1
|
Pech U, Janssens J, Schoovaerts N, Kuenen S, Calatayud Aristoy C, Gallego SF, Makhzami S, Hulselmans GJ, Poovathingal S, Davie K, Bademosi AT, Swerts J, Vilain S, Aerts S, Verstreken P. Synaptic deregulation of cholinergic projection neurons causes olfactory dysfunction across five fly Parkinsonism models. eLife 2025; 13:RP98348. [PMID: 40178224 PMCID: PMC11968104 DOI: 10.7554/elife.98348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson's disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.
Collapse
Affiliation(s)
- Ulrike Pech
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Jasper Janssens
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Carles Calatayud Aristoy
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Samira Makhzami
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Gert J Hulselmans
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Suresh Poovathingal
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
- VIB-KU Leuven Center for Brain and Disease Research Technologies, Single Cell, Microfluidics and Bioinformatics Expertise UnitsLeuvenBelgium
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
- VIB-KU Leuven Center for Brain and Disease Research Technologies, Single Cell, Microfluidics and Bioinformatics Expertise UnitsLeuvenBelgium
| | - Adekunle T Bademosi
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Sven Vilain
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics, Leuven Brain InstituteLeuvenBelgium
- VIB-KU Leuven Center for AI and Computational Biology (VIB.AI)LeuvenBelgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| |
Collapse
|
2
|
Loh LS, DeMarr KA, Tsimba M, Heryanto C, Berrio A, Patel NH, Martin A, McMillan WO, Wray GA, Hanly JJ. Lepidopteran scale cells derive from sensory organ precursors through a canonical lineage. Development 2025; 152:DEV204501. [PMID: 40052482 PMCID: PMC11925400 DOI: 10.1242/dev.204501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/05/2025] [Indexed: 03/15/2025]
Abstract
The success of butterflies and moths is tightly linked to the origin of scales within the group. A long-standing hypothesis postulates that scales are homologous to the well-described mechanosensory bristles found in the fruit fly Drosophila melanogaster, as both derive from an epithelial precursor. Previous histological and candidate gene approaches identified parallels in genes involved in scale and bristle development. Here, we provide developmental and transcriptomic evidence that the differentiation of lepidopteran scales derives from the sensory organ precursor (SOP). Live imaging in lepidopteran pupae shows that SOP cells undergo two asymmetric divisions that first abrogate the neurogenic lineage, and then lead to a differentiated scale precursor and its associated socket cell. Single-nucleus RNA sequencing using early pupal wings revealed differential gene expression patterns that mirror SOP development, suggesting a shared developmental program. Additionally, we recovered a newly associated gene, the transcription factor pdm3, involved in the proper differentiation of butterfly wing scales. Altogether, these data open up avenues for understanding scale type specification and development, and illustrate how single-cell transcriptomics provide a powerful platform for understanding evolution of cell types.
Collapse
Affiliation(s)
- Ling S Loh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Kyle A DeMarr
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Martina Tsimba
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Christa Heryanto
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | - Nipam H Patel
- The Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Departments of Organismal Biology and Anatomy & Molecular Genetics and Cell Biology, The University of Chicago, IL 60627, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| |
Collapse
|
3
|
Luo F, Sui L, Sun Y, Lai Z, Zhang C, Zhang G, Bi B, Yu S, Jin LH. Rab1 and Syntaxin 17 regulate hematopoietic homeostasis through β-integrin trafficking in Drosophila. J Genet Genomics 2025; 52:51-65. [PMID: 39542172 DOI: 10.1016/j.jgg.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Hematopoiesis is crucial for organismal health, and Drosophila serves as an effective genetic model due to conserved regulatory mechanisms with vertebrates. In larvae, hematopoiesis primarily occurs in the lymph gland, which contains distinct zones, including the cortical zone, intermediate zone, medullary zone, and posterior signaling center (PSC). Rab1 is vital for membrane trafficking and maintaining the localization of cell adhesion molecules, yet its role in hematopoietic homeostasis is not fully understood. This study investigates the effects of Rab1 dysfunction on β-integrin trafficking within circulating hemocytes and lymph gland cells. Rab1 impairment disrupts the endosomal trafficking of β-integrin, leading to its abnormal localization on cell membranes, which promotes lamellocyte differentiation and alters progenitor dynamics in circulating hemocytes and lymph glands, respectively. We also show that the mislocalization of β-integrin is dependent on the adhesion protein DE-cadherin. The reduction of β-integrin at cell boundaries in PSC cells leads to fewer PSC cells and lamellocyte differentiation. Furthermore, Rab1 regulates the trafficking of β-integrin via the Q-SNARE protein Syntaxin 17 (Syx17). Our findings indicate that Rab1 and Syx17 regulate distinct trafficking pathways for β-integrin in different hematopoietic compartments and maintain hematopoietic homeostasis of Drosophila.
Collapse
Affiliation(s)
- Fangzhou Luo
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Luwei Sui
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Ying Sun
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Zhixian Lai
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Chengcheng Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Gaoqun Zhang
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Bing Bi
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Shichao Yu
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
4
|
Gao Y, Feng J, Zhang Y, Yi M, Zhang L, Yan Y, Zhu AJ, Liu M. Ehbp1 orchestrates orderly sorting of Wnt/Wingless to the basolateral and apical cell membranes. EMBO Rep 2024; 25:5053-5079. [PMID: 39402333 PMCID: PMC11549480 DOI: 10.1038/s44319-024-00289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Wingless (Wg)/Wnt signaling plays a critical role in both development and adult tissue homeostasis. In the Drosophila larval wing disc epithelium, the orderly delivery of Wg/Wnt to the apical and basal cell surfaces is essential for wing development. Here, we identified Ehbp1 as the switch that dictates the direction of Wg/Wnt polarized intracellular transport: the Adaptor Protein complex 1 (AP-1) delivers Wg/Wnt to the basolateral cell surface, and its sequestration by Ehbp1 redirects Wg/Wnt for apical delivery. Genetic analyses showed that Ehbp1 specifically regulates the polarized distribution of Wg/Wnt, a process that depends on the dedicated Wg/Wnt cargo receptor Wntless. Mechanistically, Ehbp1 competes with Wntless for AP-1 binding, thereby preventing the unregulated basolateral Wg/Wnt transport. Reducing Ehbp1 expression, or removing the coiled-coil motifs within its bMERB domain, leads to basolateral Wg/Wnt accumulation. Importantly, the regulation of polarized Wnt delivery by EHBP1 is conserved in vertebrates. The generality of this switch mechanism for regulating intracellular transport remains to be determined in future studies.
Collapse
Affiliation(s)
- Yuan Gao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jing Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yansong Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, 610213, China
| | - Mengyuan Yi
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lebing Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan Yan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, 610213, China.
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Kim SM, Quagraine Y, Singh M, Kim JH. Rab11 suppresses neuronal stress signaling by localizing dual leucine zipper kinase to axon terminals for protein turnover. eLife 2024; 13:RP96592. [PMID: 39475475 PMCID: PMC11524585 DOI: 10.7554/elife.96592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Dual leucine zipper kinase (DLK) mediates multiple neuronal stress responses, and its expression levels are constantly suppressed to prevent excessive stress signaling. We found that Wallenda (Wnd), the Drosophila ortholog of DLK, is highly enriched in the axon terminals of Drosophila sensory neurons in vivo and that this subcellular localization is necessary for Highwire-mediated Wnd protein turnover under normal conditions. Our structure-function analysis found that Wnd palmitoylation is essential for its axon terminal localization. Palmitoylation-defective Wnd accumulated in neuronal cell bodies, exhibited dramatically increased protein expression levels, and triggered excessive neuronal stress responses. Defective intracellular transport is implicated in neurodegenerative conditions. Comprehensive dominant-negative Rab protein screening identified Rab11 as an essential factor for Wnd localization in axon terminals. Consequently, Rab11 loss-of-function increased the protein levels of Wnd and induced neuronal stress responses. Inhibiting Wnd activity significantly ameliorated neuronal loss and c-Jun N-terminal kinase signaling triggered by Rab11 loss-of-function. Taken together, these suggest that DLK proteins are constantly transported to axon terminals for protein turnover and a failure of such transport can lead to neuronal loss. Our study demonstrates how subcellular protein localization is coupled to protein turnover for neuronal stress signaling.
Collapse
Affiliation(s)
- Seung Mi Kim
- Department of Biology, University of Nevada RenoRenoUnited States
| | - Yaw Quagraine
- Department of Biology, University of Nevada RenoRenoUnited States
| | - Monika Singh
- Department of Biology, University of Nevada RenoRenoUnited States
| | - Jung Hwan Kim
- Department of Biology, University of Nevada RenoRenoUnited States
| |
Collapse
|
6
|
Tam R, Harris TJ. Centrosome-organized plasma membrane infoldings linked to growth of a cortical actin domain. J Cell Biol 2024; 223:e202403115. [PMID: 38935075 PMCID: PMC11215285 DOI: 10.1083/jcb.202403115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.
Collapse
Affiliation(s)
- Rebecca Tam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tony J.C. Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Zeger M, Stanisławczyk LS, Bulić M, Binder AM, Huber A. tsCRISPR based identification of Rab proteins required for the recycling of Drosophila TRPL ion channel. Front Cell Dev Biol 2024; 12:1444953. [PMID: 39372952 PMCID: PMC11450138 DOI: 10.3389/fcell.2024.1444953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
In polarized cells, the precise regulation of protein transport to and from the plasma membrane is crucial to maintain cellular function. Dysregulation of intracellular protein transport in neurons can lead to neurodegenerative diseases such as Retinitis Pigmentosa, Alzheimer's and Parkinson's disease. Here we used the light-dependent transport of the TRPL (transient receptor potential-like) ion channel in Drosophila photoreceptor cells to study the role of Rab proteins in TRPL recycling. TRPL is located in the rhabdomeric membrane of dark-adapted flies, but it is transported out of the rhabdomere upon light exposure and localizes at the Endoplasmatic Reticulum within 12 h. Upon subsequent dark adaptation, TRPL is recycled back to the rhabdomeric membrane within 90 min. To screen for Rab proteins involved in TRPL recycling, we established a tissue specific (ts) CRISPR/Cas9-mediated knock-out of individual Rab genes in Drosophila photoreceptors and assessed TRPL localization using an eGFP tagged TRPL protein in the intact eyes of these mutants. We observed severe TRPL recycling defects in the knockouts of Rab3, Rab4, Rab7, Rab32, and RabX2. Using immunohistochemistry, we further showed that Rab3 and RabX2 each play a significant role in TRPL recycling and also influence TRPL transport. We localized Rab3 to the late endosome in Drosophila photoreceptors and observed disruption of TRPL transport to the ER in Rab3 knock-out mutants. TRPL transport from the ER to the rhabdomere ensues from the trans-Golgi where RabX2 is located. We observed accumulated TRPL at the trans-Golgi in RabX2 knock-out mutants. In summary, our study reveals the requirement of specific Rab proteins for different steps of TRPL transport in photoreceptor cells and provides evidence for a unique retrograde recycling pathway of TRPL from the ER via the trans-Golgi.
Collapse
Affiliation(s)
| | | | | | | | - Armin Huber
- Department of Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
8
|
Hodgson JJ, Chen RY, Blissard GW, Buchon N. Viral and cellular determinants of polarized trafficking of viral envelope proteins from insect-specific and insect-vectored viruses in insect midgut and salivary gland cells. J Virol 2024; 98:e0054024. [PMID: 39162433 PMCID: PMC11406959 DOI: 10.1128/jvi.00540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Systemic viral infection of insects typically begins with the primary infection of midgut epithelial cells (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit) occurs upon secondary infection of salivary glands and is necessary for virus transmission to non-insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular stomatitis virus G) in the midgut and salivary gland cells of the model insect, Drosophila melanogaster. Using fly lines that inducibly express either GP64 or VSV G, we found that each protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal trafficking in midgut enterocytes but dispensable for trafficking in salivary gland cells. Using RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate that these viral envelope proteins encode the requisite information and require no other viral factors for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing systemic infections and vectoring infection to other hosts. IMPORTANCE Viruses that use insects as hosts must navigate specific routes through different insect tissues to complete their life cycles. The routes may differ substantially depending on the life cycle of the virus. Both insect pathogenic viruses and insect-vectored viruses must navigate through the polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-vectored viruses must also navigate through the polarized salivary gland epithelium for transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus GP64) alone encode the signals necessary for the polarized trafficking associated with their respective life cycles. Using Drosophila as a model to examine tissue-specific polarized trafficking of these viral envelope proteins, we identified one of the virus-encoded signals and several host proteins associated with regulating the polarized trafficking in the midgut epithelium.
Collapse
Affiliation(s)
- Jeffrey J. Hodgson
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
- Boyce Thompson Institute at Cornell University, Ithaca, New York, USA
| | - Robin Y. Chen
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Gary W. Blissard
- Boyce Thompson Institute at Cornell University, Ithaca, New York, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Zheng X, Yuan J, Wan Y, Tang Y, Cao H, Wang J, Qian K, Zhang Y, Chen S, Xu B, Zhang Y, Liang P, Wu Q. Dual Guardians of Immunity: FoRab10 and FoRab29 in Frankliniella occidentalis Confer Resistance to Tomato Spotted Wilt Orthotospovirus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16661-16673. [PMID: 39021284 DOI: 10.1021/acs.jafc.4c03412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rab GTPase is critical for autophagy processes and is implicated in insect immunity against viruses. In this study, we aimed to investigate the role of FoRabs in the autophagic regulation of antiviral defense against tomato spotted wilt orthotospovirus (TSWV) in Frankliniella occidentalis. Transcriptome analysis revealed the downregulation of FoRabs in viruliferous nymph and adults of F. occidentalis in response to TSWV infection. Manipulation of autophagy levels with 3-MA and Rapa treatments resulted in a 5- to 15-fold increase and a 38-64% decrease in viral titers, respectively. Additionally, interference with FoRab10 in nymphs and FoRab29 in adults led to a 20-90% downregulation of autophagy-related genes, a decrease in ATG8-II (an autophagy marker protein), and an increase in the TSWV titers by 1.5- to 2.5-fold and 1.3- to 2.0-fold, respectively. In addition, the leaf disk and the living plant methods revealed increased transmission rates of 20.8-41.6 and 68.3-88.3%, respectively. In conclusion, FoRab10 and FoRab29 play a role in the autophagic regulation of the antiviral defense in F. occidentalis nymphs and adults against TSWV, respectively. These findings offer insights into the intricate immune mechanisms functional in F. occidentalis against TSWV, suggesting potential targeted strategies for F. occidentalis and TSWV management.
Collapse
Affiliation(s)
- Xiaobin Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiangjiang Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanran Wan
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yingxi Tang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyi Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kanghua Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sirui Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoyun Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Davis GH, Zaya A, Pearce MMP. Impairment of the Glial Phagolysosomal System Drives Prion-Like Propagation in a Drosophila Model of Huntington's Disease. J Neurosci 2024; 44:e1256232024. [PMID: 38589228 PMCID: PMC11097281 DOI: 10.1523/jneurosci.1256-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative disease pathogenesis. Phagocytic glia are responsible for regulating the load of pathological proteins in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. A forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings uncover new mechanisms that enhance our understanding of the beneficial and harmful effects of phagocytic glia in HD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H Davis
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Aprem Zaya
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Margaret M Panning Pearce
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| |
Collapse
|
11
|
Soltani S, Webb SM, Kroll T, King-Jones K. Drosophila Evi5 is a critical regulator of intracellular iron transport via transferrin and ferritin interactions. Nat Commun 2024; 15:4045. [PMID: 38744835 PMCID: PMC11094094 DOI: 10.1038/s41467-024-48165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Vesicular transport is essential for delivering cargo to intracellular destinations. Evi5 is a Rab11-GTPase-activating protein involved in endosome recycling. In humans, Evi5 is a high-risk locus for multiple sclerosis, a debilitating disease that also presents with excess iron in the CNS. In insects, the prothoracic gland (PG) requires entry of extracellular iron to synthesize steroidogenic enzyme cofactors. The mechanism of peripheral iron uptake in insect cells remains controversial. We show that Evi5-depletion in the Drosophila PG affected vesicle morphology and density, blocked endosome recycling and impaired trafficking of transferrin-1, thus disrupting heme synthesis due to reduced cellular iron concentrations. We show that ferritin delivers iron to the PG as well, and interacts physically with Evi5. Further, ferritin-injection rescued developmental delays associated with Evi5-depletion. To summarize, our findings show that Evi5 is critical for intracellular iron trafficking via transferrin-1 and ferritin, and implicate altered iron homeostasis in the etiology of multiple sclerosis.
Collapse
Affiliation(s)
- Sattar Soltani
- University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Kirst King-Jones
- University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
12
|
Puli OR, Gogia N, Chimata AV, Yorimitsu T, Nakagoshi H, Kango-Singh M, Singh A. Genetic mechanism regulating diversity in the placement of eyes on the head of animals. Proc Natl Acad Sci U S A 2024; 121:e2316244121. [PMID: 38588419 PMCID: PMC11032433 DOI: 10.1073/pnas.2316244121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During Drosophila eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate. The underlying mechanisms that regulate this process are yet to be fully understood. We characterized defective proventriculus (dve) (Drosophila ortholog of human SATB1), a K50 homeodomain transcription factor, as a dorsal eye gene, which regulates Wg signaling to determine eye versus head fate. Across Drosophila species, Dve is expressed in the dorsal head vertex region where it regulates wg transcription. Second, Dve suppresses eye fate by down-regulating retinal determination genes. Third, the dve-expressing dorsal head vertex region is important for Wg-mediated inhibition of retinal cell fate, as eliminating the Dve-expressing cells or preventing Wg transport from these dve-expressing cells leads to a dramatic expansion of the eye field. Together, these findings suggest that Dve regulates Wg expression in the dorsal head vertex, which is critical for determining eye versus head fate. Gain-of-function of SATB1 exhibits an eye fate suppression phenotype similar to Dve. Our data demonstrate a conserved role for Dve/SATB1 in the positioning of eyes on the head and the interocular distance by regulating Wg. This study provides evidence that dysregulation of the Wg morphogen gradient results in developmental defects such as hypertelorism in humans where disproportionate interocular distance and facial anomalies are reported.
Collapse
Affiliation(s)
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH45469
| | | | - Takeshi Yorimitsu
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Hideki Nakagoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH45469
- Premedical Program, University of Dayton, Dayton, OH45469
- Integrative Science and Engineering, University of Dayton, Dayton, OH45469
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH45469
- Premedical Program, University of Dayton, Dayton, OH45469
- Integrative Science and Engineering, University of Dayton, Dayton, OH45469
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN47809
| |
Collapse
|
13
|
Pandey S, Catto M, Roberts P, Bag S, Jacobson AL, Srinivasan R. Aphid gene expression following polerovirus acquisition is host species dependent. FRONTIERS IN PLANT SCIENCE 2024; 15:1341781. [PMID: 38525153 PMCID: PMC10957536 DOI: 10.3389/fpls.2024.1341781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Upon acquisition of persistent circulative viruses such as poleroviruses, the virus particles transcytose through membrane barriers of aphids at the midgut and salivary glands via hemolymph. Such intricate interactions can influence aphid behavior and fitness and induce associated gene expression in viruliferous aphids. Differential gene expression can be evaluated by omics approaches such as transcriptomics. Previously conducted aphid transcriptome studies used only one host species as the source of virus inoculum. Viruses typically have alternate hosts. Hence, it is not clear how alternate hosts infected with the same virus isolate alter gene expression in viruliferous vectors. To address the question, this study conducted a transcriptome analysis of viruliferous aphids that acquired the virus from different host species. A polerovirus, cotton leafroll dwarf virus (CLRDV), which induced gene expression in the cotton aphid, Aphis gossypii Glover, was assessed using four alternate hosts, viz., cotton, hibiscus, okra, and prickly sida. Among a total of 2,942 differentially expressed genes (DEGs), 750, 310, 1,193, and 689 genes were identified in A. gossypii that acquired CLRDV from infected cotton, hibiscus, okra, and prickly sida, respectively, compared with non-viruliferous aphids that developed on non-infected hosts. A higher proportion of aphid genes were overexpressed than underexpressed following CLRDV acquisition from cotton, hibiscus, and prickly sida. In contrast, more aphid genes were underexpressed than overexpressed following CLRDV acquisition from okra plants. Only four common DEGs (heat shock protein, juvenile hormone acid O-methyltransferase, and two unannotated genes) were identified among viruliferous aphids from four alternate hosts. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that the acquisition of CLRDV induced DEGs in aphids associated with virus infection, signal transduction, immune systems, and fitness. However, these induced changes were not consistent across four alternate hosts. These data indicate that alternate hosts could differentially influence gene expression in aphids and presumably aphid behavior and fitness despite being infected with the same virus isolate.
Collapse
Affiliation(s)
- Sudeep Pandey
- Department of Entomology, University of Georgia, Griffin, GA, United States
| | - Michael Catto
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Phillip Roberts
- Department of Entomology, University of Georgia, Tifton, GA, United States
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Alana L. Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
14
|
Davis GH, Zaya A, Pearce MMP. Impairment of the glial phagolysosomal system drives prion-like propagation in a Drosophila model of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560952. [PMID: 38370619 PMCID: PMC10871239 DOI: 10.1101/2023.10.04.560952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative diseases pathogenesis. Phagocytic glia are responsible for regulating the load of pathogenic protein aggregates in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. Finally, a forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings reveal new mechanisms that enhance our understanding of the beneficial and potentially harmful effects of phagocytic glia in HD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H. Davis
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Aprem Zaya
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Margaret M. Panning Pearce
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| |
Collapse
|
15
|
Yu Y, Chen D, Farmer SM, Xu S, Rios B, Solbach A, Ye X, Ye L, Zhang S. Endolysosomal trafficking controls yolk granule biogenesis in vitellogenic Drosophila oocytes. PLoS Genet 2024; 20:e1011152. [PMID: 38315726 PMCID: PMC10898735 DOI: 10.1371/journal.pgen.1011152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/27/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Endocytosis and endolysosomal trafficking are essential for almost all aspects of physiological functions of eukaryotic cells. As our understanding on these membrane trafficking events are mostly from studies in yeast and cultured mammalian cells, one challenge is to systematically evaluate the findings from these cell-based studies in multicellular organisms under physiological settings. One potentially valuable in vivo system to address this challenge is the vitellogenic oocyte in Drosophila, which undergoes extensive endocytosis by Yolkless (Yl), a low-density lipoprotein receptor (LDLR), to uptake extracellular lipoproteins into oocytes and package them into a specialized lysosome, the yolk granule, for storage and usage during later development. However, by now there is still a lack of sufficient understanding on the molecular and cellular processes that control yolk granule biogenesis. Here, by creating genome-tagging lines for Yl receptor and analyzing its distribution in vitellogenic oocytes, we observed a close association of different endosomal structures with distinct phosphoinositides and actin cytoskeleton dynamics. We further showed that Rab5 and Rab11, but surprisingly not Rab4 and Rab7, are essential for yolk granules biogenesis. Instead, we uncovered evidence for a potential role of Rab7 in actin regulation and observed a notable overlap of Rab4 and Rab7, two Rab GTPases that have long been proposed to have distinct spatial distribution and functional roles during endolysosomal trafficking. Through a small-scale RNA interference (RNAi) screen on a set of reported Rab5 effectors, we showed that yolk granule biogenesis largely follows the canonical endolysosomal trafficking and maturation processes. Further, the data suggest that the RAVE/V-ATPase complexes function upstream of or in parallel with Rab7, and are involved in earlier stages of endosomal trafficking events. Together, our study provides s novel insights into endolysosomal pathways and establishes vitellogenic oocyte in Drosophila as an excellent in vivo model for dissecting the highly complex membrane trafficking events in metazoan.
Collapse
Affiliation(s)
- Yue Yu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Dongsheng Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- The College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, People’s Republic of China
| | - Stephen M. Farmer
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Shiyu Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Beatriz Rios
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Amanda Solbach
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Xin Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Lili Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| |
Collapse
|
16
|
Tsarouhas V, Liu D, Tsikala G, Engström Y, Strigini M, Samakovlis C. A surfactant lipid layer of endosomal membranes facilitates airway gas filling in Drosophila. Curr Biol 2023; 33:5132-5146.e5. [PMID: 37992718 DOI: 10.1016/j.cub.2023.10.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
The mechanisms underlying the construction of an air-liquid interface in respiratory organs remain elusive. Here, we use live imaging and genetic analysis to describe the morphogenetic events generating an extracellular lipid lining of the Drosophila airways required for their gas filing and animal survival. We show that sequential Rab39/Syx1A/Syt1-mediated secretion of lysosomal acid sphingomyelinase (Drosophila ASM [dASM]) and Rab11/35/Syx1A/Rop-dependent exosomal secretion provides distinct components for lipid film assembly. Tracheal inactivation of Rab11 or Rab35 or loss of Rop results in intracellular accumulation of exosomal, multi-vesicular body (MVB)-derived vesicles. On the other hand, loss of dASM or Rab39 causes luminal bubble-like accumulations of exosomal membranes and liquid retention in the airways. Inactivation of the exosomal secretion in dASM mutants counteracts this phenotype, arguing that the exosomal secretion provides the lipid vesicles and that secreted lysosomal dASM organizes them into a continuous film. Our results reveal the coordinated functions of extracellular vesicle and lysosomal secretions in generating a lipid layer crucial for airway gas filling and survival.
Collapse
Affiliation(s)
- Vasilios Tsarouhas
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden.
| | - Dan Liu
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | - Georgia Tsikala
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; IMBB, 70013 Heraklion, Crete, Greece
| | - Ylva Engström
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | | | - Christos Samakovlis
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden; ECCPS, Justus Liebig University of Giessen, 35390 Giessen, Germany.
| |
Collapse
|
17
|
Wells A, Mendes CC, Castellanos F, Mountain P, Wright T, Wainwright SM, Stefana MI, Harris AL, Goberdhan DCI, Wilson C. A Rab6 to Rab11 transition is required for dense-core granule and exosome biogenesis in Drosophila secondary cells. PLoS Genet 2023; 19:e1010979. [PMID: 37844085 PMCID: PMC10602379 DOI: 10.1371/journal.pgen.1010979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/26/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023] Open
Abstract
Secretory cells in glands and the nervous system frequently package and store proteins destined for regulated secretion in dense-core granules (DCGs), which disperse when released from the cell surface. Despite the relevance of this dynamic process to diseases such as diabetes and human neurodegenerative disorders, our mechanistic understanding is relatively limited, because of the lack of good cell models to follow the nanoscale events involved. Here, we employ the prostate-like secondary cells (SCs) of the Drosophila male accessory gland to dissect the cell biology and genetics of DCG biogenesis. These cells contain unusually enlarged DCGs, which are assembled in compartments that also form secreted nanovesicles called exosomes. We demonstrate that known conserved regulators of DCG biogenesis, including the small G-protein Arf1 and the coatomer complex AP-1, play key roles in making SC DCGs. Using real-time imaging, we find that the aggregation events driving DCG biogenesis are accompanied by a change in the membrane-associated small Rab GTPases which are major regulators of membrane and protein trafficking in the secretory and endosomal systems. Indeed, a transition from trans-Golgi Rab6 to recycling endosomal protein Rab11, which requires conserved DCG regulators like AP-1, is essential for DCG and exosome biogenesis. Our data allow us to develop a model for DCG biogenesis that brings together several previously disparate observations concerning this process and highlights the importance of communication between the secretory and endosomal systems in controlling regulated secretion.
Collapse
Affiliation(s)
- Adam Wells
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Cláudia C. Mendes
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Felix Castellanos
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Phoebe Mountain
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tia Wright
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - S. Mark Wainwright
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - M. Irina Stefana
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Adrian L. Harris
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Clive Wilson
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Miao H, Millage M, Rollins KR, Blankenship JT. A Rab39-Klp98A-Rab35 endocytic recycling pathway is essential for rapid Golgi-dependent furrow ingression. Development 2023; 150:dev201547. [PMID: 37590130 PMCID: PMC10445802 DOI: 10.1242/dev.201547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Ingression of the plasma membrane is an essential part of the cell topology-distorting repertoire and a key element in animal cell cytokinesis. Many embryos have rapid cleavage stages in which they are furrowing powerhouses, quickly forming and disassembling cleavage furrows on timescales of just minutes. Previous work has shown that cytoskeletal proteins and membrane trafficking coordinate to drive furrow ingression, but where these membrane stores are derived from and how they are directed to furrowing processes has been less clear. Here, we identify an extensive Rab35/Rab4>Rab39/Klp98A>trans-Golgi network (TGN) endocytic recycling pathway necessary for fast furrow ingression in the Drosophila embryo. Rab39 is present in vesiculotubular compartments at the TGN where it receives endocytically derived cargo through a Rab35/Rab4-dependent pathway. A Kinesin-3 family member, Klp98A, drives the movements and tubulation activities of Rab39, and disruption of this Rab39-Klp98A-Rab35 pathway causes deep furrow ingression defects and genomic instability. These data suggest that an endocytic recycling pathway rapidly remobilizes membrane cargo from the cell surface and directs it to the trans-Golgi network to permit the initiation of new cycles of cleavage furrow formation.
Collapse
Affiliation(s)
- Hui Miao
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Megan Millage
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | | | - J. Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
19
|
Szinyákovics J, Keresztes F, Kiss EA, Falcsik G, Vellai T, Kovács T. Potent New Targets for Autophagy Enhancement to Delay Neuronal Ageing. Cells 2023; 12:1753. [PMID: 37443788 PMCID: PMC10341134 DOI: 10.3390/cells12131753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy is a lysosomal-dependent degradation process of eukaryotic cells responsible for breaking down unnecessary and damaged intracellular components. Autophagic activity gradually declines with age due to genetic control, and this change contributes to the accumulation of cellular damage at advanced ages, thereby causing cells to lose their functionality and viability. This could be particularly problematic in post-mitotic cells including neurons, the mass destruction of which leads to various neurodegenerative diseases. Here, we aim to uncover new regulatory points where autophagy could be specifically activated and test these potential drug targets in neurodegenerative disease models of Drosophila melanogaster. One possible way to activate autophagy is by enhancing autophagosome-lysosome fusion that creates the autolysosome in which the enzymatic degradation happens. The HOPS (homotypic fusion and protein sorting) and SNARE (Snap receptor) protein complexes regulate the fusion process. The HOPS complex forms a bridge between the lysosome and autophagosome with the assistance of small GTPase proteins. Thus, small GTPases are essential for autolysosome maturation, and among these proteins, Rab2 (Ras-associated binding 2), Rab7, and Arl8 (Arf-like 8) are required to degrade the autophagic cargo. For our experiments, we used Drosophila melanogaster as a model organism. Nerve-specific small GTPases were silenced and overexpressed. We examined the effects of these genetic interventions on lifespan, climbing ability, and autophagy. Finally, we also studied the activation of small GTPases in a Parkinson's disease model. Our results revealed that GTP-locked, constitutively active Rab2 (Rab2-CA) and Arl8 (Arl8-CA) expression reduces the levels of the autophagic substrate p62/Ref(2)P in neurons, extends lifespan, and improves the climbing ability of animals during ageing. However, Rab7-CA expression dramatically shortens lifespan and inhibits autophagy. Rab2-CA expression also increases lifespan in a Parkinson's disease model fly strain overexpressing human mutant (A53T) α-synuclein protein. Data provided by this study suggests that Rab2 and Arl8 serve as potential targets for autophagy enhancement in the Drosophila nervous system. In the future, it might be interesting to assess the effect of Rab2 and Arl8 coactivation on autophagy, and it would also be worthwhile to validate these findings in a mammalian model and human cell lines. Molecules that specifically inhibit Rab2 or Arl8 serve as potent drug candidates to modulate the activity of the autophagic process in treating neurodegenerative pathologies. In the future, it would be reasonable to investigate which GAP enzyme can inhibit Rab2 or Arl8 specifically, but not affect Rab7, with similar medical purposes.
Collapse
Affiliation(s)
- Janka Szinyákovics
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
- ELKH-ELTE Genetic Research Group, H-1117 Budapest, Hungary
| | - Fanni Keresztes
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Eszter Anna Kiss
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| | - Gergő Falcsik
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- ELKH-ELTE Genetic Research Group, H-1117 Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| |
Collapse
|
20
|
Jejina A, Ayala Y, Hernández G, Suter B. Role of BicDR in bristle shaft construction, tracheal development, and support of BicD functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545245. [PMID: 37398393 PMCID: PMC10312712 DOI: 10.1101/2023.06.16.545245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cell polarization requires asymmetric localization of numerous mRNAs, proteins, and organelles. The movement of cargo towards the minus end of microtubules mostly depends on cytoplasmic dynein motors, which function as multiprotein complexes. In the dynein/dynactin/Bicaudal-D (DDB) transport machinery, Bicaudal-D (BicD) links the cargo to the motor. Here we focus on the role of BicD-related (BicDR) and its contribution to microtubule-dependent transport processes. Drosophila BicDR is required for the normal development of bristles and dorsal trunk tracheae. Together with BicD, it contributes to the organization and stability of the actin cytoskeleton in the not-yet-chitinized bristle shaft and the localization of Spn-F and Rab6 at the distal tip. We show that BicDR supports the function of BicD in bristle development and our results suggest that BicDR transports cargo more locally whereas BicD is more responsible for delivering functional cargo over the long distance to the distal tip. We identified the proteins that interact with BicDR and appear to be BicDR cargo in embryonic tissues. For one of them, EF1γ, we showed that EF1γ genetically interacts with BicD and BicDR in the construction of the bristles.
Collapse
Affiliation(s)
- Aleksandra Jejina
- Institute of Cell Biology, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Yeniffer Ayala
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), Mexico City, Mexico
| | - Greco Hernández
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), Mexico City, Mexico
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Switzerland
| |
Collapse
|
21
|
Saha B, Acharjee S, Ghosh G, Dasgupta P, Prasad M. Germline protein, Cup, non-cell autonomously limits migratory cell fate in Drosophila oogenesis. PLoS Genet 2023; 19:e1010631. [PMID: 36791149 PMCID: PMC9974129 DOI: 10.1371/journal.pgen.1010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/28/2023] [Accepted: 01/22/2023] [Indexed: 02/16/2023] Open
Abstract
Specification of migratory cell fate from a stationary population is complex and indispensable both for metazoan development as well for the progression of the pathological condition like tumor metastasis. Though this cell fate transformation is widely prevalent, the molecular understanding of this phenomenon remains largely elusive. We have employed the model of border cells (BC) in Drosophila oogenesis and identified germline activity of an RNA binding protein, Cup that limits acquisition of migratory cell fate from the neighbouring follicle epithelial cells. As activation of JAK-STAT in the follicle cells is critical for BC specification, our data suggest that Cup, non-cell autonomously restricts the domain of JAK-STAT by activating Notch in the follicle cells. Employing genetics and Delta endocytosis assay, we demonstrate that Cup regulates Delta recycling in the nurse cells through Rab11GTPase thus facilitating Notch activation in the adjacent follicle cells. Since Notch and JAK-STAT are antagonistic, we propose that germline Cup functions through Notch and JAK-STAT to modulate BC fate specification from their static epithelial progenitors.
Collapse
Affiliation(s)
- Banhisikha Saha
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
| | - Sayan Acharjee
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| | - Gaurab Ghosh
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| | - Purbasa Dasgupta
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| | - Mohit Prasad
- Department of Biological Sciences Indian Institute of Science Education & Research- Kolkata Mohanpur Campus Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
22
|
Li JH, Trivedi V, Diz-Muñoz A. Understanding the interplay of membrane trafficking, cell surface mechanics, and stem cell differentiation. Semin Cell Dev Biol 2023; 133:123-134. [PMID: 35641408 PMCID: PMC9703995 DOI: 10.1016/j.semcdb.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/08/2022] [Accepted: 05/14/2022] [Indexed: 01/17/2023]
Abstract
Stem cells can generate a diversity of cell types during development, regeneration and adult tissue homeostasis. Differentiation changes not only the cell fate in terms of gene expression but also the physical properties and functions of cells, e.g. the secretory activity, cell shape, or mechanics. Conversely, these activities and properties can also regulate differentiation itself. Membrane trafficking is known to modulate signal transduction and thus has the potential to control stem cell differentiation. On the other hand, membrane trafficking, particularly from and to the plasma membrane, depends on the mechanical properties of the cell surface such as tension within the plasma membrane or the cortex. Indeed, recent findings demonstrate that cell surface mechanics can also control cell fate. Here, we review the bidirectional relationships between these three fundamental cellular functions, i.e. membrane trafficking, cell surface mechanics, and stem cell differentiation. Furthermore, we discuss commonly used methods in each field and how combining them with new tools will enhance our understanding of their interplay. Understanding how membrane trafficking and cell surface mechanics can guide stem cell fate holds great potential as these concepts could be exploited for directed differentiation of stem cells for the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jia Hui Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vikas Trivedi
- EMBL, PRBB, Dr. Aiguader, 88, Barcelona 08003, Spain,Developmental Biology Unit, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg 69117, Germany.
| |
Collapse
|
23
|
Boda A, Varga LP, Nagy A, Szenci G, Csizmadia T, Lőrincz P, Juhász G. Rab26 controls secretory granule maturation and breakdown in Drosophila. Cell Mol Life Sci 2023; 80:24. [PMID: 36600084 PMCID: PMC9813115 DOI: 10.1007/s00018-022-04674-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
At the onset of Drosophila metamorphosis, plenty of secretory glue granules are released from salivary gland cells and the glue is deposited on the ventral side of the forming (pre)pupa to attach it to a dry surface. Prior to this, a poorly understood maturation process takes place during which secretory granules gradually grow via homotypic fusions, and their contents are reorganized. Here we show that the small GTPase Rab26 localizes to immature (smaller, non-acidic) glue granules and its presence prevents vesicle acidification. Rab26 mutation accelerates the maturation, acidification and release of these secretory vesicles as well as the lysosomal breakdown (crinophagy) of residual, non-released glue granules. Strikingly, loss of Mon1, an activator of the late endosomal and lysosomal fusion factor Rab7, results in Rab26 remaining associated even with the large glue granules and a concomitant defect in glue release, similar to the effects of Rab26 overexpression. Our data thus identify Rab26 as a key regulator of secretory vesicle maturation that promotes early steps (vesicle growth) and inhibits later steps (lysosomal transport, acidification, content reorganization, release, and breakdown), which is counteracted by Mon1.
Collapse
Affiliation(s)
- Attila Boda
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Luca Petra Varga
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Anikó Nagy
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Győző Szenci
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
24
|
Li M, Kasan K, Saha Z, Yoon Y, Schmidt-Ott U. Twenty-seven ZAD-ZNF genes of Drosophila melanogaster are orthologous to the embryo polarity determining mosquito gene cucoid. PLoS One 2023; 18:e0274716. [PMID: 36595500 PMCID: PMC9810180 DOI: 10.1371/journal.pone.0274716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The C2H2 zinc finger gene cucoid establishes anterior-posterior (AP) polarity in the early embryo of culicine mosquitoes. This gene is unrelated to genes that establish embryo polarity in other fly species (Diptera), such as the homeobox gene bicoid, which serves this function in the traditional model organism Drosophila melanogaster. The cucoid gene is a conserved single copy gene across lower dipterans but nothing is known about its function in other species, and its evolution in higher dipterans, including Drosophila, is unresolved. We found that cucoid is a member of the ZAD-containing C2H2 zinc finger (ZAD-ZNF) gene family and is orthologous to 27 of the 91 members of this family in D. melanogaster, including M1BP, ranshi, ouib, nom, zaf1, odj, Nnk, trem, Zif, and eighteen uncharacterized genes. Available knowledge of the functions of cucoid orthologs in Drosophila melanogaster suggest that the progenitor of this lineage specific expansion may have played a role in regulating chromatin. We also describe many aspects of the gene duplication history of cucoid in the brachyceran lineage of D. melanogaster, thereby providing a framework for predicting potential redundancies among these genes in D. melanogaster.
Collapse
Affiliation(s)
- Muzi Li
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Koray Kasan
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Zinnia Saha
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Yoseop Yoon
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Urs Schmidt-Ott
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
25
|
Scholl A, Ndoja I, Dhakal N, Morante D, Ivan A, Newman D, Mossington T, Clemans C, Surapaneni S, Powers M, Jiang L. The Osiris family genes function as novel regulators of the tube maturation process in the Drosophila trachea. PLoS Genet 2023; 19:e1010571. [PMID: 36689473 PMCID: PMC9870157 DOI: 10.1371/journal.pgen.1010571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
Drosophila trachea is a premier model to study tube morphogenesis. After the formation of continuous tubes, tube maturation follows. Tracheal tube maturation starts with an apical secretion pulse that deposits extracellular matrix components to form a chitin-based apical luminal matrix (aECM). This aECM is then cleared and followed by the maturation of taenidial folds. Finally, air fills the tubes. Meanwhile, the cellular junctions are maintained to ensure tube integrity. Previous research has identified several key components (ER, Golgi, several endosomes) of protein trafficking pathways that regulate the secretion and clearance of aECM, and the maintenance of cellular junctions. The Osiris (Osi) gene family is located at the Triplo-lethal (Tpl) locus on chromosome 3R 83D4-E3 and exhibits dosage sensitivity. Here, we show that three Osi genes (Osi9, Osi15, Osi19), function redundantly to regulate adherens junction (AJ) maintenance, luminal clearance, taenidial fold formation, tube morphology, and air filling during tube maturation. The localization of Osi proteins in endosomes (Rab7-containing late endosomes, Rab11-containing recycling endosomes, Lamp-containing lysosomes) and the reduction of these endosomes in Osi mutants suggest the possible role of Osi genes in tube maturation through endosome-mediated trafficking. We analyzed tube maturation in zygotic rab11 and rab7 mutants, respectively, to determine whether endosome-mediated trafficking is required. Interestingly, similar tube maturation defects were observed in rab11 but not in rab7 mutants, suggesting the involvement of Rab11-mediated trafficking, but not Rab7-mediated trafficking, in this process. To investigate whether Osi genes regulate tube maturation primarily through the maintenance of Rab11-containing endosomes, we overexpressed rab11 in Osi mutant trachea. Surprisingly, no obvious rescue was observed. Thus, increasing endosome numbers is not sufficient to rescue tube maturation defects in Osi mutants. These results suggest that Osi genes regulate other aspects of endosome-mediated trafficking, or regulate an unknown mechanism that converges or acts in parallel with Rab11-mediated trafficking during tube maturation.
Collapse
Affiliation(s)
- Aaron Scholl
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Istri Ndoja
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Niraj Dhakal
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Doria Morante
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Abigail Ivan
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Darren Newman
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Thomas Mossington
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Christian Clemans
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Sruthi Surapaneni
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Michael Powers
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
26
|
Abstract
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
Collapse
Affiliation(s)
| | - Jiri Novotny
- Jiri Novotny, Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
27
|
Xu L, Qiu Y, Wang X, Shang W, Bai J, Shi K, Liu H, Liu JP, Wang L, Tong C. ER-mitochondrial contact protein Miga regulates autophagy through Atg14 and Uvrag. Cell Rep 2022; 41:111583. [DOI: 10.1016/j.celrep.2022.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 08/10/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
|
28
|
Rai P, Kumar Roy J. Endosomal recycling protein Rab11 in Parkin and Pink1 signaling in Drosophila model of Parkinson's disease. Exp Cell Res 2022; 420:113357. [PMID: 36116557 DOI: 10.1016/j.yexcr.2022.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases are progressive disorders of the nervous system primarily affecting the loss of neuronal cells present in the brain. Although most neurodegenerative cases are sporadic, some familial genes are found to be involved in the neurodegenerative diseases. The extensively studied parkin and pink1 gene products are known to be involved in the removal of damaged mitochondria via autophagy (mitophagy), a quality control process. If the function of any of these genes is somehow disrupted, accumulation of damaged mitochondria occurs in the forms of protein aggregates in the cytoplasm, leading to formation of the Lewy-bodies. Autophagy is an important catabolic process where the endosomal Rab proteins are seen to be involved. Rab11, an endosomal recycling protein, serves as an ATG9A carrier that helps in autophagosome formation and maturation. Earlier studies have reported that loss of Rab11 prevents the fusion of autophagosomes with the late endosomes hampering the autophagy pathway resulting in apoptosis of cells. In this study, we have emphasized on the importance and functional role of Rab11 in the molecular pathway of Parkin/Pink1 in Parkinson's disease.
Collapse
Affiliation(s)
- Pooja Rai
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
29
|
Asadzadeh J, Ruchti E, Jiao W, Limoni G, MacLachlan C, Small SA, Knott G, Santa-Maria I, McCabe BD. Retromer deficiency in Tauopathy models enhances the truncation and toxicity of Tau. Nat Commun 2022; 13:5049. [PMID: 36030267 PMCID: PMC9420134 DOI: 10.1038/s41467-022-32683-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Alteration of the levels, localization or post-translational processing of the microtubule associated protein Tau is associated with many neurodegenerative disorders. Here we develop adult-onset models for human Tau (hTau) toxicity in Drosophila that enable age-dependent quantitative measurement of central nervous system synapse loss and axonal degeneration, in addition to effects upon lifespan, to facilitate evaluation of factors that may contribute to Tau-dependent neurodegeneration. Using these models, we interrogate the interaction of hTau with the retromer complex, an evolutionarily conserved cargo-sorting protein assembly, whose reduced activity has been associated with both Parkinson’s and late onset Alzheimer’s disease. We reveal that reduction of retromer activity induces a potent enhancement of hTau toxicity upon synapse loss, axon retraction and lifespan through a specific increase in the production of a C-terminal truncated isoform of hTau. Our data establish a molecular and subcellular mechanism necessary and sufficient for the depletion of retromer activity to exacerbate Tau-dependent neurodegeneration. Tau and the Retromer complex are both linked to Parkinson’s and Alzheimer’s disease. Using Drosophila neurodegeneration models, this study finds that low retromer activity induces a specific increase of a highly toxic truncated form of human Tau.
Collapse
Affiliation(s)
- Jamshid Asadzadeh
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Evelyne Ruchti
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Wei Jiao
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Catherine MacLachlan
- BioEM Facility, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Scott A Small
- Department of Neurology, Columbia University, New York, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
| | - Graham Knott
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.,BioEM Facility, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA.,Department of Pathology & Cell Biology, Columbia University, New York, USA.,Facultad Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Brian D McCabe
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.
| |
Collapse
|
30
|
Cabrita A, Medeiros AM, Pereira T, Rodrigues AS, Kranendonk M, Mendes CS. Motor dysfunction in Drosophila melanogaster as a biomarker for developmental neurotoxicity. iScience 2022; 25:104541. [PMID: 35769875 PMCID: PMC9234254 DOI: 10.1016/j.isci.2022.104541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/30/2021] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Adequate alternatives to conventional animal testing are needed to study developmental neurotoxicity (DNT). Here, we used kinematic analysis to assess DNT of known (toluene (TOL) and chlorpyrifos (CPS)) and putative (β-N-methylamino-L-alanine (BMAA)) neurotoxic compounds. Drosophila melanogaster was exposed to these compounds during development and evaluated for survival and adult kinematic parameters using the FlyWalker system, a kinematics evaluation method. At concentrations that do not induce general toxicity, the solvent DMSO had a significant effect on kinematic parameters. Moreover, while TOL did not significantly induce lethality or kinematic dysfunction, CPS not only induced developmental lethality but also significantly impaired coordination in comparison to DMSO. Interestingly, BMAA, which was not lethal during development, induced motor decay in young adult animals, phenotypically resembling aged flies, an effect later attenuated upon aging. Furthermore, BMAA induced abnormal development of leg motor neuron projections. Our results suggest that our kinematic approach can assess potential DNT of chemical compounds. Alternatives to mammalian testing are needed to detect developmental neurotoxicity The pesticide chlorpyrifos causes partial lethality and motor dysfunction Non-lethal levels of BMAA induce motor dysfunction in a dose-dependent manner Kinematic profiling of adult Drosophila can identify developmental neurotoxicity
Collapse
Affiliation(s)
- Ana Cabrita
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alexandra M. Medeiros
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Telmo Pereira
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - António Sebastião Rodrigues
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Corresponding author
| | - César S. Mendes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Corresponding author
| |
Collapse
|
31
|
Jordan KL, Koss DJ, Outeiro TF, Giorgini F. Therapeutic Targeting of Rab GTPases: Relevance for Alzheimer's Disease. Biomedicines 2022; 10:1141. [PMID: 35625878 PMCID: PMC9138223 DOI: 10.3390/biomedicines10051141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Rab GTPases (Rabs) are small proteins that play crucial roles in vesicle transport and membrane trafficking. Owing to their widespread functions in several steps of vesicle trafficking, Rabs have been implicated in the pathogenesis of several disorders, including cancer, diabetes, and multiple neurodegenerative diseases. As treatments for neurodegenerative conditions are currently rather limited, the identification and validation of novel therapeutic targets, such as Rabs, is of great importance. This review summarises proof-of-concept studies, demonstrating that modulation of Rab GTPases in the context of Alzheimer's disease (AD) can ameliorate disease-related phenotypes, and provides an overview of the current state of the art for the pharmacological targeting of Rabs. Finally, we also discuss the barriers and challenges of therapeutically targeting these small proteins in humans, especially in the context of AD.
Collapse
Affiliation(s)
- Kate L. Jordan
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK;
| | - David J. Koss
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; (D.J.K.); (T.F.O.)
| | - Tiago F. Outeiro
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; (D.J.K.); (T.F.O.)
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Max Planck Institute for Natural Sciences, 37075 Göttingen, Germany
- Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
32
|
Tanasic D, Berns N, Riechmann V. Myosin V facilitates polarised E-cadherin secretion. Traffic 2022; 23:374-390. [PMID: 35575181 DOI: 10.1111/tra.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
E-cadherin has a fundamental role in epithelial tissues by providing cell-cell adhesion. Polarised E-cadherin exocytosis to the lateral plasma membrane is central for cell polarity and epithelial homeostasis. Loss of E-cadherin secretion compromises tissue integrity and is a prerequisite for metastasis. Despite this pivotal role of E-cadherin secretion, the transport mechanism is still unknown. Here we identify Myosin V as the motor for E-cadherin secretion. Our data reveal that Myosin V and F-actin are required for the formation of a continuous apicolateral E-cadherin belt, the zonula adherens. We show by live imaging how Myosin V transports E-cadherin vesicles to the plasma membrane, and distinguish two distinct transport tracks: an apical actin network leading to the zonula adherens and parallel actin bundles leading to the basal-most region of the lateral membrane. E-cadherin secretion starts in endosomes, where Rab11 and Sec15 recruit Myosin V for transport to the zonula adherens. We also shed light on the endosomal sorting of E-cadherin by showing how Rab7 and Snx16 cooperate in moving E-cadherin into the Rab11 compartment. Thus, our data help to understand how polarised E-cadherin secretion maintains epithelial architecture and prevents metastasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dajana Tanasic
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim, Germany
| | - Nicola Berns
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim, Germany
| | - Veit Riechmann
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim, Germany
| |
Collapse
|
33
|
Abbas M, Fan YH, Shi XK, Gao L, Wang YL, Li T, Cooper AMW, Silver K, Zhu KY, Zhang JZ. Identification of Rab family genes and functional analyses of LmRab5 and LmRab11A in the development and RNA interference of Locusta migratoria. INSECT SCIENCE 2022; 29:320-332. [PMID: 34347932 DOI: 10.1111/1744-7917.12921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 06/13/2023]
Abstract
Rab proteins constitute the largest family of small GTPases, which play pivotal roles in intracellular membrane trafficking in all eukaryotes. A number of Rab genes have been identified in eukaryotes; however, very little information about these genes has been reported in insects. In the current study, for the first time we identified and characterized 27 Rab family genes from Locusta migratoria. Phylogenetic analysis and comparison of domain architecture indicated that Rab family genes are highly conserved among insect species. Tissue-dependent expression profiles indicated that expression of Rab genes was highest in the ovary, except for LmRab3, which was most highly expressed in hemolymph. The biological function of each Rab gene was investigated using RNA interference (RNAi). Double-stranded RNA targeting each Rab gene was injected into the hemocoel of nymphs and revealed that suppression of two Rab genes (LmRab5 and LmRab11A) caused 100% mortality. In addition, nymphs injected with dsLmRab5 exhibited severe phenotypic defects in the gastric caeca and midgut, while dsLmRab11A arrested the molting process. We then applied the RNAi of RNAi technique to test if silencing either of these two genes would affect the suppression of the lethal giant larvae (LmLgl) reporter gene and found that suppression of LmRab5 diminished the RNAi efficiency of LmLgl, whereas suppression of LmRab11A enhanced RNAi efficiency of LmLgl. These results indicate that Rab genes contribute differently to RNAi efficiency in different tissues. Our study provides a foundation for further functional investigations of Rab genes and their contributions to RNAi efficiency in L. migratoria.
Collapse
Affiliation(s)
- Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yun-He Fan
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xue-Kai Shi
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Lu Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Yan-Li Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Tao Li
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | | | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
34
|
Zajac AL, Horne-Badovinac S. Kinesin-directed secretion of basement membrane proteins to a subdomain of the basolateral surface in Drosophila epithelial cells. Curr Biol 2022; 32:735-748.e10. [PMID: 35021047 PMCID: PMC8891071 DOI: 10.1016/j.cub.2021.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Epithelial tissues are lined with a sheet-like basement membrane (BM) extracellular matrix at their basal surfaces that plays essential roles in adhesion and signaling. BMs also provide mechanical support to guide morphogenesis. Despite their importance, we know little about how epithelial cells secrete and assemble BMs during development. BM proteins are sorted into a basolateral secretory pathway distinct from other basolateral proteins. Because BM proteins self-assemble into networks, and the BM lines only a small portion of the basolateral domain, we hypothesized that the site of BM protein secretion might be tightly controlled. Using the Drosophila follicular epithelium, we show that kinesin-3 and kinesin-1 motors work together to define this secretion site. Similar to all epithelia, the follicle cells have polarized microtubules (MTs) along their apical-basal axes. These cells collectively migrate, and they also have polarized MTs along the migratory axis at their basal surfaces. We find follicle cell MTs form one interconnected network, which allows kinesins to transport Rab10+ BM secretory vesicles both basally and to the trailing edge of each cell. This positions them near the basal surface and the basal-most region of the lateral domain for exocytosis. When kinesin transport is disrupted, the site of BM protein secretion is expanded, and ectopic BM networks form between cells that impede migration and disrupt tissue architecture. These results show how epithelial cells can define a subdomain on their basolateral surface through MT-based transport and highlight the importance of controlling the exocytic site of network-forming proteins.
Collapse
Affiliation(s)
- Allison L. Zajac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Camelo C, Körte A, Jacobs T, Luschnig S. Tracheal tube fusion in Drosophila involves release of extracellular vesicles from multivesicular bodies. J Cell Sci 2022; 135:274235. [PMID: 35019140 DOI: 10.1242/jcs.259590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022] Open
Abstract
Extracellular vesicles (EVs) comprise diverse types of cell-released membranous structures that are thought to play important roles in intercellular communication. While the formation and functions of EVs have been investigated extensively in cultured cells, studies of EVs in vivo have remained scarce. We report here that EVs are present in the developing lumen of tracheal tubes in Drosophila embryos. We defined two distinct EV subpopulations, one of which contains the Munc13-4 homologue Staccato (Stac) and is spatially and temporally associated with tracheal tube fusion (anastomosis) events. The formation of Stac-positive luminal EVs depends on the tracheal tip-cell-specific GTPase Arl3, which is also required for the formation of Stac-positive multivesicular bodies, suggesting that Stac-EVs derive from fusion of Stac-MVBs with the luminal membrane in tip cells during anastomosis formation. The GTPases Rab27 and Rab35 cooperate downstream of Arl3 to promote Stac-MVB formation and tube fusion. We propose that Stac-MVBs act as membrane reservoirs that facilitate tracheal lumen fusion in a process regulated by Arl3, Rab27, Rab35, and Stac/Munc13-4.
Collapse
Affiliation(s)
- Carolina Camelo
- Institute of Integrative Cell Biology and Physiology, University of Münster, D-48143 Münster, Germany.,Cells in Motion (CiM) Interfaculty Centre, D-48149 Münster, Germany
| | - Anna Körte
- Institute of Integrative Cell Biology and Physiology, University of Münster, D-48143 Münster, Germany.,Cells in Motion (CiM) Interfaculty Centre, D-48149 Münster, Germany
| | - Thea Jacobs
- Institute of Integrative Cell Biology and Physiology, University of Münster, D-48143 Münster, Germany.,Cells in Motion (CiM) Interfaculty Centre, D-48149 Münster, Germany
| | - Stefan Luschnig
- Institute of Integrative Cell Biology and Physiology, University of Münster, D-48143 Münster, Germany.,Cells in Motion (CiM) Interfaculty Centre, D-48149 Münster, Germany
| |
Collapse
|
36
|
Lambert E, Saha O, Soares Landeira B, Melo de Farias AR, Hermant X, Carrier A, Pelletier A, Gadaut J, Davoine L, Dupont C, Amouyel P, Bonnefond A, Lafont F, Abdelfettah F, Verstreken P, Chapuis J, Barois N, Delahaye F, Dermaut B, Lambert JC, Costa MR, Dourlen P. The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathol Commun 2022; 10:4. [PMID: 34998435 PMCID: PMC8742943 DOI: 10.1186/s40478-021-01285-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer’s disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.
Collapse
|
37
|
Hyeon B, Nguyen MK, Do Heo W. Optogenetic Control of Membrane Trafficking Using Light-Activated Reversible Inhibition by Assembly Trap of Intracellular Membranes (IM-LARIAT). Methods Mol Biol 2022; 2473:309-331. [PMID: 35819773 DOI: 10.1007/978-1-0716-2209-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intracellular membrane trafficking is a dynamic and complex cellular process. To study membrane trafficking with a high spatiotemporal resolution, we present an optogenetic method based on a blue-light inducible oligomerization of Rab GTPases, termed light-activated reversible inhibition by assembly trap of intracellular membranes (IM-LARIAT). In this chapter, we focus on the optical disruption of the dynamics and functions of previously studied intracellular membrane trafficking events, including transferrin recycling and growth cone regulation in relation to specific Rab GTPases. To aid general application, we provide a detailed description of transfection, imaging with a confocal microscope, and analysis of data.
Collapse
Affiliation(s)
- Bobae Hyeon
- Department of Life Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Mai Khanh Nguyen
- Abcam Fremont Technology Development Custom Solution, Fremont, CA, USA
| | - Won Do Heo
- Department of Life Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
| |
Collapse
|
38
|
Reed S, Chen W, Bergstein V, He B. Toll-Dorsal signaling regulates the spatiotemporal dynamics of yolk granule tubulation during Drosophila cleavage. Dev Biol 2022; 481:64-74. [PMID: 34627795 PMCID: PMC10835099 DOI: 10.1016/j.ydbio.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
The Toll-Dorsal signaling pathway controls dorsal-ventral (DV) patterning in early Drosophila embryos, which defines specific cell fates along the DV axis and controls morphogenetic behavior of cells during gastrulation and beyond. The extent by which DV patterning information regulates subcellular organization in pre-gastrulation embryos remains unclear. We find that during Drosophila cleavage, the late endosome marker Rab7 is increasingly recruited to the yolk granules and promotes the formation of dynamic membrane tubules. The biogenesis of yolk granule tubules is positively regulated by active Rab7 and its effector complex HOPS, but negatively regulated by the Rab7 effector retromer. The occurrence of tubules is strongly biased towards the ventral side of the embryo, which we show is controlled by the Toll-Dorsal signaling pathway. Our work provides the first evidence for the formation and regulation of yolk granule tubulation in oviparous embryos and elucidates an unexpected role of Toll-Dorsal signaling in regulating this process.
Collapse
Affiliation(s)
- Samuel Reed
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Victoria Bergstein
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
39
|
Liu Y, Wang W, Li C, Li M, Zhang C, Dong M, Wang L, Song L. CgRab1 regulates Cgcathepsin L1 expression and participates in the phagocytosis of haemocytes in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 120:536-546. [PMID: 34952195 DOI: 10.1016/j.fsi.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Rab protein plays an important role in a variety of cellular activities, especially the fusion process of the inner membrane during endocytosis. In the present study, a Rab1 protein (CgRab1) was identified from the Pacific oyster Crassostrea gigas. The full-length cDNA sequence of CgRab1 was of 2248 bp with an open reading frame of 618 bp, encoding a polypeptide of 205 amino acids containing a Rab domain. The deduced amino acid sequence of CgRab1 shared 94.2% and 89.3% identity with Rab1 from Pomacea canaliculata and Homo sapiens respectively. In the phylogenetic tree, CgRab1 was firstly clustered with the Rab1s from Aplysia californica and Pomacea canaliculata to form a sister group with Rab1 from invertebrates. The recombinant CgRab1 protein (rCgRab1) was able to bind GTP. The mRNA transcripts of CgRab1 were highly expressed in oyster haemocytes, and its expression level in oyster haemocytes was significantly up-regulated at 24 h after the stimulations with Vibro splendidus, which was 2.43-fold (p < 0.01) of that in the control group. After the expression of CgRab1 was knocked down (0.38-fold of that in EGFP-RNAi experimental group) by RNAi,the protein expression of Cgcathepsin L1 were reduced (0.63-fold, p < 0.01) compared with that in EGFP-RNAi experimental group. The phagocytic rate and phagocytic index of haemocytes in CgRab1-RNAi oysters decreased after V. splendidus stimulation, which was 0.50-fold (p < 0.01) and 0.58-fold (p < 0.01) of that in EGFP-RNAi experimental group. These results indicated that CgRab1 was involved in the process of haemocytes phagocytosis by regulating the expression of Cgcathepsin L1 in oyster C. gigas.
Collapse
Affiliation(s)
- Yu Liu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
40
|
Dziedziech A, Theopold U. Proto-pyroptosis: An Ancestral Origin for Mammalian Inflammatory Cell Death Mechanism in Drosophila melanogaster. J Mol Biol 2021; 434:167333. [PMID: 34756921 DOI: 10.1016/j.jmb.2021.167333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis has been described in mammalian systems to be a form of programmed cell death that is important in immune function through the subsequent release of cytokines and immune effectors upon cell bursting. This form of cell death has been increasingly well-characterized in mammals and can occur using alternative routes however, across phyla, there has been little evidence for the existence of pyroptosis. Here we provide evidence for an ancient origin of pyroptosis in an in vivo immune scenario in Drosophila melanogaster. Crystal cells, a type of insect blood cell, were recruited to wounds and ruptured subsequently releasing their cytosolic content in a caspase-dependent manner. This inflammatory-based programmed cell death mechanism fits the features of pyroptosis, never before described in an in vivo immune scenario in insects and relies on ancient apoptotic machinery to induce proto-pyroptosis. Further, we unveil key players upstream in the activation of cell death in these cells including the apoptosome which may play an alternative role akin to the inflammasome in proto-pyroptosis. Thus, Drosophila may be a suitable model for studying the functional significance of pyroptosis in the innate immune system.
Collapse
Affiliation(s)
- A Dziedziech
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 10691 Stockholm, Sweden.
| | - U Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
41
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
42
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
43
|
Duan X, Xu L, Li Y, Jia L, Liu W, Shao W, Bayat V, Shang W, Wang L, Liu JP, Tong C. Regulation of lipid homeostasis by the TBC protein dTBC1D22 via modulation of the small GTPase Rab40 to facilitate lipophagy. Cell Rep 2021; 36:109541. [PMID: 34469730 DOI: 10.1016/j.celrep.2021.109541] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/11/2021] [Accepted: 07/24/2021] [Indexed: 12/01/2022] Open
Abstract
The regulation of lipid homeostasis is not well understood. Using forward genetic screening, we demonstrate that the loss of dTBC1D22, an essential gene that encodes a Tre2-Bub2-Cdc16 (TBC) domain-containing protein, results in lipid droplet accumulation in multiple tissues. We observe that dTBC1D22 interacts with Rab40 and exhibits GTPase activating protein (GAP) activity. Overexpression of either the GTP- or GDP-binding-mimic form of Rab40 results in lipid droplet accumulation. We observe that Rab40 mutant flies are defective in lipid mobilization. The lipid depletion induced by overexpression of Brummer, a triglyceride lipase, is dependent on Rab40. Rab40 mutant flies exhibit decreased lipophagy and small size of autolysosomal structures, which may be due to the defective Golgi functions. Finally, we demonstrate that Rab40 physically interacts with Lamp1, and Rab40 is required for the distribution of Lamp1 during starvation. We propose that dTBC1D22 functions as a GAP for Rab40 to regulate lipophagy.
Collapse
Affiliation(s)
- Xiuying Duan
- The Second Affiliated Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingna Xu
- The Second Affiliated Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yawen Li
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lijun Jia
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Liu
- The Second Affiliated Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenxia Shao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liquan Wang
- The Second Affiliated Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Tong
- The Second Affiliated Hospital, Life Sciences Institute and School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
44
|
Li X, Fetter R, Schwabe T, Jung C, Liu L, Steller H, Gaul U. The cAMP effector PKA mediates Moody GPCR signaling in Drosophila blood-brain barrier formation and maturation. eLife 2021; 10:68275. [PMID: 34382936 PMCID: PMC8390003 DOI: 10.7554/elife.68275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) of Drosophila comprises a thin epithelial layer of subperineural glia (SPG), which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions (SJs). Previously, we identified a novel Gi/Go protein-coupled receptor (GPCR), Moody, as a key factor in BBB formation at the embryonic stage. However, the molecular and cellular mechanisms of Moody signaling in BBB formation and maturation remain unclear. Here, we identify cAMP-dependent protein kinase A (PKA) as a crucial antagonistic Moody effector that is required for the formation, as well as for the continued SPG growth and BBB maintenance in the larva and adult stage. We show that PKA is enriched at the basal side of the SPG cell and that this polarized activity of the Moody/PKA pathway finely tunes the enormous cell growth and BBB integrity. Moody/PKA signaling precisely regulates the actomyosin contractility, vesicle trafficking, and the proper SJ organization in a highly coordinated spatiotemporal manner. These effects are mediated in part by PKA's molecular targets MLCK and Rho1. Moreover, 3D reconstruction of SJ ultrastructure demonstrates that the continuity of individual SJ segments, and not their total length, is crucial for generating a proper paracellular seal. Based on these findings, we propose that polarized Moody/PKA signaling plays a central role in controlling the cell growth and maintaining BBB integrity during the continuous morphogenesis of the SPG secondary epithelium, which is critical to maintain tissue size and brain homeostasis during organogenesis.
Collapse
Affiliation(s)
- Xiaoling Li
- Tianjin Cancer Hospital Airport Hospital, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany.,Rockefeller University, New York, United States
| | - Richard Fetter
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Tina Schwabe
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
| | - Christophe Jung
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany.,Rockefeller University, New York, United States
| |
Collapse
|
45
|
Neuman SD, Lee AR, Selegue JE, Cavanagh AT, Bashirullah A. A novel function for Rab1 and Rab11 during secretory granule maturation. J Cell Sci 2021; 134:jcs259037. [PMID: 34342349 PMCID: PMC8353522 DOI: 10.1242/jcs.259037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Regulated exocytosis is an essential process whereby specific cargo proteins are secreted in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi network (TGN); after budding from the TGN, granules undergo modifications, including an increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here, we leverage the Drosophila larval salivary glands as a model to characterize a novel role for Rab GTPases during granule maturation. We find that secretory granules increase in size ∼300-fold between biogenesis and release, and loss of Rab1 or Rab11 reduces granule size. Surprisingly, we find that Rab1 and Rab11 localize to secretory granule membranes. Rab11 associates with granule membranes throughout maturation, and Rab11 recruits Rab1. In turn, Rab1 associates specifically with immature granules and drives granule growth. In addition to roles in granule growth, both Rab1 and Rab11 appear to have additional functions during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new role for Rab GTPases in secretory granule maturation.
Collapse
Affiliation(s)
| | | | | | | | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| |
Collapse
|
46
|
Nalamalapu RR, Yue M, Stone AR, Murphy S, Saha MS. The tweety Gene Family: From Embryo to Disease. Front Mol Neurosci 2021; 14:672511. [PMID: 34262434 PMCID: PMC8273234 DOI: 10.3389/fnmol.2021.672511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members—ttyh1, ttyh2, and ttyh3—that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.
Collapse
Affiliation(s)
- Rithvik R Nalamalapu
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Michelle Yue
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Aaron R Stone
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Samantha Murphy
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
47
|
Mysh M, Poulton JS. The Basolateral Polarity Module Promotes Slit Diaphragm Formation in Drosophila Nephrocytes, a Model of Vertebrate Podocytes. J Am Soc Nephrol 2021; 32:1409-1424. [PMID: 33795424 PMCID: PMC8259641 DOI: 10.1681/asn.2020071050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte slit diaphragms (SDs) are intercellular junctions that function as size-selective filters, excluding most proteins from urine. Abnormalities in SDs cause proteinuria and nephrotic syndrome. Podocytes exhibit apicobasal polarity, which can affect fundamental aspects of cell biology, including morphology, intercellular junction formation, and asymmetric protein distribution along the plasma membrane. Apical polarity protein mutations cause nephrotic syndrome, and data suggest apical polarity proteins regulate SD formation. However, there is no evidence that basolateral polarity proteins regulate SDs. Thus, the role of apicobasal polarity in podocytes remains unclear. METHODS Genetic manipulations and transgenic reporters determined the effects of disrupting apicobasal polarity proteins in Drosophila nephrocytes, which have SDs similar to those of mammalian podocytes. Confocal and electron microscopy were used to characterize SD integrity after loss of basolateral polarity proteins, and genetic-interaction studies illuminated relationships among apicobasal polarity proteins. RESULTS The study identified four novel regulators of nephrocyte SDs: Dlg, Lgl, Scrib, and Par-1. These proteins comprise the basolateral polarity module and its effector kinase. The data suggest these proteins work together, with apical polarity proteins, to regulate SDs by promoting normal endocytosis and trafficking of SD proteins. CONCLUSIONS Given the recognized importance of apical polarity proteins and SD protein trafficking in podocytopathies, the findings connecting basolateral polarity proteins to these processes significantly advance our understanding of SD regulation.
Collapse
Affiliation(s)
- Michael Mysh
- Department of Biology, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John S. Poulton
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
48
|
A parasitoid wasp of Drosophila employs preemptive and reactive strategies to deplete its host's blood cells. PLoS Pathog 2021; 17:e1009615. [PMID: 34048506 PMCID: PMC8191917 DOI: 10.1371/journal.ppat.1009615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/10/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
The wasps Leptopilina heterotoma parasitize and ingest their Drosophila hosts. They produce extracellular vesicles (EVs) in the venom that are packed with proteins, some of which perform immune suppressive functions. EV interactions with blood cells of host larvae are linked to hematopoietic depletion, immune suppression, and parasite success. But how EVs disperse within the host, enter and kill hematopoietic cells is not well understood. Using an antibody marker for L. heterotoma EVs, we show that these parasite-derived structures are readily distributed within the hosts’ hemolymphatic system. EVs converge around the tightly clustered cells of the posterior signaling center (PSC) of the larval lymph gland, a small hematopoietic organ in Drosophila. The PSC serves as a source of developmental signals in naïve animals. In wasp-infected animals, the PSC directs the differentiation of lymph gland progenitors into lamellocytes. These lamellocytes are needed to encapsulate the wasp egg and block parasite development. We found that L. heterotoma infection disassembles the PSC and PSC cells disperse into the disintegrating lymph gland lobes. Genetically manipulated PSC-less lymph glands remain non-responsive and largely intact in the face of L. heterotoma infection. We also show that the larval lymph gland progenitors use the endocytic machinery to internalize EVs. Once inside, L. heterotoma EVs damage the Rab7- and LAMP-positive late endocytic and phagolysosomal compartments. Rab5 maintains hematopoietic and immune quiescence as Rab5 knockdown results in hematopoietic over-proliferation and ectopic lamellocyte differentiation. Thus, both aspects of anti-parasite immunity, i.e., (a) phagocytosis of the wasp’s immune-suppressive EVs, and (b) progenitor differentiation for wasp egg encapsulation reside in the lymph gland. These results help explain why the lymph gland is specifically and precisely targeted for destruction. The parasite’s simultaneous and multipronged approach to block cellular immunity not only eliminates blood cells, but also tactically blocks the genetic programming needed for supplementary hematopoietic differentiation necessary for host success. In addition to its known functions in hematopoiesis, our results highlight a previously unrecognized phagocytic role of the lymph gland in cellular immunity. EV-mediated virulence strategies described for L. heterotoma are likely to be shared by other parasitoid wasps; their understanding can improve the design and development of novel therapeutics and biopesticides as well as help protect biodiversity. Parasitoid wasps serve as biological control agents of agricultural insect pests and are worthy of study. Many parasitic wasps develop inside their hosts to emerge as free-living adults. To overcome the resistance of their hosts, parasitic wasps use varied and ingenious strategies such as mimicry, evasion, bioactive venom, virus-like particles, viruses, and extracellular vesicles (EVs). We describe the effects of a unique class of EVs containing virulence proteins and produced in the venom of wasps that parasitize fruit flies of Drosophila species. EVs from Leptopilina heterotoma are widely distributed throughout the Drosophila hosts’ circulatory system after infection. They enter and kill macrophages by destroying the very same subcellular machinery that facilitates their uptake. An important protein in this process, Rab5, is needed to maintain the identity of the macrophage; when Rab5 function is reduced, macrophages turn into a different cell type called lamellocytes. Activities in the EVs can eliminate lamellocytes as well. EVs also interfere with the hosts’ genetic program that promotes lamellocyte differentiation needed to block parasite development. Thus, wasps combine specific preemptive and reactive strategies to deplete their hosts of the very cells that would otherwise sequester and kill them. These findings have applied value in agricultural pest control and medical therapeutics.
Collapse
|
49
|
Walsh RB, Dresselhaus EC, Becalska AN, Zunitch MJ, Blanchette CR, Scalera AL, Lemos T, Lee SM, Apiki J, Wang S, Isaac B, Yeh A, Koles K, Rodal AA. Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals. J Cell Biol 2021; 220:212178. [PMID: 34019080 PMCID: PMC8144913 DOI: 10.1083/jcb.202012034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer's disease, and suggest that misregulated EV traffic may be an underlying defect.
Collapse
Affiliation(s)
- Rylie B Walsh
- Department of Biology, Brandeis University, Waltham, MA
| | | | | | | | | | - Amy L Scalera
- Department of Biology, Brandeis University, Waltham, MA
| | - Tania Lemos
- Department of Biology, Brandeis University, Waltham, MA
| | - So Min Lee
- Department of Biology, Brandeis University, Waltham, MA
| | - Julia Apiki
- Department of Biology, Brandeis University, Waltham, MA
| | - ShiYu Wang
- Department of Biology, Brandeis University, Waltham, MA
| | - Berith Isaac
- Department of Biology, Brandeis University, Waltham, MA
| | - Anna Yeh
- Department of Biology, Brandeis University, Waltham, MA
| | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | | |
Collapse
|
50
|
Koss DJ, Campesan S, Giorgini F, Outeiro TF. Dysfunction of RAB39B-Mediated Vesicular Trafficking in Lewy Body Diseases. Mov Disord 2021; 36:1744-1758. [PMID: 33939203 DOI: 10.1002/mds.28605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Intracellular vesicular trafficking is essential for neuronal development, function, and homeostasis and serves to process, direct, and sort proteins, lipids, and other cargo throughout the cell. This intricate system of membrane trafficking between different compartments is tightly orchestrated by Ras analog in brain (RAB) GTPases and their effectors. Of the 66 members of the RAB family in humans, many have been implicated in neurodegenerative diseases and impairment of their functions contributes to cellular stress, protein aggregation, and death. Critically, RAB39B loss-of-function mutations are known to be associated with X-linked intellectual disability and with rare early-onset Parkinson's disease. Moreover, recent studies have highlighted altered RAB39B expression in idiopathic cases of several Lewy body diseases (LBDs). This review contextualizes the role of RAB proteins in LBDs and highlights the consequences of RAB39B impairment in terms of endosomal trafficking, neurite outgrowth, synaptic maturation, autophagy, as well as alpha-synuclein homeostasis. Additionally, the potential for therapeutic intervention is examined via a discussion of the recent progress towards the development of specific RAB modulators. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Scientific employee with a honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|