1
|
Cioccarelli L, Lenihan JA, Erwin LG, Young PW. Differential neuronal functions of LNX1 and LNX2 revealed by behavioural analysis in single and double knockout mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:13. [PMID: 40269869 PMCID: PMC12020136 DOI: 10.1186/s12993-025-00276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Ligand of NUMB protein-X 1 (LNX1) and LNX2 proteins are closely related PDZ domain-containing E3 ubiquitin ligases that interact with and potentially modulate numerous synaptic and neurodevelopmentally important proteins. While both LNX1 and LNX2 are expressed in neurons, it is noteworthy that neuronal LNX1 isoforms lack the catalytic domain responsible for ubiquitination of substrates. Thus, the shared interaction partners of LNX1 and LNX2 might be differentially regulated by these proteins, with LNX1 acting as a stabilizing scaffold while LNX2 may promote their ubiquitination and degradation. Despite the identification of many LNX interacting proteins and substrates, our understanding of the distinct in vivo functions of LNX1 and LNX2 remains very incomplete. RESULTS We previously reported that mice lacking both LNX1 in the central nervous system and LNX2 globally exhibit decreased anxiety-related behaviour. Here we significantly extend this work by examining anxiety-related and risk-taking behaviours in Lnx1-/- and Lnx2-/- single knockout animals for the first time and by analysing previously unexplored aspects of behaviour in both single and double knockout animals. While the absence of both LNX1 and LNX2 contributes to the decreased anxiety-related behaviour of double knockout animals in the open field and elevated plus maze tests, the elimination of LNX2 plays a more prominent role in altered behaviour in the dark-light emergence test and wire beam bridge risk-taking paradigms. By contrast, Lnx knockout mice of all genotypes were indistinguishable from wildtype animals in the marble burying, stress-induced hyperthermia and novel object recognition tests. Analysis of the ultrasonic vocalizations of pups following maternal separation revealed significant differences in call properties and vocal repertoire for Lnx1-/- and Lnx1-/-;Lnx2-/- double knockout animals. Finally, decreased body weight previously noted in double knockout animals could be attributed largely to Lnx1 gene knockout. CONCLUSIONS These results identify specific roles of LNX1 and LNX2 proteins in modulating distinct aspects of anxiety and risk-taking behaviour and social communication in mice. They also reveal an unexpected role for neuronally expressed LNX1 isoforms in determining body weight. These novel insights into the differential neuronal functions of LNX1 and LNX2 proteins provide a foundation for mechanistic studies of these phenomena.
Collapse
Affiliation(s)
- Laura Cioccarelli
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Joan A Lenihan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Leah G Erwin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Paul W Young
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Chilukuri A, Kim M, Mitra T, Gubatan JM, Urrete J, Saxon LD, Ablack A, Mikulski Z, Dobaczewska K, Shen Z, Keir M, Yi T, Kaur P, Oliveira P, Murillo-Saich J, Chang EY, Steiner CA, Jedlicka P, Guma M, Rivera-Nieves J. A Similar Mutation in the AAUU-Rich Elements of the Mouse TNF Gene Results in a Distinct Ileocolitic Phenotype: A New Strain of TNF-Overexpressing Mice. Inflamm Bowel Dis 2025; 31:1067-1081. [PMID: 39756463 PMCID: PMC11985683 DOI: 10.1093/ibd/izae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Tumor necrosis factor (TNF) is a pleiotropic cytokine that plays a critical role in the pathogenesis of immune-mediated diseases including inflammatory bowel disease (IBD). The stability of its mRNA transcript, determined in part by destabilizing sequences in its AAUU repeats (ARE) gene region, is an important regulator of its tissue and systemic levels. A deletion in the ARE region of the gene resulted in IBD and arthritis in mice and pigs, supporting a critical role for the cytokine in human IBD and several human arthritides. A mutation in the same area of the mouse genome by Genentech scientists (T.Y., M.K.) resulted in a similar but not identical phenotype. METHODS Here, we compare histopathological, cellular, and molecular features of the strains and propose reasons for their distinct phenotypes. First, while homozygous TNFΔARE mice develop severe arthritis and die after weaning, homozygous Genentech TNFΔARE (ΔG/ΔG) mice have normal lifespans, and males are often fertile. RESULTS We found that while the ileitic phenotype had peaked at 12 weeks of age in all mice, colitis progressed mostly after 20 weeks of age in heterozygous mice. Their variably penetrant arthritic phenotype progressed mostly after 20 weeks, also in heterozygous mice from both strains. There was expansion of central memory T and B cells in lymphoid organs of TNF-overproducing strains and their transcriptional profile shared well-known pathogenetic pathways with human IBD. Finally, we found differences in the mutated sequences within the ARE regions of the TNF gene and in their microbiota composition and genetic background. These differences likely explain their phenotypic differences. CONCLUSIONS In summary, we describe a different strain of TNF-overproducing mice with an overlapping, yet not identical phenotype, which may have differential applications than the original strain.
Collapse
Affiliation(s)
- Amruth Chilukuri
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Margaret Kim
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- Gastroenterology Section, San Diego VA Medical Center, La Jolla Village Drive, San Diego, CA, USA
| | - Taniya Mitra
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- Gastroenterology Section, San Diego VA Medical Center, La Jolla Village Drive, San Diego, CA, USA
| | - John M Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Josef Urrete
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Leo D Saxon
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- Gastroenterology Section, San Diego VA Medical Center, La Jolla Village Drive, San Diego, CA, USA
| | - Amber Ablack
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA, USA
| | - Zining Shen
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | - Mary Keir
- Genentech Pharmaceuticals, South San Francisco, CA, USA
| | - Tangsheng Yi
- Genentech Pharmaceuticals, South San Francisco, CA, USA
| | - Prabhdeep Kaur
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- Gastroenterology Section, San Diego VA Medical Center, La Jolla Village Drive, San Diego, CA, USA
| | - Patricia Oliveira
- Rheumatology Division, University of California San Diego, La Jolla, CA, USA
| | | | - Eric Y Chang
- Radiology Department, San Diego VA Medical Center, La Jolla Village Drive, San Diego, CA, USA
| | - Calen A Steiner
- Division of Gastroenterology, University of Colorado, Denver, CO, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Mónica Guma
- Rheumatology Division, University of California San Diego, La Jolla, CA, USA
| | - Jesús Rivera-Nieves
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
- Gastroenterology Section, San Diego VA Medical Center, La Jolla Village Drive, San Diego, CA, USA
| |
Collapse
|
3
|
Piálek J, Ďureje Ľ, Hiadlovská Z, Kreisinger J, Aghová T, Bryjová A, Čížková D, de Bellocq JG, Hejlová H, Janotová K, Martincová I, Orth A, Piálková J, Pospíšilová I, Rousková L, Bímová BV, Pfeifle C, Tautz D, Bonhomme F, Forejt J, Macholán M, Klusáčková P. Phenogenomic resources immortalized in a panel of wild-derived strains of five species of house mice. Sci Rep 2025; 15:12060. [PMID: 40199997 PMCID: PMC11978780 DOI: 10.1038/s41598-025-86505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/10/2025] [Indexed: 04/10/2025] Open
Abstract
The house mouse, Mus musculus, is a widely used animal model in biomedical research, with classical laboratory strains (CLS) being the most frequently employed. However, the limited genetic variability in CLS hinders their applicability in evolutionary studies. Wild-derived strains (WDS), on the other hand, provide a suitable resource for such investigations. This study quantifies genetic and phenotypic data of 101 WDS representing 5 species, 3 subspecies, and 8 natural Y consomic strains and compares them with CLS. Genetic variability was estimated using whole mtDNA sequences, the Prdm9 gene, and copy number variation at two sex chromosome-linked genes. WDS exhibit a large natural variation with up to 2173 polymorphic sites in mitogenomes, whereas CLS display 92 sites. Moreover, while CLS have two Prdm9 alleles, WDS harbour 46 different alleles. Although CLS resemble M. m. domesticus and M. m. musculus WDS, they differ from them in 10 and 14 out of 16 phenotypic traits, respectively. The results suggest that WDS can be a useful tool in evolutionary and biomedical studies with great potential for medical applications.
Collapse
Affiliation(s)
- Jaroslav Piálek
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
| | - Ľudovít Ďureje
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatiana Aghová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Bryjová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Dagmar Čížková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Joëlle Goüy de Bellocq
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Helena Hejlová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kateřina Janotová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Martincová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- ZOO Prague, Prague, Czech Republic
| | - Annie Orth
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jana Piálková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Pospíšilová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ludmila Rousková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Barbora Vošlajerová Bímová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - François Bonhomme
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Jiří Forejt
- Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Miloš Macholán
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavla Klusáčková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Zhuang QKW, Bauermeister K, Galvez JH, Alogayil N, Batdorj E, de Villena FPM, Taketo T, Bourque G, Naumova AK. Survey of gene, lncRNA and transposon transcription patterns in four mouse organs highlights shared and organ-specific sex-biased regulation. Genome Biol 2025; 26:74. [PMID: 40140847 PMCID: PMC11948892 DOI: 10.1186/s13059-025-03547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Sex-biased gene regulation is the basis of sexual dimorphism in phenotypes and has been studied across different cell types and different developmental stages. However, sex-biased expression of transposable elements (TEs), which represent nearly half of the mammalian genome and have the potential of influencing genome integrity and regulation, remains underexplored. RESULTS We report a survey of gene, lncRNA, and TE expression in four organs from mice with different combinations of gonadal and genetic sex. The data show remarkable variability among organs with respect to the impact of gonadal sex on transcription with the strongest effects observed in the liver. In contrast, the X-chromosome dosage alone had a modest influence on sex-biased transcription across organs, albeit interaction between X-dosage and gonadal sex cannot be ruled out. The presence of the Y-chromosome influences TE, but not gene or lncRNA, expression in the liver. Notably, 90% of sex-biased TEs (sDETEs) reside in clusters. Moreover, 54% of these clusters overlap or reside less than 100 kb from sex-biased genes or lncRNAs, share the same sex bias, and also have higher expression levels than sDETE clusters that do not co-localize with other types of sex-biased transcripts. We test the heterochromatic sink hypothesis that predicts higher expression of TEs in XX individuals finding no evidence to support it. CONCLUSIONS Our data show that sex-biased expression of TEs varies among organs with the highest numbers of sDETEs found in the liver following trends observed for genes and lncRNAs. It is enhanced by proximity to other types of sex-biased transcripts.
Collapse
Affiliation(s)
- Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, 606-8303, Japan
| | - Klara Bauermeister
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montreal, QC, H3A 0G1, Canada
| | - Najla Alogayil
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Enkhjin Batdorj
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC, H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, 606-8303, Japan.
- Canadian Centre for Computational Genomics, Montreal, QC, H3A 0G1, Canada.
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
5
|
Leinhos L, Robinson P, Poloni G, Broadway-Stringer S, Beglov J, Lokman AB, Douglas G, Nuthay S, Fonseka O, Schmid M, Singer E, Hooper C, Thomson K, Bagnall RD, Ingles J, Semsarian C, Ormondroyd E, Toepfer CN, Davies B, Redwood C, Watkins H, Gehmlich K. An ALPK3 truncation variant causing autosomal dominant hypertrophic cardiomyopathy is partially rescued by mavacamten. Sci Rep 2025; 15:10090. [PMID: 40128237 PMCID: PMC11933305 DOI: 10.1038/s41598-025-94371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
The ALPK3 gene encodes alpha-protein kinase 3, a cardiac pseudo-kinase of unknown function. Heterozygous truncating variants (ALPK3tv) can cause dominant adult-onset hypertrophic cardiomyopathy (HCM). Here we confirm an excess of ALPK3tv in sarcomere-gene negative HCM patients. Moreover, we generated a novel knock-in mouse model carrying an ALPK3tv (K201X). Homozygous animals displayed hypertrophy and systolic dysfunction. Heterozygous animals demonstrated no obvious baseline; however, they had an aggravated hypertrophic response upon chronic adrenergic challenge. Isolated, unloaded cardiomyocytes from heterozygous and homozygous mice showed reduced basal sarcomere length with prolonged relaxation, whilst calcium transients showed increased diastolic calcium levels. Protein kinase A-mediated phosphorylation, including that of cardiac troponin I, was significantly decreased. In agreement with the cellular HCM phenotype, reduced ratios of myosin heads in the super-relaxed state were measured. Contractile and calcium handling defects were partly corrected by treatment with mavacamten, a novel myosin inhibitor. For the first time with a non-sarcomere HCM variant, we have demonstrated hallmark changes in cardiac contractility and calcium handling. Mavacamten is able to partially rescue the cellular phenotype, hence could be beneficial to HCM patients with ALPK3tv. Moreover, our data points at a potential role of ALPK3 as a modulator of protein kinase A signalling.
Collapse
Affiliation(s)
- Lisa Leinhos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Sophie Broadway-Stringer
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, Institute of Biomedical Research (IBR) room 229, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Julia Beglov
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Adam B Lokman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Sajjad Nuthay
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, Institute of Biomedical Research (IBR) room 229, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Oveena Fonseka
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Manuel Schmid
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Evie Singer
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, Institute of Biomedical Research (IBR) room 229, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Charlotte Hooper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Kate Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
- Faculty of Medicine and Heath, The University of Sydney, Sydney, Australia
| | - Jodie Ingles
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and University of New South Wales, Sydney, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
- Faculty of Medicine and Heath, The University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christopher N Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Transgenic Core, University of Oxford, Oxford, UK
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK.
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, Institute of Biomedical Research (IBR) room 229, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Houghtaling S, Gombart SK, Ho TH, Huang G, Beier DR. A conditional smoothened (smo) allele on an inbred C57BL/6J genetic background has a hypomorphic smo mutant phenotype. Dev Biol 2025; 518:71-76. [PMID: 39603584 PMCID: PMC11728190 DOI: 10.1016/j.ydbio.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
We have introduced the floxed allele of Smoothened (Smo) carried by the mouse line Smotm2Amc into the C57BL/6J strain by serial backcross. Recapitulation of the Smo null phenotype was confirmed by deleting the allele using E2a-cre and intercrossing heterozygous Smo ± mice. No homozygous mutant embryos were identified at E9.5, suggesting the null phenotype is at least as severe as that observed on a mixed genetic background. While healthy and fertile homozygous floxed mice were regularly obtained after intercrosses, their numbers at weaning were reduced relative to Mendelian expectation, suggesting the unrecombined allele is itself hypomorphic. This hypothesis is supported by characterization of transcription of the floxed allele, which revealed that its expression was variably reduced relative to wild-type Smo.
Collapse
Affiliation(s)
- Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Sean K Gombart
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Tzu-Hua Ho
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Grace Huang
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - David R Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
7
|
Sánchez-Morgado JM. Single nucleotide polymorphism (SNP) characterisation of mouse inbred strains bred at MRC-National Institute for Medical Research. Lab Anim 2025; 59:83-92. [PMID: 39397396 PMCID: PMC11967088 DOI: 10.1177/00236772241273070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/18/2024] [Indexed: 10/15/2024]
Abstract
Inbred mouse strains have long proved useful as tools for biomedical research. They remove the effects of genetic background as an experimental variable. Within all mouse colonies, genetic drift is a recognised phenomenon and monitoring and documenting changes is important for experimental design and consistency. This communication documents the initial characterisation through SNP analysis of the inbred mouse strains bred and used at the time at the Medical Research Council National Institute for Medical Research (MRC-NIMR), Mill Hill, now The Crick Institute. These inbred strains were part of the foundation colonies for the many genetically modified mouse strains made at Mill Hill. We found small genetic changes in four of the nine inbred strains. Although phenotypic differences have not yet been found between the NIMR and the correspondent parental strains, I cannot discard that these may arise or have already arisen. This work has also authenticated the 129/SvJEvNimr-Gpi1c strain that was widely used at MRC-NIMR for gene targeting. All these inbred strains have been renamed according to The International Committee on Standardized Genetic Nomenclature for Mice.
Collapse
|
8
|
Miller M, Douillet C, Cable PH, Krupenko SA, Shang B, Hartwell HJ, Zou F, Koller BH, Fry RC, de Villena FPM, Stýblo M. Metabolism of inorganic arsenic in mice carrying the human AS3MT gene and fed folate deficient or folate supplemented diet. Toxicol Appl Pharmacol 2025; 495:117173. [PMID: 39603428 DOI: 10.1016/j.taap.2024.117173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes the S-adenosylmethionine (SAM)-dependent methylation of inorganic arsenic (iAs), yielding monomethyl‑arsenic (MAs) and dimethyl‑arsenic (DMAs) metabolites. The formation of DMAs in this pathway is considered a key mechanism for iAs detoxification. Availability of SAM for iAs methylation depends in part on dietary intake of folate. Results of population studies suggest that supplementation with folate stimulates iAs methylation, increasing DMAs and decreasing iAs and MAs proportions in urine and/or blood. The goal of the present study was to determine if folate intake affects methylation and clearance of iAs in a recently established mouse strain that expresses human AS3MT and exhibits a human-like pattern of iAs metabolism. The humanized male and female mice were fed folate-deficient (FD) or folate-supplemented (FS) diet for 6 weeks, followed by exposure to 0 ppb or 400 ppb iAs in drinking water for 5 weeks, while on the same types of diet. The concentrations and proportions of iAs, MAs and DMAs were determined in urine, liver, kidneys, and spleen. The diet-, sex- and dose-related differences were assessed by t-test or a non-parametric test; Bonferroni test was used to correct for multiple comparisons. In general, proportions of DMAs were greater and proportions of iAs were smaller in urine and tissues of FS mice as compared to FD mice. However, folate supplementation also increased MAs proportions. Notably, the folate intake had no effect on the concentrations of total arsenic either in the urine or the tissues. These results suggest that, similar to humans, folate supplementation stimulates iAs methylation in the humanized mice. However, the stimulation of iAs methylation is not associated with clearance of arsenic from tissues, possibly due to an inefficient conversion of MAs to DMAs.
Collapse
Affiliation(s)
- Madison Miller
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Christelle Douillet
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Peter H Cable
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Sergey A Krupenko
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; The UNC Nutrition Research Institute, Kannapolis, NC 28081, USA
| | - Bingzhen Shang
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Hadley J Hartwell
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7420, USA
| | - Beverly H Koller
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Miroslav Stýblo
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
9
|
Kane KM, Iradukunda D, McLouth CJ, Guo LZ, Wang J, Subramoniam A, Huffman D, Donohue KD, O'Hara BF, Sunderam S, Wang QJ. Characterisation of sleep in a mouse model of CLN3 disease revealed sex-specific sleep disturbances. J Sleep Res 2025:e14461. [PMID: 39873354 DOI: 10.1111/jsr.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease. The current study utilised PiezoSleep, a non-invasive, automated piezoelectric motion sensing system, to classify sleep and wakefulness in a Cln3Δex1-6/Δex1-6 (Cln3KO) mouse model and age- and sex-matched wild-type (WT) controls. The sleep-wake classification by PiezoSleep was found to be about 90% accurate when validated against simultaneous polysomnographic recordings including electroencephalography (EEG) and electromyography (EMG) in a small cohort of WT and Cln3KO mice. Our large cohort PiezoSleep study revealed sleep abnormalities during the light period in male Cln3KO mice compared with WT male mice, and more subtle differences in Cln3KO female mice in the dark period compared with WT female mice. Our characterisation of sleep in the Cln3KO mouse model aligns with sleep abnormalities seen in CLN3 disease patients and serves as a basis to continue examining sleep disturbances commonly reported for CLN3 disease and other NCLs. As the first animal model study capturing sleep disturbances in CLN3 disease, our work will facilitate future studies into the potential mechanism behind sleep disturbances associated with the disease and the potential treatment strategies.
Collapse
Affiliation(s)
- Kelby M Kane
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Diane Iradukunda
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | | | - Landys Z Guo
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun Wang
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- Signal Solutions LLC, Lexington, Kentucky, USA
| | - Sridhar Sunderam
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Spencer PN, Wang J, Smith EP, Spiga L, Simmons AJ, Kim T, Kim W, Brown ME, Yang Y, Kaur H, Xu Y, Kang SW, Helou MD, Lee MA, Zheng L, Arceneaux D, Tasneem N, Mueller KD, Kuddar OS, Harned MH, Ro J, Li J, Banerjee A, Markham NO, Wilson KT, Coburn LA, Goettel JA, Liu Q, Kay Washington M, Valdivia RH, Zhu W, Lau KS. Pathobiont-triggered induction of epithelial IDO1 drives regional susceptibility to Inflammatory Bowel Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.04.630951. [PMID: 39803424 PMCID: PMC11722351 DOI: 10.1101/2025.01.04.630951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The structure and function of the mammalian gut vary by region, yet why inflammatory diseases manifest in specific regions and not others remains unclear. We use a TNF-overexpressing Crohn's disease (CD) model (TnfΔARE/+), which typically presents in the terminal ileum (TI), to investigate how environmental factors interact with the host's immune susceptibility to drive region-specific disease. We identified Chlamydia muridarum, an intracellular bacterium and murine counterpart to the human sexually transmitted C. trachomatis, as necessary and sufficient to trigger disease manifestation in the ascending colon (AC), another common site of human CD. Disease manifestation in the AC depends on indoleamine 2,3-dioxygenase (IDO1) activity induced by hypersensitive surface secretory cells in genetically susceptible hosts. Single-cell and microbial analyses of human specimens also implicates this pathobiont-epithelial IDO1 pathway in patients with a history of CD in the AC. Our findings demonstrate that genetic and microbial factors can independently drive region-specific disease and provide a unique model to study CD specific to the AC.
Collapse
Affiliation(s)
- Paige N Spencer
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Jiawei Wang
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Erin P Smith
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Taewoo Kim
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - William Kim
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Monica E Brown
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Yilin Yang
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Harsimran Kaur
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Seung Woo Kang
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Matthew D Helou
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Mason A Lee
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Lin Zheng
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Deronisha Arceneaux
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Naila Tasneem
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Katherine D Mueller
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ozge S Kuddar
- Department of Molecular Genetics and Microbiology, Duke School of Medicine, Durham, NC 27710, USA
| | - Mariah H Harned
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - James Ro
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville TN, 37232, USA
| | - Amrita Banerjee
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Nicholas O Markham
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville TN, 37232, USA
| | - Keith T Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
| | - Lori A Coburn
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center; Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville TN, 37232, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville TN, 37232, USA
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville TN, 37232, USA
- Center for Computational Systems Biology, Vanderbilt University, Nashville TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville TN, 37232, USA
| |
Collapse
|
11
|
Agca Y, Amos-Landgraf J, Araiza R, Brennan J, Carlson C, Ciavatta D, Clary D, Franklin C, Korf I, Lutz C, Magnuson T, de Villena FPM, Mirochnitchenko O, Patel S, Port D, Reinholdt L, Lloyd KCK. The mutant mouse resource and research center (MMRRC) consortium: the US-based public mouse repository system. Mamm Genome 2024; 35:524-536. [PMID: 39304538 PMCID: PMC11522152 DOI: 10.1007/s00335-024-10070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Now in its 25th year, the Mutant Mouse Resource and Research Center (MMRRC) consortium continues to serve the United States and international biomedical scientific community as a public repository and distribution archive of laboratory mouse models of human disease for research. Supported by the National Institutes of Health (NIH), the MMRRC consists of 4 regionally distributed and dedicated vivaria, offices, and specialized laboratory facilities and an Informatics Coordination and Service Center (ICSC). The overarching purpose of the MMRRC is to facilitate groundbreaking biomedical research by offering an extensive repertoire of mutant mice that are essential for advancing the understanding of human physiology and disease. The function of the MMRRC is to identify, acquire, evaluate, characterize, cryopreserve, and distribute mutant mouse strains to qualified biomedical investigators around the nation and the globe. Mouse strains accepted from the research community are held to the highest scientific standards to optimize reproducibility and enhance scientific rigor and transparency. All submitted strains are thoroughly reviewed, documented, and validated using extensive scientific quality control measures. In addition, the MMRRC conducts resource-related research on cryopreservation, mouse genetics, environmental conditions, and other topics that enhance operations of the MMRRC. Today, the MMRRC maintains an archive of mice, cryopreserved embryos and sperm, embryonic stem (ES) cell lines, and murine hybridomas for nearly 65,000 alleles. Since its inception, the MMRRC has fulfilled more than 20,000 orders from 13,651 scientists at 8441 institutions worldwide. The MMRRC also provides numerous services to assist researchers, including scientific consultation, technical assistance, genetic assays, microbiome analysis, analytical phenotyping, pathology, cryorecovery, husbandry, breeding and colony management, infectious disease surveillance, and disease modeling. The ICSC coordinates MMRRC operations, interacts with researchers, and manages the website (mmrrc.org) and online catalogue. Researchers benefit from an expansive list of well-defined mouse models of disease that meet the highest scientific standards while submitting investigators benefit by having their mouse strains cryopreserved, protected, and distributed in compliance with NIH policies.
Collapse
Affiliation(s)
- Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - James Amos-Landgraf
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Renee Araiza
- Department of Molecular and Cellular Biology, College of Biological Sciences and Bioinformatics Core, Genome Center, University of California, Davis, CA, USA
- Mouse Biology Program, University of California, Davis, CA, USA
| | - Jennifer Brennan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Charisse Carlson
- Department of Molecular and Cellular Biology, College of Biological Sciences and Bioinformatics Core, Genome Center, University of California, Davis, CA, USA
- Mouse Biology Program, University of California, Davis, CA, USA
| | - Dominic Ciavatta
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Dave Clary
- Department of Molecular and Cellular Biology, College of Biological Sciences and Bioinformatics Core, Genome Center, University of California, Davis, CA, USA
- Mouse Biology Program, University of California, Davis, CA, USA
| | - Craig Franklin
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ian Korf
- Department of Molecular and Cellular Biology, College of Biological Sciences and Bioinformatics Core, Genome Center, University of California, Davis, CA, USA
| | | | - Terry Magnuson
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Oleg Mirochnitchenko
- Division of Comparative Medicine, Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, USA
| | - Samit Patel
- Department of Molecular and Cellular Biology, College of Biological Sciences and Bioinformatics Core, Genome Center, University of California, Davis, CA, USA
| | - Dan Port
- Department of Molecular and Cellular Biology, College of Biological Sciences and Bioinformatics Core, Genome Center, University of California, Davis, CA, USA
- Mouse Biology Program, University of California, Davis, CA, USA
| | | | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, CA, USA.
- Department of Surgery, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
12
|
Morgan AP, Payseur BA. Genetic background affects the strength of crossover interference in house mice. Genetics 2024; 228:iyae146. [PMID: 39241112 PMCID: PMC11538424 DOI: 10.1093/genetics/iyae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Meiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference. Although interference has been observed in many taxa, the factors that influence the strength of interference are not well understood. We used house mice (Mus musculus), a well-established model system for understanding recombination, to study the effects of genetics and age on recombination rate and interference in the male germline. We analyzed crossover positions in 503 progeny from reciprocal F1 hybrids between inbred strains representing the three major subspecies of house mice. Consistent with previous studies, autosomal alleles from M. m. musculus tend to increase recombination rate, while inheriting a M. m. musculus X chromosome decreases recombination rate. Old males transmit an average of 0.6 more crossovers per meiosis (5.0%) than young males, though the effect varies across genetic backgrounds. We show that the strength of crossover interference depends on genotype, providing a rare demonstration that interference evolves over short timescales. Differences between reciprocal F1s suggest that X-linked factors modulate the strength of interference. Our findings motivate additional comparisons of interference among recently diverged species and further examination of the role of paternal age in determining the number and positioning of crossovers.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Medicine, University of North Carolina, Campus Box #7085, Chapel Hill, NC 27599-7085, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
13
|
Blanchard MW, Sigmon JS, Brennan J, Ahulamibe C, Allen ME, Ardery S, Baric RS, Bell TA, Farrington J, Ciavatta D, Cruz Cisneros MC, Drushal M, Ferris MT, Fry RC, Gaines C, Gu B, Heise MT, Hock P, Hodges RA, Hulgin M, Kafri T, Lynch RM, Magnuson T, Miller DR, Murphy CEY, Nguyen DT, Noll KE, Proulx MK, Sassetti CM, Schoenrock SA, Shaw GD, Simon JM, Smith CM, Styblo M, Tarantino LM, Woo J, Pardo Manuel de Villena F. The updated mouse universal genotyping array bioinformatic pipeline improves genetic QC in laboratory mice. G3 (BETHESDA, MD.) 2024; 14:jkae193. [PMID: 39271181 PMCID: PMC11457065 DOI: 10.1093/g3journal/jkae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024]
Abstract
The MiniMUGA genotyping array is a popular tool for genetic quality control of laboratory mice and genotyping samples from most experimental crosses involving laboratory strains, particularly for reduced complexity crosses. The content of the production version of the MiniMUGA array is fixed; however, there is the opportunity to improve the array's performance and the associated report's usefulness by leveraging thousands of samples genotyped since the initial description of MiniMUGA. Here, we report our efforts to update and improve marker annotation, increase the number and the reliability of the consensus genotypes for classical inbred strains and substrains, and increase the number of constructs reliably detected with MiniMUGA. In addition, we have implemented key changes in the informatics pipeline to identify and quantify the contribution of specific genetic backgrounds to the makeup of a given sample, remove arbitrary thresholds, include the Y Chromosome and mitochondrial genome in the ideogram, and improve robust detection of the presence of commercially available substrains based on diagnostic alleles. Finally, we have updated the layout of the report to simplify the interpretation and completeness of the analysis and added a section summarizing the ideogram in table format. These changes will be of general interest to the mouse research community and will be instrumental in our goal of improving the rigor and reproducibility of mouse-based biomedical research.
Collapse
Affiliation(s)
- Matthew W Blanchard
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Mutant Mouse Resource and Research Center, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John Sebastian Sigmon
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
- Mutant Mouse Resource and Research Center, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jennifer Brennan
- Mutant Mouse Resource and Research Center, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chidima Ahulamibe
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michelle E Allen
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Systems Genetics Core Facility, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sam Ardery
- Genetics and Molecular Biology Curriculum, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph Farrington
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dominic Ciavatta
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Mutant Mouse Resource and Research Center, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Marta C Cruz Cisneros
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Genetics and Molecular Biology Curriculum, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Madison Drushal
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Systems Genetics Core Facility, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Systems Genetics Core Facility, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christiann Gaines
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bin Gu
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard Austin Hodges
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Systems Genetics Core Facility, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mia Hulgin
- Systems Genetics Core Facility, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tal Kafri
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel M Lynch
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Mutant Mouse Resource and Research Center, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Caroline E Y Murphy
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Truong Nguyen
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kelsey E Noll
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Megan K Proulx
- Department of Microbiology, UMass Chan Medical School, Worchester, MA 01655, USA
| | | | - Sarah A Schoenrock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeremy M Simon
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Miroslav Styblo
- Department of Nutrition, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lisa M Tarantino
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joyce Woo
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Mutant Mouse Resource and Research Center, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Systems Genetics Core Facility, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Fotopulosova V, Tanieli G, Fusek K, Jansa P, Forejt J. A Minimal Hybrid Sterility Genome Assembled by Chromosome Swapping Between Mouse Subspecies (Mus musculus). Mol Biol Evol 2024; 41:msae211. [PMID: 39404090 PMCID: PMC11518865 DOI: 10.1093/molbev/msae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Hybrid sterility is a reproductive isolation barrier between diverging taxa securing the early steps of speciation. Hybrid sterility is ubiquitous in the animal and plant kingdoms, but its genetic control is poorly understood. In our previous studies, we have uncovered the sterility of hybrids between musculus and domesticus subspecies of the house mouse, which is controlled by the Prdm9 gene, the X-linked Hstx2 locus, and subspecific heterozygosity for genetic background. To further investigate this form of genic-driven chromosomal sterility, we constructed a simplified hybrid sterility model within the genome of the domesticus subspecies by swapping domesticus autosomes with their homologous partners from the musculus subspecies. We show that the "sterility" allelic combination of Prdm9 and Hstx2 can be activated by a musculus/domesticus heterozygosity of as few as two autosomes, Chromosome 17 (Chr 17) and Chr 18 and is further enhanced when another heterosubspecific autosomal pair is present, whereas it has no effect on meiotic progression in the pure domesticus genome. In addition, we identify a new X-linked hybrid sterility locus, Hstx3, at the centromeric end of Chr X, which modulates the incompatibility between Prdm9 and Hstx2. These results further support our concept of chromosomal hybrid sterility based on evolutionarily accumulated divergence between homologous sequences. Based on these and previous results, we believe that future studies should include more information on the mutual recognition of homologous chromosomes at or before the first meiotic prophase in interspecific hybrids, as this may serve as a general reproductive isolation checkpoint in mice and other species.
Collapse
Affiliation(s)
- Vladana Fotopulosova
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Giordano Tanieli
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Karel Fusek
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Petr Jansa
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Jiri Forejt
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
15
|
Li H, House JS, Nichols CE, Gruzdev A, Ward JM, Li JL, Wyss AB, Haque E, Edin ML, Elmore SA, Mahler BW, Degraff LM, Shi M, Zeldin DC, London SJ. Adam19 Deficiency Impacts Pulmonary Function: Human GWAS Follow-up in a Mouse Knockout Model. Lung 2024; 202:659-672. [PMID: 39153120 PMCID: PMC11427501 DOI: 10.1007/s00408-024-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. METHODS We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Mouse body composition was assessed using dual-energy X-ray absorptiometry. Mouse lung function was measured using flexiVent. RESULTS Contrary to prior publications, the KO was not neonatal lethal. KO mice had lower body weight and shorter tibial length than wild-type (WT) mice. Their body composition revealed lower soft weight, fat weight, and bone mineral content. Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. CONCLUSION Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.
Collapse
Affiliation(s)
- Huiling Li
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - John S House
- Biostatistics & Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cody E Nichols
- Whitsell Innovations, Inc., Chapel Hill, North Carolina, USA
| | - Artiom Gruzdev
- Reproductive & Developmental Biology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Annah B Wyss
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ezazul Haque
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Matthew L Edin
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Susan A Elmore
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Beth W Mahler
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Laura M Degraff
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Min Shi
- Biostatistics & Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Darryl C Zeldin
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
16
|
Morgan AP, Payseur BA. Genetic background affects the strength of crossover interference in house mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596233. [PMID: 38854148 PMCID: PMC11160618 DOI: 10.1101/2024.05.28.596233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Meiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference. Although interference has been observed in many taxa, the factors that influence the strength of interference are not well understood. We used house mice (Mus musculus), a well-established model system for understanding recombination, to study the effects of genetics and age on recombination rate and interference in the male germline. We analyzed crossover positions in 503 progeny from reciprocal F1 hybrids between inbred strains representing the three major subspecies of house mice. Consistent with previous studies, autosomal alleles from M. m. musculus tend to increase recombination rate, while inheriting a M. m. musculus X chromosome decreases recombination rate. Old males transmit an average of 0.6 more crossovers per meiosis (5.0%) than young males, though the effect varies across genetic backgrounds. We show that the strength of crossover interference depends on genotype, providing a rare demonstration that interference evolves over short timescales. Differences between reciprocal F1s suggest that X-linked factors modulate the strength of interference. Our findings motivate additional comparisons of interference among recently diverged species and further examination of the role of paternal age in determining the number and positioning of crossovers.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI
| |
Collapse
|
17
|
Leist SR, Schäfer A, Risemberg EL, Bell TA, Hock P, Zweigart MR, Linnertz CL, Miller DR, Shaw GD, de Villena FPM, Ferris MT, Valdar W, Baric RS. Sarbecovirus disease susceptibility is conserved across viral and host models. Virus Res 2024; 346:199399. [PMID: 38823688 PMCID: PMC11225686 DOI: 10.1016/j.virusres.2024.199399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Coronaviruses have caused three severe epidemics since the start of the 21st century: SARS, MERS and COVID-19. The severity of the ongoing COVID-19 pandemic and increasing likelihood of future coronavirus outbreaks motivates greater understanding of factors leading to severe coronavirus disease. We screened ten strains from the Collaborative Cross mouse genetic reference panel and identified strains CC006/TauUnc (CC006) and CC044/Unc (CC044) as coronavirus-susceptible and resistant, respectively, as indicated by variable weight loss and lung congestion scores four days post-infection. We generated a genetic mapping population of 755 CC006xCC044 F2 mice and exposed the mice to one of three genetically distinct mouse-adapted coronaviruses: clade 1a SARS-CoV MA15 (n=391), clade 1b SARS-CoV-2 MA10 (n=274), and clade 2 HKU3-CoV MA (n=90). Quantitative trait loci (QTL) mapping in SARS-CoV MA15- and SARS-CoV-2 MA10-infected F2 mice identified genetic loci associated with disease severity. Specifically, we identified seven loci associated with variation in outcome following infection with either virus, including one, HrS43, that is present in both groups. Three of these QTL, including HrS43, were also associated with HKU3-CoV MA outcome. HrS43 overlaps with a QTL previously reported by our lab that is associated with SARS-CoV MA15 outcome in CC011xCC074 F2 mice and is also syntenic with a human chromosomal region associated with severe COVID-19 outcomes in humans GWAS. The results reported here provide: (a) additional support for the involvement of this locus in SARS-CoV MA15 infection, (b) the first conclusive evidence that this locus is associated with susceptibility across the Sarbecovirus subgenus, and (c) demonstration of the relevance of mouse models in the study of coronavirus disease susceptibility in humans.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, United States
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, United States
| | - Ellen L Risemberg
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, United States; Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Timothy A Bell
- Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Mark R Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, United States
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, United States
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, United States.
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
18
|
Nagarajan A, Scoggin K, Adams LG, Threadgill D, Andrews-Polymenis H. Identification of a genetic region linked to tolerance to MRSA infection using Collaborative Cross mice. PLoS Genet 2024; 20:e1011378. [PMID: 39178306 PMCID: PMC11407622 DOI: 10.1371/journal.pgen.1011378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/17/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024] Open
Abstract
Staphylococcus aureus (S. aureus) colonizes humans asymptomatically but can also cause opportunistic infections, ranging from mild skin infections to severe life-threatening conditions. Resistance and tolerance are two ways a host can survive an infection. Resistance is limiting the pathogen burden, while tolerance is limiting the health impact of a given pathogen burden. In previous work, we established that collaborative cross (CC) mouse line CC061 is highly susceptible to Methicillin-resistant S. aureus infection (MRSA, USA300), while CC024 is tolerant. To identify host genes involved in tolerance after S. aureus infection, we crossed CC061 mice and CC024 mice to generate F1 and F2 populations. Survival after MRSA infection in the F1 and F2 generations was 65% and 55% and followed a complex dominant inheritance pattern for the CC024 increased survival phenotype. Colonization in F2 animals was more extreme than in their parents, suggesting successful segregation of genetic factors. We identified a Quantitative Trait Locus (QTL) peak on chromosome 7 for survival and weight change after infection. In this QTL, the WSB/EiJ (WSB) allele was present in CC024 mice and contributed to their MRSA tolerant phenotype. Two genes, C5ar1 and C5ar2, have high-impact variants in this region. C5ar1 and C5ar2 are receptors for the complement factor C5a, an anaphylatoxin that can trigger a massive immune response by binding to these receptors. We hypothesize that C5a may have altered binding to variant receptors in CC024 mice, reducing damage caused by the cytokine storm and resulting in the ability to tolerate a higher pathogen burden and longer survival.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
19
|
Risemberg EL, Smeekens JM, Cruz Cisneros MC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to anaphylaxis severity following oral peanut challenge in CC027 mice. J Allergy Clin Immunol 2024; 154:387-397. [PMID: 38670234 PMCID: PMC11323216 DOI: 10.1016/j.jaci.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized Collaborative Cross strain CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, in contrast to C3H/HeJ (C3H) mice. OBJECTIVE This study aimed to determine the genetic basis of orally induced anaphylaxis to peanut in CC027 mice. METHODS A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 mice and 5 additional Collaborative Cross strains. RESULTS Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis and 4% having severe anaphylaxis. There were 8 genetic loci associated with variation in response to peanut challenge-6 associated with anaphylaxis (temperature decrease) and 2 associated with peanut-specific IgE levels. There were 2 major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis gene. Consistent with described functions of Themis, we found that CC027 mice have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. CONCLUSIONS Our results demonstrate a key role for Themis in the orally reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L Risemberg
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Johanna M Smeekens
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Marta C Cruz Cisneros
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly Orgel
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - A Wesley Burks
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Michael D Kulis
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
20
|
Teboul L, Amos-Landgraf J, Benavides FJ, Birling MC, Brown SDM, Bryda E, Bunton-Stasyshyn R, Chin HJ, Crispo M, Delerue F, Dobbie M, Franklin CL, Fuchtbauer EM, Gao X, Golzio C, Haffner R, Hérault Y, Hrabe de Angelis M, Lloyd KCK, Magnuson TR, Montoliu L, Murray SA, Nam KH, Nutter LMJ, Pailhoux E, Pardo Manuel de Villena F, Peterson K, Reinholdt L, Sedlacek R, Seong JK, Shiroishi T, Smith C, Takeo T, Tinsley L, Vilotte JL, Warming S, Wells S, Whitelaw CB, Yoshiki A, Pavlovic G. Improving laboratory animal genetic reporting: LAG-R guidelines. Nat Commun 2024; 15:5574. [PMID: 38956430 PMCID: PMC11220107 DOI: 10.1038/s41467-024-49439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.
Collapse
Affiliation(s)
- Lydia Teboul
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK.
| | - James Amos-Landgraf
- University of Missouri School of Medicine, Columbia, MO, USA
- University of Missouri College of Veterinary Medicine, Columbia, MO, USA
- Rat Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Fernando J Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marie-Christine Birling
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France
| | - Steve D M Brown
- Visiting Scientist, Institut Clinique de la Souris, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France
| | - Elizabeth Bryda
- Rat Resource and Research Center, University of Missouri, Columbia, MO, 65201, USA
| | | | - Hsian-Jean Chin
- National Laboratory Animal Center (NLAC), NARLabs, Taipei, Taiwan
| | - Martina Crispo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 1400, Montevideo, Uruguay
| | - Fabien Delerue
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Dobbie
- Phenomics Australia, Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| | - Craig L Franklin
- University of Missouri Mutant Mouse Resource and Research Center (MU MMRRC), University of Missouri, Columbia, MO, 65201, USA
| | | | - Xiang Gao
- National Resource Center of Mutant Mice (NRCMM), Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Christelle Golzio
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Rebecca Haffner
- Department Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yann Hérault
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400, Illkirch, France
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | | | - Terry R Magnuson
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029, Madrid, Spain
| | | | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Lauryl M J Nutter
- Genetics and Genome Biology, The Hospital for Sick Children and The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada
| | - Eric Pailhoux
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, and Korea Mouse Phenotyping Center, Seoul, 08826, Republic of Korea
| | | | - Cynthia Smith
- Mouse Genome Informatics (MGI), Jackson Laboratory, Bar Harbor, ME, USA
| | - Toru Takeo
- Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Louise Tinsley
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Søren Warming
- Genentech, Inc., a member of the Roche group, South San Francisco, CA, USA
| | - Sara Wells
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
- Francis Crick Institute, London, NW1 1AT, UK
| | - C Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Guillaume Pavlovic
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Grafenstaden, 67404, Strasbourg, France.
| |
Collapse
|
21
|
Liu S, Gammon ST, Tan L, Gao Y, Kim K, Williamson IK, Pham J, Davidian A, Khanna R, Gould BD, Salazar R, Vitrac H, Dinh A, Lien EC, de L Vitorino FN, Gongora JM, Martinez SA, Lawrence CSC, Kransdorf EP, Leffer D, Hanson B, Garcia BA, Vander Heiden MG, Lorenzi PL, Taegtmeyer H, Piwnica-Worms D, Martin JF, Karlstaedt A. ATP-dependent citrate lyase Drives Left Ventricular Dysfunction by Metabolic Remodeling of the Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600099. [PMID: 38948703 PMCID: PMC11213012 DOI: 10.1101/2024.06.21.600099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Metabolic remodeling is a hallmark of the failing heart. Oncometabolic stress during cancer increases the activity and abundance of the ATP-dependent citrate lyase (ACL, Acly ), which promotes histone acetylation and cardiac adaptation. ACL is critical for the de novo synthesis of lipids, but how these metabolic alterations contribute to cardiac structural and functional changes remains unclear. Methods We utilized human heart tissue samples from healthy donor hearts and patients with hypertrophic cardiomyopathy. Further, we used CRISPR/Cas9 gene editing to inactivate Acly in cardiomyocytes of MyH6-Cas9 mice. In vivo, positron emission tomography and ex vivo stable isotope tracer labeling were used to quantify metabolic flux changes in response to the loss of ACL. We conducted a multi-omics analysis using RNA-sequencing and mass spectrometry-based metabolomics and proteomics. Experimental data were integrated into computational modeling using the metabolic network CardioNet to identify significantly dysregulated metabolic processes at a systems level. Results Here, we show that in mice, ACL drives metabolic adaptation in the heart to sustain contractile function, histone acetylation, and lipid modulation. Notably, we show that loss of ACL increases glucose oxidation while maintaining fatty acid oxidation. Ex vivo isotope tracing experiments revealed a reduced efflux of glucose-derived citrate from the mitochondria into the cytosol, confirming that citrate is required for reductive metabolism in the heart. We demonstrate that YAP inactivation facilitates ACL deficiency. Computational flux analysis and integrative multi-omics analysis indicate that loss of ACL induces alternative isocitrate dehydrogenase 1 flux to compensate. Conclusions This study mechanistically delineates how cardiac metabolism compensates for suppressed citrate metabolism in response to ACL loss and uncovers metabolic vulnerabilities in the heart.
Collapse
|
22
|
Schäfer A, Marzi A, Furuyama W, Catanzaro NJ, Nguyen C, Haddock E, Feldmann F, Meade-White K, Thomas T, Hubbard ML, Gully KL, Leist SR, Hock P, Bell TA, De la Cruz GE, Midkiff BR, Martinez DR, Shaw GD, Miller DR, Vernon MJ, Graham RL, Cowley DO, Montgomery SA, Schughart K, de Villena FPM, Wilkerson GK, Ferris MT, Feldmann H, Baric RS. Mapping of susceptibility loci for Ebola virus pathogenesis in mice. Cell Rep 2024; 43:114127. [PMID: 38652660 PMCID: PMC11348656 DOI: 10.1016/j.celrep.2024.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gabriela E De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bentley R Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael J Vernon
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Animal Models Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Institute of Virology, University of Muenster, 48149 Muenster, Germany
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gregory K Wilkerson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Poulos MG, Ramalingam P, Winiarski A, Gutkin MC, Katsnelson L, Carter C, Pibouin-Fragner L, Eichmann A, Thomas JL, Miquerol L, Butler JM. Complementary and Inducible creER T2 Mouse Models for Functional Evaluation of Endothelial Cell Subtypes in the Bone Marrow. Stem Cell Rev Rep 2024; 20:1135-1149. [PMID: 38438768 PMCID: PMC11087254 DOI: 10.1007/s12015-024-10703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
In the adult bone marrow (BM), endothelial cells (ECs) are an integral component of the hematopoietic stem cell (HSC)-supportive niche, which modulates HSC activity by producing secreted and membrane-bound paracrine signals. Within the BM, distinct vascular arteriole, transitional, and sinusoidal EC subtypes display unique paracrine expression profiles and create anatomically-discrete microenvironments. However, the relative contributions of vascular endothelial subtypes in supporting hematopoiesis is unclear. Moreover, constitutive expression and off-target activity of currently available endothelial-specific and endothelial-subtype-specific murine cre lines potentially confound data analysis and interpretation. To address this, we describe two tamoxifen-inducible cre-expressing lines, Vegfr3-creERT2 and Cx40-creERT2, that efficiently label sinusoidal/transitional and arteriole endothelium respectively in adult marrow, without off-target activity in hematopoietic or perivascular cells. Utilizing an established mouse model in which cre-dependent recombination constitutively-activates MAPK signaling within adult endothelium, we identify arteriole ECs as the driver of MAPK-mediated hematopoietic dysfunction. These results define complementary tamoxifen-inducible creERT2-expressing mouse lines that label functionally-discrete and non-overlapping sinusoidal/transitional and arteriole EC populations in the adult BM, providing a robust toolset to investigate the differential contributions of vascular subtypes in maintaining hematopoietic homeostasis.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA
| | - Pradeep Ramalingam
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA
| | - Agatha Winiarski
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
| | - Michael C Gutkin
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lizabeth Katsnelson
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Cody Carter
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA
| | | | - Anne Eichmann
- Université de Paris Cité, Inserm, PARCC, 75015, Paris, France
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Paris Brain Institute, Université Pierre et Marie Curie Paris, 06 UMRS1127, Sorbonne Université, Paris Brain Institute, Paris, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13288, Marseille, France
| | - Jason M Butler
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, 32610, USA.
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Division of Hematology/Oncology, University of Florida, 1333 Center Drive, BH-022D, Gainesville, FL, 32610, USA.
| |
Collapse
|
24
|
Li H, House J, Nichols C, Gruzdev A, Ward J, Li JL, Wyss A, Haque E, Edin M, Elmore S, Mahler B, Degraff L, Shi M, Zeldin D, London S. Adam19 Deficiency Impacts Pulmonary Function: Human GWAS Follow-up in Mouse. RESEARCH SQUARE 2024:rs.3.rs-4207678. [PMID: 38659817 PMCID: PMC11042436 DOI: 10.21203/rs.3.rs-4207678/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Purpose Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. Methods We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Contrary to prior publications, the KO was not neonatal lethal. Thus, we phenotyped the Adam19 KO. Results KO mice had lower body weight and shorter tibial length than wild type (WT). Dual-energy X-ray Absorptiometry indicated lower soft weight, fat weight, and bone mineral content in KO mice. In lung function analyses using flexiVent, compared to WT, Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. Conclusion Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.
Collapse
Affiliation(s)
- Huiling Li
- National Institute of Environmental Health Sciences
| | - John House
- National Institute of Environmental Health Sciences
| | | | | | - James Ward
- National Institute of Environmental Health Sciences
| | | | | | - Ezazul Haque
- National Institute of Environmental Health Sciences
| | - Matthew Edin
- National Institute of Environmental Health Sciences
| | - Susan Elmore
- National Institute of Environmental Health Sciences
| | - Beth Mahler
- National Institute of Environmental Health Sciences
| | | | - Min Shi
- National Institute of Environmental Health Sciences
| | | | | |
Collapse
|
25
|
Willows JW, Alshahal Z, Story NM, Alves MJ, Vidal P, Harris H, Rodrigo R, Stanford KI, Peng J, Reifsnyder PC, Harrison DE, David Arnold W, Townsend KL. Contributions of mouse genetic strain background to age-related phenotypes in physically active HET3 mice. Neurobiol Aging 2024; 136:58-69. [PMID: 38325031 DOI: 10.1016/j.neurobiolaging.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
We assessed aging hallmarks in skin, muscle, and adipose in the genetically diverse HET3 mouse, and generated a broad dataset comparing these to individual animal diagnostic SNPs from the 4 founding inbred strains of the HET3 line. For middle- and old-aged HET3 mice, we provided running wheel exercise to ensure our observations were not purely representative of sedentary animals, but age-related phenotypes were not improved with running wheel activity. Adipose tissue fibrosis, peripheral neuropathy, and loss of neuromuscular junction integrity were consistent phenotypes in older-aged HET3 mice regardless of physical activity, but aspects of these phenotypes were moderated by the SNP% contributions of the founding strains for the HET3 line. Taken together, the genetic contribution of founder strain SNPs moderated age-related phenotypes in skin and muscle innervation and were dependent on biological sex and chronological age. However, there was not a single founder strain (BALB/cJ, C57BL/6J, C3H/HeJ, DBA/2J) that appeared to drive more protection or disease-risk across aging in this mouse line, but genetic diversity in general was more protective.
Collapse
Affiliation(s)
- Jake W Willows
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Zahra Alshahal
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Naeemah M Story
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Michele J Alves
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Hallie Harris
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Rochelle Rodrigo
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Juan Peng
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | | | - W David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Blanchard MW, Sigmon JS, Brennan J, Ahulamibe C, Allen ME, Baric RS, Bell TA, Farrington J, Ciavatta D, Cruz Cisneros M, Drushal M, Ferris MT, Fry R, Gaines C, Gu B, Heise MT, Hodges RA, Kafri T, Lynch R, Magnuson T, Miller D, Murphy CEY, Nguyen DT, Noll KE, Proulx M, Sassetti C, Shaw GD, Simon JM, Smith C, Styblo M, Tarantino L, Woo J, Pardo Manuel de Villena F. The Updated Mouse Universal Genotyping Array Bioinformatic Pipeline Improves Genetic QC in Laboratory Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582794. [PMID: 38464063 PMCID: PMC10925293 DOI: 10.1101/2024.02.29.582794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The MiniMUGA genotyping array is a popular tool for genetic QC of laboratory mice and genotyping of samples from most types of experimental crosses involving laboratory strains, particularly for reduced complexity crosses. The content of the production version of the MiniMUGA array is fixed; however, there is the opportunity to improve array's performance and the associated report's usefulness by leveraging thousands of samples genotyped since the initial description of MiniMUGA in 2020. Here we report our efforts to update and improve marker annotation, increase the number and the reliability of the consensus genotypes for inbred strains and increase the number of constructs that can reliably be detected with MiniMUGA. In addition, we have implemented key changes in the informatics pipeline to identify and quantify the contribution of specific genetic backgrounds to the makeup of a given sample, remove arbitrary thresholds, include the Y Chromosome and mitochondrial genome in the ideogram, and improve robust detection of the presence of commercially available substrains based on diagnostic alleles. Finally, we have made changes to the layout of the report, to simplify the interpretation and completeness of the analysis and added a table summarizing the ideogram. We believe that these changes will be of general interest to the mouse research community and will be instrumental in our goal of improving the rigor and reproducibility of mouse-based biomedical research.
Collapse
|
27
|
Cruz Cisneros MC, Anderson EJ, Hampton BK, Parotti B, Sarkar S, Taft-Benz S, Bell TA, Blanchard M, Dillard JA, Dinnon KH, Hock P, Leist SR, Madden EA, Shaw GD, West A, Baric RS, Baxter VK, Pardo-Manuel de Villena F, Heise MT, Ferris MT. Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population. Vaccines (Basel) 2024; 12:103. [PMID: 38276675 PMCID: PMC10821422 DOI: 10.3390/vaccines12010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. However, there is significant individual-to-individual variation in vaccine efficacy due to factors including viral variants, host age, immune status, environmental and host genetic factors. Understanding those determinants driving this variation may inform the development of more broadly protective vaccine strategies. While host genetic factors are known to impact vaccine efficacy for respiratory pathogens such as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. To model the impact of host genetic variation on SARS-CoV-2 vaccine efficacy, while controlling for the impact of non-genetic factors, we used the Diversity Outbred (DO) mouse model. We found that DO mice immunized against SARS-CoV-2 exhibited high levels of variation in vaccine-induced neutralizing antibody responses. While the majority of the vaccinated mice were protected from virus-induced disease, similar to human populations, we observed vaccine breakthrough in a subset of mice. Importantly, we found that this variation in neutralizing antibody, virus-induced disease, and viral titer is heritable, indicating that the DO serves as a useful model system for studying the contribution of genetic variation of both vaccines and disease outcomes.
Collapse
Affiliation(s)
- Marta C. Cruz Cisneros
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
| | - Brea K. Hampton
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Breantié Parotti
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Matthew Blanchard
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Emily A. Madden
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Victoria K. Baxter
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| |
Collapse
|
28
|
Faber JE, Zhang H, Xenakis JG, Bell TA, Hock P, Pardo-Manuel de Villena F, Ferris MT, Rzechorzek W. Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants. J Cereb Blood Flow Metab 2023; 43:1983-2004. [PMID: 37572089 PMCID: PMC10676139 DOI: 10.1177/0271678x231194956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Collateral number in skeletal muscle and intestine of selected high- and low-collateral strains evidenced the same relative abundance as in brain. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. Six additional suggestive QTL (LOD > 4.5) were also identified in CC-wide QTL mapping. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Neuroscience, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - James G Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Wojciech Rzechorzek
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Risemberg EL, Smeekens JM, Cisneros MCC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to peanut-induced oral anaphylaxis in CC027 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557467. [PMID: 37745496 PMCID: PMC10515941 DOI: 10.1101/2023.09.13.557467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, unlike C3H/HeJ (C3H) mice. Objective To determine the genetic basis of orally-induced anaphylaxis to peanut in CC027 mice. Methods A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 and five additional CC strains. Results Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis, and 4% having severe anaphylaxis. A total of eight genetic loci were associated with variation in response to peanut challenge, six associated with anaphylaxis (temperature decrease) and two associated with peanut-specific IgE levels. There were two major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis (thymocyte-expressed molecule involved in selection) gene. Consistent with Themis' described functions, we found that CC027 have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. Conclusion Our results demonstrate a key role for Themis in the orally-reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L. Risemberg
- Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill
- Department of Genetics, UNC Chapel Hill
| | - Johanna M. Smeekens
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - Marta C. Cruz Cisneros
- Department of Genetics, UNC Chapel Hill
- Curriculum in Genetics and Molecular Biology, UNC Chapel Hill
| | - Brea K. Hampton
- Department of Genetics, UNC Chapel Hill
- Curriculum in Genetics and Molecular Biology, UNC Chapel Hill
| | | | | | | | - Kelly Orgel
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - Ginger D. Shaw
- Department of Genetics, UNC Chapel Hill
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill
| | | | - A. Wesley Burks
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - William Valdar
- Department of Genetics, UNC Chapel Hill
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill
| | - Michael D. Kulis
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | | |
Collapse
|
30
|
Chen DD, Molk DM, Palley LS, Jarrell DM. Pinna Edge Biopsy of 7 and 21 Day Old C57BL/6 Mice as a Method for Identification and Genotyping. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:438-448. [PMID: 37751962 PMCID: PMC10597339 DOI: 10.30802/aalas-jaalas-23-000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 07/20/2023] [Indexed: 09/28/2023]
Abstract
Identifying and genotyping mice prior to weaning can be useful for mouse colony management. Mice of an undesired genotype can be identified prior to weaning and removed from further study, resulting in a reduction of housing costs, and labor time. We hypothesized that a pinna edge biopsy (PEB) performed by removing a portion of its edge with scissors is a reliable method for identifying and genotyping mice on postnatal day (PND) 7 consistent with PND 21, weaned mice. The pinnae of 54 C57BL/NCrl6 mice were biopsied on PND 7, and another 54 were biopsied on PND 21. Nine pinna patterns were tested. The accuracy of pattern identification was assessed on PND 7, 14, 21, 30, and 63. The mean times were compared for performing the biopsy on PND 7 and PND 21 mice, and the average time taken to identify the patterns were determined. Weight, milk spot presence, pup rejection, morbidity, and mortality were examined at various time points. During the biopsy, bleeding of the pinna, urination, vocalization, and flinching were assessed. No significant differences were detected in DNA quality, relative DNA quantity, genotyping reliability, or body weight (P ≥ 0.05) between mice biopsied on PND 7 and PND 21. Flinching at the time of PEB was significantly higher in PND 21 mice as compared with PND 7 mice (P < 0.00001). Pinna pattern identification accuracy for mice biopsied on PND 7 and PND 21 were 96% and 98%, respectively. This study validates the use of PEB for simultaneous identification and genotyping of PND 7 mice.
Collapse
Key Words
- ct, cycle threshold
- lv, left vertical
- lh, left horizontal
- lvrv, left and right vertical
- lhrh, left and right horizontal
- lhrv, left horizontal and right vertical
- lvrh, left vertical and right horizontal
- peb, pinna edge biopsy
- pnd, post-natal day
- rv, right vertical
- rh, right horizontal
Collapse
Affiliation(s)
- Diane D Chen
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Denise M Molk
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lori S Palley
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Donna M Jarrell
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
31
|
Beilinson HA, Sevilleja A, Spring J, Benavides F, Beilinson V, Neokosmidis N, Golovkina T. A single dominant locus restricts retrovirus replication in YBR/Ei mice. J Virol 2023; 97:e0068523. [PMID: 37578238 PMCID: PMC10506465 DOI: 10.1128/jvi.00685-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Differential responses to viral infections are influenced by the genetic makeup of the host. Studies of resistance to retroviruses in human populations are complicated due to the inability to conduct proof-of-principle studies. Inbred mouse lines, which have a range of susceptible phenotypes to retroviruses, are an ideal tool to identify and characterize mechanisms of resistance and define their genetic underpinnings. YBR/Ei mice become infected with Mouse Mammary Tumor Virus, a mucosally transmitted murine retrovirus, but eliminate the virus from their pedigrees. Virus elimination correlates with a lack of virus-specific neonatal oral tolerance, which is a major mechanism for blocking the anti-virus response in susceptible mice. Virus control is unrelated to virus-neutralizing antibodies, cytotoxic CD8+ T cells, NK cells, and NK T cells, which are the best characterized mechanisms of resistance to retroviruses. We identified a single, dominant locus that controls the resistance mechanism, which we provisionally named attenuation of virus titers (Avt) and mapped to the distal region of chromosome 18. IMPORTANCE Elucidation of the mechanism that mediates resistance to retroviruses is of fundamental importance to human health, as it will ultimately lead to knowledge of the genetic differences among individuals in susceptibility to microbial infections.
Collapse
Affiliation(s)
- Helen A. Beilinson
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Amanda Sevilleja
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Jessica Spring
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vera Beilinson
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | - Tatyana Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
32
|
Cao X, Lenk GM, Meisler MH. Altered phenotypes due to genetic interaction between the mouse phosphoinositide biosynthesis genes Fig4 and Pip4k2c. G3 (BETHESDA, MD.) 2023; 13:jkad007. [PMID: 36691351 PMCID: PMC10411592 DOI: 10.1093/g3journal/jkad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
Loss-of-function mutations of FIG4 are responsible for neurological disorders in human and mouse that result from reduced abundance of the signaling lipid PI(3,5)P2. In contrast, loss-of-function mutations of the phosphoinositide kinase PIP4K2C result in elevated abundance of PI(3,5)P2. These opposing effects on PI(3,5)P2 suggested that we might be able to compensate for deficiency of FIG4 by reducing expression of PIP4K2C. To test this hypothesis in a whole animal model, we generated triallelic mice with genotype Fig 4-/-, Pip4k2c+/-; these mice are null for Fig 4 and haploinsufficient for Pip4k2c. The neonatal lethality of Fig 4 null mice in the C57BL/6J strain background was rescued by reduced expression of Pip4k2c. The lysosome enlargement characteristic of Fig 4 null cells was also reduced by heterozygous loss of Pip4k2c. The data demonstrate interaction between these two genes, and suggest that inhibition of the kinase PIPK4C2 could be a target for treatment of FIG4 deficiency disorders such as Charcot-Marie-Tooth Type 4J and Yunis-Varón Syndrome.
Collapse
Affiliation(s)
- Xu Cao
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| |
Collapse
|
33
|
Faber JE, Zhang H, Xenakis JG, Bell TA, Hock P, de Villena FPM, Ferris MT, Rzechorzek W. Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542633. [PMID: 37398475 PMCID: PMC10312463 DOI: 10.1101/2023.05.28.542633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.
Collapse
|
34
|
Keele GR. Which mouse multiparental population is right for your study? The Collaborative Cross inbred strains, their F1 hybrids, or the Diversity Outbred population. G3 (BETHESDA, MD.) 2023; 13:jkad027. [PMID: 36735601 PMCID: PMC10085760 DOI: 10.1093/g3journal/jkad027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Multiparental populations (MPPs) encompass greater genetic diversity than traditional experimental crosses of two inbred strains, enabling broader surveys of genetic variation underlying complex traits. Two such mouse MPPs are the Collaborative Cross (CC) inbred panel and the Diversity Outbred (DO) population, which are descended from the same eight inbred strains. Additionally, the F1 intercrosses of CC strains (CC-RIX) have been used and enable study designs with replicate outbred mice. Genetic analyses commonly used by researchers to investigate complex traits in these populations include characterizing how heritable a trait is, i.e. its heritability, and mapping its underlying genetic loci, i.e. its quantitative trait loci (QTLs). Here we evaluate the relative merits of these populations for these tasks through simulation, as well as provide recommendations for performing the quantitative genetic analyses. We find that sample populations that include replicate animals, as possible with the CC and CC-RIX, provide more efficient and precise estimates of heritability. We report QTL mapping power curves for the CC, CC-RIX, and DO across a range of QTL effect sizes and polygenic backgrounds for samples of 174 and 500 mice. The utility of replicate animals in the CC and CC-RIX for mapping QTLs rapidly decreased as traits became more polygenic. Only large sample populations of 500 DO mice were well-powered to detect smaller effect loci (7.5-10%) for highly complex traits (80% polygenic background). All results were generated with our R package musppr, which we developed to simulate data from these MPPs and evaluate genetic analyses from user-provided genotypes.
Collapse
Affiliation(s)
- Gregory R Keele
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
35
|
Cornes BK, Paisie C, Swanzey E, Fields PD, Schile A, Brackett K, Reinholdt LG, Srivastava A. Protein coding variation in the J:ARC and J:DO outbred laboratory mouse stocks provides a molecular basis for distinct research applications. G3 (BETHESDA, MD.) 2023; 13:jkad015. [PMID: 36649207 PMCID: PMC10085793 DOI: 10.1093/g3journal/jkad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Outbred laboratory mice (Mus musculus) are readily available and have high fecundity, making them a popular choice in biomedical research, especially toxicological and pharmacological applications. Direct high throughput genome sequencing (HTS) of these widely used research animals is an important genetic quality control measure that enhances research reproducibility. HTS data have been used to confirm the common origin of outbred stocks and to molecularly define distinct outbred populations. But these data have also revealed unexpected population structure and homozygosity in some populations; genetic features that emerge when outbred stocks are not properly maintained. We used exome sequencing to discover and interrogate protein-coding variation in a newly established population of Swiss-derived outbred stock (J:ARC) that is closely related to other, commonly used CD-1 outbred populations. We used these data to describe the genetic architecture of the J:ARC population including heterozygosity, minor allele frequency, LD decay, and we defined novel, protein-coding sequence variation. These data reveal the expected genetic architecture for a properly maintained outbred stock and provide a basis for the on-going genetic quality control. We also compared these data to protein-coding variation found in a multiparent outbred stock, the Diversity Outbred (J:DO). We found that the more recently derived, multiparent outbred stock has significantly higher interindividual variability, greater overall genetic variation, higher heterozygosity, and fewer novel variants than the Swiss-derived J:ARC stock. However, among the novel variants found in the J:DO stock, significantly more are predicted to be protein-damaging. The fact that individuals from this population can tolerate a higher load of potentially damaging variants highlights the buffering effects of allelic diversity and the differing selective pressures in these stocks. While both outbred stocks offer significant individual heterozygosity, our data provide a molecular basis for their intended applications, where the J:DO are best suited for studies requiring maximum, population-level genetic diversity and power for mapping, while the J:ARC are best suited as a general-purpose outbred stock with robust fecundity, relatively low allelic diversity, and less potential for extreme phenotypic variability.
Collapse
Affiliation(s)
- Belinda K Cornes
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Carolyn Paisie
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Emily Swanzey
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Peter D Fields
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Andrew Schile
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Kelly Brackett
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | | | - Anuj Srivastava
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| |
Collapse
|
36
|
Zhang T, Keele GR, Gyuricza IG, Vincent M, Brunton C, Bell TA, Hock P, Shaw GD, Munger SC, de Villena FPM, Ferris MT, Paulo JA, Gygi SP, Churchill GA. Multi-omics analysis identifies drivers of protein phosphorylation. Genome Biol 2023; 24:52. [PMID: 36944993 PMCID: PMC10031968 DOI: 10.1186/s13059-023-02892-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Phosphorylation of proteins is a key step in the regulation of many cellular processes including activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide (phosphopeptide) is determined by the abundance of its parent protein and the proportion of target sites that are phosphorylated. RESULTS We quantified phosphopeptides, proteins, and transcripts in heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain panel. We mapped ~700 phosphorylation quantitative trait loci (phQTL) across the three tissues and applied genetic mediation analysis to identify causal drivers of phosphorylation. We identified kinases, phosphatases, cytokines, and other factors, including both known and potentially novel interactions between target proteins and genes that regulate site-specific phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 (PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ mouse, a polygenic model of obesity and type 2 diabetes. CONCLUSIONS Together, this integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to identify regulators of protein phosphorylation. The data generated in this study provides a resource for further exploration.
Collapse
Affiliation(s)
- Tian Zhang
- Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | | | | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
37
|
Identification of collaborative cross mouse strains permissive to Salmonella enterica serovar Typhi infection. Sci Rep 2023; 13:393. [PMID: 36624251 PMCID: PMC9829673 DOI: 10.1038/s41598-023-27400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica serovar Typhi is the causative agent of typhoid fever restricted to humans and does not replicate in commonly used inbred mice. Genetic variation in humans is far greater and more complex than that in a single inbred strain of mice. The Collaborative Cross (CC) is a large panel of recombinant inbred strains which has a wider range of genetic diversity than laboratory inbred mouse strains. We found that the CC003/Unc and CC053/Unc strains are permissive to intraperitoneal but not oral route of S. Typhi infection and show histopathological changes characteristic of human typhoid. These CC strains are immunocompetent, and immunization induces antigen-specific responses that can kill S. Typhi in vitro and control S. Typhi in vivo. Our results indicate that CC003/Unc and CC053/Unc strains can help identify the genetic basis for typhoid susceptibility, S. Typhi virulence mechanism(s) in vivo, and serve as a preclinical mammalian model system to identify effective vaccines and therapeutics strategies.
Collapse
|
38
|
Lintott LG, Nutter LMJ. Genetic and Molecular Quality Control of Genetically Engineered Mice. Methods Mol Biol 2023; 2631:53-101. [PMID: 36995664 DOI: 10.1007/978-1-0716-2990-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genetically engineered mice are used as avatars to understand mammalian gene function and develop therapies for human disease. During genetic modification, unintended changes can occur, and these changes may result in misassigned gene-phenotype relationships leading to incorrect or incomplete experimental interpretations. The types of unintended changes that may occur depend on the allele type being made and the genetic engineering approach used. Here we broadly categorize allele types as deletions, insertions, base changes, and transgenes derived from engineered embryonic stem (ES) cells or edited mouse embryos. However, the methods we describe can be adapted to other allele types and engineering strategies. We describe the sources and consequ ences of common unintended changes and best practices for detecting both intended and unintended changes by screening and genetic and molecular quality control (QC) of chimeras, founders, and their progeny. Employing these practices, along with careful allele design and good colony management, will increase the chance that investigations using genetically engineered mice will produce high-quality reproducible results, to enable a robust understanding of gene function, human disease etiology, and therapeutic development.
Collapse
Affiliation(s)
- Lauri G Lintott
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada.
- The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
39
|
Yoshiki A, Ballard G, Perez AV. Genetic quality: a complex issue for experimental study reproducibility. Transgenic Res 2022; 31:413-430. [PMID: 35751794 PMCID: PMC9489590 DOI: 10.1007/s11248-022-00314-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.
Collapse
Affiliation(s)
- Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, 3050074, Japan.
| | - Gregory Ballard
- Comparative Medicine and Quality, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
40
|
Abstract
Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to severe acute respiratory syndrome coronavirus (SARS-CoV) disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6, that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2, and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species. IMPORTANCE Host genetic variation is an important determinant that predicts disease outcomes following infection. In the setting of highly pathogenic coronavirus infections genetic determinants underlying host susceptibility and mortality remain unclear. To elucidate the role of host genetic variation on sarbecovirus pathogenesis and disease outcomes, we utilized the Collaborative Cross (CC) mouse genetic reference population as a model to identify susceptibility alleles to SARS-CoV and SARS-CoV-2 infections. Our findings reveal that a multitrait loci found in chromosome 9 is an important regulator of sarbecovirus pathogenesis in mice. Within this locus, we identified and validated CCR9 and CXCR6 as important regulators of host disease outcomes. Specifically, both CCR9 and CXCR6 are protective against severe SARS-CoV, SARS-CoV-2, and SARS-related HKU3 virus disease in mice. This chromosome 9 multitrait locus may be important to help identify genes that regulate coronavirus disease outcomes in humans.
Collapse
|
41
|
Bourdon M, Montagutelli X. stuart: an R package for the curation of SNP genotypes from experimental crosses. G3 GENES|GENOMES|GENETICS 2022; 12:6674511. [PMID: 36000885 PMCID: PMC9635635 DOI: 10.1093/g3journal/jkac219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022]
Abstract
Genetic mapping in 2-generation crosses requires genotyping, usually performed with single nucleotide polymorphism markers arrays which provide high-density genetic information. However, genetic analysis on raw genotypes can lead to spurious or unreliable results due to defective single nucleotide polymorphism assays or wrong genotype interpretation. Here, we introduce stuart, an open-source R package, which analyzes raw genotyping data to filter single nucleotide polymorphism markers based on informativeness, Mendelian inheritance pattern, and consistency with parental genotypes. The functions of this package provide a curation pipeline and formatting adequate for genetic analysis with the R/qtl package. stuart is available with detailed documentation from https://gitlab.pasteur.fr/mouselab/stuart/.
Collapse
Affiliation(s)
- Marie Bourdon
- Mouse Genetics Laboratory, Institut Pasteur, Université Paris Cité , F-75015 Paris, France
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Institut Pasteur, Université Paris Cité , F-75015 Paris, France
| |
Collapse
|
42
|
Valiskova B, Gregorova S, Lustyk D, Šimeček P, Jansa P, Forejt J. Genic and Chromosomal Components of Prdm9-Driven Hybrid Male Sterility in Mice (Mus musculus). Genetics 2022; 222:6655690. [PMID: 35924978 PMCID: PMC9434306 DOI: 10.1093/genetics/iyac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Hybrid sterility contributes to speciation by preventing gene flow between related taxa. Prdm9, the first and only hybrid male sterility (HMS) gene known in vertebrates, predetermines the sites of recombination between homologous chromosomes and their synapsis in early meiotic prophase. The asymmetric binding of PRDM9 to heterosubspecific homologs of Mus m. musculus x Mus m. domesticus F1 hybrids and increase of PRDM9-independent DNA double-strand break (DSB) hotspots results in difficult to repair DSBs, incomplete synapsis of homologous chromosomes and meiotic arrest at the first meiotic prophase. Here we show that Prdm9 behaves as a major HMS gene in mice outside the Mus m. musculus x Mus m. domesticus F1 hybrids, in the genomes composed of Mus m. castaneus and Mus m. musculus chromosomes segregating on the Mus m. domesticus background. The Prdm9cst/dom2 (castaneus/domesticus) allelic combination secures meiotic synapsis, testes weight and sperm count within physiological limits, while the Prdm9msc1/dom2 (musculus/domesticus) males show a range of fertility impairment. Out of five quantitative trait loci contributing to the Prdm9msc1/dom2-related infertility, four control either meiotic synapsis or fertility phenotypes and one controls both, synapsis and fertility. Whole-genome genotyping of individual chromosomes showed preferential involvement of nonrecombinant musculus chromosomes in asynapsis in accordance with the chromosomal character of HMS. Moreover, we show that the overall asynapsis rate can be estimated solely from the genotype of individual males by scoring the effect of nonrecombinant musculus chromosomes. Prdm9-controlled HMS represents an example of genetic architecture of HMS consisting of genic and chromosomal components.
Collapse
Affiliation(s)
- Barbora Valiskova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Sona Gregorova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Diana Lustyk
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Petr Šimeček
- Central Laboratory of Bioinformatics, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Petr Jansa
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Jiří Forejt
- Corresponding author: Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Průmyslová 595, Vestec 25250, Czech Republic.
| |
Collapse
|
43
|
Beierle JA, Yao EJ, Goldstein SI, Lynch WB, Scotellaro JL, Shah AA, Sena KD, Wong AL, Linnertz CL, Averin O, Moody DE, Reilly CA, Peltz G, Emili A, Ferris MT, Bryant CD. Zhx2 Is a Candidate Gene Underlying Oxymorphone Metabolite Brain Concentration Associated with State-Dependent Oxycodone Reward. J Pharmacol Exp Ther 2022; 382:167-180. [PMID: 35688478 PMCID: PMC9341249 DOI: 10.1124/jpet.122.001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Understanding the pharmacogenomics of opioid metabolism and behavior is vital to therapeutic success, as mutations can dramatically alter therapeutic efficacy and addiction liability. We found robust, sex-dependent BALB/c substrain differences in oxycodone behaviors and whole brain concentration of oxycodone metabolites. BALB/cJ females showed robust state-dependent oxycodone reward learning as measured via conditioned place preference when compared with the closely related BALB/cByJ substrain. Accordingly, BALB/cJ females also showed a robust increase in brain concentration of the inactive metabolite noroxycodone and the active metabolite oxymorphone compared with BALB/cByJ mice. Oxymorphone is a highly potent, full agonist at the mu opioid receptor that could enhance drug-induced interoception and state-dependent oxycodone reward learning. Quantitative trait locus (QTL) mapping in a BALB/c F2 reduced complexity cross revealed one major QTL on chromosome 15 underlying brain oxymorphone concentration that explained 32% of the female variance. BALB/cJ and BALB/cByJ differ by fewer than 10,000 variants, which can greatly facilitate candidate gene/variant identification. Hippocampal and striatal cis-expression QTL (eQTL) and exon-level eQTL analysis identified Zhx2, a candidate gene coding for a transcriptional repressor with a private BALB/cJ retroviral insertion that reduces Zhx2 expression and sex-dependent dysregulation of cytochrome P450 enzymes. Whole brain proteomics corroborated the Zhx2 eQTL and identified upregulated CYP2D11 that could increase brain oxymorphone in BALB/cJ females. To summarize, Zhx2 is a highly promising candidate gene underlying brain oxycodone metabolite levels. Future studies will validate Zhx2 and its site of action using reciprocal gene editing and tissue-specific viral manipulations in BALB/c substrains. SIGNIFICANCE STATEMENT: Our findings show that genetic variation can result in sex-specific alterations in whole brain concentration of a bioactive opioid metabolite after oxycodone administration, reinforcing the need for sex as a biological factor in pharmacogenomic studies. The cooccurrence of female-specific increased oxymorphone and state-dependent reward learning suggests that this minor yet potent and efficacious metabolite of oxycodone could increase opioid interoception and drug-cue associative learning of opioid reward, which has implications for cue-induced relapse of drug-seeking behavior and for precision pharmacogenetics.
Collapse
Affiliation(s)
- Jacob A Beierle
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Emily J Yao
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Stanley I Goldstein
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - William B Lynch
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Julia L Scotellaro
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Anyaa A Shah
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Katherine D Sena
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Alyssa L Wong
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Colton L Linnertz
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Olga Averin
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - David E Moody
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Christopher A Reilly
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Gary Peltz
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Andrew Emili
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Martin T Ferris
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Camron D Bryant
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| |
Collapse
|
44
|
Miglioranza Scavuzzi B, van Drongelen V, Kaur B, Fox JC, Liu J, Mesquita-Ferrari RA, Kahlenberg JM, Farkash EA, Benavides F, Miller FW, Sawalha AH, Holoshitz J. The lupus susceptibility allele DRB1*03:01 encodes a disease-driving epitope. Commun Biol 2022; 5:751. [PMID: 35902632 PMCID: PMC9334592 DOI: 10.1038/s42003-022-03717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 07/14/2022] [Indexed: 12/14/2022] Open
Abstract
The HLA-DRB1*03:01 allele is a major genetic risk factor in systemic lupus erythematosus (SLE), but the mechanistic basis of the association is unclear. Here we show that in the presence of interferon gamma (IFN-γ), a short DRB1*03:01-encoded allelic epitope activates a characteristic lupus transcriptome in mouse and human macrophages. It also triggers a cascade of SLE-associated cellular aberrations, including endoplasmic reticulum stress, unfolded protein response, mitochondrial dysfunction, necroptotic cell death, and production of pro-inflammatory cytokines. Parenteral administration of IFN-γ to naïve DRB1*03:01 transgenic mice causes increased serum levels of anti-double stranded DNA antibodies, glomerular immune complex deposition and histopathological renal changes that resemble human lupus nephritis. This study provides evidence for a noncanonical, antigen presentation-independent mechanism of HLA-disease association in SLE and could lay new foundations for our understanding of key molecular mechanisms that trigger and propagate this devastating autoimmune disease.
Collapse
Affiliation(s)
| | | | - Bhavneet Kaur
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Jianhua Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | - Evan A Farkash
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Frederick W Miller
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Amr H Sawalha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Departments of Pediatrics and Internal Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
45
|
Elajaili H, Hernandez-Lagunas L, Harris P, Sparagna GC, Jonscher R, Ohlstrom D, Sucharov CC, Bowler RP, Suliman H, Fritz KS, Roede JR, Nozik ES. Extracellular superoxide dismutase (EC-SOD) R213G variant reduces mitochondrial ROS and preserves mitochondrial function in bleomycin-induced lung injury: EC-SOD R213G variant and intracellular redox regulation. ADVANCES IN REDOX RESEARCH 2022; 5:100035. [PMID: 38273965 PMCID: PMC10810244 DOI: 10.1016/j.arres.2022.100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Extracellular superoxide dismutase (EC-SOD) is highly expressed in the lung and vasculature. A common human single nucleotide polymorphism (SNP) in the matrix binding region of EC-SOD leads to a single amino acid substitution, R213G, and alters EC-SOD tissue binding affinity. The change in tissue binding affinity redistributes EC-SOD from tissue to extracellular fluids. Mice (R213G mice) expressing a knock-in of this EC-SOD SNP exhibit elevated plasma and reduced lung EC-SOD content and activity and are protected against bleomycin-induced lung injury and inflammation. It is unknown how the redistribution of EC-SOD alters site-specific redox-regulated molecules relevant for protection. In this study, we tested the hypothesis that the change in the local EC-SOD content would influence not only the extracellular redox microenvironment where EC-SOD is localized but also protect the intracellular redox status of the lung. Mice were treated with bleomycin and harvested 7 days post-treatment. Superoxide levels, measured by electron paramagnetic resonance (EPR), were lower in plasma and Bronchoalveolar lavage fluid (BALF) cells in R213G mice compared to wild-type (WT) mice, while lung cellular superoxide levels in R213G mice were not elevated post-bleomycin compared to WT mice despite low lung EC-SOD levels. Lung glutathione redox potential (EhGSSG), determined by HPLC and fluorescence, was more oxidized in WT compared to R213G mice. In R213G mice, lung mitochondrial oxidative stress was reduced shown by mitochondrial superoxide level measured by EPR in lung and the resistance to bleomycin-induced cardiolipin oxidation. Bleomycin treatment suppressed mitochondrial respiration in WT mice. Mitochondrial function was impaired at baseline in R213G mice but did not exhibit further suppression in respiration post-bleomycin. Collectively, the results indicate that R213G variant preserves intracellular redox state and protects mitochondrial function in the setting of bleomycin-induced inflammation.
Collapse
Affiliation(s)
- Hanan Elajaili
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter Harris
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Genevieve C. Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Raleigh Jonscher
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Denis Ohlstrom
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Hagir Suliman
- Departments of Anesthesiology and Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James R. Roede
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eva S. Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
46
|
Delpero M, Arends D, Freiberg A, Brockmann GA, Hesse D. QTL-mapping in the obese Berlin Fat Mouse identifies additional candidate genes for obesity and fatty liver disease. Sci Rep 2022; 12:10471. [PMID: 35729251 PMCID: PMC9213485 DOI: 10.1038/s41598-022-14316-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with liver weight, liver triglycerides, and body weight using the obese BFMI sub-line BFMI861-S1. BFMI861-S1 mice are insulin resistant and store ectopic fat in the liver. In generation 10, 58 males and 65 females of the advanced intercross line (AIL) BFMI861-S1xB6N were phenotyped under a standard diet over 20 weeks. QTL analysis was performed after genotyping with the MiniMUGA Genotyping Array. Whole-genome sequencing and gene expression data of the parental lines was used for the prioritization of positional candidate genes. Three QTLs associated with liver weight, body weight, and subcutaneous adipose tissue (scAT) weight were identified. A highly significant QTL on chromosome (Chr) 1 (157–168 Mb) showed an association with liver weight. A QTL for body weight at 20 weeks was found on Chr 3 (34.1–40 Mb) overlapping with a QTL for scAT weight. In a multiple QTL mapping approach, an additional QTL affecting body weight at 16 weeks was identified on Chr 6 (9.5–26.1 Mb). Considering sequence variants and expression differences, Sec16b and Astn1 were prioritized as top positional candidate genes for the liver weight QTL on Chr 1; Met and Ica1 for the body weight QTL on Chr 6. Interestingly, all top candidate genes have previously been linked with metabolic traits. This study shows once more the power of an advanced intercross line for fine mapping. QTL mapping combined with a detailed prioritization approach allowed us to identify additional and plausible candidate genes linked to metabolic traits in the BFMI861-S1xB6N AIL. By reidentifying known candidate genes in a different crossing population the causal link with specific traits is underlined and additional evidence is given for further investigations.
Collapse
Affiliation(s)
- Manuel Delpero
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Danny Arends
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Aimée Freiberg
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Gudrun A Brockmann
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Deike Hesse
- Department for Crop and Animal Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität Zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| |
Collapse
|
47
|
Chekuri A, Logan EM, Krauson AJ, Salani M, Ackerman S, Kirchner EG, Bolduc JM, Wang X, Dietrich P, Dragatsis I, Vandenberghe LH, Slaugenhaupt SA, Morini E. Selective retinal ganglion cell loss and optic neuropathy in a humanized mouse model of familial dysautonomia. Hum Mol Genet 2022; 31:1776-1787. [PMID: 34908112 PMCID: PMC9169455 DOI: 10.1093/hmg/ddab359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease caused by a splicing mutation in the gene encoding Elongator complex protein 1 (ELP1, also known as IKBKAP). This mutation results in tissue-specific skipping of exon 20 with a corresponding reduction of ELP1 protein, predominantly in the central and peripheral nervous system. Although FD patients have a complex neurological phenotype caused by continuous depletion of sensory and autonomic neurons, progressive visual decline leading to blindness is one of the most problematic aspects of the disease, as it severely affects their quality of life. To better understand the disease mechanism as well as to test the in vivo efficacy of targeted therapies for FD, we have recently generated a novel phenotypic mouse model, TgFD9; IkbkapΔ20/flox. This mouse exhibits most of the clinical features of the disease and accurately recapitulates the tissue-specific splicing defect observed in FD patients. Driven by the dire need to develop therapies targeting retinal degeneration in FD, herein, we comprehensively characterized the progression of the retinal phenotype in this mouse, and we demonstrated that it is possible to correct ELP1 splicing defect in the retina using the splicing modulator compound (SMC) BPN-15477.
Collapse
Affiliation(s)
- Anil Chekuri
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Emily M Logan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Aram J Krauson
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sophie Ackerman
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Emily G Kirchner
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Jessica M Bolduc
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Xia Wang
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Schäfer A, Leist SR, Gralinski LE, Martinez DR, Winkler ES, Okuda K, Hawkins PE, Gully KL, Graham RL, Scobey DT, Bell TA, Hock P, Shaw GD, Loome JF, Madden EA, Anderson E, Baxter VK, Taft-Benz SA, Zweigart MR, May SR, Dong S, Clark M, Miller DR, Lynch RM, Heise MT, Tisch R, Boucher RC, Pardo Manuel de Villena F, Montgomery SA, Diamond MS, Ferris MT, Baric RS. A Multitrait Locus Regulates Sarbecovirus Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.01.494461. [PMID: 35677067 PMCID: PMC9176644 DOI: 10.1101/2022.06.01.494461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to SARS-CoV disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse Chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6 that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2 and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species.
Collapse
|
49
|
Gaines CH, Schoenrock SA, Farrington J, Lee DF, Aponte-Collazo LJ, Shaw GD, Miller DR, Ferris MT, Pardo-Manuel de Villena F, Tarantino LM. Cocaine-Induced Locomotor Activation Differs Across Inbred Mouse Substrains. Front Psychiatry 2022; 13:800245. [PMID: 35599758 PMCID: PMC9120424 DOI: 10.3389/fpsyt.2022.800245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cocaine use disorders (CUD) are devastating for affected individuals and impose a significant societal burden, but there are currently no FDA-approved therapies. The development of novel and effective treatments has been hindered by substantial gaps in our knowledge about the etiology of these disorders. The risk for developing a CUD is influenced by genetics, the environment and complex interactions between the two. Identifying specific genes and environmental risk factors that increase CUD risk would provide an avenue for the development of novel treatments. Rodent models of addiction-relevant behaviors have been a valuable tool for studying the genetics of behavioral responses to drugs of abuse. Traditional genetic mapping using genetically and phenotypically divergent inbred mice has been successful in identifying numerous chromosomal regions that influence addiction-relevant behaviors, but these strategies rarely result in identification of the causal gene or genetic variant. To overcome this challenge, reduced complexity crosses (RCC) between closely related inbred mouse strains have been proposed as a method for rapidly identifying and validating functional variants. The RCC approach is dependent on identifying phenotypic differences between substrains. To date, however, the study of addiction-relevant behaviors has been limited to very few sets of substrains, mostly comprising the C57BL/6 lineage. The present study expands upon the current literature to assess cocaine-induced locomotor activation in 20 inbred mouse substrains representing six inbred strain lineages (A/J, BALB/c, FVB/N, C3H/He, DBA/2 and NOD) that were either bred in-house or supplied directly by a commercial vendor. To our knowledge, we are the first to identify significant differences in cocaine-induced locomotor response in several of these inbred substrains. The identification of substrain differences allows for the initiation of RCC populations to more rapidly identify specific genetic variants associated with acute cocaine response. The observation of behavioral profiles that differ between mice generated in-house and those that are vendor-supplied also presents an opportunity to investigate the influence of environmental factors on cocaine-induced locomotor activity.
Collapse
Affiliation(s)
- Christiann H. Gaines
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah A. Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph Farrington
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David F. Lee
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lucas J. Aponte-Collazo
- Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ginger D. Shaw
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Darla R. Miller
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Martin T. Ferris
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa M. Tarantino
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
50
|
Mortazavi M, Ren Y, Saini S, Antaki D, St. Pierre CL, Williams A, Sohni A, Wilkinson MF, Gymrek M, Sebat J, Palmer AA. SNPs, short tandem repeats, and structural variants are responsible for differential gene expression across C57BL/6 and C57BL/10 substrains. CELL GENOMICS 2022; 2:100102. [PMID: 35720252 PMCID: PMC9205302 DOI: 10.1016/j.xgen.2022.100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Mouse substrains are an invaluable model for understanding disease. We compared C57BL/6J, which is the most commonly used inbred mouse strain, with eight C57BL/6 and five C57BL/10 closely related inbred substrains. Whole-genome sequencing and RNA-sequencing analysis yielded 352,631 SNPs, 109,096 indels, 150,344 short tandem repeats (STRs), 3,425 structural variants (SVs), and 2,826 differentially expressed genes (DE genes) among these 14 strains; 312,981 SNPs (89%) distinguished the B6 and B10 lineages. These SNPs were clustered into 28 short segments that are likely due to introgressed haplotypes rather than new mutations. Outside of these introgressed regions, we identified 53 SVs, protein-truncating SNPs, and frameshifting indels that were associated with DE genes. Our results can be used for both forward and reverse genetic approaches and illustrate how introgression and mutational processes give rise to differences among these widely used inbred substrains.
Collapse
Affiliation(s)
- Milad Mortazavi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Yangsu Ren
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Shubham Saini
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Danny Antaki
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Celine L. St. Pierre
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - April Williams
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Melissa Gymrek
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine and Pediatrics, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|