether specific disruption of Tsc1 in granulosa cells influences the reproductive activity of female mice. To clarify this problem, we mated Tsc1flox/flox mice with transgenic mice strain expressing cyp19-cre which exclusively expresses in granulosa cells of the ovary. Our results demonstrated that Tsc1flox/flox; cyp19-cre mutant mice were fertile, ovulating more oocytes and giving birth to more pups than control Tsc1flox/flox mice. Progressive accumulation of corpora lutea occurred in the Tsc1flox/flox; cyp19-cre mutant mice with advanced age. These phenotypes could be explained by the elevated activity of mTORC1, as indicated by increased phosphorylation of rpS6, a substrate of S6 in the Tsc1flox/flox; cyp19-cre mutant granulosa cells. In addition, rapamycin, a specific mTORC1 inhibitor, effectively rescued the phenotype caused by increased mTORC1 activity in the Tsc1cko ovaries. Our data suggest that conditional knockout of Tsc1 in granulosa cells promotes reproductive activity in mice.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zong-Zhe Jiang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Meng-Wen Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Fei Lin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Hua Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Bo Luo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heng-Yu Fan
- Life Science Institute, Zhejiang University, Zhejiang Province, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
49
|
Jagarlamudi K, Rajkovic A. Oogenesis: transcriptional regulators and mouse models. Mol Cell Endocrinol 2012; 356:31-9. [PMID: 21856374 DOI: 10.1016/j.mce.2011.07.049] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/19/2011] [Accepted: 07/27/2011] [Indexed: 11/21/2022]
Abstract
Oocyte differentiation into a totipotent cell requires initial germ cell cyst breakdown to form primordial follicles, recruitment of primordial follicles for development into primary follicles and remarkable growth of the ovarian follicle which culminates in ovulation. During oogenesis, the oocyte undergoes dynamic alterations in gene expression which are regulated by a set of well-coordinated transcription factors active in the germ line and soma. A number of germ cell specific as well as somatic expressed transcriptional regulators are critical in ovarian formation and folliculogenesis. These transcriptional regulators include: Foxo3, Foxl2, Figla, Lhx8, Nobox, Sohlh1 and Sohlh2. A subset of these transcriptional regulators is mutated in women with ovarian insufficiency and infertility. Studies on transcriptional regulators preferentially expressed in the ovary are important to develop a better understanding of the mechanisms of activation and survival of ovarian follicles, as well as an understanding of ovary specific pathways that can be modulated in the future to regulate fertility and protect against external insults such as chemotherapy.
Collapse
Affiliation(s)
- Krishna Jagarlamudi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
50
|
Sutherland JM, Keightley RA, Nixon B, Roman SD, Robker RL, Russell DL, McLaughlin EA. Suppressor of cytokine signaling 4 (SOCS4): moderator of ovarian primordial follicle activation. J Cell Physiol 2012; 227:1188-98. [PMID: 21604262 DOI: 10.1002/jcp.22837] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mammalian ovarian primordial follicle activation and regulation is considered as one of the most important stages of folliculogenesis and as such requires exquisite control. Selection of quiescent follicles to enter the growing pool determines the rate of supply of maturing follicles over the female reproductive lifespan. To coordinate this process a range of positive and negative input signals contribute to determine follicle fate. This study demonstrates that the cytokine Leukemia Inhibitory Factor (LIF) activates the Janus Kinase 1/Signal Transducers and Activators of Transcription 3 (JAK1/STAT3) signaling pathway in pre-granulosa cells and positively regulates primordial follicle activation. Negative regulation of the JAK/STAT pathway is controlled by the suppressor of cytokine signaling 4 (SOCS4) protein, which target members of negative feedback loops, Cardiotrophin like Cytokine (CLC), Poly (rC) Binding Protein 1 (PCBP1), and Cytosolic Malate Dehydrogenase (MDH1) to suppress follicle growth and development.
Collapse
Affiliation(s)
- J M Sutherland
- Priority Research Centre in Reproductive Science, Discipline of Biological Sciences, School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|