1
|
Ma LC, Li M, Chen YM, Chen WY, Chen YW, Cheng ZL, Zhu YZ, Zhang Y, Guo XK, Liu C. Genomic Insight into Zoonotic and Environmental Vibrio vulnificus: Strains with T3SS2 as a Novel Threat to Public Health. Microorganisms 2024; 12:2375. [PMID: 39597763 PMCID: PMC11596471 DOI: 10.3390/microorganisms12112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Vibrio vulnificus is a significant opportunistic pathogen with the highest fatality rate among foodborne microbes. However, due to a lack of comprehensive surveillance, the characteristics of isolates in China remain poorly understood. This study analyzed 60 strains of V. vulnificus isolated from diverse sources in Shanghai, including shellfish, crabs, shrimps, throat swabs of migratory birds, as well as seafood farming water and seawater. Identification of the genotypes was performed using PCR, and cytotoxicity was determined using an LDH assay. DNA was sequenced using Illumina NovaSeq followed by a bioinformatic analysis. The results demonstrated that a majority of the strains belonged to the 16S rRNA B-vcgC genotype. All strains carried five antibiotic resistance genes (ARGs), with some strains carrying over ten ARGs, mediating resistance to multiple antibiotics. Five strains possessed a highly abundant effector delivery system, which further investigations revealed to be a type III secretion system II (T3SS2), marking the first description of T3SS2 in V. vulnificus. Phylogenetic analysis indicated that it belonged to a different genetic lineage from T3SS2α and T3SS2β of V. parahaemolyticus. Bacteria with T3SS2 sequences were concentrated in coastal areas and mostly within the genus Vibrio in the global prevalence survey. Our study provides essential baseline information for non-clinical V. vulnificus and discovers the existence of T3SS2 in several strains which may be more virulent, thereby posing a new threat to human health.
Collapse
Affiliation(s)
- Ling-Chao Ma
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Yi-Ming Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Ye Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Wen Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zi-Le Cheng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong-Zhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Yan Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Xiao-Kui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Horton KN, Gassmann W. Greater than the sum of their parts: an overview of the AvrRps4 effector family. FRONTIERS IN PLANT SCIENCE 2024; 15:1400659. [PMID: 38799092 PMCID: PMC11116571 DOI: 10.3389/fpls.2024.1400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Phytopathogenic microbes use secreted effector proteins to increase their virulence in planta. If these effectors or the results of their activity are detected by the plant cell, the plant will mount an immune response which applies evolutionary pressure by reducing growth and success of the pathogen. Bacterial effector proteins in the AvrRps4 family (AvrRps4, HopK1, and XopO) have commonly been used as tools to investigate plant immune components. At the same time, the in planta functions of this family of effectors have yet to be fully characterized. In this minireview we summarize current knowledge about the AvrRps4 effector family with emphasis on properties of the proteins themselves. We hypothesize that the HopK1 C-terminus and the AvrRps4 C-terminus, though unrelated in sequence and structure, are broadly related in functions that counteract plant defense responses.
Collapse
Affiliation(s)
| | - Walter Gassmann
- Division of Plant Science and Technology, Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
López-Pagán N, Rufián JS, Ruiz-Albert J, Beuzón CR. Dual-Fluorescence Chromosome-Located Labeling System for Accurate In Vivo Single-Cell Gene Expression Analysis in Pseudomonas syringae. Methods Mol Biol 2024; 2751:95-114. [PMID: 38265712 DOI: 10.1007/978-1-0716-3617-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Epigenetic regulation as a means for bacterial adaptation is receiving increasing interest in the last decade. Significant efforts have been directed towards understanding the mechanisms giving raise to phenotypic heterogeneity within bacterial populations and its adaptive relevance. Phenotypic heterogeneity mostly refers to phenotypic variation not linked to genetic differences nor to environmental stimuli. Recent findings on the relevance of phenotypic heterogeneity on some bacterial complex traits are causing a shift from traditional assays where bacterial phenotypes are defined by averaging population-level data, to single-cell analysis that focus on bacterial individual behavior within the population. Fluorescent labeling is a key asset for single-cell gene expression analysis using flow cytometry, fluorescence microscopy, and/or microfluidics.We previously described the generation of chromosome-located transcriptional gene fusions to fluorescent reporter genes using the model bacterial plant pathogen Pseudomonas syringae. These fusions allow researchers to follow variation in expression of the gene(s) of interest, without affecting gene function. In this report, we improve the analytic power of the method by combining such transcriptional fusions with constitutively expressed compatible fluorescent reporter genes integrated in a second, neutral locus of the bacterial chromosome. Constitutively expressed fluorescent reporters allow for the detection of all bacteria comprising a heterogeneous population, regardless of the level of expression of the concurrently monitored gene of interest, thus avoiding the traditional use of stains often incompatible with samples from complex contexts such as the leaf.
Collapse
Affiliation(s)
- Nieves López-Pagán
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José S Rufián
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain.
| | - Javier Ruiz-Albert
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Carmen R Beuzón
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain.
| |
Collapse
|
4
|
Jerez SA, Plaza N, Bravo V, Urrutia IM, Blondel CJ. Vibrio type III secretion system 2 is not restricted to the Vibrionaceae and encodes differentially distributed repertoires of effector proteins. Microb Genom 2023; 9:mgen000973. [PMID: 37018030 PMCID: PMC10210961 DOI: 10.1099/mgen.0.000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. A distinctive feature of the O3:K6 pandemic clone, and its derivatives, is the presence of a second, phylogenetically distinct, type III secretion system (T3SS2) encoded within the genomic island VPaI-7. The T3SS2 allows the delivery of effector proteins directly into the cytosol of infected eukaryotic cells to subvert key host-cell processes, critical for V. parahaemolyticus to colonize and cause disease. Furthermore, the T3SS2 also increases the environmental fitness of V. parahaemolyticus in its interaction with bacterivorous protists; hence, it has been proposed that it contributed to the global oceanic spread of the pandemic clone. Several reports have identified T3SS2-related genes in Vibrio and non-Vibrio species, suggesting that the T3SS2 gene cluster is not restricted to the Vibrionaceae and can mobilize through horizontal gene transfer events. In this work, we performed a large-scale genomic analysis to determine the phylogenetic distribution of the T3SS2 gene cluster and its repertoire of effector proteins. We identified putative T3SS2 gene clusters in 1130 bacterial genomes from 8 bacterial genera, 5 bacterial families and 47 bacterial species. A hierarchical clustering analysis allowed us to define six T3SS2 subgroups (I-VI) with different repertoires of effector proteins, redefining the concepts of T3SS2 core and accessory effector proteins. Finally, we identified a subset of the T3SS2 gene clusters (subgroup VI) that lacks most T3SS2 effector proteins described to date and provided a list of 10 novel effector candidates for this subgroup through bioinformatic analysis. Collectively, our findings indicate that the T3SS2 extends beyond the family Vibrionaceae and suggest that different effector protein repertories could have a differential impact on the pathogenic potential and environmental fitness of each bacterium that has acquired the Vibrio T3SS2 gene cluster.
Collapse
Affiliation(s)
- Sebastian A. Jerez
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicolas Plaza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Veronica Bravo
- Programa Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Italo M. Urrutia
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
5
|
Deb S, Gokulan CG, Nathawat R, Patel HK, Sonti RV. Suppression of XopQ-XopX-induced immune responses of rice by the type III effector XopG. MOLECULAR PLANT PATHOLOGY 2022; 23:634-648. [PMID: 35150038 PMCID: PMC8995061 DOI: 10.1111/mpp.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Effectors that suppress effector-triggered immunity (ETI) are an essential part of the arms race in the co-evolution of bacterial pathogens and their host plants. Xanthomonas oryzae pv. oryzae uses multiple type III secretion system (T3SS) secreted effectors such as XopU, XopV, XopP, XopG, and AvrBs2 to suppress rice immune responses that are induced by the interaction of two other effectors, XopQ and XopX. Here we show that each of these five suppressors can interact individually with both XopQ and XopX. One of the suppressors, XopG, is a predicted metallopeptidase that appears to have been introduced into X. oryzae pv. oryzae by horizontal gene transfer. XopQ and XopX interact with each other in the nucleus while interaction with XopG sequesters them in the cytoplasm. The XopG E76A and XopG E85A mutants are defective in interaction with XopQ and XopX, and are also defective in suppression of XopQ-XopX-mediated immune responses. Both mutations individually affect the virulence-promoting ability of XopG. These results indicate that XopG is important for X. oryzae pv. oryzae virulence and provide insights into the mechanisms by which this protein suppresses ETI in rice.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - C. G. Gokulan
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Rajkanwar Nathawat
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Hitendra K. Patel
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Ramesh V. Sonti
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
- Indian Institute of Science Education and Research (IISER) TirupatiTirupatiIndia
| |
Collapse
|
6
|
Abstract
Various Gram-negative bacteria use secretion systems to secrete effector proteins that manipulate host biochemical pathways to their benefit. We and others have previously developed machine-learning algorithms to predict novel effectors. Specifically, given a set of known effectors and a set of known non-effectors, the machine-learning algorithm extracts features that distinguish these two protein groups. In the training phase, the machine learning learns how to best combine the features to separate the two groups. The trained machine learning is then applied to open reading frames (ORFs) with unknown functions, resulting in a score for each ORF, which is its likelihood to be an effector. We developed Effectidor, a web server for predicting type III effectors. In this book chapter, we provide a step-by-step introduction to the application of Effectidor, from selecting input data to analyzing the obtained predictions.
Collapse
Affiliation(s)
- Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Sacristán S, Goss EM, Eves-van den Akker S. How Do Pathogens Evolve Novel Virulence Activities? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:576-586. [PMID: 33522842 DOI: 10.1094/mpmi-09-20-0258-ia] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.We consider the state of knowledge on pathogen evolution of novel virulence activities, broadly defined as anything that increases pathogen fitness with the consequence of causing disease in either the qualitative or quantitative senses, including adaptation of pathogens to host immunity and physiology, host species, genotypes, or tissues, or the environment. The evolution of novel virulence activities as an adaptive trait is based on the selection exerted by hosts on variants that have been generated de novo or arrived from elsewhere. In addition, the biotic and abiotic environment a pathogen experiences beyond the host may influence pathogen virulence activities. We consider host-pathogen evolution, host range expansion, and external factors that can mediate pathogen evolution. We then discuss the mechanisms by which pathogens generate and recombine the genetic variation that leads to novel virulence activities, including DNA point mutation, transposable element activity, gene duplication and neofunctionalization, and genetic exchange. In summary, if there is an (epi)genetic mechanism that can create variation in the genome, it will be used by pathogens to evolve virulence factors. Our knowledge of virulence evolution has been biased by pathogen evolution in response to major gene resistance, leaving other virulence activities underexplored. Understanding the key driving forces that give rise to novel virulence activities and the integration of evolutionary concepts and methods with mechanistic research on plant-microbe interactions can help inform crop protection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Erica M Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, U.S.A
| | | |
Collapse
|
8
|
Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Núñez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi Baghshomali Y, Slater SL, Wagner N, Glegola-Madejska I, Roumeliotis TI, Pupko T, Fernández LÁ, Rodríguez-Patón A, Choudhary JS, Frankel G. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 2021; 371:eabc9531. [PMID: 33707240 DOI: 10.1126/science.abc9531] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Infections with many Gram-negative pathogens, including Escherichia coli, Salmonella, Shigella, and Yersinia, rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen Citrobacter rodentium (encoding 31 effectors). Sequential gene deletions showed that effector essentiality for infection was context dependent and that the network could tolerate 60% contraction while maintaining pathogenicity. Despite inducing very different colonic cytokine profiles (e.g., interleukin-22, interleukin-17, interferon-γ, or granulocyte-macrophage colony-stimulating factor), different networks induced protective immunity. Using data from >100 distinct mutant combinations, we built and trained a machine learning model able to predict colonization outcomes, which were confirmed experimentally. Furthermore, reproducing the human-restricted enteropathogenic E. coli effector repertoire in C. rodentium was not sufficient for efficient colonization, which implicates effector networks in host adaptation. These results unveil the extreme robustness of both T3SS effector networks and host responses.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Zuzanna Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Elena Núñez-Berrueco
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Massiel Cepeda-Molero
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | | | - Yasaman Naemi Baghshomali
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sabrina L Slater
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Izabela Glegola-Madejska
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Luis Ángel Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Microbial Biotechnology, Madrid, Spain
| | - Alfonso Rodríguez-Patón
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
9
|
Saint-Vincent PMB, Ridout M, Engle NL, Lawrence TJ, Yeary ML, Tschaplinski TJ, Newcombe G, Pelletier DA. Isolation, Characterization, and Pathogenicity of Two Pseudomonas syringae Pathovars from Populus trichocarpa Seeds. Microorganisms 2020; 8:microorganisms8081137. [PMID: 32731357 PMCID: PMC7465253 DOI: 10.3390/microorganisms8081137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas syringae is a ubiquitous plant pathogen, infecting both woody and herbaceous plants and resulting in devastating agricultural crop losses. Characterized by a remarkable specificity for plant hosts, P. syringae pathovars utilize a number of virulence factors including the type III secretion system and effector proteins to elicit disease in a particular host species. Here, two Pseudomonas syringae strains were isolated from diseased Populustrichocarpa seeds. The pathovars were capable of inhibiting poplar seed germination and were selective for the Populus genus. Sequencing of the newly described organisms revealed similarity to phylogroup II pathogens and genomic regions associated with woody host-associated plant pathogens, as well as genes for specific virulence factors. The host response to infection, as revealed through metabolomics, is the induction of the stress response through the accumulation of higher-order salicylates. Combined with necrosis on leaf surfaces, the plant appears to quickly respond by isolating infected tissues and mounting an anti-inflammatory defense. This study improves our understanding of the initial host response to epiphytic pathogens in Populus and provides a new model system for studying the effects of a bacterial pathogen on a woody host plant in which both organisms are fully genetically sequenced.
Collapse
Affiliation(s)
- Patricia MB Saint-Vincent
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
- Geologic and Environmental Systems Directorate, National Energy Technology Laboratory, Pittsburgh, PA 15236, USA
| | - Mary Ridout
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID 83844, USA; (M.R.); (G.N.)
| | - Nancy L. Engle
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
| | - Travis J. Lawrence
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
| | - Meredith L. Yeary
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
| | - Timothy J. Tschaplinski
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
| | - George Newcombe
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID 83844, USA; (M.R.); (G.N.)
| | - Dale A. Pelletier
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
- Correspondence:
| |
Collapse
|
10
|
Morales JG, Gaviria AE, Gilchrist E. Allelic Variation and Selection in Effector Genes of Phytophthora infestans (Mont.) de Bary. Pathogens 2020; 9:pathogens9070551. [PMID: 32659973 PMCID: PMC7400436 DOI: 10.3390/pathogens9070551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Phytophthora infestans is a devastating plant pathogen in several crops such as potato (Solanum tuberosum), tomato (Solanum lycopersicum) and Andean fruits such as tree tomato (Solanum betaceum), lulo (Solanum quitoense), uchuva (Physalis peruviana) and wild species in the genus Solanum sp. Despite intense research performed around the world, P. infestans populations from Colombia, South America, are poorly understood. Of particular importance is knowledge about pathogen effector proteins, which are responsible for virulence. The present work was performed with the objective to analyze gene sequences coding for effector proteins of P. infestans from isolates collected from different hosts and geographical regions. Several genetic parameters, phylogenetic analyses and neutrality tests for non-synonymous and synonymous substitutions were calculated. Non-synonymous substitutions were identified for all genes that exhibited polymorphisms at the DNA level. Significant negative selection values were found for two genes (PITG_08994 and PITG_12737) suggesting active coevolution with the corresponding host resistance proteins. Implications for pathogen virulence mechanisms and disease management are discussed.
Collapse
Affiliation(s)
- Juan G. Morales
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
- Correspondence: ; Tel.: +0057-4-4309088
| | - Astrid E. Gaviria
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
| | - Elizabeth Gilchrist
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
- Universidad EAFIT, 050034 Medellín, Colombia
| |
Collapse
|
11
|
Singh A, Lakhanpaul S. Detection, characterization and evolutionary aspects of S54LP of SP (SAP54 Like Protein of Sesame Phyllody): a phytoplasma effector molecule associated with phyllody development in sesame ( Sesamum indicum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:445-458. [PMID: 32205922 PMCID: PMC7078397 DOI: 10.1007/s12298-020-00764-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 05/05/2023]
Abstract
SAP54, an effector protein secreted by phytoplasmas has been reported to induce phyllody. S54LP of SP (SAP54 Like Protein of Sesame Phyllody), a SAP54 ortholog from phyllody and witches' broom affected sesame (Sesamum indicum L.) was amplified, cloned and sequenced. Comparative sequence and phylogenetic analysis of diverse phytoplasma strains was carried out to delineate the evolution of S54LP of SP. The degree of polymorphism across SAP54 orthologs and the evolutionary forces acting on this effector protein were ascertained. Site-specific selection across SAP54 orthologs was estimated using Fixed Effects Likelihood (FEL) approach. Nonsynonymous substitutions were detected in the SAP54 orthologs' sequences from phytoplasmas belonging to same (sub) group. Phylogenetic analysis based on S54LP of SP grouped phytoplasmas belonging to same 16SrDNA (sub) groups into different clusters. Analysis of selection forces acting on SAP54 orthologs from nine different phytoplasma (sub)groups, affecting plant species belonging to twelve different families across ten countries showed the orthologs to be under purifying (negative) selection. One amino acid residue was found to be under pervasive diversifying (positive) selection and a total of three amino acid sites were found to be under pervasive purifying (negative) selection. The location of these amino acids in the signal peptide and mature protein was studied with an aim to understand their role in protein-protein interaction. Asparagine residues (at positions 68 and 84) were found to be under pervasive purifying selection suggesting their functional importance in the effector protein. Our study suggests lack of coevolution between SAP54 and 16SrDNA. Signal peptide appears to evolve at a rate slightly higher than the mature protein. Overall, SAP54 and its orthologs are evolving under purifying selection confirming their functional importance in phytoplasma virulence.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Botany, University of Delhi, Delhi, 110007 India
| | | |
Collapse
|
12
|
Quibod IL, Atieza-Grande G, Oreiro EG, Palmos D, Nguyen MH, Coronejo ST, Aung EE, Nugroho C, Roman-Reyna V, Burgos MR, Capistrano P, Dossa SG, Onaga G, Saloma C, Cruz CV, Oliva R. The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. THE ISME JOURNAL 2020; 14:492-505. [PMID: 31666657 PMCID: PMC6976662 DOI: 10.1038/s41396-019-0545-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 11/15/2022]
Abstract
The impact of modern agriculture on the evolutionary trajectory of plant pathogens is a central question for crop sustainability. The Green Revolution replaced traditional rice landraces with high-yielding varieties, creating a uniform selection pressure that allows measuring the effect of such intervention. In this study, we analyzed a unique historical pathogen record to assess the impact of a major resistance gene, Xa4, in the population structure of Xanthomonas oryzae pv. oryzae (Xoo) collected in the Philippines in a span of 40 years. After the deployment of Xa4 in the early 1960s, the emergence of virulent pathogen groups was associated with the increasing adoption of rice varieties carrying Xa4, which reached 80% of the total planted area. Whole genomes analysis of a representative sample suggested six major pathogen groups with distinctive signatures of selection in genes related to secretion system, cell-wall degradation, lipopolysaccharide production, and detoxification of host defense components. Association genetics also suggested that each population might evolve different mechanisms to adapt to Xa4. Interestingly, we found evidence of strong selective sweep affecting several populations in the mid-1980s, suggesting a major bottleneck that coincides with the peak of Xa4 deployment in the archipelago. Our study highlights how modern agricultural practices facilitate the adaptation of pathogens to overcome the effects of standard crop improvement efforts.
Collapse
Affiliation(s)
- Ian Lorenzo Quibod
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Genelou Atieza-Grande
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines, Los Baños, Philippines
| | - Eula Gems Oreiro
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Denice Palmos
- Philippine Genome Center, National Science Complex, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Marian Hanna Nguyen
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sapphire Thea Coronejo
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ei Ei Aung
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Cipto Nugroho
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Assessment Institute for Agricultural Technology Southeast Sulawesi, Indonesian Agency for Agricultural Research and Development, Jl. M. Yamin No. 89 Puwatu, Kendari, 93114, Indonesia
| | - Veronica Roman-Reyna
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Maria Ruby Burgos
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Pauline Capistrano
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sylvestre G Dossa
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Food and Agriculture Organization of the United Nations, Immeuble Bel Espace-Batterie IV, Libreville, Gabon
| | - Geoffrey Onaga
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Cynthia Saloma
- Philippine Genome Center, National Science Complex, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Casiana Vera Cruz
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ricardo Oliva
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
13
|
One Small RNA of Fusarium graminearum Targets and Silences CEBiP Gene in Common Wheat. Microorganisms 2019; 7:microorganisms7100425. [PMID: 31600909 PMCID: PMC6843203 DOI: 10.3390/microorganisms7100425] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/24/2022] Open
Abstract
The pathogenic fungus Fusarium graminearum (F. graminearum), causing Fusarium head blight (FHB) or scab, is one of the most important cereal killers worldwide, exerting great economic and agronomic losses on global grain production. To repress pathogen invasion, plants have evolved a sophisticated innate immunity system for pathogen recognition and defense activation. Simultaneously, pathogens continue to evolve more effective means of invasion to conquer plant resistance systems. In the process of co-evolution of plants and pathogens, several small RNAs (sRNAs) have been proved in regulating plant immune response and plant-microbial interaction. In this study, we report that a F. graminearum sRNA (Fg-sRNA1) can suppress wheat defense response by targeting and silencing a resistance-related gene, which codes a Chitin Elicitor Binding Protein (TaCEBiP). Transcriptional level evidence indicates that Fg-sRNA1 can target TaCEBiP mRNA and trigger silencing of TaCEBiP in vivo, and in Nicotiana benthamiana (N. benthamiana) plants, Western blotting experiments and YFP Fluorescence observation proofs show that Fg-sRNA1 can suppress the accumulation of protein coding by TaCEBiP gene in vitro. F. graminearum PH-1 strain displays a weakening ability to invasion when Barley stripe mosaic virus (BSMV) vector induces effective silencing Fg-sRNA1 in PH-1 infected wheat plants. Taken together, our results suggest that a small RNA from F. graminearum can target and silence the wheat TaCEBiP gene to enhance invasion of F. graminearum.
Collapse
|
14
|
Zeng C, Zou L. An account of in silico identification tools of secreted effector proteins in bacteria and future challenges. Brief Bioinform 2019; 20:110-129. [PMID: 28981574 DOI: 10.1093/bib/bbx078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 01/08/2023] Open
Abstract
Bacterial pathogens secrete numerous effector proteins via six secretion systems, type I to type VI secretion systems, to adapt to new environments or to promote virulence by bacterium-host interactions. Many computational approaches have been used in the identification of effector proteins before the subsequent experimental verification because they tolerate laborious biological procedures and are genome scale, automated and highly efficient. Prevalent examples include machine learning methods and statistical techniques. In this article, we summarize the computational progress toward predicting secreted effector proteins in bacteria, with an opening of an introduction of features that are used to discriminate effectors from non-effectors. The mechanism, contribution and deficiency of previous developed detection tools are presented, which are further benchmarked based on a curated testing data set. According to the results of benchmarking, potential improvements of the prediction performance are discussed, which include (1) more informative features for discriminating the effectors from non-effectors; (2) the construction of comprehensive training data set of the machine learning algorithms; (3) the advancement of reliable prediction methods and (4) a better interpretation of the mechanisms behind the molecular processes. The future of in silico identification of bacterial secreted effectors includes both opportunities and challenges.
Collapse
Affiliation(s)
- Cong Zeng
- Bioinformatics Center, Third Military Medical University (TMMU), China
| | | |
Collapse
|
15
|
Dillon MM, Almeida RN, Laflamme B, Martel A, Weir BS, Desveaux D, Guttman DS. Molecular Evolution of Pseudomonas syringae Type III Secreted Effector Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:418. [PMID: 31024592 PMCID: PMC6460904 DOI: 10.3389/fpls.2019.00418] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/19/2019] [Indexed: 05/02/2023]
Abstract
Diverse Gram-negative pathogens like Pseudomonas syringae employ type III secreted effector (T3SE) proteins as primary virulence factors that combat host immunity and promote disease. T3SEs can also be recognized by plant hosts and activate an effector triggered immune (ETI) response that shifts the interaction back toward plant immunity. Consequently, T3SEs are pivotal in determining the virulence potential of individual P. syringae strains, and ultimately help to restrict P. syringae pathogens to a subset of potential hosts that are unable to recognize their repertoires of T3SEs. While a number of effector families are known to be present in the P. syringae species complex, one of the most persistent challenges has been documenting the complex variation in T3SE contents across a diverse collection of strains. Using the entire pan-genome of 494 P. syringae strains isolated from more than 100 hosts, we conducted a global analysis of all known and putative T3SEs. We identified a total of 14,613 putative T3SEs, 4,636 of which were unique at the amino acid level, and show that T3SE repertoires of different P. syringae strains vary dramatically, even among strains isolated from the same hosts. We also find substantial diversification within many T3SE families, and in many cases find strong signatures of positive selection. Furthermore, we identify multiple gene gain and loss events for several families, demonstrating an important role of horizontal gene transfer (HGT) in the evolution of P. syringae T3SEs. These analyses provide insight into the evolutionary history of P. syringae T3SEs as they co-evolve with the host immune system, and dramatically expand the database of P. syringae T3SEs alleles.
Collapse
Affiliation(s)
- Marcus M. Dillon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Renan N.D. Almeida
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alexandre Martel
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Brauer EK, Popescu GV, Singh DK, Calviño M, Gupta K, Gupta B, Chakravarthy S, Popescu SC. Integrative network-centric approach reveals signaling pathways associated with plant resistance and susceptibility to Pseudomonas syringae. PLoS Biol 2018; 16:e2005956. [PMID: 30540739 PMCID: PMC6322785 DOI: 10.1371/journal.pbio.2005956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 01/07/2019] [Accepted: 11/16/2018] [Indexed: 11/18/2022] Open
Abstract
Plant protein kinases form redundant signaling pathways to perceive microbial pathogens and activate immunity. Bacterial pathogens repress cellular immune responses by secreting effectors, some of which bind and inhibit multiple host kinases. To understand how broadly bacterial effectors may bind protein kinases and the function of these kinase interactors, we first tested kinase–effector (K-E) interactions using the Pseudomonas syringae pv. tomato–tomato pathosystem. We tested interactions between five individual effectors (HopAI1, AvrPto, HopA1, HopM1, and HopAF1) and 279 tomato kinases in tomato cells. Over half of the tested kinases interacted with at least one effector, and 48% of these kinases interacted with more than three effectors, suggesting a role in the defense. Next, we characterized the role of select multi-effector–interacting kinases and revealed their roles in basal resistance, effector-triggered immunity (ETI), or programmed cell death (PCD). The immune function of several of these kinases was only detectable in the presence of effectors, suggesting that these kinases are critical when particular cell functions are perturbed or that their role is typically masked. To visualize the kinase networks underlying the cellular responses, we derived signal-specific networks. A comparison of the networks revealed a limited overlap between ETI and basal immunity networks. In addition, the basal immune network complexity increased when exposed to some of the effectors. The networks were used to successfully predict the role of a new set of kinases in basal immunity. Our work indicates the complexity of the larger kinase-based defense network and demonstrates how virulence- and avirulence-associated bacterial effectors alter sectors of the defense network. Some bacterial pathogens secrete virulence factors called effectors, which influence host tissues during infection. The impact of such bacterial effectors on the transmission of immune signals in plants remains poorly understood. In this study, we developed an integrative network approach to discover interactions between bacterial effectors and a class of host signal-mediating enzymes called protein kinases. We also characterized the functions of the targets of these kinases in order to understand how bacterial effectors might disrupt the flow of information in signaling pathways within plant cells. We show that plants activate larger signaling networks when inoculated with pathogens that produce effectors. We also find that plant signaling networks are specific to individual effectors and that the networks include kinases with both positive and negative effects on plant resistance to pathogens. We propose that the topology of immune signaling networks is determined by the plant’s ability to activate compensatory pathways in response to the effectors’ network-disruptive actions. Conversely, pathogens may increase their virulence both by disrupting host signaling at the membrane-located end of the signaling network and by recruiting cytosolic kinases. This work provides a framework for the study of plant–pathogen communication and could be used to prioritize targets for improving resistance in crops.
Collapse
Affiliation(s)
- Elizabeth K. Brauer
- The Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - George V. Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
- The National Institute for Laser, Plasma & Radiation Physics, Bucharest, Romania
| | - Dharmendra K. Singh
- The Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Mauricio Calviño
- The Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Kamala Gupta
- The Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Bhaskar Gupta
- The Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Suma Chakravarthy
- Department of Plant Pathology, Cornell University, Ithaca, New York, United States of America
| | - Sorina C. Popescu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
17
|
Norkowski S, Schmidt MA, Rüter C. The species-spanning family of LPX-motif harbouring effector proteins. Cell Microbiol 2018; 20:e12945. [PMID: 30137651 DOI: 10.1111/cmi.12945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
The delivery of effector proteins into infected eukaryotic cells represents a key virulence feature of many microbial pathogens in order to derail essential cellular processes and effectively counter the host defence system. Although bacterial effectors are truly numerous and exhibit a wide range of biochemical activities, commonalities in terms of protein structure and function shared by many bacterial pathogens exist. Recent progress has shed light on a species-spanning family of bacterial effectors containing an LPX repeat motif as a subtype of the leucine-rich repeat superfamily, partially combined with a novel E3 ubiquitin ligase domain. This review highlights the immunomodulatory effects of LPX effector proteins, with particular emphasis on the exploitation of the host ubiquitin system.
Collapse
Affiliation(s)
- Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
18
|
Piechocki M, Giska F, Koczyk G, Grynberg M, Krzymowska M. An Engineered Distant Homolog of Pseudomonas syringae TTSS Effector From Physcomitrella patens Can Act as a Bacterial Virulence Factor. Front Microbiol 2018; 9:1060. [PMID: 29973916 PMCID: PMC6019455 DOI: 10.3389/fmicb.2018.01060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/04/2018] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in common bean (Phaseolus vulgaris). Similar to other pathogenic gram-negative bacteria, it secrets a set of type III effectors into host cells to subvert defense mechanisms. HopQ1 (for Hrp outer protein Q) is one of these type III effectors contributing to virulence of bacteria. Upon delivery into a plant cell, HopQ1 undergoes phosphorylation, binds host 14-3-3 proteins and suppresses defense-related signaling. Some plants however, evolved systems to recognize HopQ1 and respond to its presence and thus to prevent infection. HopQ1 shows homology to Nucleoside Hydrolases (NHs), but it contains a modified calcium binding motif not found in the canonical enzymes. CLuster ANalysis of Sequences (CLANS) revealed that HopQ1 and alike proteins make a distinct group of putative NHs located distantly from the classical enzymes. The HopQ1 – like protein (HLP) group comprises sequences from plant pathogenic bacteria, fungi, and lower plants. Our data suggest that the evolution of HopQ1 homologs in bacteria, fungi, and algae was independent. The location of moss HopQ1 homologs inside the fungal clade indicates a possibility of horizontal gene transfer (HGT) between those taxa. We identified a HLP in the moss Physcomitrella patens. Our experiments show that this protein (referred to as PpHLP) extended by a TTSS signal of HopQ1 promoted P. syringae growth in bean and was recognized by Nicotiana benthamiana immune system. Thus, despite the low sequence similarity to HopQ1 the engineered PpHLP acted as a bacterial virulence factor and displayed similar to HopQ1 virulence properties.
Collapse
Affiliation(s)
- Marcin Piechocki
- Institute of Biochemistry and Biophysics (PAS), Laboratory of Plant Pathogenesis, Warsaw, Poland
| | - Fabian Giska
- Institute of Biochemistry and Biophysics (PAS), Laboratory of Plant Pathogenesis, Warsaw, Poland
| | - Grzegorz Koczyk
- Institute of Plant Genetics (PAS), Department of Biometry and Bioinformatics, Poznań, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics (PAS), Department of Biophysics, Warsaw, Poland
| | - Magdalena Krzymowska
- Institute of Biochemistry and Biophysics (PAS), Laboratory of Plant Pathogenesis, Warsaw, Poland
| |
Collapse
|
19
|
Rufián JS, Macho AP, Corry DS, Mansfield JW, Ruiz‐Albert J, Arnold DL, Beuzón CR. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains. MOLECULAR PLANT PATHOLOGY 2018; 19:537-551. [PMID: 28120374 PMCID: PMC6638015 DOI: 10.1111/mpp.12539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 05/04/2023]
Abstract
Recent advances in genomics and single-cell analysis have demonstrated the extraordinary complexity reached by microbial populations within their hosts. Communities range from complex multispecies groups to homogeneous populations differentiating into lineages through genetic or non-genetic mechanisms. Diversity within bacterial populations is recognized as a key driver of the evolution of animal pathogens. In plants, however, little is known about how interactions between different pathogenic and non-pathogenic variants within the host impact on defence responses, or how the presence within a mixture may affect the development or the fate of each variant. Using confocal fluorescence microscopy, we analysed the colonization of the plant apoplast by individual virulence variants of Pseudomonas syringae within mixed populations. We found that non-pathogenic variants can proliferate and even spread beyond the inoculated area to neighbouring tissues when in close proximity to pathogenic bacteria. The high bacterial concentrations reached at natural entry points promote such interactions during the infection process. We also found that a diversity of interactions take place at a cellular level between virulent and avirulent variants, ranging from dominant negative effects on proliferation of virulent bacteria to in trans suppression of defences triggered by avirulent bacteria. Our results illustrate the spatial dynamics and complexity of the interactions found within mixed infections, and their potential impact on pathogen evolution.
Collapse
Affiliation(s)
- José S. Rufián
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
| | - Alberto P. Macho
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
- Present address:
Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological SciencesChinese Academy of SciencesShanghai201602China
| | - David S. Corry
- Centre for Research in Bioscience, Faculty of Health and Applied SciencesUniversity of the West of England, Frenchay CampusBristolBS16 1QYUK
| | | | - Javier Ruiz‐Albert
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
| | - Dawn L. Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied SciencesUniversity of the West of England, Frenchay CampusBristolBS16 1QYUK
| | - Carmen R. Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”Universidad de Malaga‐Consejo Superior de Investigaciones Cientificas (IHSM‐UMA‐CSIC), Departamento Biologia Celular, Genetica y Fisiologia, Campus de Teatinos, Malaga E‐29071, Spain
| |
Collapse
|
20
|
Rufián JS, López-Márquez D, López-Pagán N, Grant M, Ruiz-Albert J, Beuzón CR. Generating Chromosome-Located Transcriptional Fusions to Fluorescent Proteins for Single-Cell Gene Expression Analysis in Pseudomonas syringae. Methods Mol Biol 2018; 1734:183-199. [PMID: 29288455 DOI: 10.1007/978-1-4939-7604-1_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The last decade has seen significant effort directed toward the role of phenotypic heterogeneity in bacterial adaptation. Phenotypic heterogeneity usually refers to phenotypic diversity that takes place through nongenetic means, independently of environmental induced variation. Recent findings are changing how microbiologists analyze bacterial behavior, with a shift from traditional assays averaging large populations to single-cell analysis focusing on bacterial individual behavior. Fluorescence-based methods are often used to analyze single-cell gene expression by flow cytometry, fluorescence microscopy and/or microfluidics. Moreover, fluorescence reporters can also be used to establish where and when are the genes of interest expressed. In this chapter, we use the model bacterial plant pathogen Pseudomonas syringae to illustrate a method to generate chromosome-located transcriptional gene fusions to fluorescent reporter genes, without affecting the function of the gene of interest.
Collapse
Affiliation(s)
- José S Rufián
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Diego López-Márquez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Nieves López-Pagán
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Murray Grant
- School of Life Sciences, University of Warwick, Conventry, UK
| | - Javier Ruiz-Albert
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Carmen R Beuzón
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain.
| |
Collapse
|
21
|
Zembek P, Danilecka A, Hoser R, Eschen-Lippold L, Benicka M, Grech-Baran M, Rymaszewski W, Barymow-Filoniuk I, Morgiewicz K, Kwiatkowski J, Piechocki M, Poznanski J, Lee J, Hennig J, Krzymowska M. Two Strategies of Pseudomonas syringae to Avoid Recognition of the HopQ1 Effector in Nicotiana Species. FRONTIERS IN PLANT SCIENCE 2018; 9:978. [PMID: 30042777 PMCID: PMC6048448 DOI: 10.3389/fpls.2018.00978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/15/2018] [Indexed: 05/18/2023]
Abstract
Pseudomonas syringae employs a battery of type three secretion effectors to subvert plant immune responses. In turn, plants have developed receptors that recognize some of the bacterial effectors. Two strain-specific HopQ1 effector variants (for Hrp outer protein Q) from the pathovars phaseolicola 1448A (Pph) and tomato DC3000 (Pto) showed considerable differences in their ability to evoke disease symptoms in Nicotiana benthamiana. Surprisingly, the variants differ by only six amino acids located mostly in the N-terminal disordered region of HopQ1. We found that the presence of serine 87 and leucine 91 renders PtoHopQ1 susceptible to N-terminal processing by plant proteases. Substitutions at these two positions did not strongly affect PtoHopQ1 virulence properties in a susceptible host but they reduced bacterial growth and accelerated onset of cell death in a resistant host, suggesting that N-terminal mutations rendered PtoHopQ1 susceptible to processing in planta and, thus, represent a mechanism of recognition avoidance. Furthermore, we found that co-expression of HopR1, another effector encoded within the same gene cluster masks HopQ1 recognition in a strain-dependent manner. Together, these data suggest that HopQ1 is under high host-pathogen co-evolutionary selection pressure and P. syringae may have evolved differential effector processing or masking as two independent strategies to evade HopQ1 recognition, thus revealing another level of complexity in plant - microbe interactions.
Collapse
Affiliation(s)
- Patrycja Zembek
- Institute of Biochemistry and Biophysics (PAS), Warsaw, Poland
| | | | - Rafał Hoser
- Institute of Biochemistry and Biophysics (PAS), Warsaw, Poland
| | | | - Marta Benicka
- Institute of Biochemistry and Biophysics (PAS), Warsaw, Poland
| | | | | | | | | | | | | | | | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics (PAS), Warsaw, Poland
| | - Magdalena Krzymowska
- Institute of Biochemistry and Biophysics (PAS), Warsaw, Poland
- *Correspondence: Magdalena Krzymowska,
| |
Collapse
|
22
|
Bansal K, Midha S, Kumar S, Patil PB. Ecological and Evolutionary Insights into Xanthomonas citri Pathovar Diversity. Appl Environ Microbiol 2017; 83:e02993-16. [PMID: 28258140 PMCID: PMC5394309 DOI: 10.1128/aem.02993-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 11/20/2022] Open
Abstract
Citrus canker, caused by Xanthomonas citri pv. citri, is a serious disease of citrus plants worldwide. Earlier phylogenetic studies using housekeeping genes revealed that X. citri pv. citri is related to many other pathovars, which can be collectively referred as Xanthomonas citri pathovars (XCPs). From the present study, we report the genome sequences of 18 XCPs and compared them with four XCPs available in the public domain. In a tree based on phylogenomic marker genes, all the XCPs form a monophyletic cluster, suggesting their origin from a common ancestor. Phylogenomic analysis using the type strain further established that all the XCPs belong to one species. Clonal analysis of the core genome revealed the presence of two major lineages within this monophyletic cluster consisting of some clonal variants. Incidentally, the majority of these XCPs were first noticed in India, corroborating their clonal relationship and their common origin. Comparative analysis revealed an open pan-genome and the role of interstrain genomic flux of these XCPs since their diversification from a common ancestor. Even though there are wide variations in type III gene effectomes, we identified three core effectors which can be valuable in resistance-breeding programs. Overall, genomic examination of ecological relatives allowed us to dissect the tremendous genomic potential of X. citri species to rapidly evolve into specialized strains infecting diverse crop plants.IMPORTANCE Host specialization is one of the characteristic features of highly evolved pathogens such as the Xanthomonas group of phytopathogenic bacteria. Since the hosts involve staple crops and economically important fruits such as citrus, detailed understanding of the diversity and evolution of such strains infecting diverse plants is important for quarantine purposes. In the present study, we carried out genomic investigation of members of a phylogenetically and ecologically defined group of Xanthomonas strains pathogenic to diverse plants, including citrus. This group includes the oldest Xanthomonas pathovars and also recently emerged pathovars in a particular country where they are endemic. Our high-throughput genomic study has provided novel insights into the evolution of a unique lineage consisting of serious pathogens and their ecological relatives, suggesting the nature, scope, and pattern of rapid and recent diversification. Further, from the level of species to that of clonal variants, the study revealed interesting genomic patterns in diversification of a Xanthomonas lineage and perhaps will inspire careful study of the host range of the included pathovars.
Collapse
Affiliation(s)
- Kanika Bansal
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Samriti Midha
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanjeet Kumar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B Patil
- CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
23
|
Reinke AW, Balla KM, Bennett EJ, Troemel ER. Identification of microsporidia host-exposed proteins reveals a repertoire of rapidly evolving proteins. Nat Commun 2017; 8:14023. [PMID: 28067236 PMCID: PMC5423893 DOI: 10.1038/ncomms14023] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023] Open
Abstract
Pathogens use a variety of secreted and surface proteins to interact with and manipulate their hosts, but a systematic approach for identifying such proteins has been lacking. To identify these ‘host-exposed' proteins, we used spatially restricted enzymatic tagging followed by mass spectrometry analysis of Caenorhabditis elegans infected with two species of Nematocida microsporidia. We identified 82 microsporidia proteins inside of intestinal cells, including several pathogen proteins in the nucleus. These microsporidia proteins are enriched in targeting signals, are rapidly evolving and belong to large Nematocida-specific gene families. We also find that large, species-specific families are common throughout microsporidia species. Our data suggest that the use of a large number of rapidly evolving species-specific proteins represents a common strategy for microsporidia to interact with their hosts. The unbiased method described here for identifying potential pathogen effectors represents a powerful approach to study a broad range of pathogens. Unbiased identification of proteins from pathogens that are exposed to a host can provide insight into host–pathogen interaction. Here, the authors use an enzymatic tagging method and mass spectrometry to identify rapidly evolving Nematocida microsporidia proteins when infecting C. elegans.
Collapse
Affiliation(s)
- Aaron W Reinke
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Keir M Balla
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Eric J Bennett
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Emily R Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
24
|
Cheng Z. APseudomonas aeruginosa-secreted protease modulates host intrinsic immune responses, but how? Bioessays 2016; 38:1084-1092. [DOI: 10.1002/bies.201600101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhenyu Cheng
- Department of Microbiology and Immunology; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
25
|
Rufián JS, Sánchez-Romero MA, López-Márquez D, Macho AP, Mansfield JW, Arnold DL, Ruiz-Albert J, Casadesús J, Beuzón CR. Pseudomonas syringae Differentiates into Phenotypically Distinct Subpopulations During Colonization of a Plant Host. Environ Microbiol 2016; 18:3593-3605. [PMID: 27516206 DOI: 10.1111/1462-2920.13497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/09/2016] [Indexed: 11/28/2022]
Abstract
Bacterial microcolonies with heterogeneous sizes are formed during colonization of Phaseolus vulgaris by Pseudomonas syringae. Heterogeneous expression of structural and regulatory components of the P. syringae type III secretion system (T3SS), essential for colonization of the host apoplast and disease development, is likewise detected within the plant apoplast. T3SS expression is bistable in the homogeneous environment of nutrient-limited T3SS-inducing medium, suggesting that subpopulation formation is not a response to different environmental cues. T3SS bistability is reversible, indicating a non-genetic origin, and the T3SSHIGH and T3SSLOW subpopulations show differences in virulence. T3SS bistability requires the transcriptional activator HrpL, the double negative regulatory loop established by HrpV and HrpG, and may be enhanced through a positive feedback loop involving HrpA, the main component of the T3SS pilus. To our knowledge, this is the first example of phenotypic heterogeneity in the expression of virulence determinants during colonization of a non-mammalian host.
Collapse
Affiliation(s)
- José S Rufián
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | | | - Diego López-Márquez
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - Alberto P Macho
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - John W Mansfield
- Faculty of Natural Sciences, Imperial College, London, SW7 2AZ, UK
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Javier Ruiz-Albert
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, 1095, Spain
| | - Carmen R Beuzón
- Depto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, E-29071, Spain.
| |
Collapse
|
26
|
AnnoTALE: bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences. Sci Rep 2016; 6:21077. [PMID: 26876161 PMCID: PMC4753510 DOI: 10.1038/srep21077] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present ‘AnnoTALE’, a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities.
Collapse
|
27
|
Degrave A, Siamer S, Boureau T, Barny MA. The AvrE superfamily: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity. MOLECULAR PLANT PATHOLOGY 2015; 16:899-905. [PMID: 25640649 PMCID: PMC6638435 DOI: 10.1111/mpp.12237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The AvrE superfamily of type III effectors (T3Es) is widespread among type III-dependent phytobacteria and plays a crucial role during bacterial pathogenesis. Members of the AvrE superfamily are vertically inherited core effectors, indicating an ancestral acquisition of these effectors in bacterial plant pathogens. AvrE-T3Es contribute significantly to virulence by suppressing pathogen-associated molecular pattern (PAMP)-triggered immunity. They inhibit salicylic acid-mediated plant defences, interfere with vesicular trafficking and promote bacterial growth in planta. AvrE-T3Es elicit cell death in both host and non-host plants independent of any known plant resistance protein, suggesting an original interaction with the plant immune system. Recent studies in yeast have indicated that they activate protein phosphatase 2A and inhibit serine palmitoyl transferase, the first enzyme of the sphingolipid biosynthesis pathway. In this review, we describe the current picture that has emerged from studies of the different members of this fascinating large family.
Collapse
Affiliation(s)
- Alexandre Degrave
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), 49045, Angers, France
- UMR1345, IRHS, Institut National de la Recherche Agronomique (INRA), 49071, Beaucouzé, France
| | - Sabrina Siamer
- Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Tristan Boureau
- UMR1345, IRHS, Institut National de la Recherche Agronomique (INRA), 49071, Beaucouzé, France
- UMR1345, IRHS, Université d'Angers, SFR 4207 QUASAV, PRES l'UNAM, 49045, Angers, France
| | - Marie-Anne Barny
- UMR1392, INRA, Institut d'Ecologie et des Sciences de l'Environnement, Université Pierre et Marie Curie (UPMC), Bât á 7ème Etage Case 237, 7 Quai St.-Bernard, 75252, Paris, France
| |
Collapse
|
28
|
Mucyn TS, Yourstone S, Lind AL, Biswas S, Nishimura MT, Baltrus DA, Cumbie JS, Chang JH, Jones CD, Dangl JL, Grant SR. Variable suites of non-effector genes are co-regulated in the type III secretion virulence regulon across the Pseudomonas syringae phylogeny. PLoS Pathog 2014; 10:e1003807. [PMID: 24391493 PMCID: PMC3879358 DOI: 10.1371/journal.ppat.1003807] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/17/2013] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas syringae is a phylogenetically diverse species of Gram-negative bacterial plant pathogens responsible for crop diseases around the world. The HrpL sigma factor drives expression of the major P. syringae virulence regulon. HrpL controls expression of the genes encoding the structural and functional components of the type III secretion system (T3SS) and the type three secreted effector proteins (T3E) that are collectively essential for virulence. HrpL also regulates expression of an under-explored suite of non-type III effector genes (non-T3E), including toxin production systems and operons not previously associated with virulence. We implemented and refined genome-wide transcriptional analysis methods using cDNA-derived high-throughput sequencing (RNA-seq) data to characterize the HrpL regulon from six isolates of P. syringae spanning the diversity of the species. Our transcriptomes, mapped onto both complete and draft genomes, significantly extend earlier studies. We confirmed HrpL-regulation for a majority of previously defined T3E genes in these six strains. We identified two new T3E families from P. syringae pv. oryzae 1_6, a strain within the relatively underexplored phylogenetic Multi-Locus Sequence Typing (MLST) group IV. The HrpL regulons varied among strains in gene number and content across both their T3E and non-T3E gene suites. Strains within MLST group II consistently express the lowest number of HrpL-regulated genes. We identified events leading to recruitment into, and loss from, the HrpL regulon. These included gene gain and loss, and loss of HrpL regulation caused by group-specific cis element mutations in otherwise conserved genes. Novel non-T3E HrpL-regulated genes include an operon that we show is required for full virulence of P. syringae pv. phaseolicola 1448A on French bean. We highlight the power of integrating genomic, transcriptomic, and phylogenetic information to drive concise functional experimentation and to derive better insight into the evolution of virulence across an evolutionarily diverse pathogen species.
Collapse
Affiliation(s)
- Tatiana S Mucyn
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Scott Yourstone
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Abigail L Lind
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Surojit Biswas
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marc T Nishimura
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David A Baltrus
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Jason S Cumbie
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America ; Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America ; Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America ; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah R Grant
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
29
|
Giska F, Lichocka M, Piechocki M, Dadlez M, Schmelzer E, Hennig J, Krzymowska M. Phosphorylation of HopQ1, a type III effector from Pseudomonas syringae, creates a binding site for host 14-3-3 proteins. PLANT PHYSIOLOGY 2013; 161:2049-61. [PMID: 23396834 PMCID: PMC3613475 DOI: 10.1104/pp.112.209023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/06/2013] [Indexed: 05/02/2023]
Abstract
HopQ1 (for Hrp outer protein Q), a type III effector secreted by Pseudomonas syringae pv phaseolicola, is widely conserved among diverse genera of plant bacteria. It promotes the development of halo blight in common bean (Phaseolus vulgaris). However, when this same effector is injected into Nicotiana benthamiana cells, it is recognized by the immune system and prevents infection. Although the ability to synthesize HopQ1 determines host specificity, the role it plays inside plant cells remains unexplored. Following transient expression in planta, HopQ1 was shown to copurify with host 14-3-3 proteins. The physical interaction between HopQ1 and 14-3-3a was confirmed in planta using the fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy technique. Moreover, mass spectrometric analyses detected specific phosphorylation of the canonical 14-3-3 binding site (RSXpSXP, where pS denotes phosphoserine) located in the amino-terminal region of HopQ1. Amino acid substitution within this motif abrogated the association and led to altered subcellular localization of HopQ1. In addition, the mutated HopQ1 protein showed reduced stability in planta. These data suggest that the association between host 14-3-3 proteins and HopQ1 is important for modulating the properties of this bacterial effector.
Collapse
Affiliation(s)
- Fabian Giska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Marcin Piechocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Elmon Schmelzer
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | | |
Collapse
|
30
|
Chapman JR, Taylor RK, Weir BS, Romberg MK, Vanneste JL, Luck J, Alexander BJR. Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. PHYTOPATHOLOGY 2012; 102:1034-44. [PMID: 22877312 DOI: 10.1094/phyto-03-12-0064-r] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
ABSTRACT Pseudomonas syringae pv. actinidiae, the causal agent of canker in kiwifruit (Actinidia spp.) vines, was first detected in Japan in 1984, followed by detections in Korea and Italy in the early 1990s. Isolates causing more severe disease symptoms have recently been detected in several countries with a wide global distribution, including Italy, New Zealand, and China. In order to characterize P. syringae pv. actinidiae populations globally, a representative set of 40 isolates from New Zealand, Italy, Japan, South Korea, Australia, and Chile were selected for extensive genetic analysis. Multilocus sequence analysis (MLSA) of housekeeping, type III effector and phytotoxin genes was used to elucidate the phylogenetic relationships between P. syringae pv. actinidiae isolates worldwide. Four additional isolates, including one from China, for which shotgun sequence of the whole genome was available, were included in phylogenetic analyses. It is shown that at least four P. syringae pv. actinidiae MLSA groups are present globally, and that marker sets with differing evolutionary trajectories (conserved housekeeping and rapidly evolving effector genes) readily differentiate all four groups. The MLSA group designated here as Psa3 is the strain causing secondary symptoms such as formation of cankers, production of exudates, and cane and shoot dieback on some kiwifruit orchards in Italy and New Zealand. It is shown that isolates from Chile also belong to this MLSA group. MLSA group Psa4, detected in isolates collected in New Zealand and Australia, has not been previously described. P. syringae pv. actinidiae has an extensive global distribution yet the isolates causing widespread losses to the kiwifruit industry can all be traced to a single MLSA group, Psa3.
Collapse
Affiliation(s)
- J R Chapman
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S. Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of Xanthomonas oryzae. MOLECULAR PLANT PATHOLOGY 2012; 13:288-302. [PMID: 21929565 PMCID: PMC6638859 DOI: 10.1111/j.1364-3703.2011.00745.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Multilocus sequence analysis (MLSA) and type III effector (T3E) repertoire mining were performed to gain new insights into the genetic relatedness of Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), two major bacterial pathogens of rice. Based on a collection of 45 African and Asian strains, we first sequenced and analysed three housekeeping genes by MLSA, Bayesian clustering and a median-joining network approach. Second, we investigated the distribution of 32 T3E genes, which are known to be major virulence factors of plant pathogenic bacteria, in all selected strains, by polymerase chain reaction and dot-blot hybridization methods. The diversity observed within housekeeping genes, as well as within T3E repertoires, clearly showed that both pathogens belong to closely related, but distinct, phylogenetic groups. Interestingly, these evolutionary groups are differentiated according to the geographical origin of the strains, suggesting that populations of Xoo and Xoc might be endemic in Africa and Asia, and thus have evolved separately. We further revealed that T3E gene repertoires of both pathogens comprise core and variable gene suites that probably have distinct roles in pathogenicity and different evolutionary histories. In this study, we carried out a functional analysis of xopO, a differential T3E gene between Xoo and Xoc, to determine the involvement of this gene in tissue specificity. Altogether, our data contribute to a better understanding of the evolutionary history of Xoo and Xoc in Africa and Asia, and provide clues for functional studies aiming to understand the virulence, host and tissue specificity of both rice pathogens.
Collapse
Affiliation(s)
- Ahmed Hajri
- Département Santé des Plantes et Environnement, Institut National de la Recherche Agronomique, UMR 077 PaVé, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 2012; 20:199-208. [PMID: 22341410 DOI: 10.1016/j.tim.2012.01.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 01/10/2023]
Abstract
Many plant pathogens subvert host immunity by injecting compositionally diverse but functionally similar repertoires of cytoplasmic effector proteins. The bacterial pathogen Pseudomonas syringae is a model for exploring the functional structure of such repertoires. The pangenome of P. syringae encodes 57 families of effectors injected by the type III secretion system. Distribution of effector genes among phylogenetically diverse strains reveals a small set of core effectors targeting antimicrobial vesicle trafficking and a much larger set of variable effectors targeting kinase-based recognition processes. Complete disassembly of the 28-effector repertoire of a model strain and reassembly of a minimal functional repertoire reveals the importance of simultaneously attacking both processes. These observations, coupled with growing knowledge of effector targets in plants, support a model for coevolving molecular dialogs between effector repertoires and plant immune systems that emphasizes mutually-driven expansion of the components governing recognition.
Collapse
|
33
|
Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PLoS One 2011; 6:e27297. [PMID: 22132095 PMCID: PMC3223175 DOI: 10.1371/journal.pone.0027297] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/13/2011] [Indexed: 12/22/2022] Open
Abstract
A recent re-emerging bacterial canker disease incited by Pseudomonas syringae pv. actinidiae (Psa) is causing severe economic losses to Actinidia chinensis and A. deliciosa cultivations in southern Europe, New Zealand, Chile and South Korea. Little is known about the genetic features of this pathovar. We generated genome-wide Illumina sequence data from two Psa strains causing outbreaks of bacterial canker on the A. deliciosa cv. Hayward in Japan (J-Psa, type-strain of the pathovar) and in Italy (I-Psa) in 1984 and 1992, respectively as well as from a Psa strain (I2-Psa) isolated at the beginning of the recent epidemic on A. chinensis cv. Hort16A in Italy. All strains were isolated from typical leaf spot symptoms. The phylogenetic relationships revealed that Psa is more closely related to P. s. pv. theae than to P. avellanae within genomospecies 8. Comparative genomic analyses revealed both relevant intrapathovar variations and putative pathovar-specific genomic regions in Psa. The genomic sequences of J-Psa and I-Psa were very similar. Conversely, the I2-Psa genome encodes four additional effector protein genes, lacks a 50 kb plasmid and the phaseolotoxin gene cluster, argK-tox but has acquired a 160 kb plasmid and putative prophage sequences. Several lines of evidence from the analysis of the genome sequences support the hypothesis that this strain did not evolve from the Psa population that caused the epidemics in 1984-1992 in Japan and Italy but rather is the product of a recent independent evolution of the pathovar actinidiae for infecting Actinidia spp. All Psa strains share the genetic potential for copper resistance, antibiotic detoxification, high affinity iron acquisition and detoxification of nitric oxide of plant origin. Similar to other sequenced phytopathogenic pseudomonads associated with woody plant species, the Psa strains isolated from leaves also display a set of genes involved in the catabolism of plant-derived aromatic compounds.
Collapse
|
34
|
Type three effector gene distribution and sequence analysis provide new insights into the pathogenicity of plant-pathogenic Xanthomonas arboricola. Appl Environ Microbiol 2011; 78:371-84. [PMID: 22101042 DOI: 10.1128/aem.06119-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas arboricola is a complex bacterial species which mainly attacks fruit trees and is responsible for emerging diseases in Europe. It comprises seven pathovars (X. arboricola pv. pruni, X. arboricola pv. corylina, X. arboricola pv. juglandis, X. arboricola pv. populi, X. arboricola pv. poinsettiicola, X. arboricola pv. celebensis, and X. arboricola pv. fragariae), each exhibiting characteristic disease symptoms and distinct host specificities. To better understand the factors underlying this ecological trait, we first assessed the phylogenetic relationships among a worldwide collection of X. arboricola strains by sequencing the housekeeping gene rpoD. This analysis revealed that strains of X. arboricola pathovar populi are divergent from the main X. arboricola cluster formed by all other strains. Then, we investigated the distribution of 53 type III effector (T3E) genes in a collection of 57 X. arboricola strains that are representative of the main X. arboricola cluster. Our results showed that T3E repertoires vary greatly between X. arboricola pathovars in terms of size. Indeed, X. arboricola pathovars pruni, corylina, and juglandis, which are responsible for economically important stone fruit and nut diseases in Europe, harbored the largest T3E repertoires, whereas pathovars poinsettiicola, celebensis, and fragariae harbored the smallest. We also identified several differences in T3E gene content between X. arboricola pathovars pruni, corylina, and juglandis which may account for their differing host specificities. Further, we examined the allelic diversity of eight T3E genes from X. arboricola pathovars. This analysis revealed very limited allelic variations at the different loci. Altogether, the data presented here provide new insights into the evolution of pathogenicity and host range of X. arboricola and are discussed in terms of emergence of new diseases within this bacterial species.
Collapse
|
35
|
Stukenbrock EH, Bataillon T, Dutheil JY, Hansen TT, Li R, Zala M, McDonald BA, Wang J, Schierup MH. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res 2011; 21:2157-66. [PMID: 21994252 DOI: 10.1101/gr.118851.110] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The fungus Mycosphaerella graminicola emerged as a new pathogen of cultivated wheat during its domestication ~11,000 yr ago. We assembled 12 high-quality full genome sequences to investigate the genetic footprints of selection in this wheat pathogen and closely related sister species that infect wild grasses. We demonstrate a strong effect of natural selection in shaping the pathogen genomes with only ~3% of nonsynonymous mutations being effectively neutral. Forty percent of all fixed nonsynonymous substitutions, on the other hand, are driven by positive selection. Adaptive evolution has affected M. graminicola to the highest extent, consistent with recent host specialization. Positive selection has prominently altered genes encoding secreted proteins and putative pathogen effectors supporting the premise that molecular host-pathogen interaction is a strong driver of pathogen evolution. Recent divergence between pathogen sister species is attested by the high degree of incomplete lineage sorting (ILS) in their genomes. We exploit ILS to generate a genetic map of the species without any crossing data, document recent times of species divergence relative to genome divergence, and show that gene-rich regions or regions with low recombination experience stronger effects of natural selection on neutral diversity. Emergence of a new agricultural host selected a highly specialized and fast-evolving pathogen with unique evolutionary patterns compared with its wild relatives. The strong impact of natural selection, we document, is at odds with the small effective population sizes estimated and suggest that population sizes were historically large but likely unstable.
Collapse
Affiliation(s)
- Eva H Stukenbrock
- Bioinformatics Research Center, Aarhus University, C.F. Moellers Alle, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011; 35:1100-25. [PMID: 21517912 DOI: 10.1111/j.1574-6976.2011.00271.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.
Collapse
Affiliation(s)
- Paul Dean
- Institute of Cell and Molecular Bioscience, Medical School, University of Newcastle, Newcastle Upon Tyne, UK.
| |
Collapse
|
37
|
Ryan RP, Vorhölter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ, Dow JM. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 2011; 9:344-55. [PMID: 21478901 DOI: 10.1038/nrmicro2558] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant hosts, including many economically important crops. Pathogenic species and pathovars within species show a high degree of host plant specificity and many exhibit tissue specificity, invading either the vascular system or the mesophyll tissue of the host. In this Review, we discuss the insights that functional and comparative genomic studies are providing into the adaptation of this group of bacteria to exploit the extraordinary diversity of plant hosts and different host tissues.
Collapse
Affiliation(s)
- Robert P Ryan
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, University College Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
38
|
Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol MT, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics 2011; 12:146. [PMID: 21396108 PMCID: PMC3071791 DOI: 10.1186/1471-2164-12-146] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/11/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. RESULTS We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. CONCLUSIONS Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.
Collapse
Affiliation(s)
- Neha Potnis
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Ksenia Krasileva
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Virginia Chow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Nalvo F Almeida
- Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Prabhu B Patil
- Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh 160036, India
| | - Robert P Ryan
- BIOMERIT Research Centre, Biosciences Institute, University College Cork, Ireland
| | - Molly Sharlach
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Franklin Behlau
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Fundecitrus - Fundo de Defesa da Citricultura, Av. Adhemar Pereira de Barros, 201, 14807-040 Araraquara, SP. Brazil
| | - J Max Dow
- BIOMERIT Research Centre, Biosciences Institute, University College Cork, Ireland
| | - MT Momol
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Frank F White
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Boris A Vinatzer
- Department of Plant Pathology, Physiology and Weed Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ralf Koebnik
- Laboratoire Génome et Développement des Plantes, IRD-CNRS-Université-de Perpignan, Centre IRD, 911 Av. Agropolis, BP64501, 34394 Montpellier, France
| | - João C Setubal
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - David J Norman
- Institute of Food and Agricultural Sciences, Mid-Florida Research & Education Center, University of Florida, Apopka, FL, USA
| | - Brian J Staskawicz
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Nguyen HP, Yeam I, Angot A, Martin GB. Two virulence determinants of type III effector AvrPto are functionally conserved in diverse Pseudomonas syringae pathovars. THE NEW PHYTOLOGIST 2010; 187:969-982. [PMID: 20122130 DOI: 10.1111/j.1469-8137.2009.03175.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
*The Pseudomonas syringae pv. tomato type III effector protein AvrPto has two functional domains that contribute additively to its ability to promote pathogen virulence in susceptible tomato plants and also defense responses in resistant tomato and tobacco genotypes. Here, we test the hypothesis that key amino acid residues in these two domains will be conserved even in sequence-divergent AvrPto proteins expressed by diverse P. syringae pathovars. *We cloned avrPto homologs from diverse P. syringae pathovars and characterized the four most diverse homologs from P. syringae pathovars mori, lachrymans, myricae and oryzae for their virulence activity and ability to elicit resistance in tomato and tobacco. *Key residues within the two AvrPto domains are conserved in three of the four homologs and are required for virulence activity and defense elicitation. AvrPto(oryzae), lacks conserved residues in each domain, but was found to be recognized by a previously unknown resistance gene in both tomato and tobacco. *Our results indicate that the two virulence domains of AvrPto are conserved in diverse pathovars despite the fact these domains are recognized by certain plant species. AvrPto may therefore function in pathovars infecting diverse plant species by targeting conserved host processes.
Collapse
Affiliation(s)
- Hanh P Nguyen
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Inhwa Yeam
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Aurelie Angot
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Joly DL, Feau N, Tanguay P, Hamelin RC. Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.). BMC Genomics 2010; 11:422. [PMID: 20615251 PMCID: PMC2996950 DOI: 10.1186/1471-2164-11-422] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 07/08/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Obligate biotrophs such as rust fungi are believed to establish long-term relationships by modulating plant defenses through a plethora of effector proteins, whose most recognizable feature is the presence of a signal peptide for secretion. Since the phenotypes of these effectors extend to host cells, their genes are expected to be under accelerated evolution stimulated by host-pathogen coevolutionary arms races. Recently, whole genome sequence data has allowed the prediction of secretomes, facilitating the identification of putative effectors. RESULTS We generated cDNA libraries from four poplar leaf rust pathogens (Melampsora spp.) and used computational approaches to identify and annotate putative secreted proteins with the aim of uncovering new knowledge about the nature and evolution of the rust secretome. While more than half of the predicted secretome members encoded lineage-specific proteins, similarities with experimentally characterized fungal effectors were also identified. A SAGE analysis indicated a strong stage-specific regulation of transcripts encoding secreted proteins. The average sequence identity of putative secreted proteins to their closest orthologs in the wheat stem rust Puccinia graminis f. sp. tritici was dramatically reduced compared with non-secreted ones. A comparative genomics approach based on homologous gene groups unravelled positive selection in putative members of the secretome. CONCLUSION We uncovered robust evidence that different evolutionary constraints are acting on the rust secretome when compared to the rest of the genome. These results are consistent with the view that these genes are more likely to exhibit an effector activity and be involved in coevolutionary arms races with host factors.
Collapse
Affiliation(s)
- David L Joly
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Nicolas Feau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
- Unité Mixte de Recherche 1202, Institut National de la Recherche Agronomique-Université Bordeaux I, Biodiversité, Génes et Communautés (BioGeCo), INRA Bordeaux-Aquitaine, 33612 Cestas Cedex, France
| | - Philippe Tanguay
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Richard C Hamelin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
- Department of Forest Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
41
|
Krasileva KV, Dahlbeck D, Staskawicz BJ. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. THE PLANT CELL 2010; 22:2444-58. [PMID: 20601497 PMCID: PMC2929106 DOI: 10.1105/tpc.110.075358] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/08/2010] [Accepted: 06/17/2010] [Indexed: 05/19/2023]
Abstract
Activation of plant immunity relies on recognition of pathogen effectors by several classes of plant resistance proteins. To discover the underlying molecular mechanisms of effector recognition by the Arabidopsis thaliana RECOGNITION OF PERONOSPORA PARASITICA1 (RPP1) resistance protein, we adopted an Agrobacterium tumefaciens-mediated transient protein expression system in tobacco (Nicotiana tabacum), which allowed us to perform coimmunoprecipitation experiments and mutational analyses. Herein, we demonstrate that RPP1 associates with its cognate effector ARABIDOPSIS THALIANA RECOGNIZED1 (ATR1) in a recognition-specific manner and that this association is a prerequisite step in the induction of the hypersensitive cell death response of host tissue. The leucine-rich repeat (LRR) domain of RPP1 mediates the interaction with ATR1, while the Toll/Interleukin1 Receptor (TIR) domain facilitates the induction of the hypersensitive cell death response. Additionally, we demonstrate that mutations in the TIR and nucleotide binding site domains, which exhibit loss of function for the induction of the hypersensitive response, are still able to associate with the effector in planta. Thus, our data suggest molecular epistasis between signaling activity of the TIR domain and the recognition function of the LRR and allow us to propose a model for ATR1 recognition by RPP1.
Collapse
Affiliation(s)
| | | | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
42
|
Morgan RL, Zhou H, Lehto E, Nguyen N, Bains A, Wang X, Ma W. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts. Mol Microbiol 2010; 76:437-55. [PMID: 20233307 DOI: 10.1111/j.1365-2958.2010.07107.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The type III secretion systems (T3SS) and secreted effectors (T3SEs) are essential virulence factors in Gram-negative bacteria. During the arms race, plants have evolved resistance (R) genes to detect specific T3SEs and activate defence responses. However, this immunity can be efficiently defeated by the pathogens through effector evolution. HopZ1 of the plant pathogen Pseudomonas syringae is a member of the widely distributed YopJ T3SE family. Three alleles are known to be present in P. syringae, with HopZ1a most resembling the ancestral allelic form. In this study, molecular mechanisms underlying the sequence diversification-enabled HopZ1 allelic specificity is investigated. Using domain shuffling experiments, we present evidence showing that a central domain upstream of the conserved catalytic cysteine residue determines HopZ1 recognition specificity. Random and targeted mutagenesis identified three amino acids involved in HopZ1 allelic specificity. Particularly, the exchange of cysteine141 in HopZ1a with lysine137 at the corresponding position in HopZ1b abolished HopZ1a recognition in soybean. This position is under strong positive selection, suggesting that the cysteine/lysine mutation might be a key step driving the evolution of HopZ1. Our data support a model in which sequence diversification imposed by the plant R gene-associated immunity has driven HopZ1 evolution by allowing allele-specific substrate-binding.
Collapse
Affiliation(s)
- Robyn L Morgan
- Center for Plant Cell Biology, Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Arnold R, Jehl A, Rattei T. Targeting effectors: the molecular recognition of Type III secreted proteins. Microbes Infect 2010; 12:346-58. [PMID: 20178857 DOI: 10.1016/j.micinf.2010.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 02/10/2010] [Indexed: 01/01/2023]
Abstract
The Type III secretion system (TTSS) facilitates the export of effector proteins from pathogenic and symbiotic Gram-negative bacteria into the cytosol of eukaryotic host cells. The current functional and evolutionary knowledge on the molecular recognition of TTSS substrates and computational models of the secretion signal are discussed in this review.
Collapse
Affiliation(s)
- Roland Arnold
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, 85350 Freising, Germany
| | | | | |
Collapse
|
44
|
Morris CE, Bardin M, Kinkel LL, Moury B, Nicot PC, Sands DC. Expanding the paradigms of plant pathogen life history and evolution of parasitic fitness beyond agricultural boundaries. PLoS Pathog 2009; 5:e1000693. [PMID: 20041212 PMCID: PMC2790610 DOI: 10.1371/journal.ppat.1000693] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Cindy E Morris
- INRA, Unité de Pathologie Végétale UR407, Montfavet, France.
| | | | | | | | | | | |
Collapse
|
45
|
Munkvold KR, Russell AB, Kvitko BH, Collmer A. Pseudomonas syringae pv. tomato DC3000 type III effector HopAA1-1 functions redundantly with chlorosis-promoting factor PSPTO4723 to produce bacterial speck lesions in host tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1341-1355. [PMID: 19810804 DOI: 10.1094/mpmi-22-11-1341] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ability of Pseudomonas syringae pv. tomato DC3000 to cause bacterial speck disease in tomato is dependent on the injection, via the type III secretion system, of approximately 28 Avr/Hop effector proteins. HopAA1-1 is encoded in the conserved effector locus (CEL) of the P. syringae Hrp pathogenicity island. Transiently expressed HopAA1-1 acts inside Saccharomyces cerevisiae and plant cells to elicit cell death. hopAA1 homologs were cloned and sequenced from the CEL of seven P. syringae strains representing diverse pathovars. Analysis of the sequences revealed that HopAA1-1 carries a potential GTPase-activating protein (GAP) domain, GALRA, which is polymorphic (FEN instead of LRA) in HopAA1-2, a paralogous DC3000 effector. Deleting hopAA1-1 from DC3000 reduces the formation of necrotic speck lesions in dip-inoculated tomato leaves if effector-gene cluster IX or just PSPTO4723 within this region has been deleted. A HopAA1-1 mutant in which the putative catalytic arginine in the GAP-like domain has been replaced with alanine retains its ability to kill yeast and promote the formation of speck lesions by the DeltahopAA1-1DeltaIX mutant, but a HopAA1-1 mutant carrying the FEN polymorphism loses both of these abilities. Unexpectedly, PSPTO4723 does not appear to encode an effector and its deletion also reduces disease-associated chlorosis.
Collapse
Affiliation(s)
- Kathy R Munkvold
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
46
|
Hajri A, Brin C, Hunault G, Lardeux F, Lemaire C, Manceau C, Boureau T, Poussier S. A "repertoire for repertoire" hypothesis: repertoires of type three effectors are candidate determinants of host specificity in Xanthomonas. PLoS One 2009; 4:e6632. [PMID: 19680562 PMCID: PMC2722093 DOI: 10.1371/journal.pone.0006632] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/09/2009] [Indexed: 11/21/2022] Open
Abstract
Background The genetic basis of host specificity for animal and plant pathogenic bacteria remains poorly understood. For plant pathogenic bacteria, host range is restricted to one or a few host plant species reflecting a tight adaptation to specific hosts. Methodology/Principal Findings Two hypotheses can be formulated to explain host specificity: either it can be explained by the phylogenetic position of the strains, or by the association of virulence genes enabling a pathological convergence of phylogenically distant strains. In this latter hypothesis, host specificity would result from the interaction between repertoires of bacterial virulence genes and repertoires of genes involved in host defences. To challenge these two hypotheses, we selected 132 Xanthomonas axonopodis strains representative of 18 different pathovars which display different host range. First, the phylogenetic position of each strain was determined by sequencing the housekeeping gene rpoD. This study showed that many pathovars of Xanthomonas axonopodis are polyphyletic. Second, we investigated the distribution of 35 type III effector genes (T3Es) in these strains by both PCR and hybridization methods. Indeed, for pathogenic bacteria T3Es were shown to trigger and to subvert host defences. Our study revealed that T3E repertoires comprise core and variable gene suites that likely have distinct roles in pathogenicity and different evolutionary histories. Our results showed a correspondence between composition of T3E repertoires and pathovars of Xanthomonas axonopodis. For polyphyletic pathovars, this suggests that T3E genes might explain a pathological convergence of phylogenetically distant strains. We also identified several DNA rearrangements within T3E genes, some of which correlate with host specificity of strains. Conclusions/Significance These data provide insight into the potential role played by T3E genes for pathogenic bacteria and support a “repertoire for repertoire” hypothesis that may explain host specificity. Our work provides resources for functional and evolutionary studies aiming at understanding host specificity of pathogenic bacteria, functional redundancy between T3Es and the driving forces shaping T3E repertoires.
Collapse
Affiliation(s)
- Ahmed Hajri
- Département Santé des Plantes et Environnement, Institut National de la Recherche Agronomique (INRA), Beaucouzé, France
| | - Chrystelle Brin
- Département Santé des Plantes et Environnement, Institut National de la Recherche Agronomique (INRA), Beaucouzé, France
| | - Gilles Hunault
- Département d'Informatique, Université d'Angers, Angers, France
| | | | | | - Charles Manceau
- Département Santé des Plantes et Environnement, Institut National de la Recherche Agronomique (INRA), Beaucouzé, France
| | - Tristan Boureau
- Département de Biologie, Université d'Angers, Angers, Beaucouzé, France
- * E-mail: (TB); (SP)
| | - Stéphane Poussier
- Département de Sciences Biologiques, Agrocampus Ouest centre d'Angers, Institut National d'Horticulture et de Paysage (INHP), Beaucouzé, France
- * E-mail: (TB); (SP)
| |
Collapse
|
47
|
Kim SH, Kwon SI, Saha D, Anyanwu NC, Gassmann W. Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1. PLANT PHYSIOLOGY 2009; 150:1723-32. [PMID: 19525323 PMCID: PMC2719129 DOI: 10.1104/pp.109.139238] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/09/2009] [Indexed: 05/18/2023]
Abstract
The Pseudomonas syringae-Arabidopsis (Arabidopsis thaliana) interaction is an extensively studied plant-pathogen system. Arabidopsis possesses approximately 150 putative resistance genes encoding nucleotide binding site (NBS) and leucine-rich repeat (LRR) domain-containing proteins. The majority of these belong to the Toll/Interleukin-1 receptor (TIR)-NBS-LRR (TNL) class. Comparative studies with the coiled-coil-NBS-LRR genes RPS2, RPM1, and RPS5 and isogenic P. syringae strains expressing single corresponding avirulence genes have been particularly fruitful in dissecting specific and common resistance signaling components. However, the major TNL class is represented by a single known P. syringae resistance gene, RPS4. We previously identified hopA1 from P. syringae pv syringae strain 61 as an avirulence gene that signals through ENHANCED DISEASE SUSCEPTIBILITY1, indicating that the corresponding resistance gene RPS6 belongs to the TNL class. Here we report the identification of RPS6 based on a forward-genetic screen and map-based cloning. Among resistance proteins of known function, the deduced amino acid sequence of RPS6 shows highest similarity to the TNL resistance protein RAC1 that determines resistance to the oomycete pathogen Albugo candida. Similar to RPS4 and other TNL genes, RPS6 generates alternatively spliced transcripts, although the alternative transcript structures are RPS6 specific. We previously characterized SRFR1 as a negative regulator of avrRps4-triggered immunity. Interestingly, mutations in SRFR1 also enhanced HopA1-triggered immunity in rps6 mutants. In conclusion, the cloning of RPS6 and comparisons with RPS4 will contribute to a closer dissection of the TNL resistance pathway in Arabidopsis.
Collapse
Affiliation(s)
- Sang Hee Kim
- Division of Plant Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211-7310, USA
| | | | | | | | | |
Collapse
|
48
|
Wroblewski T, Caldwell KS, Piskurewicz U, Cavanaugh KA, Xu H, Kozik A, Ochoa O, McHale LK, Lahre K, Jelenska J, Castillo JA, Blumenthal D, Vinatzer BA, Greenberg JT, Michelmore RW. Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia. PLANT PHYSIOLOGY 2009; 150:1733-49. [PMID: 19571308 PMCID: PMC2719141 DOI: 10.1104/pp.109.140251] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 06/23/2009] [Indexed: 05/18/2023]
Abstract
Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell.
Collapse
Affiliation(s)
- Tadeusz Wroblewski
- Genome Center and Department of Plant Sciences, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Samudrala R, Heffron F, McDermott JE. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 2009; 5:e1000375. [PMID: 19390620 PMCID: PMC2668754 DOI: 10.1371/journal.ppat.1000375] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 03/11/2009] [Indexed: 11/18/2022] Open
Abstract
The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates--effector proteins--are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the pattern of homologs in a range of other organisms, G+C content, amino acid composition, and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from the plant pathogen Pseudomonas syringae and validated on a set of effectors from the animal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) after eliminating effectors with detectable sequence similarity. We show that this approach can predict known secreted effectors with high specificity and sensitivity. Furthermore, by considering a large set of effectors from multiple organisms, we computationally identify a common putative secretion signal in the N-terminal 20 residues of secreted effectors. This signal can be used to discriminate 46 out of 68 total known effectors from both organisms, suggesting that it is a real, shared signal applicable to many type III secreted effectors. We use the method to make novel predictions of secreted effectors in S. Typhimurium, some of which have been experimentally validated. We also apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis, identifying the majority of known secreted proteins in addition to providing a number of novel predictions. This approach provides a new way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.
Collapse
Affiliation(s)
- Ram Samudrala
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jason E. McDermott
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
50
|
Kvitko BH, Park DH, Velásquez AC, Wei CF, Russell AB, Martin GB, Schneider DJ, Collmer A. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog 2009; 5:e1000388. [PMID: 19381254 PMCID: PMC2663052 DOI: 10.1371/journal.ppat.1000388] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/19/2009] [Indexed: 12/23/2022] Open
Abstract
The gamma-proteobacterial plant pathogen Pseudomonas syringae pv. tomato DC3000 uses the type III secretion system to inject ca. 28 Avr/Hop effector proteins into plants, which enables the bacterium to grow from low inoculum levels to produce bacterial speck symptoms in tomato, Arabidopsis thaliana, and (when lacking hopQ1-1) Nicotiana benthamiana. The effectors are collectively essential but individually dispensable for the ability of the bacteria to defeat defenses, grow, and produce symptoms in plants. Eighteen of the effector genes are clustered in six genomic islands/islets. Combinatorial deletions involving these clusters and two of the remaining effector genes revealed a redundancy-based structure in the effector repertoire, such that some deletions diminished growth in N. benthamiana only in combination with other deletions. Much of the ability of DC3000 to grow in N. benthamiana was found to be due to five effectors in two redundant-effector groups (REGs), which appear to separately target two high-level processes in plant defense: perception of external pathogen signals (AvrPto and AvrPtoB) and deployment of antimicrobial factors (AvrE, HopM1, HopR1). Further support for the membership of HopR1 in the same REG as AvrE was gained through bioinformatic analysis, revealing the existence of an AvrE/DspA/E/HopR effector superfamily, which has representatives in virtually all groups of proteobacterial plant pathogens that deploy type III effectors.
Collapse
Affiliation(s)
- Brian H. Kvitko
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Duck Hwan Park
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - André C. Velásquez
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Chia-Fong Wei
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Alistair B. Russell
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Gregory B. Martin
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - David J. Schneider
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Alan Collmer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|