1
|
Cheng L, Wang N, Bao Z, Zhou Q, Guarracino A, Yang Y, Wang P, Zhang Z, Tang D, Zhang P, Wu Y, Zhou Y, Zheng Y, Hu Y, Lian Q, Ma Z, Lassois L, Zhang C, Lucas WJ, Garrison E, Stein N, Städler T, Zhou Y, Huang S. Leveraging a phased pangenome for haplotype design of hybrid potato. Nature 2025; 640:408-417. [PMID: 39843749 PMCID: PMC11981936 DOI: 10.1038/s41586-024-08476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
The tetraploid genome and clonal propagation of the cultivated potato (Solanum tuberosum L.)1,2 dictate a slow, non-accumulative breeding mode of the most important tuber crop. Transitioning potato breeding to a seed-propagated hybrid system based on diploid inbred lines has the potential to greatly accelerate its improvement3. Crucially, the development of inbred lines is impeded by manifold deleterious variants; explaining their nature and finding ways to eliminate them is the current focus of hybrid potato research4-10. However, most published diploid potato genomes are unphased, concealing crucial information on haplotype diversity and heterozygosity11-13. Here we develop a phased potato pangenome graph of 60 haplotypes from cultivated diploids and the ancestral wild species, and find evidence for the prevalence of transposable elements in generating structural variants. Compared with the linear reference, the graph pangenome represents a broader diversity (3,076 Mb versus 742 Mb). Notably, we observe enhanced heterozygosity in cultivated diploids compared with wild ones (14.0% versus 9.5%), indicating extensive hybridization during potato domestication. Using conservative criteria, we identify 19,625 putatively deleterious structural variants (dSVs) and reveal a biased accumulation of deleterious single nucleotide polymorphisms (dSNPs) around dSVs in coupling phase. Based on the graph pangenome, we computationally design ideal potato haplotypes with minimal dSNPs and dSVs. These advances provide critical insights into the genomic basis of clonal propagation and will guide breeders to develop a suite of promising inbred lines.
Collapse
Affiliation(s)
- Lin Cheng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Nan Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhigui Bao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Qian Zhou
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, China
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yuting Yang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Pei Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiyang Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dié Tang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Pingxian Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yaoyao Wu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yao Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zheng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yong Hu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qun Lian
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhaoxu Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ludivine Lassois
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chunzhi Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Städler
- Institute of Integrative Biology and Zurich-Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
2
|
Huang Y, Gao ZY, Ly K, Lin L, Lambooij JP, King EG, Janssen A, Wei KHC, Lee YCG. Polymorphic transposable elements contribute to variation in recombination landscapes. Proc Natl Acad Sci U S A 2025; 122:e2427312122. [PMID: 40100633 PMCID: PMC11962413 DOI: 10.1073/pnas.2427312122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
Meiotic recombination is a prominent force shaping genome evolution, and understanding why recombination rates vary within and between species has remained a central, though challenging, question. Variation in recombination is widely thought to influence the efficacy of selection in purging transposable elements (TEs), prevalent selfish genetic elements, leading to widely observed negative correlations between TE abundance and recombination rates across taxa. However, accumulating evidence suggests that TEs could instead be the cause rather than the consequence of this relationship. To test this prediction, we formally investigated the influence of polymorphic, putatively active TEs on recombination rates. We developed and benchmarked an approach that uses PacBio long-read sequencing to efficiently, accurately, and cost-effectively identify crossovers (COs), a key recombination product, among large numbers of pooled recombinant individuals. By applying this approach to Drosophila strains with distinct TE insertion profiles, we found that polymorphic TEs, especially RNA-based TEs and TEs with local enrichment of repressive marks, reduce the occurrence of COs. Such an effect leads to different CO frequencies between homologous sequences with and without TEs, contributing to varying CO maps between individuals. The suppressive effect of TEs on CO is further supported by two orthogonal approaches-analyzing the distributions of COs in panels of recombinant inbred lines in relation to TE polymorphism and applying marker-assisted estimations of CO frequencies to isogenic strains with and without transgenically inserted TEs. Our investigations reveal how the constantly changing TE landscape can actively modify recombination, shaping genome evolution within and between species.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Zita Y. Gao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Kayla Ly
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Leila Lin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Jan-Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht3584 CG, The Netherlands
| | - Elizabeth G. King
- Division of Biological Sciences, University of Missouri, Columbia, MO65211
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht3584 CG, The Netherlands
| | - Kevin H.-C. Wei
- Department of Zoology, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| |
Collapse
|
3
|
Malinsky M, Talbi M, Zhou C, Maurer N, Sacco S, Shapiro B, Peichel CL, Seehausen O, Salzburger W, Weber JN, Bolnick DI, Green RE, Durbin R. Hi-reComb: constructing recombination maps from bulk gamete Hi-C sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641907. [PMID: 40161681 PMCID: PMC11952307 DOI: 10.1101/2025.03.06.641907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Recombination is central to genetics and to evolution of sexually reproducing organisms. However, obtaining accurate estimates of recombination rates, and of how they vary along chromosomes, continues to be challenging. To advance our ability to estimate recombination rates, we present Hi-reComb, a new method and software for estimation of recombination maps from bulk gamete chromosome conformation capture sequencing (Hi-C). Simulations show that Hi-reComb produces robust, accurate recombination landscapes. With empirical data from sperm of five fish species we show the advantages of this approach, including joint assessment of recombination maps and large structural variants, map comparisons using bootstrap, and workflows with trio phasing vs. Hi-C phasing. With off-the-shelf library construction and a straightforward rapid workflow, our approach will facilitate routine recombination landscape estimation for a broad range of studies and model organisms in genetics and evolutionary biology. Hi-reComb is open-source and freely available at https://github.com/millanek/Hi-reComb.
Collapse
Affiliation(s)
- Milan Malinsky
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Marion Talbi
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Chenxi Zhou
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Nicholas Maurer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Samuel Sacco
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Jesse N. Weber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
4
|
Stuart KC, Tan HZ, Whibley A, Bailey S, Brekke P, Ewen JG, Patel S, Santure AW. Both Structural Variant and Single Nucleotide Polymorphism Load Impact Lifetime Fitness in a Threatened Bird Species. Mol Ecol 2024:e17631. [PMID: 39690519 DOI: 10.1111/mec.17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
The field of conservation genomics is becoming increasingly interested in whether, and how, structural variant (SV) genotype information can be leveraged in the management of threatened species. The functional consequences of SVs are more complex than for single nucleotide polymorphisms (SNPs), as SVs typically impact a larger proportion of the genome due to their size and thus may be more likely to contribute to load. While the impacts of SV-specific genetic load may be less consequential for large populations, the interplay between weakened selection and stochastic processes means that smaller populations, such as those of the threatened Aotearoa hihi/New Zealand stitchbird (Notiomystis cincta), may harbour a high SV load. Hihi were once confined to a single remnant population, but have been reestablished into six sanctuaries and reserves, often via secondary bottlenecks, resulting in low genetic diversity, low adaptive potential, and inbreeding depression. In this study, we use whole genome resequencing of 30 individuals from the Tiritiri Matangi population to identify the nature and distribution of both SNPs and SVs within this small avian population. We find that SNP and SV individual mutation load is only moderately correlated, likely because SVs arise in regions of high recombination and that are less evolutionarily conserved. Finally, we leverage a long-term monitoring dataset of pedigree and fitness data to assess the impact of SNP and SV mutation loads on individual fitness, and find that SNP and SV realised load had similar negative correlations with lifetime fitness. However, of the masked load metrics, only SVs had a positive significant correlation with lifetime fitness, indicating that masking of deleterious alleles may be more important for SVs than for SNPs. The results of this study indicate that only examining SNPs neglects important aspects of intra-specific variation and that studying SVs has direct implications for linking genetic diversity and genomic health to inform management decisions.
Collapse
Affiliation(s)
- Katarina C Stuart
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
- University of new South Wales, Sydney, New South Wales, Australia
| | - Hui Zhen Tan
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Annabel Whibley
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
- Bragato Research Institute, Blenheim, Aotearoa, New Zealand
| | - Sarah Bailey
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, London, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, London, UK
| | - Selina Patel
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Anna W Santure
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| |
Collapse
|
5
|
Wiese CB, Soliman B, Reue K. The Four Core Genotypes mouse model: evaluating the impact of a recently discovered translocation. Biol Sex Differ 2024; 15:90. [PMID: 39482704 PMCID: PMC11529163 DOI: 10.1186/s13293-024-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
The Four Core Genotypes (FCG) mouse model has become a valuable model to study the mechanistic basis for biological sex differences. This model allows discrimination between influences of gonadal sex (ovaries or testes) from those associated with genetic sex (presence of XX or XY chromosome complement). FCG mice have illuminated distinct effects of gonadal and chromosomal sex on traits ranging from brain structure and behavior to vulnerability to obesity, atherosclerosis, multiple sclerosis, Alzheimer's and other diseases. A recent study determined that the YSry- chromosome used in a specific line of C57BL/6J FCG mice harbors nine genes that have been duplicated from the X chromosome. This report raised concern that scores of publications that previously used the FCG model may therefore be flawed, but did not provide details regarding how studies can be evaluated for potential impact (or lack of impact) of the translocation. Here we (1) provide a practical description of the genetic translocation for researchers using the FCG model, (2) document that a majority of the studies cited in the recent report are unlikely to be affected by the translocation, (3) provide a scheme for interpreting data from studies with FCG mice harboring the YSry- translocation, and (4) delineate expression levels of the nine translocated genes across tissue/cell types as a filter for evaluating their potential involvement in specific phenotypes.
Collapse
Affiliation(s)
- Carrie B Wiese
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Barbara Soliman
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Huang Y, Gao Y, Ly K, Lin L, Lambooij JP, King EG, Janssen A, Wei KHC, Lee YCG. Varying recombination landscapes between individuals are driven by polymorphic transposable elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613564. [PMID: 39345575 PMCID: PMC11429682 DOI: 10.1101/2024.09.17.613564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Meiotic recombination is a prominent force shaping genome evolution, and understanding the causes for varying recombination landscapes within and between species has remained a central, though challenging, question. Recombination rates are widely observed to negatively associate with the abundance of transposable elements (TEs), selfish genetic elements that move between genomic locations. While such associations are usually interpreted as recombination influencing the efficacy of selection at removing TEs, accumulating findings suggest that TEs could instead be the cause rather than the consequence. To test this prediction, we formally investigated the influence of polymorphic, putatively active TEs on recombination rates. We developed and benchmarked a novel approach that uses PacBio long-read sequencing to efficiently, accurately, and cost-effectively identify crossovers (COs), a key recombination product, among large numbers of pooled recombinant individuals. By applying this approach to Drosophila strains with distinct TE insertion profiles, we found that polymorphic TEs, especially RNA-based TEs and TEs with local enrichment of repressive marks, reduce the occurrence of COs. Such an effect leads to different CO frequencies between homologous sequences with and without TEs, contributing to varying CO maps between individuals. The suppressive effect of TEs on CO is further supported by two orthogonal approaches-analyzing the distributions of COs in panels of recombinant inbred lines in relation to TE polymorphism and applying marker-assisted estimations of CO frequencies to isogenic strains with and without transgenically inserted TEs. Our investigations reveal how the constantly changing mobilome can actively modify recombination landscapes, shaping genome evolution within and between species.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Yi Gao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Kayla Ly
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Leila Lin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Jan Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands
| | | | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands
| | - Kevin H.-C. Wei
- Department of Zoology, University of British Columbia, Canada
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
7
|
Johnston SE. Understanding the Genetic Basis of Variation in Meiotic Recombination: Past, Present, and Future. Mol Biol Evol 2024; 41:msae112. [PMID: 38959451 PMCID: PMC11221659 DOI: 10.1093/molbev/msae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Meiotic recombination is a fundamental feature of sexually reproducing species. It is often required for proper chromosome segregation and plays important role in adaptation and the maintenance of genetic diversity. The molecular mechanisms of recombination are remarkably conserved across eukaryotes, yet meiotic genes and proteins show substantial variation in their sequence and function, even between closely related species. Furthermore, the rate and distribution of recombination shows a huge diversity within and between chromosomes, individuals, sexes, populations, and species. This variation has implications for many molecular and evolutionary processes, yet how and why this diversity has evolved is not well understood. A key step in understanding trait evolution is to determine its genetic basis-that is, the number, effect sizes, and distribution of loci underpinning variation. In this perspective, I discuss past and current knowledge on the genetic basis of variation in recombination rate and distribution, explore its evolutionary implications, and present open questions for future research.
Collapse
Affiliation(s)
- Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
8
|
Fu L, Gu C, Mochizuki K, Xiong J, Miao W, Wang G. The genome-wide meiotic recombination landscape in ciliates and its implications for crossover regulation and genome evolution. J Genet Genomics 2024; 51:302-312. [PMID: 37797835 DOI: 10.1016/j.jgg.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Meiotic recombination is essential for sexual reproduction and its regulation has been extensively studied in many taxa. However, genome-wide recombination landscape has not been reported in ciliates and it remains unknown how it is affected by the unique features of ciliates: the synaptonemal complex (SC)-independent meiosis and the nuclear dimorphism. Here, we show the recombination landscape in the model ciliate Tetrahymena thermophila by analyzing single-nucleotide polymorphism datasets from 38 hybrid progeny. We detect 1021 crossover (CO) events (35.8 per meiosis), corresponding to an overall CO rate of 9.9 cM/Mb. However, gene conversion by non-crossover is rare (1.03 per meiosis) and not biased towards G or C alleles. Consistent with the reported roles of SC in CO interference, we find no obvious sign of CO interference. CO tends to occur within germ-soma common genomic regions and many of the 44 identified CO hotspots localize at the centromeric or subtelomeric regions. Gene ontology analyses show that CO hotspots are strongly associated with genes responding to environmental changes. We discuss these results with respect to how nuclear dimorphism has potentially driven the formation of the observed recombination landscape to facilitate environmental adaptation and the sharing of machinery among meiotic and somatic recombination.
Collapse
Affiliation(s)
- Lu Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Gu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, 34396 Montpellier, France
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China.
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
9
|
Liu X, Matsunami M, Horikoshi M, Ito S, Ishikawa Y, Suzuki K, Momozawa Y, Niida S, Kimura R, Ozaki K, Maeda S, Imamura M, Terao C. Natural Selection Signatures in the Hondo and Ryukyu Japanese Subpopulations. Mol Biol Evol 2023; 40:msad231. [PMID: 37903429 PMCID: PMC10615566 DOI: 10.1093/molbev/msad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
Natural selection signatures across Japanese subpopulations are under-explored. Here we conducted genome-wide selection scans with 622,926 single nucleotide polymorphisms for 20,366 Japanese individuals, who were recruited from the main-islands of Japanese Archipelago (Hondo) and the Ryukyu Archipelago (Ryukyu), representing two major Japanese subpopulations. The integrated haplotype score (iHS) analysis identified several signals in one or both subpopulations. We found a novel candidate locus at IKZF2, especially in Ryukyu. Significant signals were observed in the major histocompatibility complex region in both subpopulations. The lead variants differed and demonstrated substantial allele frequency differences between Hondo and Ryukyu. The lead variant in Hondo tags HLA-A*33:03-C*14:03-B*44:03-DRB1*13:02-DQB1*06:04-DPB1*04:01, a haplotype specific to Japanese and Korean. While in Ryukyu, the lead variant tags DRB1*15:01-DQB1*06:02, which had been recognized as a genetic risk factor for narcolepsy. In contrast, it is reported to confer protective effects against type 1 diabetes and human T lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. The FastSMC analysis identified 8 loci potentially affected by selection within the past 20-150 generations, including 2 novel candidate loci. The analysis also showed differences in selection patterns of ALDH2 between Hondo and Ryukyu, a gene recognized to be specifically targeted by selection in East Asian. In summary, our study provided insights into the selection signatures within the Japanese and nominated potential sources of selection pressure.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shuji Ito
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kunihiko Suzuki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
10
|
Zakoh K, Fujiwara K, Takada T, Osada N, Suzuki H. Genealogical characterization of regional populations and dorsal coat color variation in the house mouse Mus musculus from Asia based on haplotype structure analysis of a gene-rich region harboring Mc1r. Genes Genet Syst 2023; 98:73-87. [PMID: 37558462 DOI: 10.1266/ggs.22-00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
We analyzed 196 haplotype sequences from a gene-rich region (250 kb) that includes Mc1r, a gene involved in coat color regulation, to gain insight into the evolution of coat color variation in subspecies of the house mouse Mus musculus. Phylogenetic networks revealed haplotype groups from the major subspecies of M. m. castaneus (CAS), M. m. domesticus (DOM), and M. m. musculus (MUS). Using haplotype sequences assigned to each of CAS and MUS through phylogenetic analysis, we proposed migration routes associated with prehistoric humans from west to east across Eurasia. Comparing nucleotide diversity among subspecies-specific haplotypes in different geographic areas showed a marked reduction during migration, particularly in MUS-derived haplotypes from Korea and Japan, suggesting intensive population bottlenecks during migration. We found that a C>T polymorphism at site 302 (c.302C>T) in the Mc1r coding region correlated with a darkening of dorsal fur color in both CAS and MUS. However, C/C homozygous mice in MUS showed marked variation in lightness, indicating the possibility of another genetic determinant that affects the lightness of dorsal fur color. Detailed sequence comparisons of haplotypes revealed that short fragments assigned to DOM were embedded in CAS-assigned fragments, indicating ancient introgression between subspecies. The estimated age of c.302C>T also supports the hypothesis that genetic interaction between subspecies occurred in ancient times. This suggests that the genome of M. musculus evolved through gene flow between subspecies over an extended period before the movement of the species in conjunction with prehistoric humans.
Collapse
Affiliation(s)
- Kazuhiro Zakoh
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University
| | - Kazumichi Fujiwara
- Graduate School of Information Science and Technology, Hokkaido University
| | - Toyoyuki Takada
- Integrated Bioresource Information Division, RIKEN BioResource Research Center
| | - Naoki Osada
- Graduate School of Information Science and Technology, Hokkaido University
| | - Hitoshi Suzuki
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University
| |
Collapse
|
11
|
Thomas GWC, Hughes JJ, Kumon T, Berv JS, Nordgren CE, Lampson M, Levine M, Searle JB, Good JM. The genomic landscape, causes, and consequences of extensive phylogenomic discordance in Old World mice and rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555178. [PMID: 37693498 PMCID: PMC10491188 DOI: 10.1101/2023.08.28.555178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
A species tree is a central concept in evolutionary biology whereby a single branching phylogeny reflects relationships among species. However, the phylogenies of different genomic regions often differ from the species tree. Although tree discordance is often widespread in phylogenomic studies, we still lack a clear understanding of how variation in phylogenetic patterns is shaped by genome biology or the extent to which discordance may compromise comparative studies. We characterized patterns of phylogenomic discordance across the murine rodents (Old World mice and rats) - a large and ecologically diverse group that gave rise to the mouse and rat model systems. Combining new linked-read genome assemblies for seven murine species with eleven published rodent genomes, we first used ultra-conserved elements (UCEs) to infer a robust species tree. We then used whole genomes to examine finer-scale patterns of discordance and found that phylogenies built from proximate chromosomal regions had similar phylogenies. However, there was no relationship between tree similarity and local recombination rates in house mice, suggesting that genetic linkage influences phylogenetic patterns over deeper timescales. This signal may be independent of contemporary recombination landscapes. We also detected a strong influence of linked selection whereby purifying selection at UCEs led to less discordance, while genes experiencing positive selection showed more discordant and variable phylogenetic signals. Finally, we show that assuming a single species tree can result in high error rates when testing for positive selection under different models. Collectively, our results highlight the complex relationship between phylogenetic inference and genome biology and underscore how failure to account for this complexity can mislead comparative genomic studies.
Collapse
Affiliation(s)
- Gregg W. C. Thomas
- Division of Biological Sciences, University of Montana, Missoula, MT, 59801
- Informatics Group, Harvard University, Cambridge, MA, 02138
| | - Jonathan J. Hughes
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, 92521
| | - Tomohiro Kumon
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Jacob S. Berv
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109
| | - C. Erik Nordgren
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Mia Levine
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59801
| |
Collapse
|
12
|
Adel S, Carels N. Plant Tolerance to Drought Stress with Emphasis on Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112170. [PMID: 37299149 DOI: 10.3390/plants12112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023]
Abstract
Environmental stresses, such as drought, have negative effects on crop yield. Drought is a stress whose impact tends to increase in some critical regions. However, the worldwide population is continuously increasing and climate change may affect its food supply in the upcoming years. Therefore, there is an ongoing effort to understand the molecular processes that may contribute to improving drought tolerance of strategic crops. These investigations should contribute to delivering drought-tolerant cultivars by selective breeding. For this reason, it is worthwhile to review regularly the literature concerning the molecular mechanisms and technologies that could facilitate gene pyramiding for drought tolerance. This review summarizes achievements obtained using QTL mapping, genomics, synteny, epigenetics, and transgenics for the selective breeding of drought-tolerant wheat cultivars. Synthetic apomixis combined with the msh1 mutation opens the way to induce and stabilize epigenomes in crops, which offers the potential of accelerating selective breeding for drought tolerance in arid and semi-arid regions.
Collapse
Affiliation(s)
- Sarah Adel
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development for Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-361, Brazil
| |
Collapse
|
13
|
Cornes BK, Paisie C, Swanzey E, Fields PD, Schile A, Brackett K, Reinholdt LG, Srivastava A. Protein coding variation in the J:ARC and J:DO outbred laboratory mouse stocks provides a molecular basis for distinct research applications. G3 (BETHESDA, MD.) 2023; 13:jkad015. [PMID: 36649207 PMCID: PMC10085793 DOI: 10.1093/g3journal/jkad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Outbred laboratory mice (Mus musculus) are readily available and have high fecundity, making them a popular choice in biomedical research, especially toxicological and pharmacological applications. Direct high throughput genome sequencing (HTS) of these widely used research animals is an important genetic quality control measure that enhances research reproducibility. HTS data have been used to confirm the common origin of outbred stocks and to molecularly define distinct outbred populations. But these data have also revealed unexpected population structure and homozygosity in some populations; genetic features that emerge when outbred stocks are not properly maintained. We used exome sequencing to discover and interrogate protein-coding variation in a newly established population of Swiss-derived outbred stock (J:ARC) that is closely related to other, commonly used CD-1 outbred populations. We used these data to describe the genetic architecture of the J:ARC population including heterozygosity, minor allele frequency, LD decay, and we defined novel, protein-coding sequence variation. These data reveal the expected genetic architecture for a properly maintained outbred stock and provide a basis for the on-going genetic quality control. We also compared these data to protein-coding variation found in a multiparent outbred stock, the Diversity Outbred (J:DO). We found that the more recently derived, multiparent outbred stock has significantly higher interindividual variability, greater overall genetic variation, higher heterozygosity, and fewer novel variants than the Swiss-derived J:ARC stock. However, among the novel variants found in the J:DO stock, significantly more are predicted to be protein-damaging. The fact that individuals from this population can tolerate a higher load of potentially damaging variants highlights the buffering effects of allelic diversity and the differing selective pressures in these stocks. While both outbred stocks offer significant individual heterozygosity, our data provide a molecular basis for their intended applications, where the J:DO are best suited for studies requiring maximum, population-level genetic diversity and power for mapping, while the J:ARC are best suited as a general-purpose outbred stock with robust fecundity, relatively low allelic diversity, and less potential for extreme phenotypic variability.
Collapse
Affiliation(s)
- Belinda K Cornes
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Carolyn Paisie
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Emily Swanzey
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Peter D Fields
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Andrew Schile
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Kelly Brackett
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | | | - Anuj Srivastava
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| |
Collapse
|
14
|
Gribonika I, Strömberg A, Lebrero-Fernandez C, Schön K, Moon J, Bemark M, Lycke N. Peyer's patch T H17 cells are dispensable for gut IgA responses to oral immunization. Sci Immunol 2022; 7:eabc5500. [PMID: 35776804 DOI: 10.1126/sciimmunol.abc5500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T helper 17 (TH17) cells located at the Peyer's patch (PP) inductive site and at the lamina propria effector site of the intestinal immune system are responsive to both pathogenic and commensal bacteria. Their plasticity to convert into follicular helper T (TFH) cells has been proposed to be central to gut immunoglobulin A (IgA) responses. Here, we used an IL-17A fate reporter mouse and an MHC-II tetramer to analyze antigen-specific CD4+ T cell subsets and isolate them for single-cell RNA sequencing after oral immunization with cholera toxin and ovalbumin. We found a TFH-dominated response with only rare antigen-specific TH17 cells (<8%) in the PP. A clonotypic analysis provided little support that clonotypes were shared between TFH and TH17 cells, arguing against TH17 plasticity as a major contributor to TFH differentiation. Two mouse models of TH17 deficiency confirmed that gut IgA responses to oral immunization do not require TH17 cells, with CD4CreRorcfl/fl mice exhibiting normal germinal centers in PP and unperturbed total IgA production in the intestine.
Collapse
Affiliation(s)
- Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernandez
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - James Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Immunology and Transfusion Medicine, Gothenburg, Sweden
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Takeishi T, Fujiwara K, Osada N, Mita A, Takada T, Shiroishi T, Suzuki H. Phylogeographic study using nuclear genome sequences of <i>Asip</i> to infer the origins of ventral fur color variation in the house mouse <i>Mus musculus</i>. Genes Genet Syst 2021; 96:271-284. [DOI: 10.1266/ggs.21-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Toki Takeishi
- Laboratory of Ecology and Genetics Graduate School of Environmental Science, Hokkaido University
| | - Kazumichi Fujiwara
- Graduate School of Information Science and Technology, Hokkaido University
| | - Naoki Osada
- Graduate School of Information Science and Technology, Hokkaido University
| | | | - Toyoyuki Takada
- Integrated Bioresource Information Division, RIKEN BioResource Research Center
| | | | - Hitoshi Suzuki
- Laboratory of Ecology and Genetics Graduate School of Environmental Science, Hokkaido University
| |
Collapse
|
16
|
O’Connor TK, Sandoval MC, Wang J, Hans JC, Takenaka R, Child M, Whiteman NK. Ecological basis and genetic architecture of crypsis polymorphism in the desert clicker grasshopper (Ligurotettix coquilletti). Evolution 2021; 75:2441-2459. [PMID: 34370317 PMCID: PMC8932956 DOI: 10.1111/evo.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
Color polymorphic species can offer exceptional insight into the ecology and genetics of adaptation. Although the genetic architecture of animal coloration is diverse, many color polymorphisms are associated with large structural variants and maintained by biotic interactions. Grasshoppers are notably polymorphic in both color and karyotype, which makes them excellent models for understanding the ecological drivers and genetic underpinnings of color variation. Banded and uniform morphs of the desert clicker grasshopper (Ligurotettix coquilletti) are found across the western deserts of North America. To address the hypothesis that predation maintains local color polymorphism and shapes regional crypsis variation, we surveyed morph frequencies and tested for covariation with two predation environments. Morphs coexisted at intermediate frequencies at most sites, consistent with local balancing selection. Morph frequencies covaried with the appearance of desert substrate-an environment used only by females-suggesting that ground-foraging predators are major agents of selection on crypsis. We next addressed the hypothesized link between morph variation and genome structure. To do so, we designed an approach for detecting inversions and indels using only RADseq data. The banded morph was perfectly correlated with a large putative indel. Remarkably, indel dominance differed among populations, a rare example of dominance evolution in nature.
Collapse
Affiliation(s)
- Timothy K. O’Connor
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Current address: Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| | - Marissa C. Sandoval
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Jiarui Wang
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Jacob C. Hans
- Department of Entomology, University of California, Riverside, CA 92521
| | - Risa Takenaka
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Myron Child
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
17
|
Huang Y, Huang W, Meng Z, Braz GT, Li Y, Wang K, Wang H, Lai J, Jiang J, Dong Z, Jin W. Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biol 2021; 22:237. [PMID: 34416918 PMCID: PMC8377971 DOI: 10.1186/s13059-021-02448-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Structural variants (SVs) significantly drive genome diversity and environmental adaptation for diverse species. Unlike the prevalent small SVs (< kilobase-scale) in higher eukaryotes, large-size SVs rarely exist in the genome, but they function as one of the key evolutionary forces for speciation and adaptation. RESULTS In this study, we discover and characterize several megabase-scale presence-absence variations (PAVs) in the maize genome. Surprisingly, we identify a 3.2 Mb PAV fragment that shows high integrity and is present as complete presence or absence in the natural diversity panel. This PAV is embedded within the nucleolus organizer region (NOR), where the suppressed recombination is found to maintain the PAV against the evolutionary variation. Interestingly, by analyzing the sequence of this PAV, we not only reveal the domestication trace from teosinte to modern maize, but also the footprints of its origin from Tripsacum, shedding light on a previously unknown contribution from Tripsacum to the speciation of Zea species. The functional consequence of the Tripsacum segment migration is also investigated, and environmental fitness conferred by the PAV may explain the whole segment as a selection target during maize domestication and improvement. CONCLUSIONS These findings provide a novel perspective that Tripsacum contributes to Zea speciation, and also instantiate a strategy for evolutionary and functional analysis of the "fossil" structure variations during genome evolution and speciation.
Collapse
Affiliation(s)
- Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhuang Meng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (MOE), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guilherme Tomaz Braz
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (MOE), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China.
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Badet T, Fouché S, Hartmann FE, Zala M, Croll D. Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen. Nat Commun 2021; 12:3551. [PMID: 34112792 PMCID: PMC8192914 DOI: 10.1038/s41467-021-23862-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Species harbor extensive structural variation underpinning recent adaptive evolution. However, the causality between genomic features and the induction of new rearrangements is poorly established. Here, we analyze a global set of telomere-to-telomere genome assemblies of a fungal pathogen of wheat to establish a nucleotide-level map of structural variation. We show that the recent emergence of pesticide resistance has been disproportionally driven by rearrangements. We use machine learning to train a model on structural variation events based on 30 chromosomal sequence features. We show that base composition and gene density are the major determinants of structural variation. Retrotransposons explain most inversion, indel and duplication events. We apply our model to Arabidopsis thaliana and show that our approach extends to more complex genomes. Finally, we analyze complete genomes of haploid offspring in a four-generation pedigree. Meiotic crossover locations are enriched for new rearrangements consistent with crossovers being mutational hotspots. The model trained on species-wide structural variation accurately predicts the position of >74% of newly generated variants along the pedigree. The predictive power highlights causality between specific sequence features and the induction of chromosomal rearrangements. Our work demonstrates that training sequence-derived models can accurately identify regions of intrinsic DNA instability in eukaryotic genomes.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Simone Fouché
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Marcello Zala
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
19
|
Manching H, Wisser RJ. SPEARS: Standard Performance Evaluation of Ancestral haplotype Reconstruction through Simulation. Bioinformatics 2021; 37:868-870. [PMID: 32840564 PMCID: PMC8097754 DOI: 10.1093/bioinformatics/btaa749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/05/2020] [Accepted: 08/18/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Ancestral haplotype maps provide useful information about genomic variation and insights into biological processes. Reconstructing the descendent haplotype structure of homologous chromosomes, particularly for large numbers of individuals, can help with characterizing the recombination landscape, elucidating genotype-to-phenotype relationships, improving genomic predictions and more. Inferring haplotype maps from sparse genotype data is an efficient approach to whole-genome haplotyping, but this is a non-trivial problem. A standardized approach is needed to validate whether haplotype reconstruction software, conceived population designs and existing data for a given population provides accurate haplotype information for further inference. RESULTS We introduce SPEARS, a pipeline for the simulation-based appraisal of genome-wide haplotype maps constructed from sparse genotype data. Using a specified pedigree, the pipeline generates virtual genotypes (known data) with genotyping errors and missing data structure. It then proceeds to mimic analysis in practice, capturing sources of error due to genotyping, imputation and haplotype inference. Standard metrics allow researchers to assess different population designs and which features of haplotype structure or regions of the genome are sufficiently accurate for analysis. Haplotype maps for 1000 outcross progeny from a multi-parent population of maize are used to demonstrate SPEARS. AVAILABILITYAND IMPLEMENTATION SPEARS, the protocol and suite of scripts, are publicly available under an MIT license at GitHub (https://github.com/maizeatlas/spears). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Heather Manching
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Randall J Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
20
|
Göktay M, Fulgione A, Hancock AM. A New Catalog of Structural Variants in 1,301 A. thaliana Lines from Africa, Eurasia, and North America Reveals a Signature of Balancing Selection at Defense Response Genes. Mol Biol Evol 2021; 38:1498-1511. [PMID: 33247723 PMCID: PMC8042739 DOI: 10.1093/molbev/msaa309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variation in the model plant Arabidopsis thaliana has been extensively used to understand evolutionary processes in natural populations, mainly focusing on single-nucleotide polymorphisms. Conversely, structural variation has been largely ignored in spite of its potential to dramatically affect phenotype. Here, we identify 155,440 indels and structural variants ranging in size from 1 bp to 10 kb, including presence/absence variants (PAVs), inversions, and tandem duplications in 1,301 A. thaliana natural accessions from Morocco, Madeira, Europe, Asia, and North America. We show evidence for strong purifying selection on PAVs in genes, in particular for housekeeping genes and homeobox genes, and we find that PAVs are concentrated in defense-related genes (R-genes, secondary metabolites) and F-box genes. This implies the presence of a "core" genome underlying basic cellular processes and a "flexible" genome that includes genes that may be important in spatially or temporally varying selection. Further, we find an excess of intermediate frequency PAVs in defense response genes in nearly all populations studied, consistent with a history of balancing selection on this class of genes. Finally, we find that PAVs in genes involved in the cold requirement for flowering (vernalization) and drought response are strongly associated with temperature at the sites of origin.
Collapse
Affiliation(s)
- Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
21
|
North HL, Caminade P, Severac D, Belkhir K, Smadja CM. The role of copy-number variation in the reinforcement of sexual isolation between the two European subspecies of the house mouse. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190540. [PMID: 32654648 PMCID: PMC7423270 DOI: 10.1098/rstb.2019.0540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2020] [Indexed: 12/24/2022] Open
Abstract
Reinforcement has the potential to generate strong reproductive isolation through the evolution of barrier traits as a response to selection against maladaptive hybridization, but the genetic changes associated with this process remain largely unexplored. Building upon the increasing evidence for a role of structural variants in adaptation and speciation, we addressed the role of copy-number variation in the reinforcement of sexual isolation evidenced between the two European subspecies of the house mouse. We characterized copy-number divergence between populations of Mus musculus musculus that display assortative mate choice, and those that do not, using whole-genome resequencing data. Updating methods to detect deletions and tandem duplications (collectively: copy-number variants, CNVs) in Pool-Seq data, we developed an analytical pipeline dedicated to identifying genomic regions showing the expected pattern of copy-number displacement under a reinforcement scenario. This strategy allowed us to detect 1824 deletions and seven tandem duplications that showed extreme differences in frequency between behavioural classes across replicate comparisons. A subset of 480 deletions and four tandem duplications were specifically associated with the derived trait of assortative mate choice. These 'Choosiness-associated' CNVs occur in hundreds of genes. Consistent with our hypothesis, such genes included olfactory receptors potentially involved in the olfactory-based assortative mate choice in this system as well as one gene, Sp110, that is known to show patterns of differential expression between behavioural classes in an organ used in mate choice-the vomeronasal organ. These results demonstrate that fine-scale structural changes are common and highly variable within species, despite being under-studied, and may be important targets of reinforcing selection in this system and others. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Henry L. North
- Institut des Sciences de l'Evolution (UMR 5554 CNRS, IRD, EPHE, Université de Montpellier), Université de Montpellier, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier, France
| | - Pierre Caminade
- Institut des Sciences de l'Evolution (UMR 5554 CNRS, IRD, EPHE, Université de Montpellier), Université de Montpellier, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier, France
| | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094 Montpellier Cedex 5, France
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution (UMR 5554 CNRS, IRD, EPHE, Université de Montpellier), Université de Montpellier, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier, France
| | - Carole M. Smadja
- Institut des Sciences de l'Evolution (UMR 5554 CNRS, IRD, EPHE, Université de Montpellier), Université de Montpellier, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
22
|
From molecules to populations: appreciating and estimating recombination rate variation. Nat Rev Genet 2020; 21:476-492. [DOI: 10.1038/s41576-020-0240-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
|
23
|
Samuk K, Manzano-Winkler B, Ritz KR, Noor MAF. Natural Selection Shapes Variation in Genome-wide Recombination Rate in Drosophila pseudoobscura. Curr Biol 2020; 30:1517-1528.e6. [PMID: 32275873 DOI: 10.1016/j.cub.2020.03.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/16/2019] [Accepted: 03/20/2020] [Indexed: 12/30/2022]
Abstract
While recombination is widely recognized to be a key modulator of numerous evolutionary phenomena, we have a poor understanding of how recombination rate itself varies and evolves within a species. Here, we performed a comprehensive study of recombination rate (rate of meiotic crossing over) in two natural populations of Drosophila pseudoobscura from Utah and Arizona, USA. We used an amplicon sequencing approach to obtain high-quality genotypes in approximately 8,000 individual backcrossed offspring (17 mapping populations with roughly 530 individuals each), for which we then quantified crossovers. Interestingly, variation in recombination rate within and between populations largely manifested as differences in genome-wide recombination rate rather than remodeling of the local recombination landscape. Comparing populations, we discovered individuals from the Utah population displayed on average 8% higher crossover rates than the Arizona population, a statistically significant difference. Using a QST-FST analysis, we found that this difference in crossover rate was dramatically higher than expected under neutrality, indicating that this difference may have been driven by natural selection. Finally, using a combination of short- and long-read whole-genome sequencing, we found no significant association between crossover rate and structural variation at the 200-400 kb scale. Our results demonstrate that (1) there is abundant variation in genome-wide crossover rate in natural populations, (2) at the 200-400 kb scale, recombination rate appears to vary largely genome-wide, rather than in specific intervals, and (3) interpopulation differences in recombination rate may be the result of local adaptation.
Collapse
Affiliation(s)
- Kieran Samuk
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | | | - Kathryn R Ritz
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
24
|
Piégu B, Arensburger P, Beauclair L, Chabault M, Raynaud E, Coustham V, Brard S, Guizard S, Burlot T, Le Bihan-Duval E, Bigot Y. Variations in genome size between wild and domesticated lineages of fowls belonging to the Gallus gallus species. Genomics 2020; 112:1660-1673. [DOI: 10.1016/j.ygeno.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/05/2019] [Accepted: 10/07/2019] [Indexed: 11/26/2022]
|
25
|
Abstract
Mice (Mus musculus) and rats (Rattus norvegicus) have long served as model systems for biomedical research. However, they are also excellent models for studying the evolution of populations, subspecies, and species. Within the past million years, they have spread in various waves across large parts of the globe, with the most recent spread in the wake of human civilization. They have developed into commensal species, but have also been able to colonize extreme environments on islands free of human civilization. Given that ample genomic and genetic resources are available for these species, they have thus also become ideal mammalian systems for evolutionary studies on adaptation and speciation, particularly in the combination with the rapid developments in population genomics. The chapter provides an overview of the systems and their history, as well as of available resources.
Collapse
Affiliation(s)
- Kristian K Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
26
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biol Evol 2019; 11:1552-1572. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories. In analyses with different elevation thresholds, positively selected genes reflected similar functions and pathways, even though there were almost no specific genes in common. For example, EPAS1 (HIF2α), which has been implicated in high-elevation adaptation in other vertebrates, shows a signature of positive selection when high-elevation is defined broadly (>1,500 m), but not when defined narrowly (>2,500 m). Although a few biochemical pathways and genes change predictably as part of hummingbird adaptation to high-elevation conditions, independent lineages have rarely adapted via the same substitutions.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
27
|
Lustyk D, Kinský S, Ullrich KK, Yancoskie M, Kašíková L, Gergelits V, Sedlacek R, Chan YF, Odenthal-Hesse L, Forejt J, Jansa P. Genomic Structure of Hstx2 Modifier of Prdm9-Dependent Hybrid Male Sterility in Mice. Genetics 2019; 213:1047-1063. [PMID: 31562180 PMCID: PMC6827376 DOI: 10.1534/genetics.119.302554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
F1 hybrids between mouse inbred strains PWD and C57BL/6 represent the most thoroughly genetically defined model of hybrid sterility in vertebrates. Hybrid male sterility can be fully reconstituted from three components of this model, the Prdm9 gene, intersubspecific homeology of Mus musculus musculus and Mus musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates the extent of Prdm9-dependent meiotic arrest and harbors two additional factors responsible for intersubspecific introgression-induced oligospermia (Hstx1) and meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome the recombination suppression within the 4.3 Mb encompassing the Hstx2 locus, we designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA double-strand breaks specifically within the Hstx2 locus. The resulting recombinant reduced the Hstx2 locus to 2.70 Mb (chromosome X: 66.51-69.21 Mb). The newly defined Hstx2 locus still operates as the major X-linked factor of the F1 hybrid sterility, and controls meiotic chromosome synapsis and meiotic recombination rate. Despite extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination cold spot with reduced PRDM9-mediated H3K4me3 hotspots and absence of DMC1-defined DNA double-strand-break hotspots. To search for structural anomalies as a possible cause of recombination suppression, we used optical mapping and observed high incidence of subspecies-specific structural variants along the X chromosome, with a striking copy number polymorphism of the microRNA Mir465 cluster. This observation together with the absence of a strong sterility phenotype in Fmr1 neighbor (Fmr1nb) null mutants support the role of microRNA as a likely candidate for Hstx2.
Collapse
Affiliation(s)
- Diana Lustyk
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
- Faculty of Science, Charles University, Prague CZ-12000, Czech Republic
| | - Slavomír Kinský
- The Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Kristian Karsten Ullrich
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Michelle Yancoskie
- Molecular Basis and Evolution of Complex Traits Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen 72076, Germany
| | - Lenka Kašíková
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Radislav Sedlacek
- The Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Yingguang Frank Chan
- Molecular Basis and Evolution of Complex Traits Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen 72076, Germany
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Petr Jansa
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| |
Collapse
|
28
|
Genome-wide recombination map construction from single individuals using linked-read sequencing. Nat Commun 2019; 10:4309. [PMID: 31541091 PMCID: PMC6754380 DOI: 10.1038/s41467-019-12210-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Meiotic recombination rates vary across the genome, often involving localized crossover hotspots and coldspots. Studying the molecular basis and mechanisms underlying this variation has been challenging due to the high cost and effort required to construct individualized genome-wide maps of recombination crossovers. Here we introduce a new method, called ReMIX, to detect crossovers from gamete DNA of a single individual using Illumina sequencing of 10X Genomics linked-read libraries. ReMIX reconstructs haplotypes and identifies the valuable rare molecules spanning crossover breakpoints, allowing quantification of the genomic location and intensity of meiotic recombination. Using a single mouse and stickleback fish, we demonstrate how ReMIX faithfully recovers recombination hotspots and landscapes that have previously been built using hundreds of offspring. ReMIX provides a high-resolution, high-throughput, and low-cost approach to quantify recombination variation across the genome, providing an exciting opportunity to study recombination among multiple individuals in diverse organisms. Variation of recombination rates within genomes has important implications in genetics and evolution. Here, the authors develop a method for building genome-wide recombination maps from single individuals using linked-read sequencing data, and report its application in mouse and stickleback fish.
Collapse
|
29
|
Rapp JP, Joe B. Dissecting Epistatic QTL for Blood Pressure in Rats: Congenic Strains versus Heterogeneous Stocks, a Reality Check. Compr Physiol 2019; 9:1305-1337. [PMID: 31688958 DOI: 10.1002/cphy.c180038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advances in molecular genetics have provided well-defined physical genetic maps and large numbers of genetic markers for both model organisms and humans. It is now possible to gain a fundamental understanding of the genetic architecture underlying quantitative traits, of which blood pressure (BP) is an important example. This review emphasizes analytical techniques and results obtained using the Dahl salt-sensitive (S) rat as a model of hypertension by presenting results in detail for three specific chromosomal regions harboring genetic elements of increasing complexity controlling BP. These results highlight the critical importance of genetic interactions (epistasis) on BP at all levels of structure, intragenic, intergenic, intrachromosomal, interchromosomal, and across whole genomes. In two of the three examples presented, specific DNA structural variations leading to biochemical, physiological, and pathological mechanisms are well defined. This proves the usefulness of the techniques involving interval mapping followed by substitution mapping using congenic strains. These classic techniques are compared to newer approaches using sophisticated statistical analysis on various segregating or outbred model-organism populations, which in some cases are uniquely useful in demonstrating the existence of higher-order interactions. It is speculated that hypertension as an outlier quantitative phenotype is dependent on higher-order genetic interactions. The obstacle to the identification of genetic elements and the biochemical/physiological mechanisms involved in higher-order interactions is not theoretical or technical but the lack of future resources to finish the job of identifying the individual genetic elements underlying the quantitative trait loci for BP and ascertaining their molecular functions. © 2019 American Physiological Society. Compr Physiol 9:1305-1337, 2019.
Collapse
Affiliation(s)
- John P Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
30
|
Beeson SK, Mickelson JR, McCue ME. Exploration of fine-scale recombination rate variation in the domestic horse. Genome Res 2019; 29:1744-1752. [PMID: 31434677 PMCID: PMC6771410 DOI: 10.1101/gr.243311.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/15/2019] [Indexed: 01/17/2023]
Abstract
Total genetic map length and local recombination landscapes typically vary within and across populations. As a first step to understanding the recombination landscape in the domestic horse, we calculated population recombination rates and identified likely recombination hotspots using approximately 1.8 million SNP genotypes for 485 horses from 32 distinct breeds. The resulting breed-averaged recombination map spans 2.36 Gb and accounts for 2939.07 cM. Recombination hotspots occur once per 23.8 Mb on average and account for ∼9% of the physical map length. Regions with elevated recombination rates in the entire cohort were enriched for genes in pathways involving interaction with the environment: immune system processes (specifically, MHC class I and class II genes), responses to stimuli, and serotonin receptor pathways. We found significant correlations between differences in local recombination rates and population differentiation quantified by F ST Analysis of breed-specific maps revealed thousands of hotspot regions unique to particular breeds, as well as unique "coldspots," regions where a particular breed showed below-average recombination, whereas all other breeds had evidence of a hotspot. Finally, we identified relative enrichment (P = 5.88 × 10-27) for the in silico-predicted recognition motif for equine PR/SET domain 9 (PRDM9) in recombination hotspots. These results indicate that selective pressures and PRDM9 function contribute to variation in recombination rates across the domestic horse genome.
Collapse
Affiliation(s)
- Samantha K Beeson
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - James R Mickelson
- Veterinary and Biomedical Sciences Department, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Molly E McCue
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, Minnesota 55108, USA
| |
Collapse
|
31
|
Shen C, Wang N, Huang C, Wang M, Zhang X, Lin Z. Population genomics reveals a fine-scale recombination landscape for genetic improvement of cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:494-505. [PMID: 31002209 DOI: 10.1111/tpj.14339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 04/01/2019] [Indexed: 05/28/2023]
Abstract
Recombination breaks up ancestral linkage disequilibrium, creates combinations of alleles, affects the efficiency of natural selection, and plays a major role in crop domestication and improvement. However, there is little knowledge regarding the variation in the population-scaled recombination rate in cotton. We constructed recombination maps and characterized the difference in the genomic landscape of the population-scaled recombination rate between Gossypium hirsutum and G. arboreum and sub-genomes based on the 381 sequenced G. hirsutum and 215 G. arboreum accessions. Comparative genomics identified large structural variations and syntenic genes in the recombination regions, suggesting that recombination was related to structural variation and occurred preferentially in the distal chromosomal regions. Correlation analysis indicated that recombination was only slightly affected by geographical distribution and breeding period. A genome-wide association study (GWAS) was performed with 15 agronomic traits using 267 cotton accessions and identified 163 quantitative trait loci (QTL) and an important candidate gene (Ghir_COL2) for early maturity traits. Comparative analysis of recombination and a GWAS revealed that the QTL of fibre quality traits tended to be more common in high-recombination regions than were those of yield and early maturity traits. These results provide insights into the population-scaled recombination landscape, suggesting that recombination contributed to the domestication and improvement of cotton, which provides a useful reference for studying recombination in other species.
Collapse
Affiliation(s)
- Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cong Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
32
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Divergent Fine-Scale Recombination Landscapes between a Freshwater and Marine Population of Threespine Stickleback Fish. Genome Biol Evol 2019; 11:1573-1585. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/27/2022] Open
Abstract
Meiotic recombination is a highly conserved process that has profound effects on genome evolution. At a fine-scale, recombination rates can vary drastically across genomes, often localized into small recombination "hotspots" with highly elevated rates, surrounded by regions with little recombination. In most species studied, the location of hotspots within genomes is highly conserved across broad evolutionary timescales. The main exception to this pattern is in mammals, where hotspot location can evolve rapidly among closely related species and even among populations within a species. Hotspot position in mammals is controlled by the gene, Prdm9, whereas in species with conserved hotspots, a functional Prdm9 is typically absent. Due to a limited number of species where recombination rates have been estimated at a fine-scale, it remains unclear whether hotspot conservation is always associated with the absence of a functional Prdm9. Threespine stickleback fish (Gasterosteus aculeatus) are an excellent model to examine the evolution of recombination over short evolutionary timescales. Using a linkage disequilibrium-based approach, we found recombination rates indeed varied at a fine-scale across the genome, with many regions organized into narrow hotspots. Hotspots had highly divergent landscapes between stickleback populations, where only ∼15% of these hotspots were shared. Our results indicate that fine-scale recombination rates may be diverging between closely related populations of threespine stickleback fish. Interestingly, we found only a weak association of a PRDM9 binding motif within hotspots, which suggests that threespine stickleback fish may possess a novel mechanism for targeting recombination hotspots at a fine-scale.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
33
|
Jabbari K, Wirtz J, Rauscher M, Wiehe T. A common genomic code for chromatin architecture and recombination landscape. PLoS One 2019; 14:e0213278. [PMID: 30865674 PMCID: PMC6415826 DOI: 10.1371/journal.pone.0213278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Recent findings established a link between DNA sequence composition and interphase chromatin architecture and explained the evolutionary conservation of TADs (Topologically Associated Domains) and LADs (Lamina Associated Domains) in mammals. This prompted us to analyse conformation capture and recombination rate data to study the relationship between chromatin architecture and recombination landscape of human and mouse genomes. The results reveal that: (1) low recombination domains and blocks of elevated linkage disequilibrium tend to coincide with TADs and isochores, indicating co-evolving regulatory elements and genes in insulated neighbourhoods; (2) double strand break (DSB) and recombination frequencies increase in the short loops of GC-rich TADs, whereas recombination cold spots are typical of LADs and (3) the binding and loading of proteins, which are critical for DSB and meiotic recombination (SPO11, DMC1, H3K4me3 and PRMD9) are higher in GC-rich TADs. One explanation for these observations is that the occurrence of DSB and recombination in meiotic cells are associated with compositional and epigenetic features (genomic code) that influence DNA stiffness/flexibility and appear to be similar to those guiding the chromatin architecture in the interphase nucleus of pre-leptotene cells.
Collapse
Affiliation(s)
- Kamel Jabbari
- Institute for Genetics, Biocenter Cologne, University of Cologne, Köln, Germany
- * E-mail:
| | - Johannes Wirtz
- Institute for Genetics, Biocenter Cologne, University of Cologne, Köln, Germany
| | - Martina Rauscher
- Institute for Genetics, Biocenter Cologne, University of Cologne, Köln, Germany
| | - Thomas Wiehe
- Institute for Genetics, Biocenter Cologne, University of Cologne, Köln, Germany
| |
Collapse
|
34
|
Abstract
The first and only published version of the rat reference genome sequence was RGSC3.1, accomplished by the Rat Genome Sequencing Project Consortium. Here we present the history of the community effort in the correction of sequence errors and filling missing gaps in the process of refining and providing researchers with a high-quality rat reference sequence. The genome assembly improvements, addition of different evidence resources over time, such as RNA-Seq data, and software development methodologies had a positive impact on the gene model annotations. Over the years we observed a great increase in the numbers of genes, protein coding sequences, predicted transcripts and transcript features. Before the sequencing of the rat genome was possible, first biochemical and next genomic markers like RAPD, AFLP, RFLP, and SSLP were fundamental in research studies involving cross-breeding between different rat strains, in finding the level of polymorphism, linkage mapping, and phylogeny. Linkage maps provide information on recombination rates, give insight into intra- and interspecies gene rearrangements, and help to identify Mendelian loci and Quantitative Trait Loci (QTL). In the 1990s many reports were published on the construction of rat linkage maps that incorporated increasing numbers of markers and facilitated the localization of disease loci. Current genetic monitoring and linkage mapping relies on single nucleotide polymorphisms (SNPs). The Rat Genome Database collects information on genetic variation from the worldwide community of rat researchers and provides tools for searching and retrieving these data. As of today we show details about almost 605 million variants coming from many studies in our Variant Visualizer tool.
Collapse
|
35
|
Liu S, Schnable JC, Ott A, Yeh CTE, Springer NM, Yu J, Muehlbauer G, Timmermans MCP, Scanlon MJ, Schnable PS. Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels. Mol Biol Evol 2018; 35:2762-2772. [PMID: 30184112 PMCID: PMC6231493 DOI: 10.1093/molbev/msy174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Meiotic recombination is an evolutionary force that generates new genetic diversity upon which selection can act. Whereas multiple studies have assessed genome-wide patterns of recombination and specific cases of intragenic recombination, few studies have assessed intragenic recombination genome-wide in higher eukaryotes. We identified recombination events within or near genes in a population of maize recombinant inbred lines (RILs) using RNA-sequencing data. Our results are consistent with case studies that have shown that intragenic crossovers cluster at the 5′ ends of some genes. Further, we identified cases of intragenic crossovers that generate transgressive transcript accumulation patterns, that is, recombinant alleles displayed higher or lower levels of expression than did nonrecombinant alleles in any of ∼100 RILs, implicating intragenic recombination in the generation of new variants upon which selection can act. Thousands of apparent gene conversion events were identified, allowing us to estimate the genome-wide rate of gene conversion at SNP sites (4.9 × 10−5). The density of syntenic genes (i.e., those conserved at the same genomic locations since the divergence of maize and sorghum) exhibits a substantial correlation with crossover frequency, whereas the density of nonsyntenic genes (i.e., those which have transposed or been lost subsequent to the divergence of maize and sorghum) shows little correlation, suggesting that crossovers occur at higher rates in syntenic genes than in nonsyntenic genes. Increased rates of crossovers in syntenic genes could be either a consequence of the evolutionary conservation of synteny or a biological process that helps to maintain synteny.
Collapse
Affiliation(s)
- Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS.,Department of Agronomy, Iowa State University, Ames, IA
| | - James C Schnable
- Department of Agriculture and Horticulture, University of Nebraska-Lincoln, Lincoln, NE
| | - Alina Ott
- Department of Agronomy, Iowa State University, Ames, IA.,Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI
| | | | - Nathan M Springer
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA
| | - Gary Muehlbauer
- Department of Agronomy and Plant Genetics, Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN
| | | | | | | |
Collapse
|
36
|
Manil-Ségalen M, Łuksza M, Kanaan J, Marthiens V, Lane SIR, Jones KT, Terret ME, Basto R, Verlhac MH. Chromosome structural anomalies due to aberrant spindle forces exerted at gene editing sites in meiosis. J Cell Biol 2018; 217:3416-3430. [PMID: 30082296 PMCID: PMC6168266 DOI: 10.1083/jcb.201806072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 01/17/2023] Open
Abstract
Acentrosomal spindle assembly in mouse oocytes depends on chromosomes and acentriolar microtubule-organizing centers (aMTOCs). Manil-Ségalen et al. observe that Plk4-induced perturbation of aMTOCs coupled to Cre-mediated gene editing generates fragile chromosomes that break when subjected to forces exerted by altered meiosis I spindles. Mouse female meiotic spindles assemble from acentriolar microtubule-organizing centers (aMTOCs) that fragment into discrete foci. These are further sorted and clustered to form spindle poles, thus providing balanced forces for faithful chromosome segregation. To assess the impact of aMTOC biogenesis on spindle assembly, we genetically induced their precocious fragmentation in mouse oocytes using conditional overexpression of Plk4, a master microtubule-organizing center regulator. Excessive microtubule nucleation from these fragmented aMTOCs accelerated spindle assembly dynamics. Prematurely formed spindles promoted the breakage of three different fragilized bivalents, generated by the presence of recombined Lox P sites. Reducing the density of microtubules significantly diminished the extent of chromosome breakage. Thus, improper spindle forces can lead to widely described yet unexplained chromosomal structural anomalies with disruptive consequences on the ability of the gamete to transmit an uncorrupted genome.
Collapse
Affiliation(s)
- Marion Manil-Ségalen
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Małgorzata Łuksza
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Joanne Kanaan
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Véronique Marthiens
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Simon I R Lane
- Biological Science, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Keith T Jones
- Biological Science, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Marie-Emilie Terret
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Renata Basto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Marie-Hélène Verlhac
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| |
Collapse
|
37
|
Back to the Future: Multiparent Populations Provide the Key to Unlocking the Genetic Basis of Complex Traits. Genetics 2018; 206:527-529. [PMID: 28592493 PMCID: PMC5494722 DOI: 10.1534/genetics.117.203265] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
38
|
Abstract
An accurate and high-resolution genetic map is critical for mapping complex traits, yet the resolution of the current rat genetic map is far lower than human and mouse, and has not been updated since the original Jensen-Seaman map in 2004. For the first time, we have refined the rat genetic map to sub-centimorgan (cM) resolution (<0.02 cM) by using 95,769 genetic markers and 870 informative meioses from a cohort of 528 heterogeneous stock (HS) rats. Global recombination rates in the revised sex-averaged map (0.66 cM/Mb) did not differ compared to the historical map (0.65 cM/Mb); however, substantial refinement was made to the localization of highly recombinant regions within the revised map. Also for the first time, sex-specific rat genetic maps were generated, which revealed both genomewide and fine-scale variation in recombination rates between male and female rats. Reanalysis of multiple quantitative trait loci (QTL) using the historical and refined rat genetic maps demonstrated marked changes to QTL localization, shape, and effect size. As a resource to the rat research community, we have provided revised centimorgan positions for all physical positions within the rat genome and commonly used genetic markers for trait mapping, including 44,828 SSLP markers and the RATDIV genotyping array. Collectively, this study provides a substantial improvement to the rat genetic map and an unprecedented resource for analysis of complex traits and recombination in the rat.
Collapse
|
39
|
Abstract
The majority of gene loci that have been associated with type 2 diabetes play a role in pancreatic islet function. To evaluate the role of islet gene expression in the etiology of diabetes, we sensitized a genetically diverse mouse population with a Western diet high in fat (45% kcal) and sucrose (34%) and carried out genome-wide association mapping of diabetes-related phenotypes. We quantified mRNA abundance in the islets and identified 18,820 expression QTL. We applied mediation analysis to identify candidate causal driver genes at loci that affect the abundance of numerous transcripts. These include two genes previously associated with monogenic diabetes (PDX1 and HNF4A), as well as three genes with nominal association with diabetes-related traits in humans (FAM83E, IL6ST, and SAT2). We grouped transcripts into gene modules and mapped regulatory loci for modules enriched with transcripts specific for α-cells, and another specific for δ-cells. However, no single module enriched for β-cell-specific transcripts, suggesting heterogeneity of gene expression patterns within the β-cell population. A module enriched in transcripts associated with branched-chain amino acid metabolism was the most strongly correlated with physiological traits that reflect insulin resistance. Although the mice in this study were not overtly diabetic, the analysis of pancreatic islet gene expression under dietary-induced stress enabled us to identify correlated variation in groups of genes that are functionally linked to diabetes-associated physiological traits. Our analysis suggests an expected degree of concordance between diabetes-associated loci in the mouse and those found in human populations, and demonstrates how the mouse can provide evidence to support nominal associations found in human genome-wide association mapping.
Collapse
|
40
|
Abstract
Over the 180 My since their origin, the sex chromosomes of mammals have evolved a gene repertoire highly specialized for function in the male germline. The mouse Y chromosome is unique among mammalian Y chromosomes characterized to date in that it is large, gene-rich and euchromatic. Yet, little is known about its diversity in natural populations. Here, we take advantage of published whole-genome sequencing data to survey the diversity of sequence and copy number of sex-linked genes in three subspecies of house mice. Copy number of genes on the repetitive long arm of both sex chromosomes is highly variable, but sequence diversity in nonrepetitive regions is decreased relative to expectations based on autosomes. We use simulations and theory to show that this reduction in sex-linked diversity is incompatible with neutral demographic processes alone, but is consistent with recent positive selection on genes active during spermatogenesis. Our results support the hypothesis that the mouse sex chromosomes are engaged in ongoing intragenomic conflict.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
41
|
Male Infertility Is Responsible for Nearly Half of the Extinction Observed in the Mouse Collaborative Cross. Genetics 2017; 206:557-572. [PMID: 28592496 DOI: 10.1534/genetics.116.199596] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022] Open
Abstract
The goal of the Collaborative Cross (CC) project was to generate and distribute over 1000 independent mouse recombinant inbred strains derived from eight inbred founders. With inbreeding nearly complete, we estimated the extinction rate among CC lines at a remarkable 95%, which is substantially higher than in the derivation of other mouse recombinant inbred populations. Here, we report genome-wide allele frequencies in 347 extinct CC lines. Contrary to expectations, autosomes had equal allelic contributions from the eight founders, but chromosome X had significantly lower allelic contributions from the two inbred founders with underrepresented subspecific origins (PWK/PhJ and CAST/EiJ). By comparing extinct CC lines to living CC strains, we conclude that a complex genetic architecture is driving extinction, and selection pressures are different on the autosomes and chromosome X Male infertility played a large role in extinction as 47% of extinct lines had males that were infertile. Males from extinct lines had high variability in reproductive organ size, low sperm counts, low sperm motility, and a high rate of vacuolization of seminiferous tubules. We performed QTL mapping and identified nine genomic regions associated with male fertility and reproductive phenotypes. Many of the allelic effects in the QTL were driven by the two founders with underrepresented subspecific origins, including a QTL on chromosome X for infertility that was driven by the PWK/PhJ haplotype. We also performed the first example of cross validation using complementary CC resources to verify the effect of sperm curvilinear velocity from the PWK/PhJ haplotype on chromosome 2 in an independent population across multiple generations. While selection typically constrains the examination of reproductive traits toward the more fertile alleles, the CC extinct lines provided a unique opportunity to study the genetic architecture of fertility in a widely genetically variable population. We hypothesize that incompatibilities between alleles with different subspecific origins is a key driver of infertility. These results help clarify the factors that drove strain extinction in the CC, reveal the genetic regions associated with poor fertility in the CC, and serve as a resource to further study mammalian infertility.
Collapse
|
42
|
Abstract
The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of new genetic variants introduced by mutation and drift in the CC genomes. We estimate that new SNP mutations are accumulating in each CC strain at a rate of 2.4 ± 0.4 per gigabase per generation. The fixation of new mutations by genetic drift has introduced thousands of new variants into the CC strains. The majority of these mutations are novel compared to currently sequenced laboratory stocks and wild mice, and some are predicted to alter gene function. Approximately one-third of the CC inbred strains have acquired large deletions (>10 kb) many of which overlap known coding genes and functional elements. The sequence of these mice is a critical resource to CC users, increases threefold the number of mouse inbred strain genomes available publicly, and provides insight into the effect of mutation and drift on common resources.
Collapse
|
43
|
Oas1b-dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross. G3-GENES GENOMES GENETICS 2017; 7:1665-1682. [PMID: 28592649 PMCID: PMC5473748 DOI: 10.1534/g3.117.041624] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The oligoadenylate-synthetase (Oas) gene locus provides innate immune resistance to virus infection. In mouse models, variation in the Oas1b gene influences host susceptibility to flavivirus infection. However, the impact of Oas variation on overall innate immune programming and global gene expression among tissues and in different genetic backgrounds has not been defined. We examined how Oas1b acts in spleen and brain tissue to limit West Nile virus (WNV) susceptibility and disease across a range of genetic backgrounds. The laboratory founder strains of the mouse Collaborative Cross (CC) (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/HlLtJ) all encode a truncated, defective Oas1b, whereas the three wild-derived inbred founder strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) encode a full-length OAS1B protein. We assessed disease profiles and transcriptional signatures of F1 hybrids derived from these founder strains. F1 hybrids included wild-type Oas1b (F/F), homozygous null Oas1b (N/N), and heterozygous offspring of both parental combinations (F/N and N/F). These mice were challenged with WNV, and brain and spleen samples were harvested for global gene expression analysis. We found that the Oas1b haplotype played a role in WNV susceptibility and disease metrics, but the presence of a functional Oas1b allele in heterozygous offspring did not absolutely predict protection against disease. Our results indicate that Oas1b status as wild-type or truncated, and overall Oas1b gene dosage, link with novel innate immune gene signatures that impact specific biological pathways for the control of flavivirus infection and immunity through both Oas1b-dependent and independent processes.
Collapse
|
44
|
Oreper D, Cai Y, Tarantino LM, de Villena FPM, Valdar W. Inbred Strain Variant Database (ISVdb): A Repository for Probabilistically Informed Sequence Differences Among the Collaborative Cross Strains and Their Founders. G3 (BETHESDA, MD.) 2017; 7:1623-1630. [PMID: 28592645 PMCID: PMC5473744 DOI: 10.1534/g3.117.041491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The Collaborative Cross (CC) is a panel of recently established multiparental recombinant inbred mouse strains. For the CC, as for any multiparental population (MPP), effective experimental design and analysis benefit from detailed knowledge of the genetic differences between strains. Such differences can be directly determined by sequencing, but until now whole-genome sequencing was not publicly available for individual CC strains. An alternative and complementary approach is to infer genetic differences by combining two pieces of information: probabilistic estimates of the CC haplotype mosaic from a custom genotyping array, and probabilistic variant calls from sequencing of the CC founders. The computation for this inference, especially when performed genome-wide, can be intricate and time-consuming, requiring the researcher to generate nontrivial and potentially error-prone scripts. To provide standardized, easy-to-access CC sequence information, we have developed the Inbred Strain Variant Database (ISVdb). The ISVdb provides, for all the exonic variants from the Sanger Institute mouse sequencing dataset, direct sequence information for CC founders and, critically, the imputed sequence information for CC strains. Notably, the ISVdb also: (1) provides predicted variant consequence metadata; (2) allows rapid simulation of F1 populations; and (3) preserves imputation uncertainty, which will allow imputed data to be refined in the future as additional sequencing and genotyping data are collected. The ISVdb information is housed in an SQL database and is easily accessible through a custom online interface (http://isvdb.unc.edu), reducing the analytic burden on any researcher using the CC.
Collapse
Affiliation(s)
- Daniel Oreper
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7265
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7265
| | - Yanwei Cai
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7265
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7265
| | - Lisa M Tarantino
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7265
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy University of North Carolina, Chapel Hill, North Carolina 27599-7265
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7265
- Lineberger Comprehensive Cancer Center
| | - William Valdar
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7265
- Lineberger Comprehensive Cancer Center
| |
Collapse
|
45
|
Back to the Future: Multiparent Populations Provide the Key to Unlocking the Genetic Basis of Complex Traits. G3-GENES GENOMES GENETICS 2017; 7:1617-1618. [PMID: 28592643 PMCID: PMC5473742 DOI: 10.1534/g3.117.042846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|