1
|
Burd BS, Mussagy CU, Bebber C, Sant'Ana Pegorin Brasil G, Dos Santos LS, Guerra NB, Persinoti GF, Jucaud V, Goldbeck R, Herculano RD. Can the insects Galleria mellonella and Tenebrio molitor be the future of plastic biodegradation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178879. [PMID: 40022971 DOI: 10.1016/j.scitotenv.2025.178879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
Plastics have been an integral part of human lives, enhancing the functionality and safety of many everyday products, contributing significantly to our overall well-being. However, petroleum-based plastics can take hundreds or even thousands of years to decompose, resulting in an unprecedented plastic waste accumulation in the environment. Widely used conventional plastic disposal methods as landfilling and incineration are also environmentally harmful, frequently leading to soil/water contamination and the release of microplastics. To overcome these limitations, researchers have been investigating novel sustainable alternatives for plastic waste management, such as the use of microorganisms, microbial-based enzymes, and, more recently, some insect larvae, being Galleria mellonella and Tenebrio molitor the most promising ones. In this review, we explore different methods of plastic waste disposal focusing on recent discoveries regarding biological plastic degradation using insects as alternative methods. We also discuss the plastic degradation mechanisms employed by G. mellonella and T. molitor larvae known so far, as salivary enzymes and the pool of microorganisms in their gut. Finally, this review highlights key challenges in plastic biodegradation, such as standardization and experimental comparability, while proposing innovative perspectives like using insects as bioreactors and exploring unexplored research directions.
Collapse
Affiliation(s)
- Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), 55 Prof Francisco Degni Street, 14800-900 Araraquara, SP, Brazil.
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Camila Bebber
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil
| | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), 55 Prof Francisco Degni Street, 14800-900 Araraquara, SP, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo, University (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Nayrim Brizuela Guerra
- School of Science, São Paulo State University (UNESP), 14-01 Eng. Luiz Edmundo Carrijo Coube, Avenue, Bauru, SP, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas, UNICAMP Monteiro Lobato no. 80, Campinas, São Paulo 13083-862, Brazil
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
2
|
Marena GD, Thomaz L, Nosanchuk JD, Taborda CP. Galleria mellonella as an Invertebrate Model for Studying Fungal Infections. J Fungi (Basel) 2025; 11:157. [PMID: 39997451 PMCID: PMC11856299 DOI: 10.3390/jof11020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025] Open
Abstract
The incidence of fungal infections continues to increase and one of the factors responsible for these high rates is the emergence of multi-resistant species, hospitalizations, inappropriate or prolonged use of medications, and pandemics, such as the ongoing HIV/AIDS pandemic. The recent pandemic caused by the severe acute respiratory syndrome virus (SARS-CoV-2) has led to a significant increase in fungal infections, especially systemic mycoses caused by opportunistic fungi. There is a growing and urgent need to better understand how these microorganisms cause infection and develop resistance as well as to develop new therapeutic strategies to combat the diverse diseases caused by fungi. Non-mammalian hosts are increasingly used as alternative models to study microbial infections. Due to their low cost, simplicity of care, conserved innate immunity and reduced ethical issues, the greater wax moth Galleria mellonella is an excellent model host for studying fungal infections and it is currently widely used to study fungal pathogenesis and develop innovative strategies to mitigate the mycoses studied. G. mellonella can grow at 37 °C, which is similar to the mammalian temperature, and the anatomy of the larvae allows researchers to easily deliver pathogens, biological products, compounds and drugs. The aim of this review is to describe how G. mellonella is being used as a model system to study fungal infections as well as the importance of this model in evaluating the antifungal profile of potential drug candidates or new therapies against fungi.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Institute of Biomedical Science, Department of Microbiology, University of São Paulo (ICB II—USP), São Paulo 05508-900, Brazil;
| | - Luciana Thomaz
- Institute of Biomedical Science, Department of Microbiology, University of São Paulo (ICB II—USP), São Paulo 05508-900, Brazil;
| | - Joshua Daniel Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Carlos Pelleschi Taborda
- Institute of Biomedical Science, Department of Microbiology, University of São Paulo (ICB II—USP), São Paulo 05508-900, Brazil;
- Laboratory of Medical Mycology, Institute of Tropical Medicine of São Paulo/LIM53, School of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| |
Collapse
|
3
|
Tava V, Reséndiz-Sharpe A, Vanhoffelen E, Saracchi M, Cortesi P, Lagrou K, Velde GV, Pasquali M. Fusarium musae Infection in Animal and Plant Hosts Confirms Its Cross-Kingdom Pathogenicity. J Fungi (Basel) 2025; 11:90. [PMID: 39997383 PMCID: PMC11856682 DOI: 10.3390/jof11020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Fusarium musae is a pathogen belonging to the Fusarium fujikuroi species complex, isolated from both banana fruits and immunocompromised patients, therefore hypothesized to be a cross-kingdom pathogen. We aimed to characterize F. musae infection in plant and animal hosts to prove its cross-kingdom pathogenicity. Therefore, we developed two infection models, one in banana and one in Galleria mellonella larvae, as a human proxy for the investigation of cross-kingdom pathogenicity of F. musae, along with accurate disease indexes effective to differentiate infection degrees in animal and plant hosts. We tested a worldwide collection of F. musae strains isolated both from banana fruits and human patients, and we provided the first experimental proof of the ability of all strains of F. musae to cause significant disease in banana fruits, as well as in G. mellonella. Thereby, we confirmed that F. musae can be considered a cross-kingdom pathogen. We, thus, provide a solid basis and toolbox for the investigation of the host-pathogen interactions of F. musae with its hosts.
Collapse
Affiliation(s)
- Valeria Tava
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | | | - Eliane Vanhoffelen
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| |
Collapse
|
4
|
Eddoubaji Y, Aldeia C, Heg D, Campos-Madueno EI, Endimiani A. Refining the gut colonization Zophobas morio larvae model using an oral administration of multidrug-resistant Escherichia coli. J Glob Antimicrob Resist 2024; 39:240-246. [PMID: 39491644 DOI: 10.1016/j.jgar.2024.10.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND The darkling beetle Zophobas morio can be implemented as an alternative in vivo model to study different intestinal colonization aspects. Recently, we showed that its larvae can be colonized by multidrug-resistant Escherichia coli strains administered via contaminated food (for 7 d) for a total experimental duration of 28 d. METHOD In the present work, we aimed to shorten the model to 14 d (T14) by administering the previously used CTX-M-15 extended-spectrum β-lactamase-producing ST131 E. coli strain Ec-4901.28 via a single oral administration (5 µL dose of 108 CFU/mL), using a blunt 26s-gauge needle connected to a 250 μL gastight syringe. Force-feeding was performed either without or with (larvae placed on ice for 10 min before injection) anaesthesia. In addition, phage-treated larvae were orally injected with 10 µL of INTESTI bacteriophage cocktail (∼105-6 PFU/mL) on d 4 (T4) and 7 (T7). RESULTS Growth curve analyses showed that, while larvae rapidly became colonized with Ec-4901.28 (T1, ∼106-7 CFU/mL), only those anaesthetized maintained a high bacterial load (∼102-3 vs. ∼105-6 CFU/mL) and survival rate (76% vs. 99%; P < 0.001) by T14. Moreover, bacteriophage administration to anaesthetized larvae significantly reduced the bacterial count of INTESTI-susceptible Ec-4901.28 at T14 (5.17 × 105 vs. 2.26 × 104, for non-treated and phage-treated larvae, respectively; P = 0.04). CONCLUSIONS The methodological refinements applied to establish the intestinal colonization model simplify the use of Z. morio larvae, facilitate prompt evaluation of novel decolonization approaches and reduce experiments involving vertebrate animals in accordance with the Replacement, Reduction and Refinement principles.
Collapse
Affiliation(s)
- Yasmine Eddoubaji
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Claudia Aldeia
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Dik Heg
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Sousa M, Magalhães R, Ferreira V, Teixeira P. Current methodologies available to evaluate the virulence potential among Listeria monocytogenes clonal complexes. Front Microbiol 2024; 15:1425437. [PMID: 39493856 PMCID: PMC11528214 DOI: 10.3389/fmicb.2024.1425437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans, the severity of which depends on multiple factors, including intrinsic characteristics of the affected individuals and the pathogen itself. Additionally, emerging evidence suggests that epigenetic modifications may also modulate host susceptibility to infection. Therefore, different clinical outcomes can be expected, ranging from self-limiting gastroenteritis to severe central nervous system and maternal-neonatal infections, and bacteremia. Furthermore, L. monocytogenes is a genetically and phenotypically diverse species, resulting in a large variation in virulence potential between strains. Multilocus sequence typing (MLST) has been widely used to categorize the clonal structure of bacterial species and to define clonal complexes (CCs) of genetically related isolates. The combination of MLST and epidemiological data allows to distinguish hypervirulent CCs, which are notably more prevalent in clinical cases and typically associated with severe forms of the disease. Conversely, other CCs, termed hypovirulent, are predominantly isolated from food and food processing environments and are associated with the occurrence of listeriosis in immunosuppressed individuals. Reports of genetic traits associated with this diversity have been described. The Food and Agriculture Organization (FAO) is encouraging the search for virulence biomarkers to rapidly identify the main strains of concern to reduce food waste and economical losses. The aim of this review is to comprehensively collect, describe and discuss the methodologies used to discriminate the virulence potential of L. monocytogenes CCs. From the exploration of in vitro and in vivo models to the study of expression of virulence genes, each approach is critically explored to better understand its applicability and efficiency in distinguishing the virulence potential of the pathogen.
Collapse
Affiliation(s)
| | | | | | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| |
Collapse
|
6
|
Aamer NA, El-Moaty ZA, Augustyniak M, El-Samad LM, Hussein HS. Impacts of Combining Steinernema carpocapsae and Bracon hebetor Parasitism on Galleria mellonella Larvae. INSECTS 2024; 15:588. [PMID: 39194793 DOI: 10.3390/insects15080588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
The greater wax moth, Galleria mellonella, is a significant pest in apiculture and a well-established model organism for immunological and ecotoxicological studies. This investigation explores the individual and combined effects of the ectoparasite Bracon hebetor (B.h.) and the entomopathogenic nematode Steinernema carpocapsae (S.c.) on G. mellonella larvae. We evaluated the activity of oxidative stress enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA) levels, cytochrome P450 activity, cell viability using Annexin V-FITC, DNA damage via comet assay, and larval morphology through scanning electron microscopy (SEM). Control larvae exhibited higher GPx and GST activities compared to those treated with B.h., S.c., or the B.h. + S.c. combination. Conversely, MDA levels displayed the opposite trend. SOD activity was reduced in the B.h. and S.c. groups but significantly higher in the combined treatment. Cytochrome P450 activity increased in response to parasitism by B. hebetor. The Annexin V-FITC assay revealed decreased cell viability in parasitized groups (B.h. 79.4%, S.c. 77.3%, B.h. + S.c. 70.1%) compared to controls. DNA damage analysis demonstrated significant differences between groups, and SEM observations confirmed severe cuticle abnormalities or malformations in G. mellonella larvae. These findings highlight the complex interactions between B. hebetor, S. carpocapsae, and their host, G. mellonella. Additionally, they illuminate the intricate physiological responses triggered within the host larvae.
Collapse
Affiliation(s)
- Neama A Aamer
- Department of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Zeinab A El-Moaty
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsaa 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Moharam Bey, Alexandria 21511, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Moharam Bey, Alexandria 21511, Egypt
| | - Hanaa S Hussein
- Department of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
7
|
Eddoubaji Y, Aldeia C, Campos-Madueno EI, Moser AI, Kundlacz C, Perreten V, Hilty M, Endimiani A. A new in vivo model of intestinal colonization using Zophobas morio larvae: testing hyperepidemic ESBL- and carbapenemase-producing Escherichia coli clones. Front Microbiol 2024; 15:1381051. [PMID: 38659985 PMCID: PMC11039899 DOI: 10.3389/fmicb.2024.1381051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Finding strategies for decolonizing gut carriers of multidrug-resistant Escherichia coli (MDR-Ec) is a public-health priority. In this context, novel approaches should be validated in preclinical in vivo gut colonization models before being translated to humans. However, the use of mice presents limitations. Here, we used for the first time Zophobas morio larvae to design a new model of intestinal colonization (28-days duration, T28). Three hyperepidemic MDR-Ec producing extended-spectrum β-lactamases (ESBLs) or carbapenemases were administered via contaminated food to larvae for the first 7 days (T7): Ec-4901.28 (ST131, CTX-M-15), Ec-042 (ST410, OXA-181) and Ec-050 (ST167, NDM-5). Growth curve analyses showed that larvae became rapidly colonized with all strains (T7, ~106-7 CFU/mL), but bacterial load remained high after the removal of contaminated food only in Ec-4901.28 and Ec-042 (T28, ~103-4 CFU/mL). Moreover, larvae receiving a force-feeding treatment with INTESTI bacteriophage cocktail (on T7 and T10 via gauge needle) were decolonized by Ec-4901.28 (INTESTI-susceptible); however, Ec-042 and Ec-050 (INTESTI-resistant) did not. Initial microbiota (before administering contaminated food) was very rich of bacterial genera (e.g., Lactococcus, Enterococcus, Spiroplasma), but patterns were heterogeneous (Shannon diversity index: range 1.1-2.7) and diverse to each other (Bray-Curtis dissimilarity index ≥30%). However, when larvae were challenged with the MDR-Ec with or without administering bacteriophages the microbiota showed a non-significant reduction of the diversity during the 28-day experiments. In conclusion, the Z. morio larvae model promises to be a feasible and high-throughput approach to study novel gut decolonization strategies for MDR-Ec reducing the number of subsequent confirmatory mammalian experiments.
Collapse
Affiliation(s)
- Yasmine Eddoubaji
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Claudia Aldeia
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Edgar I. Campos-Madueno
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Aline I. Moser
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Cindy Kundlacz
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Giammarino A, Bellucci N, Angiolella L. Galleria mellonella as a Model for the Study of Fungal Pathogens: Advantages and Disadvantages. Pathogens 2024; 13:233. [PMID: 38535576 PMCID: PMC10976154 DOI: 10.3390/pathogens13030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 02/11/2025] Open
Abstract
The study of pathogenicity and virulence of fungal strains, in vivo in the preclinical phase, is carried out through the use of animal models belonging to various classes of mammals (rodents, leproids, etc.). Although animals are functionally more similar to humans, these studies have some limitations in terms of ethics (animal suffering), user-friendliness, cost-effectiveness, timing (physiological response time) and logistics (need for adequately equipped laboratories). A good in vivo model must possess some optimal characteristics to be used, such as rapid growth, small size and short life cycle. For this reason, insects, such as Galleria mellonella (Lepidoptera), Drosophila melanogaster (Diptera) and Bombyx mori (Lepidoptera), have been widely used as alternative non-mammalian models. Due to their simplicity of use and low cost, the larvae of G. mellonella represent an optimal model above all to evaluate the virulence of fungal pathogens and the use of antifungal treatments (either single or in combination with biologically active compounds). A further advantage is also represented by their simple neuronal system limiting the suffering of the animal itself, their ability to survive at near-body ambient temperatures as well as the expression of proteins able to recognise combined pathogens following the three R principles (replacement, refinement and reduction). This review aims to assess the validity as well as the advantages and disadvantages of replacing mammalian classes with G. mellonella as an in vivo study model for preclinical experimentation.
Collapse
Affiliation(s)
| | | | - Letizia Angiolella
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00100 Rome, Italy; (A.G.); (N.B.)
| |
Collapse
|
9
|
Souza BMN, Miñán AG, Brambilla IR, Pinto JG, Garcia MT, Junqueira JC, Ferreira-Strixino J. Effects of antimicrobial photodynamic therapy with photodithazine® on methicillin-resistant Staphylococcus aureus (MRSA): Studies in biofilms and experimental model with Galleria mellonella. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112860. [PMID: 38330692 DOI: 10.1016/j.jphotobiol.2024.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Staphylococcus aureus infections are a severe health problem due to the high mortality rate. Conventional treatment of these infections is via the administration of antibiotics. However, its indiscriminate use can select resistant microorganisms. Thus, it is necessary to develop alternatives for antibiotic therapy. Antimicrobial Photodynamic Therapy (aPDT), a therapeutic method that associates a photosensitizer (PS), a light source with adequate wavelength to the PS, interacts with molecular oxygen generating reactive oxygen species responsible for cell inactivation, is a viable alternative. This work aimed to analyze, in vitro and in vivo, the action of aPDT with PS Photodithazine® (PDZ) on the methicillin-resistant S. aureus (MRSA) strain. In the in vitro method, the S. aureus biofilm was incubated with PDZ at 50 and 75 μg.mL-1 for 15 min, adopting the light dose of 25, 50, and 100 J/cm2. In addition, PS interaction, formation of reactive oxygen species (ROS), bacterial metabolism, adhesion, bacterial viability, and biofilm structure were evaluated by scanning electron microscopy. Subsequently, the strain was inoculated into models of Galleria mellonella, and the survival curve, health scale, blood cell analysis, and CFU/mL of S. aureus in the hemolymph were analyzed after aPDT. In the in vitro results, bacterial reduction was observed in the different PDZ concentrations, highlighting the parameters of 75 μg.mL-1 of PDZ and 100 J/cm2. As for in vivo results, aPDT increased survival and stimulated the immune system of G. mellonella infected by S. aureus. aPDT proved effective in both models, demonstrating its potential as an alternative therapy in treating MRSA bacterial infections.
Collapse
Affiliation(s)
- Beatriz Müller N Souza
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil
| | - Alejandro Guillermo Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Isabelle Ribeiro Brambilla
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil.
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Universidade Estadual Paulista (Unesp), Institute of Science and Technology (ICT), São José dos Campos, São Paulo, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Universidade Estadual Paulista (Unesp), Institute of Science and Technology (ICT), São José dos Campos, São Paulo, Brazil.
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health (PhotoBioS Lab), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
10
|
Gallorini M, Marinacci B, Pellegrini B, Cataldi A, Dindo ML, Carradori S, Grande R. Immunophenotyping of hemocytes from infected Galleria mellonella larvae as an innovative tool for immune profiling, infection studies and drug screening. Sci Rep 2024; 14:759. [PMID: 38191588 PMCID: PMC10774281 DOI: 10.1038/s41598-024-51316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
In recent years, there has been a considerable increasing interest in the use of the greater wax moth Galleria mellonella as an animal model. In vivo pharmacological tests, concerning the efficacy and the toxicity of novel compounds are typically performed in mammalian models. However, the use of the latter is costly, laborious and requires ethical approval. In this context, G. mellonella larvae can be considered a valid option due to their greater ease of use and the absence of ethical rules. Furthermore, it has been demonstrated that the immune system of these invertebrates has similarity with the one of mammals, thus guaranteeing the reliability of this in vivo model, mainly in the microbiological field. To better develop the full potential of this model, we present a novel approach to characterize the hemocyte population from G. mellonella larvae and to highlight the immuno modulation upon infection and treatments. Our approach is based on the detection in isolated hemocytes from G. mellonella hemolymph of cell membrane markers typically expressed by human immune cells upon inflammation and infection, for instance CD14, CD44, CD80, CD163 and CD200. This method highlights the analogies between G. mellonella larvae and humans. Furthermore, we provide an innovative tool to perform pre-clinical evaluations of the efficacy of antimicrobial compounds in vivo to further proceed with clinical trials and support drug discovery campaigns.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
| | - Beatrice Marinacci
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Benedetta Pellegrini
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdA TechLab, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Maria Luisa Dindo
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, "G. d' Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
11
|
Al-Ayari EA, Shehata MG, El-Hadidi M, Shaalan MG. In silico SNP prediction of selected protein orthologues in insect models for Alzheimer's, Parkinson's, and Huntington's diseases. Sci Rep 2023; 13:18986. [PMID: 37923901 PMCID: PMC10624829 DOI: 10.1038/s41598-023-46250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Alzheimer's, Parkinson's, and Huntington's are the most common neurodegenerative diseases that are incurable and affect the elderly population. Discovery of effective treatments for these diseases is often difficult, expensive, and serendipitous. Previous comparative studies on different model organisms have revealed that most animals share similar cellular and molecular characteristics. The meta-SNP tool includes four different integrated tools (SIFT, PANTHER, SNAP, and PhD-SNP) was used to identify non synonymous single nucleotide polymorphism (nsSNPs). Prediction of nsSNPs was conducted on three representative proteins for Alzheimer's, Parkinson's, and Huntington's diseases; APPl in Drosophila melanogaster, LRRK1 in Aedes aegypti, and VCPl in Tribolium castaneum. With the possibility of using insect models to investigate neurodegenerative diseases. We conclude from the protein comparative analysis between different insect models and nsSNP analyses that D. melanogaster is the best model for Alzheimer's representing five nsSNPs of the 21 suggested mutations in the APPl protein. Aedes aegypti is the best model for Parkinson's representing three nsSNPs in the LRRK1 protein. Tribolium castaneum is the best model for Huntington's disease representing 13 SNPs of 37 suggested mutations in the VCPl protein. This study aimed to improve human neural health by identifying the best insect to model Alzheimer's, Parkinson's, and Huntington's.
Collapse
Affiliation(s)
- Eshraka A Al-Ayari
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Magdi G Shehata
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS) , Nile University, Giza, Egypt
| | - Mona G Shaalan
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Upfold J, Rejasse A, Nielsen-Leroux C, Jensen AB, Sanchis-Borja V. The immunostimulatory role of an Enterococcus-dominated gut microbiota in host protection against bacterial and fungal pathogens in Galleria mellonella larvae. FRONTIERS IN INSECT SCIENCE 2023; 3:1260333. [PMID: 38469511 PMCID: PMC10926436 DOI: 10.3389/finsc.2023.1260333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 03/13/2024]
Abstract
Understanding the intricate interplay between the gut microbiota and the immune response in insects is crucial, given its diverse impact on the pathogenesis of various microbial species. The microbiota's modulation of the host immune system is one such mechanism, although its complete impact on immune responses remains elusive. This study investigated the tripartite interaction between the gut microbiota, pathogens, and the host's response in Galleria mellonella larvae reared under axenic (sterile) and conventional (non-sterile) conditions. The influence of the microbiota on host fitness during infections was evaluated via two different routes: oral infection induced by Bacillus thuringiensis subsp. galleriae (Btg), and topical infection induced by Metarhizium robertsii (Mr). We observed that larvae without a microbiota can successfully fulfill their life cycle, albeit with more variation in their developmental time. We subsequently performed survival assays on final-instar larvae, using the median lethal dose (LD50) of Btg and Mr. Our findings indicated that axenic larvae were more vulnerable to an oral infection of Btg; specifically, a dose that was calculated to be half-lethal for the conventional group resulted in a 90%-100% mortality rate in the axenic group. Through a dual-analysis experimental design, we could identify the status of the gut microbiota using 16S rRNA sequencing and assess the level of immune-related gene expression in the same group of larvae at basal conditions and during infection. This analysis revealed that the microbiota of our conventionally reared population was dominated entirely by four Enterococcus species, and these species potentially stimulated the immune response in the gut, due to the increased basal expression of two antimicrobial peptides (AMPs)-gallerimycin and gloverin-in the conventional larvae compared with the axenic larvae. Furthermore, Enterococcus mundtii, isolated from the gut of conventional larvae, showed inhibition activity against Btg in vitro. Lastly, other immune effectors, namely, phenoloxidase activity in the hemolymph and total reactive oxygen/nitrogen species (ROS/RNS) in the gut, were tested to further investigate the extent of the stimulation of the microbiota on the immune response. These findings highlight the immune-modulatory role of the Enterococcus-dominated gut microbiota, an increasingly reported microbiota assemblage of laboratory populations of Lepidoptera, and its influence on the host's response to oral and topical infections.
Collapse
Affiliation(s)
- Jennifer Upfold
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Annette Bruun Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Vincent Sanchis-Borja
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
13
|
Fusco-Almeida AM, de Matos Silva S, dos Santos KS, de Lima Gualque MW, Vaso CO, Carvalho AR, Medina-Alarcón KP, Pires ACMDS, Belizario JA, de Souza Fernandes L, Moroz A, Martinez LR, Ruiz OH, González Á, Mendes-Giannini MJS. Alternative Non-Mammalian Animal and Cellular Methods for the Study of Host-Fungal Interactions. J Fungi (Basel) 2023; 9:943. [PMID: 37755051 PMCID: PMC10533014 DOI: 10.3390/jof9090943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In the study of fungal pathogenesis, alternative methods have gained prominence due to recent global legislation restricting the use of mammalian animals in research. The principle of the 3 Rs (replacement, reduction, and refinement) is integrated into regulations and guidelines governing animal experimentation in nearly all countries. This principle advocates substituting vertebrate animals with other invertebrate organisms, embryos, microorganisms, or cell cultures. This review addresses host-fungus interactions by employing three-dimensional (3D) cultures, which offer more faithful replication of the in vivo environment, and by utilizing alternative animal models to replace traditional mammals. Among these alternative models, species like Caenorhabditis elegans and Danio rerio share approximately 75% of their genes with humans. Furthermore, models such as Galleria mellonella and Tenebrio molitor demonstrate similarities in their innate immune systems as well as anatomical and physiological barriers, resembling those found in mammalian organisms.
Collapse
Affiliation(s)
- Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Samanta de Matos Silva
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Kelvin Sousa dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Angélica Romão Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Kaila Petrolina Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Ana Carolina Moreira da Silva Pires
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Jenyffie Araújo Belizario
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Lígia de Souza Fernandes
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Andrei Moroz
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Luis R. Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Orville Hernandez Ruiz
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
- Cellular and Molecular Biology Group University of Antioquia, Corporation for Biological Research, Medellin 050010, Colombia
| | - Ángel González
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| |
Collapse
|
14
|
Song S, Zhao S, Wang W, Jiang F, Sun J, Ma P, Kang H. Characterization of ST11 and ST15 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae from Patients with Ventilator-Associated Pneumonia. Infect Drug Resist 2023; 16:6017-6028. [PMID: 37705511 PMCID: PMC10496924 DOI: 10.2147/idr.s426901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Background The prevalence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (hv-CRKP) is a serious public threat globally. Here, we performed clinical, molecular, and phenotypic monitoring of hv-CRKP strains isolated from the intensive care unit (ICU) to offer evidence for prevention and control in hospitals. Methods Data analysis of ICU patients suffering from ventilator-associated pneumonia (VAP) because of hv-CRKP infection, admitted at the Chinese Teaching Hospital between March 2019 and September 2021 was performed. Patients' antibiotic-resistance genes, virulence-associated genes, and capsular serotypes of these isolates were detected. Homology analysis of the strains was performed by MLST and PFGE. Six different strains were tested for their virulence traits using the serum killing test and the Galleria mellonella infection assay. For whole genome sequencing, KP3 was selected as a representative strain. Results Clinical data of 19 hv-CRKP-VAP patients were collected and their hv-CRKP were isolated, including 10 of ST11-KL64, 4 of ST15-KL112, 2 of ST11-KL47, 1 of ST15-KL19, 1 of ST17-KL140, and 1 of ST48-KL62. Four ST15 and 8 ST11 isolates revealed high homology, respectively. Most strains carried the carbapenemase gene blaKPC-2 (14/19, 73.68%), followed by blaOXA-232 (4/19, 21.05%). All strains were resistant to almost all the antibiotics except polymyxin and tigacycline. Ten patients were treated with polymyxin or tigacycline based on their susceptibility results, and unfortunately 6 patients died. All strains exhibited a hyper-viscous phenotype, and the majority (17/19, 89.47%) of them contained rmpA and rmpA2. The serum killing test showed that KP9 was resistant to normal healthy serum, others were intermediately or highly sensitive. G. mellonella larvae infection assay suggested that the strains in this study were hypervirulent. Conclusion This study highlights the dominant strain and molecular epidemiology of hv-CRKP in a hospital in China. We should pay more attention to the effect of hv-CRKP on VAP, strengthen monitoring and control transmission.
Collapse
Affiliation(s)
- Shuang Song
- Medical Technology School, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Shulong Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Wei Wang
- Medical Technology School, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Fei Jiang
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jingfang Sun
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Ping Ma
- Medical Technology School, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Haiquan Kang
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
15
|
Freires IA, Morelo DFC, Soares LFF, Costa IS, de Araújo LP, Breseghello I, Abdalla HB, Lazarini JG, Rosalen PL, Pigossi SC, Franchin M. Progress and promise of alternative animal and non-animal methods in biomedical research. Arch Toxicol 2023; 97:2329-2342. [PMID: 37394624 DOI: 10.1007/s00204-023-03532-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Cell culture and invertebrate animal models reflect a significant evolution in scientific research by providing reliable evidence on the physiopathology of diseases, screening for new drugs, and toxicological tests while reducing the need for mammals. In this review, we discuss the progress and promise of alternative animal and non-animal methods in biomedical research, with a special focus on drug toxicity.
Collapse
Affiliation(s)
- Irlan Almeida Freires
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - David Fernando Colon Morelo
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | | | | | | | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
- Graduate Program in Biological Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas, Alfenas, Brazil
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
16
|
Furnica DT, Dittmer S, Scharmann U, Meis JF, Steinmann J, Rath PM, Kirchhoff L. In Vitro and In Vivo Effect of the Imidazole Luliconazole against Lomentospora prolificans and Scedosporium spp. Microbiol Spectr 2023; 11:e0513022. [PMID: 37017567 PMCID: PMC10269907 DOI: 10.1128/spectrum.05130-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/14/2023] [Indexed: 04/06/2023] Open
Abstract
Infections with Scedosporium spp. and Lomentospora prolificans have become a serious threat in clinical settings. The high mortality rates associated with these infections can be correlated with their multidrug resistance. The development of alternative treatment strategies has become crucial. Here, we investigate the in vitro and in vivo activity of luliconazole (LLCZ) against Scedosporium apiospermum (including its teleomorph Pseudallescheria boydii) and Lomentospora prolificans. The LLCZ MICs were determined for a total of 37 isolates (31 L. prolificans isolates, 6 Scedosporium apiospermum/P. boydii strains) according to EUCAST. Furthermore, the LLCZ antifungal activity was tested in vitro, using an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt] growth kinetics assay and biofilm assays (crystal violet and XTT assay). In addition, a Galleria mellonella infection model was used for in vivo treatment assays. The MIC90 of LLCZ was determined to be 0.25 mg/L for all tested pathogens. Growth was inhibited within 6 to 48 h of the start of incubation. LLCZ inhibited biofilm formation in both preadhesion stages and late-stage adhesion. In vivo, a single dose of LLCZ increased the survival rate of the larvae by 40% and 20% for L. prolificans and Scedosporium spp., respectively. This is the first study demonstrating LLCZ activity against Lomentospora prolificans in vitro and in vivo and the first study showing the antibiofilm effect of LLCZ in Scedosporium spp. IMPORTANCE Lomentospora prolificans and S. apiospermum/P. boydii are opportunistic, multidrug-resistant pathogens causing invasive infections in immunosuppressed patients and sometimes in healthy persons. Lomentospora prolificans is panresistant against the currently available antifungals, and both species are associated with high mortality rates. Thus, the discovery of novel antifungal drugs exhibiting an effect against these resistant fungi is crucial. Our study shows the effect of luliconazole (LLCZ) against L. prolificans and Scedosporium spp. in vitro, as well as in an in vivo infection model. These data reveal the previously unknown inhibitory effect of LLCZ against L. prolificans and its antibiofilm effect in Scedosporium spp. It represents an extension of the literature regarding azole-resistant fungi and could potentially lead to the development of future treatment strategies against these opportunistic fungal pathogens.
Collapse
Affiliation(s)
- Dan-Tiberiu Furnica
- Institute of Medical Microbiology, Excellence Center for Medical Mycology (ECMM), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Silke Dittmer
- Institute of Medical Microbiology, Excellence Center for Medical Mycology (ECMM), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrike Scharmann
- Institute of Medical Microbiology, Excellence Center for Medical Mycology (ECMM), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jacques F. Meis
- Department of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- Excellence Center for Medical Mycology (ECMM), Centre of Expertise in Mycology, Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Joerg Steinmann
- Institute of Medical Microbiology, Excellence Center for Medical Mycology (ECMM), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, Excellence Center for Medical Mycology (ECMM), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, Excellence Center for Medical Mycology (ECMM), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Burkhardt W, Salzinger C, Fischer J, Malorny B, Fischer M, Szabo I. The nematode worm Caenorhabditis elegans as an animal experiment replacement for assessing the virulence of different Salmonella enterica strains. Front Microbiol 2023; 14:1188679. [PMID: 37362934 PMCID: PMC10285400 DOI: 10.3389/fmicb.2023.1188679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Caenorhabditis (C.) elegans has become a popular toxicological and biological test organism in the last two decades. Furthermore, the role of C. elegans as an alternative for replacing or reducing animal experiments is continuously discussed and investigated. In the current study, we investigated whether C. elegans survival assays can help in determining differences in the virulence of Salmonella enterica strains and to what extent C. elegans assays could replace animal experiments for this purpose. We focused on three currently discussed examples where we compared the longevity of C. elegans when fed (i) with S. enterica serovar Enteritidis vaccination or wild-type strains, (ii) with lipopolysaccharide (LPS) deficient rough or LPS forming smooth S. enterica serovar Enteritidis, and (iii) with an S. enterica subsp. diarizonae strain in the presence or absence of the typical pSASd plasmid encoding a bundle of putative virulence factors. We found that the C. elegans survival assay could indicate differences in the longevity of C. elegans when fed with the compared strain pairs to a certain extent. Putatively higher virulent S. enterica strains reduced the lifespan of C. elegans to a greater extent than putatively less virulent strains. The C. elegans survival assay is an effective and relatively easy method for classifying the virulence of different bacterial isolates in vivo, but it has some limitations. The assay cannot replace animal experiments designed to determine differences in the virulence of Salmonella enterica strains. Instead, we recommend using the described method for pre-screening bacterial strains of interest to select the most promising candidates for further animal experiments. The C. elegans assay possesses the potential to reduce the number of animal experiments. Further development of the C. elegans assay in conjunction with omics technologies, such as transcriptomics, could refine results relating to the estimation of the virulent potential of test organisms.
Collapse
|
18
|
Bugyna L, Kendra S, Bujdáková H. Galleria mellonella-A Model for the Study of aPDT-Prospects and Drawbacks. Microorganisms 2023; 11:1455. [PMID: 37374956 PMCID: PMC10301295 DOI: 10.3390/microorganisms11061455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Galleria mellonella is a promising in vivo model insect used for microbiological, medical, and pharmacological research. It provides a platform for testing the biocompatibility of various compounds and the kinetics of survival after an infection followed by subsequent treatment, and for the evaluation of various parameters during treatment, including the host-pathogen interaction. There are some similarities in the development of pathologies with mammals. However, a limitation is the lack of adaptive immune response. Antimicrobial photodynamic therapy (aPDT) is an alternative approach for combating microbial infections, including biofilm-associated ones. aPDT is effective against Gram-positive and Gram-negative bacteria, viruses, fungi, and parasites, regardless of whether they are resistant to conventional treatment. The main idea of this comprehensive review was to collect information on the use of G. mellonella in aPDT. It provides a collection of references published in the last 10 years from this area of research, complemented by some practical experiences of the authors of this review. Additionally, the review summarizes in brief information on the G. mellonella model, its advantages and methods used in the processing of material from these larvae, as well as basic knowledge of the principles of aPDT.
Collapse
Affiliation(s)
| | | | - Helena Bujdáková
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (L.B.); (S.K.)
| |
Collapse
|
19
|
Fukumori C, Branco PC, Barreto T, Ishida K, Lopes LB. Development and cytotoxicity evaluation of multiple nanoemulsions for oral co-delivery of 5-fluorouracil and short chain triglycerides for colorectal cancer. Eur J Pharm Sci 2023; 187:106465. [PMID: 37178734 DOI: 10.1016/j.ejps.2023.106465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, but current chemotherapy options are limited due to adverse effects and low oral bioavailability of drugs. In this study, we investigated the obtainment parameters and composition of new multiple nanoemulsions (MN) based on microemulsions for oral co-delivery of 5-fluorouracil (5FU) and short-chain triglycerides (SCT, either tributyrin or tripropionin). The area of microemulsion formation was increased from 14% to 38% when monocaprylin was mixed with tricaprylin as oil phase. Addition of SCT reduced this value to 24-26%. Using sodium alginate aqueous dispersion as internal aqueous phase (to avoid phase inversion) did not further affected the area but increased microemulsion viscosity by 1.5-fold. To obtain the MN, selected microemulsions were diluted in an external aqueous phase; droplet size was 500 nm and stability improved using polyoxyethylene (den Besten et al., 2013) oleyl ether at 1-2.5% as surfactant in the external phase and a dilution ratio of 1:1 (v/v). 5FU in vitro release could be better described by the Korsmeyer-Peppas model. No pronounced changes in droplet size were observed when selected MNs were incubated in buffers mimicking gastrointestinal fluids. The 5FU cytotoxicity in monolayer cell lines presenting various mutations was influenced by its incorporation in the nanocarrier, presence of SCT and cell mutation status. The MNs selected reduced the viability of tumor spheroids (employed as 3D tumor models) by 2.2-fold compared to 5FU solution and did not affect the survival of the G. mellonella, suggesting effectiveness and safety.
Collapse
Affiliation(s)
- Claudio Fukumori
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Paola Cristina Branco
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Thayná Barreto
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
20
|
Leal JT, Primon-Barros M, de Carvalho Robaina A, Pizzutti K, Mott MP, Trentin DS, Dias CAG. Streptococcus pneumoniae serotype 19A from carriers and invasive disease: virulence gene profile and pathogenicity in a Galleria mellonella model. Eur J Clin Microbiol Infect Dis 2023; 42:399-411. [PMID: 36790530 DOI: 10.1007/s10096-023-04560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE This study aimed to evaluate and compare the presence of genes related to surface proteins between isolates of Streptococcus pneumoniae from healthy carriers (HC) and invasive pneumococcal disease (IPD) with a particular focus on serotype 19A. METHODS The presence of these genes was identified by real-time PCR. Subsequently, we employed the Galleria mellonella larval infection model to study their effect on pathogenicity in vivo. RESULTS The percentage of selected virulence genes was similar between the HC and IPD groups (p > 0.05), and the genes lytA, nanB, pavA, pcpA, phtA, phtB, phtE, rrgA, and sipA were all present in both groups. However, the virulence profile of the isolates differed individually between HC and IPD groups. The highest lethality in G. mellonella was for IPD isolates (p < 0.01), even when the virulence profile was the same as compared to the HC isolates or when the nanA, pspA, pspA-fam1, and pspC genes were not present. CONCLUSIONS The occurrence of the investigated virulence genes was similar between HC and IPD S. pneumoniae serotype 19A groups. However, the IPD isolates showed a higher lethality in the alternative G. mellonella model than the HC isolates, regardless of the virulence gene composition, indicating that other virulence factors may play a decisive role in virulence. Currently, this is the first report using the in vivo G. mellonella model to study the virulence of clinical isolates of S. pneumoniae.
Collapse
Affiliation(s)
- Josiane Trevisol Leal
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências (PPGBIO), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Muriel Primon-Barros
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Amanda de Carvalho Robaina
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Kauana Pizzutti
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Mariana Preussler Mott
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Danielle Silva Trentin
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências (PPGBIO), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil.
| | - Cícero Armídio Gomes Dias
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| |
Collapse
|
21
|
Chen B, Qian G, Yang Z, Zhang N, Jiang Y, Li D, Li R, Shi D. Virulence capacity of different Aspergillus species from invasive pulmonary aspergillosis. Front Immunol 2023; 14:1155184. [PMID: 37063826 PMCID: PMC10090689 DOI: 10.3389/fimmu.2023.1155184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionThe opportunistic filamentous fungus Aspergillus causes invasive pulmonary aspergillosis (IPA) that often turns into a fatal infection in immunocompromised hosts. However, the virulence capacity of different Aspergillus species and host inflammation induced by different species in IPA are not well understood.MethodsIn the present study, host inflammation, antimicrobial susceptibilities and virulence were compared among clinical Aspergillus strains isolated from IPA patients.ResultsA total of 46 strains were isolated from 45 patients with the invasive infection, of which 35 patients were diagnosed as IPA. Aspergillus flavus was the dominant etiological agent appearing in 25 cases (54.3%). We found that the CRP level and leukocyte counts (elevated neutrophilic granulocytes and monocytes, and reduced lymphocytes) were significantly different in IPA patients when compared with healthy individuals (P < 0.05). Antifungal susceptibilities of these Aspergillus isolates from IPA showed that 91%, 31%, 14%, and 14% were resistant to Fluconazole, Micafungin, Amphotericin B and Terbinafine, respectively. The survival rate of larvae infected by A. flavus was lower than larvae infected by A. niger or A. fumigatus (P < 0.05).DiscussionAspergillus flavus was the dominant clinical etiological agent. Given the prevalence of A. flavus in our local clinical settings, we may face greater challenges when treating IPA patients.
Collapse
Affiliation(s)
- Biao Chen
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
- Central Laboratory, Jining No.1 People’s Hospital, Jining, Shandong, China
| | - Guocheng Qian
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Zhiya Yang
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Ning Zhang
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Yufeng Jiang
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Dongmei Li
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington, DC, United States
| | - Renzhe Li
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
- *Correspondence: Dongmei Shi,
| |
Collapse
|
22
|
Serrano I, Verdial C, Tavares L, Oliveira M. The Virtuous Galleria mellonella Model for Scientific Experimentation. Antibiotics (Basel) 2023; 12:505. [PMID: 36978373 PMCID: PMC10044286 DOI: 10.3390/antibiotics12030505] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The first research on the insect Galleria mellonella was published 85 years ago, and the larva is now widely used as a model to study infections caused by bacterial and fungal pathogens, for screening new antimicrobials, to study the adjacent immune response in co-infections or in host-pathogen interaction, as well as in a toxicity model. The immune system of the G. mellonella model shows remarkable similarities with mammals. Furthermore, results from G. mellonella correlate positively with mammalian models and with other invertebrate models. Unlike other invertebrate models, G. mellonella can withstand temperatures of 37 °C, and its handling and experimental procedures are simpler. Despite having some disadvantages, G. mellonella is a virtuous in vivo model to be used in preclinical studies, as an intermediate model between in vitro and mammalian in vivo studies, and is a great example on how to apply the bioethics principle of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation. This review aims to discuss the progress of the G. mellonella model, highlighting the key aspects of its use, including experimental design considerations and the necessity to standardize them. A different score in the "cocoon" category included in the G. mellonella Health Index Scoring System is also proposed.
Collapse
Affiliation(s)
- Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Verdial
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
23
|
Belluco S, Bertola M, Montarsi F, Di Martino G, Granato A, Stella R, Martinello M, Bordin F, Mutinelli F. Insects and Public Health: An Overview. INSECTS 2023; 14:240. [PMID: 36975925 PMCID: PMC10059202 DOI: 10.3390/insects14030240] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
Insects are, by far, the most common animals on our planet. The ubiquity and plethora of ecological niches occupied by insects, along with the strict and sometimes forced coexistence between insects and humans, make insects a target of public health interest. This article reports the negative aspects historically linked to insects as pests and vectors of diseases, and describes their potential as bioindicators of environmental pollution, and their use as food and feed. Both negative and positive impacts of insects on human and animal health need to be addressed by public health professionals who should aim to strike a balance within the wide range of sometimes conflicting goals in insect management, such as regulating their production, exploiting their potential, protecting their health and limiting their negative impact on animals and humans. This requires increased insect knowledge and strategies to preserve human health and welfare. The aim of this paper is to provide an overview of traditional and emerging topics bridging insects and public health to highlight the need for professionals, to address these topics during their work. The present and future role and activities of public health authorities regarding insects are analyzed.
Collapse
Affiliation(s)
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Malacarne MC, Mastore M, Gariboldi MB, Brivio MF, Caruso E. Preliminary Toxicity Evaluation of a Porphyrin Photosensitizer in an Alternative Preclinical Model. Int J Mol Sci 2023; 24:ijms24043131. [PMID: 36834543 PMCID: PMC9966276 DOI: 10.3390/ijms24043131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
In photodynamic therapy (PDT), a photosensitizer (PS) excited with a specific wavelength, and in the presence of oxygen, gives rise to photochemical reactions that lead to cell damage. Over the past few years, larval stages of the G. mellonella moth have proven to be an excellent alternative animal model for in vivo toxicity testing of novel compounds and virulence testing. In this article, we report a series of preliminary studies on G. mellonella larvae to evaluate the photoinduced stress response by a porphyrin (PS) (TPPOH). The tests performed evaluated PS toxicity on larvae and cytotoxicity on hemocytes, both in dark conditions and following PDT. Cellular uptake was also evaluated by fluorescence and flow cytometry. The results obtained demonstrate how the administration of PS and subsequent irradiation of larvae affects not only larvae survival rate, but also immune system cells. It was also possible to verify PS's uptake and uptake kinetics in hemocytes, observing a maximum peak at 8 h. Given the results obtained in these preliminary tests, G. mellonella appears to be a promising model for preclinical PS tests.
Collapse
Affiliation(s)
- Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | | | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332421541
| |
Collapse
|
25
|
Quansah E, Ramoji A, Thieme L, Mirza K, Goering B, Makarewicz O, Heutelbeck A, Meyer-Zedler T, Pletz MW, Schmitt M, Popp J. Label-free multimodal imaging of infected Galleria mellonella larvae. Sci Rep 2022; 12:20416. [PMID: 36437287 PMCID: PMC9701796 DOI: 10.1038/s41598-022-24846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Non-linear imaging modalities have enabled us to obtain unique morpho-chemical insights into the tissue architecture of various biological model organisms in a label-free manner. However, these imaging techniques have so far not been applied to analyze the Galleria mellonella infection model. This study utilizes for the first time the strength of multimodal imaging techniques to explore infection-related changes in the Galleria mellonella larvae due to massive E. faecalis bacterial infection. Multimodal imaging techniques such as fluorescent lifetime imaging (FLIM), coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) were implemented in conjunction with histological HE images to analyze infection-associated tissue damage. The changes in the larvae in response to the infection, such as melanization, vacuolization, nodule formation, and hemocyte infiltration as a defense mechanism of insects against microbial pathogens, were visualized after Enterococcus faecalis was administered. Furthermore, multimodal imaging served for the analysis of implant-associated biofilm infections by visualizing biofilm adherence on medical stainless steel and ePTFE implants within the larvae. Our results suggest that infection-related changes as well as the integrity of the tissue of G. mellonella larvae can be studied with high morphological and chemical contrast in a label-free manner.
Collapse
Affiliation(s)
- Elsie Quansah
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Anuradha Ramoji
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Lara Thieme
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Kamran Mirza
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Bianca Goering
- grid.9613.d0000 0001 1939 2794ena University Hospital, Institute for Occupational, Social, and Environmental Medicine, J, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Oliwia Makarewicz
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Astrid Heutelbeck
- grid.9613.d0000 0001 1939 2794ena University Hospital, Institute for Occupational, Social, and Environmental Medicine, J, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Tobias Meyer-Zedler
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Mathias W. Pletz
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Michael Schmitt
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jürgen Popp
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
26
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
27
|
Admella J, Torrents E. A Straightforward Method for the Isolation and Cultivation of Galleria mellonella Hemocytes. Int J Mol Sci 2022; 23:13483. [PMID: 36362269 PMCID: PMC9657452 DOI: 10.3390/ijms232113483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/10/2023] Open
Abstract
Galleria mellonella is an alternative animal model of infection. The use of this species presents a wide range of advantages, as its maintenance and rearing are both easy and inexpensive. Moreover, its use is considered to be more ethically acceptable than other models, it is conveniently sized for manipulation, and its immune system has multiple similarities with mammalian immune systems. Hemocytes are immune cells that help encapsulate and eliminate pathogens and foreign particles. All of these reasons make this insect a promising animal model. However, cultivating G. mellonella hemocytes in vitro is not straightforward and it has many difficult challenges. Here, we present a methodologically optimized protocol to establish and maintain a G. mellonella hemocyte primary culture. These improvements open the door to easily and quickly study the toxicity of nanoparticles and the interactions of particles and materials in an in vitro environment.
Collapse
Affiliation(s)
- Joana Admella
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain
| |
Collapse
|
28
|
Galleria mellonella as a Novel In Vivo Model to Screen Natural Product-Derived Modulators of Innate Immunity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunomodulators are drugs that either stimulate or suppress the immune system in response to an immunopathological disease or cancer. The majority of clinically approved immunomodulators are either chemically synthesised (e.g., dexamethasone) or protein-based (e.g., monoclonal antibodies), whose uses are limited due to toxicity issues, poor bioavailability, or prohibitive cost. Nature is an excellent source of novel compounds, as it is estimated that almost half of all licenced medicines are derived from nature or inspired by natural product (NP) structures. The clinical success of the fungal-derived immunosuppressant cyclosporin A demonstrates the potential of natural products as immunomodulators. Conventionally, the screening of NP molecules for immunomodulation is performed in small animal models; however, there is a growing impetus to replace animal models with more ethical alternatives. One novel approach is the use of Galleria melonella larvae as an in vivo model of immunity. Despite lacking adaptive antigen-specific immunity, this insect possesses an innate immune system comparable to mammals. In this review, we will describe studies that have used this alternative in vivo model to assess the immunomodulating activity of synthetic and NP-derived compounds, outline the array of bioassays employed, and suggest strategies to enhance the use of this model in future research.
Collapse
|
29
|
Ribani A, Taurisano V, Utzeri VJ, Fontanesi L. Honey Environmental DNA Can Be Used to Detect and Monitor Honey Bee Pests: Development of Methods Useful to Identify Aethina tumida and Galleria mellonella Infestations. Vet Sci 2022; 9:213. [PMID: 35622741 PMCID: PMC9147136 DOI: 10.3390/vetsci9050213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental DNA (eDNA) contained in honey derives from the organisms that directly and indirectly have been involved in the production process of this matrix and that have played a role in the hive ecosystems where the honey has been produced. In this study we set up PCR-based assays to detect the presence of DNA traces left in the honey by two damaging honey bee pests: the small hive beetle (Aethina tumida) and the greater wax moth (Galleria mellonella). DNA was extracted from 82 honey samples produced in Italy and amplified using two specific primer pairs that target the mitochondrial gene cytochrome oxidase I (COI) of A. tumida and two specific primer pairs that target the same gene in G. mellonella. The limit of detection was tested using sequential dilutions of the pest DNA. Only one honey sample produced in Calabria was positive for A. tumida whereas about 66% of all samples were positively amplified for G. mellonella. The use of honey eDNA could be important to establish early and effective measures to contain at the local (e.g., apiary) or regional scales these two damaging pests and, particularly for the small hive beetle, to prevent its widespread diffusion.
Collapse
Affiliation(s)
- Anisa Ribani
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (V.J.U.)
- GRIFFA srl, Viale Fanin 48, 40127 Bologna, Italy
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (V.J.U.)
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (V.J.U.)
- GRIFFA srl, Viale Fanin 48, 40127 Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (V.J.U.)
| |
Collapse
|
30
|
Pivato AF, Miranda GM, Prichula J, Lima JEA, Ligabue RA, Seixas A, Trentin DS. Hydrocarbon-based plastics: Progress and perspectives on consumption and biodegradation by insect larvae. CHEMOSPHERE 2022; 293:133600. [PMID: 35031254 DOI: 10.1016/j.chemosphere.2022.133600] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The obvious contrast between the remarkable durability and the high consumption of plastic products leads to the deposition of at least 100 million tons of plastics per year in nature. Since 2010, several studies have shown the potential of insect larvae to biodegrade different types of plastics, at higher rates than those reported for microorganisms. This review discusses a compilation of studies about the consumption and biodegradation of hydrocarbon-based plastics, particularly PE, PS, PP and PVC, by lepidopteran and coleopteran larvae. Insects of the Coleoptera order seem to have a better adaptation for PS biodegradation, while those of the Lepidoptera order can better biodegrade PE. Tenebrio molitor biomineralize PE and PS into CO2, and PVC into HCl; while Tenebrio obscurus and Zophobas atratus converts PE and PS into CO2, respectively. Plastic biodegradation by T. molitor has been shown to be dependent on microbiota, exception for PE. Similar PS and PE biodegradation profile has been shown for T. obscurus. PS, PP and PE biodegradation by Z. atratus is also reported to be microbial-dependent. For Galleria mellonella, microbial role on PE biodegradation is still controversial, but the PS metabolism was proved to be microbiota-independent. Advances in this field has stimulated new studies with other insect species, which need to be better explored. Uncovering and understanding the chemical processes behind the innate plastic biodegradation by insect larvae will open the perspective to new eco-friendly innovative biotechnological solutions for the challenge of plastic waste.
Collapse
Affiliation(s)
- Andressa F Pivato
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Departamento de Ciências Básicas da Saúde, Laboratório de Microbiologia Molecular, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela M Miranda
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Laboratório de Organometálicos e Resinas, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janira Prichula
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Departamento de Ciências Básicas da Saúde, Laboratório de Microbiologia Molecular, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeane E A Lima
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Laboratório de Organometálicos e Resinas, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rosane A Ligabue
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Laboratório de Organometálicos e Resinas, Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriana Seixas
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Departamento de Farmacociências, Porto Alegre, Rio Grande do Sul, Brazil
| | - Danielle S Trentin
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Departamento de Ciências Básicas da Saúde, Laboratório de Microbiologia Molecular, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
31
|
Pegorin Brasil GS, de Barros PP, Miranda MCR, de Barros NR, Junqueira JC, Gomez A, Herculano RD, de Mendonça RJ. Natural latex serum: characterization and biocompatibility assessment using Galleria mellonella as an alternative in vivo model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:705-726. [PMID: 34927570 DOI: 10.1080/09205063.2021.2014027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Natural latex serum (NLS) is one of the natural rubber latex fractions from Hevea brasiliensis tree, which is formed by centrifuged serum and is composed of proteins, acids, nucleotides, salts and carbohydrates. The proteins present in NLS have demonstrated several interesting biological properties, including angiogenic, healing, osteogenic, anti-inflammatory, antimicrobial, in addition to inducing neovascularization, bone formation and osseointegration. Thus, we proposed to characterize NLS by physicochemical techniques and to investigate the biocompatibility by toxicological assays and safety test in Galleria mellonella. Infrared spectrum showed vibrational bands characteristic of amide I, II and III that are linked to the protein content, which was confirmed by the High Performance Liquid Chromatography profile and by the Electrophoresis analysis. This material did not exhibit hemolytic (rate <0.5%) and cytotoxic effects (viability >70%) and was able to enhance the proliferation of fibroblasts (>600%) after 3 days. The pronounced proliferative effect observed in fibroblast cells can be explained by the presence of the fibroblast growth factor (FGF) like protein revealed by the Western blot test. Moreover, NLS did not provoke toxic effects (survival ∼ 80%) on the G. mellonella model, indicating that it is a biocompatible and safe material.
Collapse
Affiliation(s)
- Giovana Sant'Ana Pegorin Brasil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Department of Biotechnology and Bioprocess Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
- Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte (UFRN), Caico, Rio Grande do Norte, Brazil
| | | | | | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Rondinelli Donizetti Herculano
- Department of Biotechnology and Bioprocess Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
32
|
Alhayek A, Khan ES, Schönauer E, Däinghaus T, Shafiei R, Voos K, Han MK, Ducho C, Posselt G, Wessler S, Brandstetter H, Haupenthal J, del Campo A, Hirsch AK. Inhibition of Collagenase Q1 of Bacillus cereus as a Novel Antivirulence Strategy for the Treatment of Skin-Wound Infections. ADVANCED THERAPEUTICS 2022; 5:2100222. [PMID: 35310821 PMCID: PMC7612511 DOI: 10.1002/adtp.202100222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 01/02/2023]
Abstract
Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with Bacillus cereus remain a public health problem. Secreted toxins are one of the main factors contributing to B. cereus pathogenicity. A promising strategy to treat such infections is to target these toxins and not the bacteria. Although the exoenzymes produced by B. cereus are thoroughly investigated, little is known about the role of B. cereus collagenases in wound infections. In this report, the collagenolytic activity of secreted collagenases (Col) is characterized in the B. cereus culture supernatant (csn) and its isolated recombinantly produced ColQ1 is characterized. The data reveals that ColQ1 causes damage on dermal collagen (COL). This results in gaps in the tissue, which might facilitate the spread of bacteria. The importance of B. cereus collagenases is also demonstrated in disease promotion using two inhibitors. Compound 2 shows high efficacy in peptidolytic, gelatinolytic, and COL degradation assays. It also preserves the fibrillar COLs in skin tissue challenged with ColQ1, as well as the viability of skin cells treated with B. cereus csn. A Galleria mellonella model highlights the significance of collagenase inhibition in vivo.
Collapse
Affiliation(s)
- Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany; Department of Pharmacy Saarland University, Saarbrücken Campus Campus E8.1, 66123 Saarbrücken, Germany
| | - Essak S. Khan
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Tobias Däinghaus
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany
| | - Katrin Voos
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Mitchell K.L. Han
- Leibniz Institute for New Materials (INM) Saarl and University Campus D2 2, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Gernot Posselt
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany
| | - Aránzazu del Campo
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department Saarland University 66123 Saarbrücken, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany; Department of Pharmacy Saarland University, Saarbrücken Campus Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
33
|
Minotti D, Vergari L, Proto MR, Barbanti L, Garzoli S, Bugli F, Sanguinetti M, Sabatini L, Peduzzi A, Rosato R, Bellardi MG, Mattarelli P, De Luca D, Di Vito M. Il Silenzio: The First Renaissance Oil Painting on Canvas from the Uffizi Museum Restored with a Safe, Green Antimicrobial Emulsion Based on Citrus aurantium var. amara Hydrolate and Cinnamomum zeylanicum Essential Oil. J Fungi (Basel) 2022; 8:jof8020140. [PMID: 35205894 PMCID: PMC8874936 DOI: 10.3390/jof8020140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
Preserving artworks from the attacks of biodeteriogens is a primary duty of humanity. Nowadays, restorers use chemicals potentially dangerous for both artworks and human health. The purpose of this work was to find a green and safe formulation based on natural substances with fungicidal activity to restore ancient oil paintings, particularly “Il Silenzio” (by Jacopo Zucchi) preserved at the Uffizi Museum in Florence, Italy. The study was divided into two phases. First phase (in vitro study): three essential oils (EOs) and four hydrolates (Hys) were analysed by GC-mass spectrometry and in vitro tested against six ATCC strains of molds. An emulsion based on the more active natural compounds was tested on aged and unaged canvases samples to evaluate both their fungicidal activity and the impact on chemical-physical parameters. Finally, an in vivo toxicity test performed on the Galleria mellonella model assessed the safety for health. Second phase (in situ application): the emulsion was sprayed on the back of the painting and left to act for 24 h. Biodeteriogens present on the “Il Silenzio” painting were microbiologically identified before and after the treatment. The emulsion formulated with C. zeylanicum EO and C. aurantium var. amara Hy showed the best antifungal activity both in vitro and in situ without altering the chemical-physical characteristics of paintings. Furthermore, no in vivo toxicity was shown. For the first time, a green antimicrobial emulsion based on Hy and EO, safe for operators, was used to decontaminate an artwork colonised by fungi before the restoration practices.
Collapse
Affiliation(s)
- Debora Minotti
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino Carlo Bo, Piazza della Repubblica, 13, 61029 Urbino, Italy; (D.M.); (L.V.); (D.D.L.)
| | - Lara Vergari
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino Carlo Bo, Piazza della Repubblica, 13, 61029 Urbino, Italy; (D.M.); (L.V.); (D.D.L.)
| | - Maria Rita Proto
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Stefania Garzoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00100 Rome, Italy;
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (F.B.); (M.S.); (R.R.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (F.B.); (M.S.); (R.R.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Luigia Sabatini
- Dipartimento di Scienze Biomolecolari, Sezione di Farmacologia e Igiene, Università Degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Alice Peduzzi
- Dipartimento di Biologia ambientale, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Roberto Rosato
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (F.B.); (M.S.); (R.R.)
| | - Maria Grazia Bellardi
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Daphne De Luca
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino Carlo Bo, Piazza della Repubblica, 13, 61029 Urbino, Italy; (D.M.); (L.V.); (D.D.L.)
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (F.B.); (M.S.); (R.R.)
- Correspondence: ; Tel.: +39-06-30154964
| |
Collapse
|
34
|
Ménard G, Rouillon A, Cattoir V, Donnio PY. Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Front Cell Infect Microbiol 2022; 11:782733. [PMID: 35004350 PMCID: PMC8727906 DOI: 10.3389/fcimb.2021.782733] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing interest for Galleria mellonella larvae as an infection model is evidenced by the number of papers reporting its use, which increases exponentially since the early 2010s. This popularity was initially linked to limitation of conventional animal models due to financial, technical and ethical aspects. In comparison, alternative models (e.g. models using Caenorhabditis elegans, Drosophila melanogaster or G. mellonella) were cheap, simple to use and not limited by ethical regulation. Since then, similar results have been established with G. mellonella model comparatively to vertebrates, and it is more and more often used as a robust model per se, not only as an alternative to the murine model. This review attempts to summarize the current knowledge supporting the development of this model, both on immunological and microbiological aspects. For that, we focus on investigation of virulence and new therapies for the most important pathogenic bacteria. We also discuss points out directions for standardization, as well as recent advances and new perspectives for monitoring host-pathogen interactions.
Collapse
Affiliation(s)
- Guillaume Ménard
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Astrid Rouillon
- Univ Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, France
| | - Vincent Cattoir
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Pierre-Yves Donnio
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| |
Collapse
|
35
|
Bertola M, Mutinelli F. A Systematic Review on Viruses in Mass-Reared Edible Insect Species. Viruses 2021; 13:2280. [PMID: 34835086 PMCID: PMC8619331 DOI: 10.3390/v13112280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Edible insects are expected to become an important nutrient source for animals and humans in the Western world in the near future. Only a few studies on viruses in edible insects with potential for industrial rearing have been published and concern only some edible insect species. Viral pathogens that can infect insects could be non-pathogenic, or pathogenic to the insects themselves, or to humans and animals. The objective of this systematic review is to provide an overview of the viruses detected in edible insects currently considered for use in food and/or feed in the European Union or appropriate for mass rearing, and to collect information on clinical symptoms in insects and on the vector role of insects themselves. Many different virus species have been detected in edible insect species showing promise for mass production systems. These viruses could be a risk for mass insect rearing systems causing acute high mortality, a drastic decline in growth in juvenile stages and in the reproductive performance of adults. Furthermore, some viruses could pose a risk to human and animal health where insects are used for food and feed.
Collapse
Affiliation(s)
- Michela Bertola
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, PD, Italy
| | - Franco Mutinelli
- National Rereference Laboratory for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, PD, Italy;
| |
Collapse
|
36
|
Tao Y, Duma L, Rossez Y. Galleria mellonella as a Good Model to Study Acinetobacter baumannii Pathogenesis. Pathogens 2021; 10:1483. [PMID: 34832638 PMCID: PMC8623143 DOI: 10.3390/pathogens10111483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
The invertebrate model, Galleria mellonella, has been widely used to study host-pathogen interactions due to its cheapness, ease of handling, and similar mammalian innate immune system. G. mellonella larvae have been proven to be useful and a reliable model for analyzing pathogenesis mechanisms of multidrug resistant Acinetobacter baumannii, an opportunistic pathogen difficult to kill. This review describes the detailed experimental design of G. mellonella/A. baumannii models, and provides a comprehensive comparison of various virulence factors and therapy strategies using the G. mellonella host. These investigations highlight the importance of this host-pathogen model for in vivo pathogen virulence studies. On the long term, further development of the G. mellonella/A. baumannii model will offer promising insights for clinical treatments of A. baumannii infection.
Collapse
Affiliation(s)
- Ye Tao
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de Recherche Royallieu–CS 60 319 , 60203 Compiègne, France; (Y.T.); (L.D.)
| | - Luminita Duma
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de Recherche Royallieu–CS 60 319 , 60203 Compiègne, France; (Y.T.); (L.D.)
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
37
|
Shukla SK, Sharma AK, Gupta V, Kalonia A, Shaw P. Challenges with Wound Infection Models in Drug Development. Curr Drug Targets 2021; 21:1301-1312. [PMID: 32116189 DOI: 10.2174/1389450121666200302093312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023]
Abstract
Wound research is an evolving science trying to unfold the complex untold mechanisms behind the wound healing cascade. In particular, interest is growing regarding the role of microorganisms in both acute and chronic wound healing. Microbial burden plays an important role in the persistence of chronic wounds, ultimately resulting in delayed wound healing. It is therefore important for clinicians to understand the evolution of infection science and its various etiologies. Therefore, to understand the role of bacterial biofilm in chronic wound pathogenesis, various in vitro and in vivo models are required to investigate biofilms in wound-like settings. Infection models should be refined comprising an important signet of biofilms. These models are eminent for translational research to obtain data for designing an improved wound care formulation. However, all the existing models possess limitations and do not fit properly in the model frame for developing wound care agents. Among various impediments, one of the major drawbacks of such models is that the wound they possess does not mimic the wound a human develops. Therefore, a novel wound infection model is required which can imitate the human wounds. This review article mainly discusses various in vitro and in vivo models showing microbial colonization, their advantages and challenges. Apart from these models, there are also present ex vivo wound infection models, but this review mainly focused on various in vitro and in vivo models available for studying wound infection in controlled conditions. This information might be useful in designing an ideal wound infection model for developing an effective wound healing formulation.
Collapse
Affiliation(s)
- Sandeep K Shukla
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| | - Ajay K Sharma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| | - Vanya Gupta
- Graphic Era deemed to be University, Dehradun, India
| | - Aman Kalonia
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| | - Priyanka Shaw
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| |
Collapse
|
38
|
Hickin M, Nadel H, Schal C, Cohen AC. Optimization of a Diet for the Greater Wax Moth (Lepidoptera: Pyralidae) Using Full Factorial and Mixture Design. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1091-1103. [PMID: 33822091 DOI: 10.1093/jee/toab039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Diet optimization is an important process to increase the efficiency of rearing insects and can be used to develop high-quality insects with specific fitness and life-history traits. Galleria mellonella (L.), the greater wax moth, is widely used in research, microbiology assays, as pet food, and host for biological control agents. Although artificial diets for G. mellonella have been researched and optimized for decades, preliminary tests indicated that the predominantly utilized G. mellonella diet could be improved to yield larger larvae with a short development time. We used a design of experiments (DOE) approach that incorporated multiple full factorial designs and a final mixture design to test the qualitative and quantitative effects of ingredients and their interactions on larval mass and survival. Analysis of 17 ingredient variations in 35 diet formulations yielded an optimized diet that supported high survival and 2.4-fold greater larval body mass than the standard rearing diet. This study demonstrates the importance and efficiency of statistical DOE in guiding the optimization of insect diets to improve traits that represent the quality and fitness of the reared insects.
Collapse
Affiliation(s)
- Mauri Hickin
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA
- Otis Laboratory, USDA APHIS PPQ S&T, 1398 West Truck Road, Buzzards Bay, MA 02542, USA
| | - Hannah Nadel
- Otis Laboratory, USDA APHIS PPQ S&T, 1398 West Truck Road, Buzzards Bay, MA 02542, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA
| | - Allen C Cohen
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA
| |
Collapse
|
39
|
Durieux MF, Melloul É, Jemel S, Roisin L, Dardé ML, Guillot J, Dannaoui É, Botterel F. Galleria mellonella as a screening tool to study virulence factors of Aspergillus fumigatus. Virulence 2021; 12:818-834. [PMID: 33682618 PMCID: PMC7946008 DOI: 10.1080/21505594.2021.1893945] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The invertebrate Galleria mellonella has increasingly and widely been used in the last few years to study complex host–microbe interactions. Aspergillus fumigatus is one of the most pathogenic fungi causing life-threatening diseases in humans and animals. Galleria mellonella larvae has been proven as a reliable model for the analysis of pathogenesis and virulence factors, enable to screen a large number of A. fumigatus strains. This review describes the different uses of G. mellonella to study A. fumigatus and provides a comparison of the different protocols to trace fungal pathogenicity. The review also includes a summary of the diverse mutants tested in G. mellonella, and their respective contribution to A. fumigatus virulence. Previous investigations indicated that G. mellonella should be considered as an interesting tool even though a mammalian model may be required to complete and verify initial data.
Collapse
Affiliation(s)
- Marie-Fleur Durieux
- Laboratoire de Parasitologie - Mycologie, CHU de Limoges, Limoges, France.,EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Élise Melloul
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Sana Jemel
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Lolita Roisin
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Marie-Laure Dardé
- Laboratoire de Parasitologie - Mycologie, CHU de Limoges, Limoges, France
| | - Jacques Guillot
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France.,École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Éric Dannaoui
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France.,Unité de Parasitologie-mycologie, Service de Microbiologie, Université Paris Descartes, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Françoise Botterel
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France.,Unité de Mycologie, Département de Prévention, Diagnostic Et Traitement Des Infections, Groupe Hospitalier Henri Mondor - Albert Chenevier, APHP, France
| |
Collapse
|
40
|
Kitisin T, Ampawong S, Muangkaew W, Sukphopetch P. Phenomic profiling of a novel sibling species within the Scedosporium complex in Thailand. BMC Microbiol 2021; 21:42. [PMID: 33563219 PMCID: PMC7874643 DOI: 10.1186/s12866-021-02105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Background Scedosporium species are a group of pathogenic fungi, which can be found worldwide around high human-impacted areas. Infections of Scedosporium have been reported in several immunocompromised and immunocompetent patients with a high mortality rate. Recently, we have isolated and identified several Scedosporium strains during an environmental survey in Thailand. Results We describe the isolate, TMMI-012, possibly a new species isolated from soils in the Chatuchak public park, Bangkok, Thailand. TMMI-012 is phylogenetically related to the Scedosporium genus and is a sibling to S. boydii but shows distinct morphological and pathological characteristics. It is fast growing and highly resistant to antifungal drugs and abiotic stresses. Pathological studies of in vitro and in vivo models confirm its high virulence and pathogenicity. Conclusion TMMI-012 is considered a putative novel Scedosporium species. The high antifungal resistance of TMMI-012 compared with its sibling, Scedosporium species is likely related to its clinical impact on human health.
Collapse
Affiliation(s)
- T Kitisin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - S Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - W Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - P Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
41
|
Hesketh-Best PJ, Mouritzen MV, Shandley-Edwards K, Billington RA, Upton M. Galleria mellonella larvae exhibit a weight-dependent lethal median dose when infected with methicillin-resistant Staphylococcus aureus. Pathog Dis 2021; 79:6121426. [PMID: 33503238 DOI: 10.1093/femspd/ftab003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Galleria mellonella is a recognised model to study antimicrobial efficacy; however, standardisation across the scientific field and investigations of methodological components are needed. Here, we investigate the impact of weight on mortality following infection with Methicillin-resistant Staphylococcus aureus (MRSA). Larvae were separated into six weight groups (180-300 mg at 20 mg intervals) and infected with a range of doses of MRSA to determine the 50% lethal dose (LD50), and the 'lipid weight' of larvae post-infection was quantified. A model of LD50 values correlated with weight was developed. The LD50 values, as estimated by our model, were further tested in vivo to prove our model. We establish a weight-dependent LD50 in larvae against MRSA and demonstrate that G. mellonella is a stable model within 180-260 mg. We present multiple linear models correlating weight with: LD50, lipid weight, and larval length. We demonstrate that the lipid weight is reduced as a result of MRSA infection, identifying a potentially new measure in which to understand the immune response. Finally, we demonstrate that larval length can be a reasonable proxy for weight. Refining the methodologies in which to handle and design experiments involving G. mellonella, we can improve the reliability of this powerful model.
Collapse
Affiliation(s)
- Poppy J Hesketh-Best
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Michelle V Mouritzen
- School of Biomedical Sciences, University of Plymouth, Derriford Research Facility, Plymouth Science Park, Plymouth, PL6 8BT, UK
| | - Kayleigh Shandley-Edwards
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Richard A Billington
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Derriford Research Facility, Plymouth Science Park, Plymouth, PL6 8BT, UK
| |
Collapse
|
42
|
Paulson AR, O’Callaghan M, Zhang XX, Rainey PB, Hurst MRH. In vivo transcriptome analysis provides insights into host-dependent expression of virulence factors by Yersinia entomophaga MH96, during infection of Galleria mellonella. G3 (BETHESDA, MD.) 2021; 11:jkaa024. [PMID: 33561230 PMCID: PMC7849909 DOI: 10.1093/g3journal/jkaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.
Collapse
Affiliation(s)
- Amber R Paulson
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | | | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Laboratoire de Génétique de l’Evolution CBI, ESPCI Paris, Université PSL, CNRS, Paris 75005, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Mark R H Hurst
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
| |
Collapse
|
43
|
Torres M, de Cock H, Celis Ramírez AM. In Vitro or In Vivo Models, the Next Frontier for Unraveling Interactions between Malassezia spp. and Hosts. How Much Do We Know? J Fungi (Basel) 2020; 6:jof6030155. [PMID: 32872112 PMCID: PMC7558575 DOI: 10.3390/jof6030155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host-microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models. In this mini review, we present different models that have been implemented in fungal infections studies with greater attention to Malassezia spp. infections. These models range from in vitro (cell cultures and ex vivo tissue), to in vivo (murine models, rabbits, guinea pigs, insects, nematodes, and amoebas). We additionally highlight the alternative models that reduce the use of mammals as model organisms, which have been gaining importance in the study of fungal host-microbe interactions. This is due to the fact that these systems have been shown to have reliable results, which correlate with those obtained from mammalian models. Examples of alternative models are Caenorhabditis elegans, Drosophila melanogaster, Tenebrio molitor, and Galleria mellonella. These are invertebrates that have been implemented in the study of Malassezia spp. infections in order to identify differences in virulence between Malassezia species.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
| | - Hans de Cock
- Microbiology, Department of Biology, Faculty of Science, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
- Correspondence:
| |
Collapse
|
44
|
Su S, Shi X, Xu W, Li Y, Chen X, Jia S, Sun S. Antifungal Activity and Potential Mechanism of Panobinostat in Combination With Fluconazole Against Candida albicans. Front Microbiol 2020; 11:1584. [PMID: 32765454 PMCID: PMC7378535 DOI: 10.3389/fmicb.2020.01584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections are an emerging problem worldwide, which bring huge health challenges. Candida albicans, the most common opportunistic fungal pathogen, can cause bloodstream infections with high mortality in susceptible hosts. At present, available antifungal agents used in clinical practice are limited, and most of them also have some serious adverse effects. The emergence of drug resistance because of the wide use of antifungal agents is a new limitation to successful patient therapy. Drug combination therapy is increasingly becoming a way to enhance antifungal efficacy, and reduce drug resistance and potential toxicity. Panobinostat, as a pan-histone deacetylase inhibitor, has been approved by the United States Food and Drug Administration as novel antitumor agents. In this study, the antifungal effects and mechanisms of panobinostat combined with fluconazole (FLC) against C. albicans were explored for the first time. The results indicated that panobinostat could work synergistically with FLC against resistant C. albicans, the minimal inhibitory concentration (MIC) of panobinostat could decrease from 128 to 0.5–2 μg/ml and the MIC of FLC could decrease from >512 to 0.25–0.5 μg/ml, and the fractional inhibitory concentration index (FICI) value ranged from 0.0024 to 0.0166. It was not only synergized against planktonic cells but also against C. albicans biofilms performed ≤8 h when panobinostat is combined with fluconazole; the sessile MIC (sMIC) of panobinostat could decrease from >128 to 0.5–8 μg/ml and the sMIC of FLC from >1024 to 0.5–2 μg/ml, and the FICI value was <0.5. The Galleria mellonella infection model was used to evaluate the in vivo effect of the drug combination, and the result showed that the survival rate could be improved obviously. Finally, we explored the synergistic mechanisms of the drug combination. The hyphal growth, which plays roles in drug resistance, was found to be inhibited, and metacaspase which is related to cell apoptosis was activated (p < 0.01), whereas the synergistic effects were proven not to be related to the efflux pumps (p > 0.05). These findings might provide novel insights into the antifungal drug discovery and the treatment of candidiasis caused by C. albicans.
Collapse
Affiliation(s)
- Shan Su
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiaohong Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wei Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shuang Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
45
|
Torres M, Pinzón EN, Rey FM, Martinez H, Parra Giraldo CM, Celis Ramírez AM. Galleria mellonella as a Novelty in vivo Model of Host-Pathogen Interaction for Malassezia furfur CBS 1878 and Malassezia pachydermatis CBS 1879. Front Cell Infect Microbiol 2020; 10:199. [PMID: 32432057 PMCID: PMC7214729 DOI: 10.3389/fcimb.2020.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Malassezia furfur and Malassezia pachydermatis are lipophilic and lipid dependent yeasts, associated with the skin microbiota in humans and domestic animals, respectively. Although they are commensals, under specific conditions they become pathogens, causing skin conditions, such as pityriasis versicolor, dandruff/seborrheic dermatitis, folliculitis in humans, and dermatitis and otitis in dogs. Additionally, these species are associated with fungemia in immunocompromised patients and low-weight neonates in intensive care units with intravenous catheters or with parenteral nutrition and that are under-treatment of broad-spectrum antibiotics. The host-pathogen interaction mechanism in these yeasts is still unclear; for this reason, it is necessary to implement suitable new host systems, such as Galleria mellonella. This infection model has been widely used to assess virulence, host-pathogen interaction, and antimicrobial activity in bacteria and fungi. Some advantages of the G. mellonella model are: (1) the immune response has phagocytic cells and antimicrobial peptides that are similar to those in the innate immune response of human beings; (2) no ethical implications; (3) low cost; and (4) easy to handle and inoculate. This study aims to establish G. mellonella as an in vivo infection model for M. furfur and M. pachydermatis. To achieve this objective, first, G. mellonella larvae were first inoculated with different inoculum concentrations of these two Malassezia species, 1.5 × 106 CFU/mL, 1.5 × 107 CFU/mL, 1.5 × 108 CFU/mL, and 11.5 × 109 CFU/mL, and incubated at 33 and 37°C. Then, for 15 days, the mortality and melanization were evaluated daily. Finally, the characterization of hemocytes and fungal burden assessment were as carried out. It was found that at 33 and 37°C both M. furfur and M. pachydermatis successfully established a systemic infection in G. mellonella. M. pachydermatis proved to be slightly more virulent than M. furfur at a temperature of 37°C. The results suggest that larvae mortality and melanization is dependent on the specie of Malassezia, the inoculum concentration and the temperature. According to the findings, G. mellonella can be used as an in vivo model of infection to conduct easy and reliable approaches to boost our knowledge of the Malassezia genus.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Elkin Nicolás Pinzón
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Flor Maria Rey
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Heydys Martinez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Claudia Marcela Parra Giraldo
- Unidad de Investigación en Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
46
|
The Galleria mellonella Infection Model Does Not Accurately Differentiate between Hypervirulent and Classical Klebsiella pneumoniae. mSphere 2020; 5:5/1/e00850-19. [PMID: 31915230 PMCID: PMC6952204 DOI: 10.1128/msphere.00850-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is of increasing concern because it can infect individuals in community and health care settings and because such infections are becoming difficult to treat. Identification of hvKp is important for patient care and to track its global spread. The genetic definition of hvKp, which can be used for its identification and the development of diagnostic tests, has not been optimized. Determination of possession of 4 of 5 genes that are present on the hvKp-specific virulence plasmid is highly accurate for identifying hvKp. However, an ongoing issue is whether strains that possess only some of these markers are still hypervirulent. The Galleria mellonella model and, less commonly, the murine infection model have been used to assess the virulence of these ambiguously identifiable strains. This report demonstrates that the murine model but not the G. mellonella model accurately identifies suspected hvKp strains. This information is critical for the development of diagnostics for patient care and for future research studies. Hypervirulent Klebsiella pneumoniae (hvKp) is an emerging pathogen of increasing concern due to its ability to cause serious organ and life-threatening infections in healthy individuals and its increasing acquisition of antimicrobial resistance determinants. Identification of hvKp is critical for patient care and epidemiologic and research studies. Five genotypic markers on the hvKp-specific virulence plasmid can accurately differentiate hvKp from the less virulent classical K. pneumoniae (cKp) strain, but it is unclear whether the possession of fewer markers accurately predicts the hvKp pathotype. Likewise, the effect, if any, of various antimicrobial resistance factors on the pathogenic potential of hvKp has been incompletely explored. The Galleria mellonella infection model is often used to assess virulence, but this tool has not been validated. Therefore, levels of lethality of defined hvKp and cKp strain cohorts were compared in Galleria and outbred mouse models. The murine model, but not the G. mellonella model, accurately differentiated hvKp from cKp strains. Therefore, isolates in which the pathogenic potential is ambiguous due to an incomplete hvKp biomarker profile, an incomplete pLVPK-like hvKp-specific virulence plasmid, antimicrobial resistance that could decrease biofitness, and/or the lack of a characteristic clinical presentation should be validated in an outbred murine model. These data will assist in determining the minimal genomic content needed for full expression of the hypervirulence phenotype. This information, in turn, is critical for the development of the pragmatic point-of-care testing requisite for patient care and for the performance of epidemiologic and research studies going forward. IMPORTANCE Hypervirulent Klebsiella pneumoniae (hvKp) is of increasing concern because it can infect individuals in community and health care settings and because such infections are becoming difficult to treat. Identification of hvKp is important for patient care and to track its global spread. The genetic definition of hvKp, which can be used for its identification and the development of diagnostic tests, has not been optimized. Determination of possession of 4 of 5 genes that are present on the hvKp-specific virulence plasmid is highly accurate for identifying hvKp. However, an ongoing issue is whether strains that possess only some of these markers are still hypervirulent. The Galleria mellonella model and, less commonly, the murine infection model have been used to assess the virulence of these ambiguously identifiable strains. This report demonstrates that the murine model but not the G. mellonella model accurately identifies suspected hvKp strains. This information is critical for the development of diagnostics for patient care and for future research studies.
Collapse
|
47
|
Campos-Silva R, Brust FR, Trentin DS, Macedo AJ. Alternative method in Galleria mellonella larvae to study biofilm infection and treatment. Microb Pathog 2019; 137:103756. [PMID: 31546000 DOI: 10.1016/j.micpath.2019.103756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 09/20/2019] [Indexed: 01/28/2023]
Abstract
In vivo studies are crucial decision-maker step in order to translate in vitro data to an applied therapy. Considering this we describe a simple method that analyzes and quantifies biofilm formation inside the Galleria mellonella larvae. Toothbrush bristles were employed as an abiotic surface to mimic a medical device. A standardized inoculum of Staphylococcus aureus was systemically injected in the larvae together with the insertion of a bristle in the last proleg pair. After incubation adhered cells were detached from bristles and quantified by colony-forming units (CFU) counting using staphylococci-selective medium. About 3 × 106 CFU of S. aureus were recovered from bristles and scanning electron microscopy (SEM) images confirmed biofilm formation. Control group did not show adherent bacteria, as demonstrated by absence of CFU counting and SEM images, indicating that the insertion procedure is free of bacterial contamination. We present a feasible method to evaluate bacterial biofilm formation in vivo that in the near future can be used to evaluate antibiofilm compounds.
Collapse
Affiliation(s)
- Rodrigo Campos-Silva
- Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Flávia Roberta Brust
- Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Danielle Silva Trentin
- Programa de Pós-Graduação em Biociências, Departamento de Ciências Básicas da Saúde, Universidade de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|