1
|
Musafiri S, Siddig EE, Nkuranga JB, Rukundo A, Mpunga T, Sendegeya A, Twagirumugabe T, Ahmed A, Muvunyi CM. Emerging Strategies and Progress in the Medical Management of Marburg Virus Disease. Pathogens 2025; 14:322. [PMID: 40333077 PMCID: PMC12030108 DOI: 10.3390/pathogens14040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 05/09/2025] Open
Abstract
During the current outbreak of Marburg virus disease (MVD) in Rwanda, we synthesized evidence from the literature to improve case management. Accordingly, experimental treatment was offered to patients under close follow-up. Remdesivir alone or in combination with monoclonal antibody treatment (MBP091) complemented with supportive care has improved the clinical outcomes of patients. Additionally, we have identified several experimental therapies currently under investigation, including antiviral drugs such as favipiravir, galidesivir, obeldesivir, and remdesivir, along with monoclonal and polyclonal antibodies (e.g., polyclonal IgG, monoclonal antibody MR-78-N; MR82-N; MR191-N; monoclonal antibodies MR186-YTE and MBP091). Furthermore, substantial progress is being made in vaccine development, with promising candidates including adenovirus-vectored vaccines, DNA vaccines, and the recombinant vesicular stomatitis virus (rVSV) vaccine. Moreover, innovative preventive and treatment strategies-such as synthetic hormones like estradiol benzoate, small interfering RNA (siRNA), interferon-β therapy, and phosphorodiamidate morpholino oligomers-are emerging as potential options for MVD management. Further investment is needed to accelerate research and optimize these therapeutics and preventive modalities. Additional epidemiological, preclinical, and clinical studies are warranted to generate the evidence required to inform policymaking, resource mobilization, and the implementation of cost-effective interventions for the prevention, control, and treatment of MVD.
Collapse
Affiliation(s)
- Sanctus Musafiri
- University Teaching Hospital of Kigali (CHUK), Kigali KN 4 Ave, Rwanda
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali 3900, Rwanda
| | | | | | - Athanase Rukundo
- Department of Clinical Service, Ministry of Health, Kigali 84, Rwanda
| | - Tharcisse Mpunga
- University Teaching Hospital of Kigali (CHUK), Kigali KN 4 Ave, Rwanda
| | | | | | - Ayman Ahmed
- Rwanda Biomedical Centre, Kigali 7162, Rwanda
- Pan-Africa One Health Institute (PAOHI), Kigali 11KG ST203, Rwanda
| | | |
Collapse
|
2
|
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev 2024; 210:115340. [PMID: 38810703 PMCID: PMC11181159 DOI: 10.1016/j.addr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.
| |
Collapse
|
3
|
Cobb J, Rawson J, Gonzalez N, Singer M, Kandeel F, Husseiny MI. Mechanism of Action of Oral Salmonella-Based Vaccine to Prevent and Reverse Type 1 Diabetes in NOD Mice. Vaccines (Basel) 2024; 12:276. [PMID: 38543910 PMCID: PMC10975319 DOI: 10.3390/vaccines12030276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2025] Open
Abstract
A combination therapy of preproinsulin (PPI) and immunomodulators (TGFβ+IL10) orally delivered via genetically modified Salmonella and anti-CD3 promoted glucose balance in in NOD mice with recent onset diabetes. The Salmonella bacteria were modified to express the diabetes-associated antigen PPI controlled by a bacterial promoter in conjunction with over-expressed immunomodulating molecules. The possible mechanisms of action of this vaccine to limit autoimmune diabetes remained undefined. In mice, the vaccine prevented and reversed ongoing diabetes. The vaccine-mediated beneficial effects were associated with increased numbers of antigen-specific CD4+CD25+Foxp3+ Tregs, CD4+CD49b+LAG3+ Tr1-cells, and tolerogenic dendritic-cells (tol-DCs) in the spleens and lymphatic organs of treated mice. Despite this, the immune response to Salmonella infection was not altered. Furthermore, the vaccine effects were associated with a reduction in islet-infiltrating lymphocytes and an increase in the islet beta-cell mass. This was associated with increased serum levels of the tolerogenic cytokines (IL10, IL2, and IL13) and chemokine ligand 2 (CCL2) and decreased levels of inflammatory cytokines (IFNγ, GM-CSF, IL6, IL12, and TNFα) and chemokines (CXCL1, CXCL2, and CXCL5). Overall, the data suggest that the Salmonella-based vaccine modulates the immune response, reduces inflammation, and promotes tolerance specifically to an antigen involved in autoimmune diabetes.
Collapse
Affiliation(s)
- Jacob Cobb
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Mane Manohar MP, Lee VJ, Chinedum Odunukwe EU, Singh PK, Mpofu BS, Oxley Md C. Advancements in Marburg (MARV) Virus Vaccine Research With Its Recent Reemergence in Equatorial Guinea and Tanzania: A Scoping Review. Cureus 2023; 15:e42014. [PMID: 37593293 PMCID: PMC10430785 DOI: 10.7759/cureus.42014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/19/2023] Open
Abstract
Given the recent outbreaks of the Marburg (MARV) virus within the first quarter of the year 2023, interest in the MARV virus has been re-ignited given its shared phylogeny with the dreadful Ebola virus. This relation gives some insight into its virulence, associated morbidities, and mortality rates. The first outbreak of MARV recorded was in Germany, in 1967, of which seven died out of 31 reported cases. Ever since, subsequent cases have been reported all over Africa, a continent replete with failing healthcare systems. This reality impresses a need for a contemporary and concise revision of the MARV virus existing publications especially in the areas of vaccine research. A functional MARV vaccine will serve as a panacea to ailing communities within the African healthcare landscape. The objective of this scoping review is to provide pertinent information relating to MARV vaccine research beginning with an outline of MARV's pathology and pathogenesis in addition to the related morbidities, existing therapies, established outbreak protocols as well as areas of opportunities.
Collapse
Affiliation(s)
| | - Vivian J Lee
- Medicine, Avalon University School of Medicine, Willemstad, CUW
| | | | - Pratik K Singh
- Medicine, Aureus University School of Medicine, Oranjestad, ABW
| | | | | |
Collapse
|
5
|
Zhang T, He P, Guo D, Chen K, Hu Z, Zou Y. Research Progress of Aluminum Phosphate Adjuvants and Their Action Mechanisms. Pharmaceutics 2023; 15:1756. [PMID: 37376204 DOI: 10.3390/pharmaceutics15061756] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Although hundreds of different adjuvants have been tried, aluminum-containing adjuvants are by far the most widely used currently. It is worth mentioning that although aluminum-containing adjuvants have been commonly applied in vaccine production, their acting mechanism remains not completely clear. Thus far, researchers have proposed the following mechanisms: (1) depot effect, (2) phagocytosis, (3) activation of pro-inflammatory signaling pathway NLRP3, (4) host cell DNA release, and other mechanisms of action. Having an overview on recent studies to increase our comprehension on the mechanisms by which aluminum-containing adjuvants adsorb antigens and the effects of adsorption on antigen stability and immune response has become a mainstream research trend. Aluminum-containing adjuvants can enhance immune response through a variety of molecular pathways, but there are still significant challenges in designing effective immune-stimulating vaccine delivery systems with aluminum-containing adjuvants. At present, studies on the acting mechanism of aluminum-containing adjuvants mainly focus on aluminum hydroxide adjuvants. This review will take aluminum phosphate as a representative to discuss the immune stimulation mechanism of aluminum phosphate adjuvants and the differences between aluminum phosphate adjuvants and aluminum hydroxide adjuvants, as well as the research progress on the improvement of aluminum phosphate adjuvants (including the improvement of the adjuvant formula, nano-aluminum phosphate adjuvants and a first-grade composite adjuvant containing aluminum phosphate). Based on such related knowledge, determining optimal formulation to develop effective and safe aluminium-containing adjuvants for different vaccines will become more substantiated.
Collapse
Affiliation(s)
- Ting Zhang
- Sinovac Biotech Sciences Co., Ltd., Beijing 102601, China
| | - Peng He
- Division of Hepatitis Virus & Enterovirus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102619, China
| | - Dejia Guo
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| | - Kaixi Chen
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| | - Zhongyu Hu
- Division of Hepatitis Virus & Enterovirus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102619, China
| | - Yening Zou
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| |
Collapse
|
6
|
Biggs AT, Littlejohn LF. Describing mRNA Vaccine Technology for a Military Audience. Mil Med 2023; 188:547-554. [PMID: 35584186 DOI: 10.1093/milmed/usac129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Vaccine technology has improved substantially since the first smallpox vaccine, developed more than 200 years ago. As technology improves, vaccines can be produced more safely and reliably for many different pathogens. A recent breakthrough saw the first full deployment of mRNA vaccines to fight a pandemic. Despite the technological and logistical feat of developing a viable vaccine in an abbreviated time frame, there have been many questions about this new approach to vaccine development. The current review will provide descriptions about different types of vaccines as well as answers to some common questions about mRNA vaccines. The purpose is to provide military medical professionals with the information needed to better convey the importance and function of these new vaccines to service members. MATERIALS AND METHODS There were no explicit inclusion or exclusion criteria for articles describing mRNA vaccine technology. References included here were intended to illustrate important principles or empirical evidence in demonstrating the safety, efficacy, and function of mRNA vaccines. DISCUSSION The review describes three different types of vaccines: whole-pathogen, subunit, and nucleic acid. Each vaccine type has different implications for the development and production of a vaccine line. For example, whole-pathogen and subunit vaccines often require growing significant amounts of the vaccine sample in laboratory before the material can be incorporated into the vaccine. Nucleic acid vaccines instead provide cells the opportunity to produce key proteins without needing to reproduce the virus and attenuate it in a laboratory setting. This approach has a notable advantage of speed in moving from genome sequencing to vaccine production, but it also creates some potential confusion. The discussion covers three questions with regard to this confusion. First, was the vaccine developed too quickly? Speed here is a byproduct of the new technology and unprecedented government interdepartmental cooperation. No steps were skipped in development or production. Second, does the vaccine modify DNA? No, the mRNA vaccines never enter the cell nucleus and therefore cannot modify DNA. The discussion clarifies how mRNA enters cells and produces the key proteins required to stimulate an immune system response. Third, how long will immunity last? Because mRNA vaccines are new, long-term immunity cannot be projected without significant further study. Still, the discussion does cover issues in determining vaccine efficacy in clinical laboratory trials versus field effectiveness in the real world. CONCLUSIONS AND FUTURE USES These mRNA vaccines are the newest and most sophisticated defensive tool military medicine has against emerging biological threats. Evolving dangers, such as synthetic biology and engineered pathogens, further enhance the importance of having defensive countermeasures that can be rapidly deployed in response. Current evidence suggests high safety and effectiveness for a biological countermeasure, decades in the making, and military medical personnel should feel confident using and recommending this technology to ensure force health protection.
Collapse
Affiliation(s)
- Adam T Biggs
- Medical Department, Naval Special Warfare Command, Coronado, CA 92155, USA
| | - Lanny F Littlejohn
- Medical Department, Naval Special Warfare Command, Coronado, CA 92155, USA
| |
Collapse
|
7
|
Malik S, Kishore S, Nag S, Dhasmana A, Preetam S, Mitra O, León-Figueroa DA, Mohanty A, Chattu VK, Assefi M, Padhi BK, Sah R. Ebola Virus Disease Vaccines: Development, Current Perspectives & Challenges. Vaccines (Basel) 2023; 11:vaccines11020268. [PMID: 36851146 PMCID: PMC9963029 DOI: 10.3390/vaccines11020268] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The global outgoing outbreaks of Ebola virus disease (EVD) in different regions of Sudan, Uganda, and Western Africa have brought into focus the inadequacies and restrictions of pre-designed vaccines for use in the battle against EVD, which has affirmed the urgent need for the development of a systematic protocol to produce Ebola vaccines prior to an outbreak. There are several vaccines available being developed by preclinical trials and human-based clinical trials. The group of vaccines includes virus-like particle-based vaccines, DNA-based vaccines, whole virus recombinant vaccines, incompetent replication originated vaccines, and competent replication vaccines. The limitations and challenges faced in the development of Ebola vaccines are the selection of immunogenic, rapid-responsive, cross-protective immunity-based vaccinations with assurances of prolonged protection. Another issue for the manufacturing and distribution of vaccines involves post authorization, licensing, and surveillance to ensure a vaccine's efficacy towards combating the Ebola outbreak. The current review focuses on the development process, the current perspective on the development of an Ebola vaccine, and future challenges for combatting future emerging Ebola infectious disease.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 834001, Jharkhand, India
- Correspondence: (S.M.); (R.S.); Tel.: +977-980-309-8857 (R.S.)
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 834001, Jharkhand, India
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248140, Uttarakhand, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053 Ulrika, Sweden
| | - Oishi Mitra
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | | | - Aroop Mohanty
- Department of Microbiology, All India Institute of Medical Sciences, Gorakhpur 273008, Uttar Pradesh, India
| | - Vijay Kumar Chattu
- Department of Occupational Science & Occupational Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
- Department of Community Medicine, Faculty of Medicine, Datta Meghe Institute of Medical Sciences, Wardha 442107, Maharashtra, India
| | - Marjan Assefi
- Joint School of NanoScience and Nano Engineering, University of North Carolina, Greensboro, NC 27402-6170, USA
| | - Bijaya K. Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Punjab, India
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Dr. D.Y Patil Medical College, Hospital and Research Centre, Dr. D.Y.Patil Vidyapeeth, Pune 411018, Maharashtra, India
- Correspondence: (S.M.); (R.S.); Tel.: +977-980-309-8857 (R.S.)
| |
Collapse
|
8
|
Farhadi Biregani A, Khodadadi A, Doosti A, Asadirad A, Ghasemi Dehcheshmeh M, Ghadiri AA. Allergen specific immunotherapy with plasmid DNA encoding OVA-immunodominant T cell epitope fused to Tregitope in a murine model of allergy. Cell Immunol 2022; 376:104534. [PMID: 35537324 DOI: 10.1016/j.cellimm.2022.104534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Peptide-based immunotherapy (PIT) was introduced as an attractive approach in allergen-specific immunotherapy (AIT). However, PIT clinical trials have shown variable results, and immune response to peptides is not precisely predictable. On the other hand, induction of antigen-specific tolerance may be augmented when allergens are combined with the regulatory T cell epitope (Tregitope). This study aimed to evaluate the therapeutic administration of a plasmid DNA encoding Tregitope and ovalbumin (OVA) immunodominant epitope in the murine model of allergy. METHODS Following the induction of allergic rhinitis by ovalbumin, vaccinated group received three doses of recombinant plasmid containing Signal peptide-Tregitope-OVA T cell epitope. After the final OVA challenge, clinical symptoms, histopathological changes, OVA-specific IgE level, and cytokine secretion pattern of spleen cells were examined. RESULTS Our data are showing that AIT with the recombinant DNA vaccine significantly suppressed airway inflammation; reduced eosinophilic infiltration in the nasal mucosa; decreased expression level of IL-4 and IL-17 in spleen cells, while IFN-γ, IL-10, and TGF-β expression were increased. Moreover, OVA-specific IgE levels were also decreased. CONCLUSION These results suggest that Tregitope-immunodominant T cell epitope fusion can act as a safe and effective approach in DNA-based allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Ali Farhadi Biregani
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ata A Ghadiri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Jiang H, Zhang Z, Yu Y, Chu HY, Yu S, Yao S, Zhang G, Zhang BT. Drug Discovery of DKK1 Inhibitors. Front Pharmacol 2022; 13:847387. [PMID: 35355709 PMCID: PMC8959454 DOI: 10.3389/fphar.2022.847387] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Dickkopf-1 (DKK1) is a well-characterized Wnt inhibitor and component of the Wnt/β-catenin signaling pathway, whose dysregulation is associated with multiple abnormal pathologies including osteoporosis, Alzheimer's disease, diabetes, and various cancers. The Wnt signaling pathway has fundamental roles in cell fate determination, cell proliferation, and survival; thus, its mis-regulation can lead to disease. Although DKK1 is involved in other signaling pathways, including the β-catenin-independent Wnt pathway and the DKK1/CKAP4 pathway, the inhibition of DKK1 to propagate Wnt/β-catenin signals has been validated as an effective way to treat related diseases. In fact, strategies for developing DKK1 inhibitors have produced encouraging clinical results in different pathological models, and many publications provide detailed information about these inhibitors, which include small molecules, antibodies, and nucleic acids, and may function at the protein or mRNA level. However, no systematic review has yet provided an overview of the various aspects of their development and prospects. Therefore, we review the DKK1 inhibitors currently available or under study and provide an outlook on future studies involving DKK1 and drug discovery.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hang Yin Chu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Sifan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Shanshan Yao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|
10
|
Li H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Two bicistronic DNA vaccines against Vibrio anguillarum and the immune effects on flounder Paralichthys olivaceus. JOURNAL OF OCEANOLOGY AND LIMNOLOGY 2022; 40:786-804. [PMID: 35018224 PMCID: PMC8739378 DOI: 10.1007/s00343-021-1092-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 05/05/2023]
Abstract
Chemokines are cytokines that can promote the activation and migration of immune cells, and increase the recognition of antigen by antigen-presenting cells (APC). Previous studies showed that a DNA vaccine can induce humoral and cellular immune responses of flounder after immunization. To explore the improvement of chemokines on the efficiency of OmpK vaccine, two bicistronic DNA candidate vaccines were constructed and the immune responses they induced in the flounder were investigated by reverse transcription polymerase chain reaction (RT-PCR), indirect immunofluorescent assay (IFA), H&E staining, flow cytometry (FCM), and quantificational real-time polymerase chain reaction (qRT-PCR). pBudCE4.1 plasmid as an expression vector, bicistronic DNA vaccines encoding OmpK gene and CC-motif ligand 4 gene (p-OmpK-CCL4), or Ompk gene and CC-motif ligand 19 gene (p-OmpK-CCL19) were successfully constructed. The results showed that two bicistronic DNA vaccines expressed Ompk protein of Vibrio anguillarum and CCL4/CCL19 proteins of flounder both in vitro and in vivo. After immunization, a large number of leucocytes in muscle were recruited at the injection site in treatment groups. The constructed vaccines induced significant increases in CD4-1+ and CD4-2+ T lymphocytes, and sIgM+ B lymphocytes in peripheral blood, spleen, and head kidney. The percentage of T lymphocytes peaked on the 14th post-vaccination day whereas that of B lymphocytes peaked in the 6th post-vaccination week. Moreover, the expression profiles of 10 immune-related genes increased in muscles around the injection site, spleen, and head kidney. After the challenge, p-OmpK-CCL4 and p-OmpK-CCL19 conferred a relative percentage survival (RPS) of 74.1% and 63.3%, respectively, higher than p-OmpK alone (40.8%). In conclusion, both CCL4 and CCL19 can improve the protection of p-OmpK via evoking local immune response and then humoral and cellular immunity. CCL4 and CCL19 will be potential molecular adjuvants for use in DNA vaccines.
Collapse
Affiliation(s)
- Hanlin Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| |
Collapse
|
11
|
Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. NPJ Vaccines 2021; 6:156. [PMID: 34930909 PMCID: PMC8688418 DOI: 10.1038/s41541-021-00419-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
New generation plasmid DNA vaccines may be a safe, fast and simple emergency vaccine platform for preparedness against emerging viral pathogens. Applying platform optimization strategies, we tested the pre-clinical immunogenicity and protective effect of a candidate DNA plasmid vaccine specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The DNA vaccine induced spike-specific binding IgG and neutralizing antibodies in mice, rabbits, and rhesus macaques together with robust Th1 dominant cellular responses in small animals. Intradermal and intramuscular needle-free administration of the DNA vaccine yielded comparable immune responses. In a vaccination-challenge study of rhesus macaques, the vaccine demonstrated protection from viral replication in the lungs following intranasal and intratracheal inoculation with SARS-CoV-2. In conclusion, the candidate plasmid DNA vaccine encoding the SARS-CoV-2 spike protein is immunogenic in different models and confers protection against lung infection in nonhuman primates. Further evaluation of this DNA vaccine candidate in clinical trials is warranted.
Collapse
|
12
|
Ebola Virus Disease, Diagnostics and Therapeutics: Where is the Consensus in Over Three Decades of Clinical Research? SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
He X, Ding L, Cao K, Peng H, Gu C, Li Y, Li D, Dong L, Hong X, Wang X, Fu M, Qiu C, Zhu C, Zhang Z, Song S, Wang C, Jiang Z, Xie Y, Qi Z, Zhao C, Zhao P, Zhang X, Xu J. A human cell-based SARS-CoV-2 vaccine elicits potent neutralizing antibody responses and protects mice from SARS-CoV-2 challenge. Emerg Microbes Infect 2021; 10:1555-1573. [PMID: 34304724 PMCID: PMC8366622 DOI: 10.1080/22221751.2021.1957400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To curb the pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), multiple platforms have been employed toward a safe and highly effective vaccine. Here, we develop a novel cell-based vaccine candidate, namely K562-S, by utilizing human cell K562 as a cellular carrier to display Spike (S) protein of SARS-CoV-2 on the membrane. Analogous to the traditional inactivated vaccine, K562-S cells can be propagated to a large scale by culturing and completely lose their viability after exposure to X-ray irradiation or formalin. We in turn demonstrated high immunogenicity of formalin-inactivated K562-S vaccine in both mouse and non-human primates and its protective efficacy in mice. In mice, immunization with inactivated K562-S vaccines can elicit potent neutralizing antibody (nAb) responses persisting longer than 5 months. We consequently showed in a hACE2 mouse model of SARS-CoV-2 infection that a two-shot vaccination with adjuvanted K562-S rendered greater than 3 log reduction in viral lung load and concomitant ameliorated lung pathology. Of importance, the administration of the same regimen in non-human primates was able to induce a neutralizing antibody titer averaging three-fold higher relative to human convalescent serum. These results together support the promise of K562-based, S-protein-expressing vaccines as a novel vaccination approach against SARS-CoV-2. Importantly, with a powerful capacity to carry external genes for cell-based vectors, this platform could rapidly generate two- and multiple-valent vaccines by incorporating SARS-CoV-2 mutants, SARS-CoV, or MERS-CoV.
Collapse
Affiliation(s)
- Xiangchuan He
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Longfei Ding
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Kangli Cao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai, People's Republic of China
| | - Chenjian Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yutang Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duoduo Li
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Lanlan Dong
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xiujing Hong
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xiangwei Wang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Meilan Fu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chenli Qiu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ziling Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Shu Song
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chenguang Wang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences & Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China
| | - Zhengfan Jiang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences & Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China
| | - Youhua Xie
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhongtian Qi
- Department of Microbiology, Second Military Medical University, Shanghai, People's Republic of China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Vernet R, Charrier E, Cosset E, Fièvre S, Tomasello U, Grogg J, Mach N. Local Sustained GM-CSF Delivery by Genetically Engineered Encapsulated Cells Enhanced Both Cellular and Humoral SARS-CoV-2 Spike-Specific Immune Response in an Experimental Murine Spike DNA Vaccination Model. Vaccines (Basel) 2021; 9:484. [PMID: 34068677 PMCID: PMC8151995 DOI: 10.3390/vaccines9050484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic with recurrences. Therefore, finding a vaccine for this virus became a priority for the scientific community. The SARS-CoV-2 spike protein has been described as the keystone for viral entry into cells and effective immune protection against SARS-CoV-2 is elicited by this protein. Consequently, many commercialized vaccines focus on the spike protein and require the use of an optimal adjuvant during vaccination. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has demonstrated a powerful enhancement of acquired immunity against many pathogens when delivered in a sustained and local manner. In this context, we developed an encapsulated cell-based technology consisting of a biocompatible, semipermeable capsule for secretion of GM-CSF. In this study, we investigated whether murine GM-CSF (muGM-CSF) represents a suitable adjuvant for SARS-CoV-2 immunization, and which delivery strategy for muGM-CSF could be most beneficial. To test this, different groups of mice were immunized with intra-dermal (i.d.) electroporated spike DNA in the absence or presence of recombinant or secreted muGM-CSF. Results demonstrated that adjuvanting a spike DNA vaccine with secreted muGM-CSF resulted in enhancement of specific cellular and humoral immune responses against SARS-CoV-2. Our data also highlighted the importance of delivery strategies to the induction of cellular and humoral-mediated responses.
Collapse
Affiliation(s)
- Rémi Vernet
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland; (E.C.); (N.M.)
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| | - Emily Charrier
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland; (E.C.); (N.M.)
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
- MaxiVAX SA, 1202 Geneva, Switzerland;
| | - Erika Cosset
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| | - Sabine Fièvre
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland; (S.F.); (U.T.)
| | - Ugo Tomasello
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland; (S.F.); (U.T.)
| | | | - Nicolas Mach
- Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland; (E.C.); (N.M.)
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
15
|
Ahad A, Mahnoor S, Zaid M, Ali M, Afzal MS. Ebolavirus: Infection, Vaccination and Control. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2021; 36:S55-S64. [PMCID: PMC8860457 DOI: 10.3103/s0891416821050037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/11/2021] [Accepted: 04/04/2021] [Indexed: 11/30/2022]
Abstract
Members of the genus Ebolavirus (family Filoviridae) are among the deadliest viral pathogens spread throughout the world with severe rate of mortality, at least 90% in some outbreaks. Their virions are filamentous and enveloped with enclosed negative-sense single-stranded RNA genome. The genome potentially expresses seven structural and nonstructural proteins. The replication cycle is complex consisting of multiple molecular processes and interactions with human-host factors and proteins. Due to high mortality rate of infection, the studies regarding cure is still infancy. This review covers the current understanding of the virus replication cycle and vaccine development, and herbal treatments to control Ebola covering the available literature on the subject.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), C-ll Johar Town, 54770 Lahore, Pakistan
| | - Sabahat Mahnoor
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), C-ll Johar Town, 54770 Lahore, Pakistan
| | - Muhammad Zaid
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), C-ll Johar Town, 54770 Lahore, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), C-ll Johar Town, 54770 Lahore, Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), C-ll Johar Town, 54770 Lahore, Pakistan
| |
Collapse
|
16
|
Xu D, Tang B, Wang Y, Zhang L, Qu Z, Shi W, Wang X, Sun Q, Sun S, Liu M. The immune protection induced by a serine protease from the Trichinella spiralis adult administered as DNA and protein vaccine. Acta Trop 2020; 211:105622. [PMID: 32645301 DOI: 10.1016/j.actatropica.2020.105622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
Trichinellosis is caused by Trichinella spiralis (T. spiralis), which is an important public health problem. In this study, a gene encoding a serine protease from adult worms of T. spiralis (Ts-Adsp) was screened from a cDNA library of adult worms and was cloned and expressed in a prokaryotic expression system. The gene Ts-Adsp was subcloned into the eukaryotic expression vector pcDNA3.1(+), which was named pcDNA3.1(+)-Adsp. Previous studies have found that recombinant Ts-Adsp protein (rTs-Adsp) can elicit partial protection against T. spiralis infection in mice. Our aim was to explore the protective effect of combining a DNA vaccine with the rTs-Adsp protein against T. spiralis. One week after the last vaccination, the serum and spleen were obtained. The levels of IgG, IgG1 and IgG2a and cytokine production in serum and spleen cells were analyzed. The results showed that the levels of humoral and cell-mediated immune responses increased in the pcDNA3.1(+)-Adsp/rTs-Adsp group mice and demonstrated that a Th1/Th2 mixed immune response was induced by pcDNA3.1(+)-Adsp/rTs-Adsp after vaccination. Moreover, mice vaccinated with pcDNA3.1(+)-Adsp/rTs-Adsp displayed a 69.50% reduction in muscle larvae burden. This study suggested that mixed immunity could improve the muscle larvae reduction rate.
Collapse
|
17
|
Kortepeter MG, Dierberg K, Shenoy ES, Cieslak TJ. Marburg virus disease: A summary for clinicians. Int J Infect Dis 2020; 99:233-242. [PMID: 32758690 PMCID: PMC7397931 DOI: 10.1016/j.ijid.2020.07.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES This article summarizes the countermeasures for Marburg virus disease, focusing on pathogenesis, clinical features and diagnostics. There is an emphasis on therapies and vaccines that have demonstrated, through their evaluation in nonhuman primates (NHPs) and/or in humans, potential for use in an emergency situation. METHODS A standardized literature review was conducted on vaccines and treatments for Marburg virus disease, with a focus on human and nonhuman primate data published in the last five years. More detail on the methods that were used is summarized in a companion methods paper. RESULTS The study identified six treatments and four vaccine platforms that have demonstrated, through their efficacy in NHPs, potential benefit for treating or preventing infection in humans. CONCLUSION Succinct summaries of Marburg countermeasures are provided to give the busy clinician a head start in reviewing the literature if faced with a patient with Marburg virus disease. Links to other authoritative sources of information are also provided.
Collapse
|
18
|
Kardani K, Bolhassani A, Namvar A. An overview of in silico vaccine design against different pathogens and cancer. Expert Rev Vaccines 2020; 19:699-726. [PMID: 32648830 DOI: 10.1080/14760584.2020.1794832] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Due to overcome the hardness of the vaccine design, computational vaccinology is emerging widely. Prediction of T cell and B cell epitopes, antigen processing analysis, antigenicity analysis, population coverage, conservancy analysis, allergenicity assessment, toxicity prediction, and protein-peptide docking are important steps in the process of designing and developing potent vaccines against various viruses and cancers. In order to perform all of the analyses, several bioinformatics tools and online web servers have been developed. Scientists must take the decision to apply more suitable and precise servers for each part based on their accuracy. AREAS COVERED In this review, a wide-range list of different bioinformatics tools and online web servers has been provided. Moreover, some studies were proposed to show the importance of various bioinformatics tools for predicting and developing efficient vaccines against different pathogens including viruses, bacteria, parasites, and fungi as well as cancer. EXPERT OPINION Immunoinformatics is the best way to find potential vaccine candidates against different pathogens. Thus, the selection of the most accurate tools is necessary to predict and develop potent preventive and therapeutic vaccines. To further evaluation of the computational and in silico vaccine design, in vitro/in vivo analyses are required to develop vaccine candidates.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center , Tehran, Iran
| |
Collapse
|
19
|
Xu Z, Wise MC, Chokkalingam N, Walker S, Tello‐Ruiz E, Elliott STC, Perales‐Puchalt A, Xiao P, Zhu X, Pumroy RA, Fisher PD, Schultheis K, Schade E, Menis S, Guzman S, Andersen H, Broderick KE, Humeau LM, Muthumani K, Moiseenkova‐Bell V, Schief WR, Weiner DB, Kulp DW. In Vivo Assembly of Nanoparticles Achieved through Synergy of Structure-Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902802. [PMID: 32328416 PMCID: PMC7175333 DOI: 10.1002/advs.201902802] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/28/2019] [Indexed: 05/25/2023]
Abstract
Nanotechnologies are considered to be of growing importance to the vaccine field. Through decoration of immunogens on multivalent nanoparticles, designed nanovaccines can elicit improved humoral immunity. However, significant practical and monetary challenges in large-scale production of nanovaccines have impeded their widespread clinical translation. Here, an alternative approach is illustrated integrating computational protein modeling and adaptive electroporation-mediated synthetic DNA delivery, thus enabling direct in vivo production of nanovaccines. DNA-launched nanoparticles are demonstrated displaying an HIV immunogen spontaneously self-assembled in vivo. DNA-launched nanovaccines induce stronger humoral responses than their monomeric counterparts in both mice and guinea pigs, and uniquely elicit CD8+ effector T-cell immunity as compared to recombinant protein nanovaccines. Improvements in vaccine responses recapitulate when DNA-launched nanovaccines with alternative scaffolds and decorated antigen are designed and evaluated. Finally, evaluation of functional immune responses induced by DLnanovaccines demonstrates that, in comparison to control mice or mice immunized with DNA-encoded hemagglutinin monomer, mice immunized with a DNA-launched hemagglutinin nanoparticle vaccine fully survive a lethal influenza challenge, and have substantially lower viral load, weight loss, and influenza-induced lung pathology. Additional study of these next-generation in vivo-produced nanovaccines may offer advantages for immunization against multiple disease targets.
Collapse
Affiliation(s)
- Ziyang Xu
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
- Department of PharmacologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Megan C. Wise
- Inovio PharmaceuticalsPlymouth MeetingPhiladelphiaPA19422USA
| | - Neethu Chokkalingam
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Susanne Walker
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Edgar Tello‐Ruiz
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Sarah T. C. Elliott
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | | | - Peng Xiao
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Xizhou Zhu
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Ruth A. Pumroy
- Department of PharmacologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Paul D. Fisher
- Inovio PharmaceuticalsPlymouth MeetingPhiladelphiaPA19422USA
| | | | - Eric Schade
- Inovio PharmaceuticalsPlymouth MeetingPhiladelphiaPA19422USA
| | - Sergey Menis
- Department of Immunology and MicrobiologyThe Scripps Research InstituteLa JollaCA92037USA
- IAVI Neutralizing Antibody CenterThe Scripps Research InstituteLa JollaCA92037USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen DiscoveryThe Scripps Research InstituteLa JollaCA92037USA
| | - Stacy Guzman
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | | | | | | | - Kar Muthumani
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Vera Moiseenkova‐Bell
- Department of PharmacologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - William R. Schief
- Department of Immunology and MicrobiologyThe Scripps Research InstituteLa JollaCA92037USA
- IAVI Neutralizing Antibody CenterThe Scripps Research InstituteLa JollaCA92037USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen DiscoveryThe Scripps Research InstituteLa JollaCA92037USA
- Ragon Institute of MGHMIT and HarvardCambridgeMA02139USA
| | - David B. Weiner
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Daniel W. Kulp
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
- Department of MicrobiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
20
|
Vonsky MS, Runov AL, Gordeychuk IV, Isaguliants MG. Therapeutic Vaccines Against Human Papilloma Viruses: Achievements and Prospects. BIOCHEMISTRY (MOSCOW) 2019; 84:800-816. [PMID: 31509730 DOI: 10.1134/s0006297919070101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human papillomaviruses of high carcinogenic risk (HR HPVs) are major etiological agents of malignant diseases of the cervix, vulva, penis, anal canal, larynx, head, and neck. Prophylactic vaccination against HPV, which mainly covers girls and women under 25, does not prevent vertical and horizontal HPV transmission in infants and children and does not have a therapeutic effect. As a result, a significant proportion of the population is not protected from the HPV infection and development of HPV-associated neoplastic transformation and cancer, which indicates the need for development and introduction of therapeutic HPV vaccines. Unlike prophylactic vaccines aimed at the formation of virus-neutralizing antibodies, therapeutic vaccines elicit cellular immune response leading to the elimination of infected and malignant cells expressing viral proteins. The ideal targets for vaccine immunotherapy are highly conserved HR HPV oncoproteins E6 and E7 expressed in precancerous and tumor tissues. Here, we describe expression of these proteins during different stages of HPV infection, their antigenic and immunogenic properties, and T-cell epitopes, the response to which correlates with natural regression of HPV-induced neoplastic changes. The review describes patterns of E6 and E7 oncoproteins presentation to the immune system as components of candidate vaccines along with the results of the most promising preclinical trials and animal models used in these trials. Special attention is paid to vaccine candidates which have shown efficacy in clinical trials in patients with HPV-associated neoplastic changes.
Collapse
Affiliation(s)
- M S Vonsky
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Almazov National Medical Research Centre, Ministry of Health of Russian Federation, St. Petersburg, 197341, Russia
| | - A L Runov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.,Almazov National Medical Research Centre, Ministry of Health of Russian Federation, St. Petersburg, 197341, Russia.,Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russian Federation, Moscow, 123098, Russia
| | - I V Gordeychuk
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russian Federation, Moscow, 123098, Russia. .,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia.,Sechenov First Moscow State Medical University, Ministry of Health of Russian Federation, Moscow, 119991, Russia
| | - M G Isaguliants
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russian Federation, Moscow, 123098, Russia. .,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia.,Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, SE-171 77, Sweden.,Riga Stradins University, Department of Pathology, Riga, LV-1007, Latvia
| |
Collapse
|
21
|
Lei L, Yang F, Zou J, Jing H, Zhang J, Xu W, Zou Q, Zhang J, Wang X. DNA vaccine encoding OmpA and Pal from Acinetobacter baumannii efficiently protects mice against pulmonary infection. Mol Biol Rep 2019; 46:5397-5408. [PMID: 31342294 DOI: 10.1007/s11033-019-04994-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen that causes serious infections in the lungs, blood, and brain in critically ill hospital patients, resulting in considerable mortality rates every year. Due to the rapid appearance of multi-drug resistance or even pan-drug resistance isolates, it is becoming more and more difficult to cure A. baumannii infection by traditional antibiotic treatment, alternative strategies are urgently required to combat A. baumannii infection. In this study, we developed a DNA vaccine encoding two antigens from A. baumannii, OmpA and Pal, and the immunogenicity and protective efficacy was further evaluated. The results showed that the DNA vaccine exhibited significant immune protective efficacy against acute A. baumannii infection in a mouse pneumonia model, and cross protective efficacy was observed when immunized mice were challenged with clinical strains of A. baumannii. DNA vaccine immunization induced high level of humoral response and a mixed Th1/Th2/Th17 cellular response, which protect against lethal bacterial challenges by decreased bacterial loads and pathology in the lungs, and reduced level of inflammatory cytokines expression and inflammatory cell infiltration in BALF. These results demonstrated that it is possible to prevent A. baumannii infection by DNA vaccine and both OmpA and Pal could be serve as promising candidate antigens.
Collapse
Affiliation(s)
- Langhuan Lei
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Feng Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jintao Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jin Zhang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wanting Xu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Xingyong Wang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
22
|
In silico Designed Ebola Virus T-Cell Multi-Epitope DNA Vaccine Constructions Are Immunogenic in Mice. Vaccines (Basel) 2019; 7:vaccines7020034. [PMID: 30934980 PMCID: PMC6630745 DOI: 10.3390/vaccines7020034] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background: The lack of effective vaccines against Ebola virus initiates a search for new approaches to overcoming this problem. The aim of the study was to design artificial polyepitope T-cell immunogens⁻⁻candidate DNA vaccines against Ebola virus and to evaluate their capacity to induce a specific immune response in a laboratory animal model. Method: Design of two artificial polyepitope T-cell immunogens, one of which (EV.CTL) includes cytotoxic and the other (EV.Th)⁻⁻T-helper epitopes of Ebola virus proteins was carried out using original TEpredict/PolyCTLDesigner software. Synthesized genes were cloned in pcDNA3.1 plasmid vector. Target gene expression was estimated by synthesis of specific mRNAs and proteins in cells transfected with recombinant plasmids. Immunogenicity of obtained DNA vaccine constructs was evaluated according to their capacity to induce T-cell response in BALB/c mice using IFNγ ELISpot and ICS. Results: We show that recombinant plasmids pEV.CTL and pEV.Th encoding artificial antigens provide synthesis of corresponding mRNAs and proteins in transfected cells, as well as induce specific responses both to CD4+ and CD8+ T-lymphocytes in immunized animals. Conclusions: The obtained recombinant plasmids can be regarded as promising DNA vaccine candidates in future studies of their capacity to induce cytotoxic and protective responses against Ebola virus.
Collapse
|
23
|
Marx M, Zumpe M, Troschke-Meurer S, Shah D, Lode HN, Siebert N. Co-expression of IL-15 enhances anti-neuroblastoma effectivity of a tyrosine hydroxylase-directed DNA vaccination in mice. PLoS One 2018; 13:e0207320. [PMID: 30452438 PMCID: PMC6242328 DOI: 10.1371/journal.pone.0207320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023] Open
Abstract
Long-term survival of high-risk neuroblastoma (NB) patients still remains under 50%. Here, we report the generation, in vitro characterization and anti-tumor effectivity of a new bicistronic xenogenic DNA vaccine encoding tyrosine hydroxylase (TH) that is highly expressed in NB tumors, and the immune stimulating cytokine interleukin 15 (IL-15) that induces cytotoxic but not regulatory T cells. The DNA sequences of TH linked to ubiquitin and of IL-15 were integrated into the bicistronic expression vector pIRES. Successful production and bioactivity of the vaccine-derived IL-15- and TH protein were shown by ELISA, bioactivity assay and western blot analysis. Further, DNA vaccine-driven gene transfer to the antigen presenting cells of Peyer’s patches using attenuated Salmonella typhimurium that served as oral delivery system was shown by immunofluorescence analysis. The anti-tumor effect of the generated vaccine was evaluated in a syngeneic mouse model (A/J mice, n = 12) after immunization with S. typhimurium (3× prior and 3× after tumor implantation). Importantly, TH-/IL-15-based DNA vaccination resulted in an enhanced tumor remission in 45.5% of mice compared to controls (TH (16.7%), IL-15 (0%)) and reduced spontaneous metastasis (30.0%) compared to controls (TH (63.6%), IL-15 (70.0%)). Interestingly, similar levels of tumor infiltrating CD8+ T cells were observed among all experimental groups. Finally, co-expression of IL-15 did not result in elevated regulatory T cell levels in tumor environment measured by flow cytometry. In conclusion, co-expression of the stimulatory cytokine IL-15 enhanced the NB-specific anti-tumor effectivity of a TH-directed vaccination in mice and may provide a novel immunological approach for NB patients.
Collapse
Affiliation(s)
- Madlen Marx
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
- * E-mail:
| | - Maxi Zumpe
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Troschke-Meurer
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Diana Shah
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Holger N. Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
Su Y, Romeu-Bonilla E, Heiland T. Next generation immunotherapy for tree pollen allergies. Hum Vaccin Immunother 2018; 13:2402-2415. [PMID: 28853984 DOI: 10.1080/21645515.2017.1367882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tree pollen induced allergies are one of the major medical and public health burdens in the industrialized world. Allergen-Specific Immunotherapy (AIT) through subcutaneous injection or sublingual delivery is the only approved therapy with curative potential to pollen induced allergies. AIT often is associated with severe side effects and requires long-term treatment. Safer, more effective and convenient allergen specific immunotherapies remain an unmet need. In this review article, we discuss the current progress in applying protein and peptide-based approaches and DNA vaccines to the clinical challenges posed by tree pollen allergies through the lens of preclinical animal models and clinical trials, with an emphasis on the birch and Japanese red cedar pollen induced allergies.
Collapse
Affiliation(s)
- Yan Su
- a Department of R&D , Immunomic Therapeutics, Inc. (ITI) , Rockville , MD , USA
| | | | - Teri Heiland
- a Department of R&D , Immunomic Therapeutics, Inc. (ITI) , Rockville , MD , USA
| |
Collapse
|
25
|
|
26
|
Dutton JL, Woo WP, Chandra J, Xu Y, Li B, Finlayson N, Griffin P, Frazer IH. An escalating dose study to assess the safety, tolerability and immunogenicity of a Herpes Simplex Virus DNA vaccine, COR-1. Hum Vaccin Immunother 2017; 12:3079-3088. [PMID: 27580249 PMCID: PMC5215501 DOI: 10.1080/21645515.2016.1221872] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This paper describes a single site, open-label Phase I clinical trial evaluating the safety, tolerability and immunogenicity in healthy volunteers of a herpes simplex polynucleotide vaccine that has previously been shown to enhance immunogenicity and protect against lethal herpes simplex virus type 2 (HSV-2) challenge in mice. Five escalating doses of the vaccine, COR-1, were given by intradermal injection to HSV-1 and 2 seronegative healthy individuals. COR-1 was found to be safe and well-tolerated; the only vaccine-related adverse events were mild. While vaccine-induced antibody responses were not detectable, cell-mediated immune responses to HSV-specific peptide groups were identified in 19 of the 20 subjects who completed the study, and local inflammation at the immunisation site was observed. This study indicates COR-1 has potential to be used as a therapeutic vaccine for HSV-2 infection.
Collapse
Affiliation(s)
- Julie L Dutton
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| | - Wai-Ping Woo
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| | - Janin Chandra
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| | - Yan Xu
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| | - Bo Li
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| | - Neil Finlayson
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia
| | - Paul Griffin
- c Q-Pharm Pty Ltd, Brisbane, Australia; Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, Australia; The University of Queensland , Brisbane , Australia
| | - Ian H Frazer
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| |
Collapse
|
27
|
Weiwei G, Xuexing Z, Chong W, Yongkun Z, Qi W, Hualei W, Gary W, Ying X, Haijun W, Zengguo C, Na F, Hang C, Tiecheng W, Yuwei G, Junjie S, Songtao Y, Xianzhu X. Marburg virus-like particles produced in insect cells induce neutralizing antibodies in rhesus macaques. J Med Virol 2017; 89:2069-2074. [DOI: 10.1002/jmv.24832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Gai Weiwei
- College of Veterinary Medicine; Jilin University; Changchun China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Zheng Xuexing
- School of Public Health; Shandong University; Jinan China
| | - Wang Chong
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Harbin China
| | - Zhao Yongkun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Wang Qi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
- College of Veterinary Medicine; Jilin Agriculture University; Changchun China
| | - Wang Hualei
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Wong Gary
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Xie Ying
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Wang Haijun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Cao Zengguo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Feng Na
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Chi Hang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Wang Tiecheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Gao Yuwei
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Shan Junjie
- Institute of Pharmacology and Toxicology; Academy of Military Medical Sciences; Beijing China
| | - Yang Songtao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Xia Xianzhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| |
Collapse
|
28
|
Comparative Assessment of Induced Immune Responses Following Intramuscular Immunization with Fusion and Cocktail of LeIF, LACK and TSA Genes Against Cutaneous Leishmaniasis in BALB/c Mice. Arch Immunol Ther Exp (Warsz) 2017; 66:55-64. [DOI: 10.1007/s00005-017-0484-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
|
29
|
Electroporation as a vaccine delivery system and a natural adjuvant to intradermal administration of plasmid DNA in macaques. Sci Rep 2017. [PMID: 28646234 PMCID: PMC5482824 DOI: 10.1038/s41598-017-04547-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In vivo electroporation (EP) is used to enhance the uptake of nucleic acids and its association with DNA vaccination greatly stimulates immune responses to vaccine antigens delivered through the skin. However, the effect of EP on cutaneous cell behavior, the dynamics of immune cell recruitment and local inflammatory factors, have not been fully described. Here, we show that intradermal DNA vaccination combined with EP extends antigen expression to the epidermis and the subcutaneous skin muscle in non-human primates. In vivo fibered confocal microscopy and dynamic ex vivo imaging revealed that EP promotes the mobility of Langerhans cells (LC) and their interactions with transfected cells prior to their migration from the epidermis. At the peak of vaccine expression, we detected antigen in damaged keratinocyte areas in the epidermis and we characterized recruited immune cells in the skin, the hypodermis and the subcutaneous muscle. EP alone was sufficient to induce the production of pro-inflammatory cytokines in the skin and significantly increased local concentrations of Transforming Growth Factor (TGF)-alpha and IL-12. Our results show the kinetics of inflammatory processes in response to EP of the skin, and reveal its potential as a vaccine adjuvant.
Collapse
|
30
|
Karlsson I, Borggren M, Nielsen J, Christensen D, Williams J, Fomsgaard A. Increased humoral immunity by DNA vaccination using an α-tocopherol-based adjuvant. Hum Vaccin Immunother 2017; 13:1823-1830. [PMID: 28613978 DOI: 10.1080/21645515.2017.1321183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA vaccines induce broad immunity, which involves both humoral and strong cellular immunity, and can be rapidly designed for novel or evolving pathogens such as influenza. However, the humoral immunogenicity in humans and higher animals has been suboptimal compared with that of traditional vaccine approaches. We tested whether the emulsion-based and α-tocopherol containing adjuvant Diluvac Forte® has the ability to enhance the immunogenicity of a naked DNA vaccine (i.e., plasmid DNA). As a model vaccine, we used plasmids encoding both a surface-exposed viral glycoprotein (hemagglutinin) and an internal non-glycosylated nucleoprotein in the Th1/Th2 balanced CB6F1 mouse model. The naked DNA (50 µg) was premixed at a 1:1 volume/volume ratio with Diluvac Forte®, an emulsion containing different concentrations of α-tocopherol, the emulsion alone or endotoxin-free phosphate-buffered saline (PBS). The animals received 2 intracutaneous immunizations spaced 3 weeks apart. When combined with Diluvac Forte® or the emulsion containing α-tocopherol, the DNA vaccine induced a more potent and balanced immunoglobulin G (IgG)1 and IgG2c response, and both IgG subclass responses were significantly enhanced by the adjuvant. The DNA vaccine also induced CD4+ and CD8+ vaccine-specific T cells; however, the adjuvant did not exert a significant impact. We concluded that the emulsion-based adjuvant Diluvac Forte® enhanced the immunogenicity of a naked DNA vaccine encoding influenza proteins and that the adjuvant constituent α-tocopherol plays an important role in this immunogenicity. This induction of a potent and balanced humoral response without impairment of cellular immunity constitutes an important advancement toward effective DNA vaccines.
Collapse
Affiliation(s)
- Ingrid Karlsson
- a Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics , Statens Serum Institut , Copenhagen , Denmark
| | - Marie Borggren
- a Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics , Statens Serum Institut , Copenhagen , Denmark
| | - Jens Nielsen
- a Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics , Statens Serum Institut , Copenhagen , Denmark
| | - Dennis Christensen
- b Department of Infectious Disease Immunology, Vaccine Adjuvant Research , Statens Serum Institut , Copenhagen , Denmark
| | - Jim Williams
- c Nature Technology Corporation , Lincoln , NE , USA
| | - Anders Fomsgaard
- a Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics , Statens Serum Institut , Copenhagen , Denmark.,d Infectious Disease Research Unit, Clinical Institute , University of Southern Denmark , Odense , Denmark
| |
Collapse
|
31
|
Zheng X, Chen H, Wang R, Fan D, Feng K, Gao N, An J. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice. Front Cell Infect Microbiol 2017; 7:175. [PMID: 28553618 PMCID: PMC5427067 DOI: 10.3389/fcimb.2017.00175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/24/2017] [Indexed: 01/19/2023] Open
Abstract
Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China.,Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
| | - Hui Chen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Ran Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Dongying Fan
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Kaihao Feng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Na Gao
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Jing An
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China.,Center of Epilepsy, Beijing Institute for Brain DisordersBeijing, China
| |
Collapse
|
32
|
Joseph S, Quinn K, Greenwood A, Cope AV, McKay PF, Hayes PJ, Kopycinski JT, Gilmour J, Miller AN, Geldmacher C, Nadai Y, Ahmed MIM, Montefiori DC, Dally L, Bouliotis G, Lewis DJM, Tatoud R, Wagner R, Esteban M, Shattock RJ, McCormack S, Weber J. A Comparative Phase I Study of Combination, Homologous Subtype-C DNA, MVA, and Env gp140 Protein/Adjuvant HIV Vaccines in Two Immunization Regimes. Front Immunol 2017; 8:149. [PMID: 28275375 PMCID: PMC5319954 DOI: 10.3389/fimmu.2017.00149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant—aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The approach did however affect other immune responses; neutralizing antibody responses, seen only to Tier 1 pseudoviruses, were poorer when the vaccines were combined and while T-cell responses were seen in >80% individuals in both groups and similarly CD4 and Env dominant, their breadth/polyfunctionality tended to be lower when the vaccines were combined, suggesting attenuation of immunogenicity and cautioning against this accelerated regimen.
Collapse
Affiliation(s)
- Sarah Joseph
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London , London , UK
| | - Killian Quinn
- Department of Medicine, Imperial College London , London , UK
| | | | - Alethea V Cope
- Department of Medicine, Imperial College London , London , UK
| | - Paul F McKay
- Department of Medicine, Imperial College London , London , UK
| | - Peter J Hayes
- IAVI Human Immunology Laboratory, Imperial College London , London , UK
| | | | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College London , London , UK
| | - Aleisha N Miller
- ICTU, Department of Public Health, Imperial College London , London , UK
| | - Christof Geldmacher
- Department of Infectious Diseases and Tropical Medicine, Klinikum of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), Munich, Germany
| | - Yuka Nadai
- Department of Infectious Diseases and Tropical Medicine, Klinikum of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), Munich, Germany
| | - Mohamed I M Ahmed
- Department of Infectious Diseases and Tropical Medicine, Klinikum of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), Munich, Germany
| | | | - Len Dally
- The EMMES Corporation , Rockville, MD , USA
| | - George Bouliotis
- ICTU, Department of Public Health, Imperial College London , London , UK
| | - David J M Lewis
- Clinical Research Centre, University of Surrey, Guildford, UK; Clinical Research Facility, Imperial College Healthcare NHS Trust, London, UK
| | - Roger Tatoud
- Department of Medicine, Imperial College London , London , UK
| | - Ralf Wagner
- University of Regensburg and University Hospital Regensburg , Regensburg , Germany
| | | | | | - Sheena McCormack
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London , London , UK
| | - Jonathan Weber
- Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
33
|
Gong YF, Zhou QB, Liao YD, Mai C, Chen TJ, Tang YQ, Chen RF. Optimized construction of MUC1-VNTR n DNA vaccine and its anti-pancreatic cancer efficacy. Oncol Lett 2017; 13:2198-2206. [PMID: 28454381 PMCID: PMC5403551 DOI: 10.3892/ol.2017.5717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Considering mucin 1-variable number tandem repeat (MUC1-VNTRn) as a novel target for pancreatic cancer immunotherapy, the present study aimed to screen and identify the pVAX1-MUC1-VNTRn DNA vaccine with the strongest immunogenicity. Following construction of a pVAX1-MUC1-VNTRn plasmid, immature dendritic cells (DCs) were subjected to transfection, and mature DCs were then co-cultured with autologous T-cells. The numbers of cytotoxic T lymphocytes (CTLs) secreting interferon (IFN)-γ were determined using an enzyme-linked immunospot assay, and CytoTox® was also used to examine the MUC1-VNTRn-specific Lethal effect of CTLs on Capan2 cells. Additional in vivo experiments in mice were performed to confirm the antitumor effect of the DNA vaccine candidate. The present study successfully constructed the pVAX1-MUC1-VNTRn plasmid, which expresses the target protein in eukaryotic cells. Additionally, upon uptake of the pVAX1-MUC1-VNTRn plasmid, the immature DCs differentiated into mature DCs. The levels of the DC surface molecules cluster of differentiation (CD) 80, CD86, human leukocyte antigen-antigen D related, interleukin (IL)-12, IL-17 and IFN-γ were significantly higher, while the levels of IL-10 and IL-14 were lower, in mature DCs of the stimulated groups compared with the immature DCs of the non-stimulated groups (all P<0.01). In addition, the MUC1-VNTR6 and MUC1-VNTR9 groups, in which DCs were capable of activating autologous T-cells, showed increased IFN-γ-producing T-cells compared with the other groups (strong MUC1-VNTR1, weak VNTR1, VNTR3, VNTR4 and MUC1-cDNA groups; all P<0.001). In addition, the Lethal effect of CTLs on Capan2 cells in these two groups was stronger compared with the other groups (all P<0.001). Furthermore, the induced protective and therapeutic immune responses in mouse experiments showed that the pVAX1-MUC1-VNTR6DNA vaccine likely possessed the strongest immunogenicity, and its ability to inhibit panc02-MUC1 tumor growth was superior to other DNA vaccines (P<0.01). The present study provides compelling evidence that pVAX1-MUC1-VNTRn has the potential to express the target protein in eukaryotic cells, and thatpVAX1-MUC1-VNTR6 was characterized by the strongest Lethal effect in both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Yuan-Feng Gong
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Quan-Bo Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ya-Di Liao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Cong Mai
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Tie-Jun Chen
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yun-Qiang Tang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Ru-Fu Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
34
|
Voshavar C, Meka RCR, Samanta S, Marepally S, Chaudhuri A. Enhanced Spacer Length between Mannose Mimicking Shikimoyl and Quinoyl Headgroups and Hydrophobic Region of Cationic Amphiphile Increases Efficiency of Dendritic Cell Based DNA Vaccination: A Structure–Activity Investigation. J Med Chem 2017; 60:1605-1610. [DOI: 10.1021/acs.jmedchem.6b01556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Rakesh C. R. Meka
- Biomaterials
Group, CSIR—Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Sanjoy Samanta
- Biomaterials
Group, CSIR—Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Srujan Marepally
- Biomaterials
Group, CSIR—Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Arabinda Chaudhuri
- Biomaterials
Group, CSIR—Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Taramani, Chennai 600 113, India
| |
Collapse
|
35
|
Frankel T, Lanfranca MP, Zou W. The Role of Tumor Microenvironment in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:51-64. [PMID: 29275464 DOI: 10.1007/978-3-319-67577-0_4] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The field of tumor immunology and immunotherapy has undergone a renaissance in the past decade do in large part to a better understanding of the tumor immune microenvironment. After suffering countless successes and setbacks in the twentieth century, immunotherapy has now come to the forefront of cancer research and is recognized as an important tool in the anti-tumor armamentarium. The goal of therapy is to aid the immune system in recognition and destruction of tumor cells by enhancing its ability to react to tumor antigens. This traditionally has been accomplished by induction of adaptive immunity through vaccination or through passive delivery of immunologic effectors as in the case of adoptive cell transfer. The recent discovery of immune "checkpoints" whose purpose is to suppress immune activity and prevent auto-immunity has created a new angle by which reactivity to tumors can be enhanced. Blockers of these checkpoints have yielded impressive clinical results and have recently been approved for use in a wide variety of malignancies. With data showing increasing rates of not only treatment response, but complete remissions, immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer.
Collapse
Affiliation(s)
- Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Abstract
Aurora kinase A (AURKA) is a centrosomal protein that is overexpressed in a number of human malignancies and can contribute to tumor progression. As we used this protein as a target of DNA immunization, we increased its immunogenicity by the addition of the PADRE helper epitope and decreased its potential oncogenicity by mutagenesis of the kinase domain. For in vitro analysis of induced immune responses in mice, we identified the Aurka(220-228) nonapeptide representing an H-2Kb epitope. As DNA vaccination against the Aurka self-antigen by a gene gun did not show any antitumor effect, we combined DNA immunization with anti-CD25 treatment that depletes mainly regulatory T cells. Whereas 1 anti-CD25 dose injected before DNA vaccination did not enhance the activation of Aurka-specific splenocytes, 3 doses administered on days of immunizations augmented about 10-fold immunity against Aurka. However, an opposite effect was found for antitumor immunity-only 1 anti-CD25 dose combined with DNA vaccination reduced tumor growth. Moreover, the administration of 3 doses of anti-CD25 antibody alone accelerated tumor growth. Analysis of tumor-infiltrating cells showed that 3 anti-CD25 doses not only efficiently depleted regulatory T cells but also activated helper T cells and CD3(-)CD25(+) cells. Next, we found that blockade of the PD-1 receptor initiated 1 week after the first immunization was necessary for significant inhibition of tumor growth with therapeutic DNA vaccination against Aurka combined with depletion of CD25 cells. Our results suggest that combined cancer immunotherapy should be carefully evaluated to achieve the optimal antitumor effect.
Collapse
|
37
|
Li J, Yu J, Xu S, Shi J, Xu S, Wu X, Fu F, Peng Z, Zhang L, Zheng S, Yuan X, Cong X, Sun W, Cheng K, Du Y, Wu J, Wang J. Immunogenicity of porcine circovirus type 2 nucleic acid vaccine containing CpG motif for mice. Virol J 2016; 13:185. [PMID: 27842600 PMCID: PMC5109731 DOI: 10.1186/s12985-016-0597-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed at reseaching the immune effect of porcine circovirus type 2 (PCV2) DNA vaccine containing CpG motif on mice. METHODS A total of 40 6-week-old female BALB/c mice were randomly divided into four groups which were immunized by 18CpG-pVAX1-ORF2, pVAX1-ORF2, pVAX1 and PBS, respectively, and immunized again 2 weeks later. All mice were challenged with 0.2 mL PCV2 cells virulent strain SD (106.0 TCID50/mL) after 4 weeks. Average daily gain, blood antibody levels, microscopic changes and viremia were detected to estimate the effect of DNA vaccine. RESULTS AND DISCUSSION The results showed that compared to those of the control mice, groups immunized with pVAX1-ORF2 and 18CpG-pVAX1-ORF2 could induce PCV2-specific antibodies. The PCV2-specific antibodies level of 18 CpG-pVAX1-ORF2 groups was higher significantly than other groups and decreased slowly along with time. There was no distinct pathological damage and viremia occurring in mice that inoculated with CpG motif DNA vaccines. The results demonstrated that the DNA vaccine containing 18 CpG could build up resistibility immunity and reduce immune organ damage on mice.
Collapse
Affiliation(s)
- Jun Li
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jiang Yu
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shaojian Xu
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jianli Shi
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shengnan Xu
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaoyan Wu
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Fang Fu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Zhe Peng
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lingling Zhang
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shuxuan Zheng
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaoyuan Yuan
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaoyan Cong
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenbo Sun
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kaihui Cheng
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yijun Du
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jiaqiang Wu
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jinbao Wang
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
38
|
Trad MA, Naughton W, Yeung A, Mazlin L, O'sullivan M, Gilroy N, Fisher DA, Stuart RL. Ebola virus disease: An update on current prevention and management strategies. J Clin Virol 2016; 86:5-13. [PMID: 27893999 DOI: 10.1016/j.jcv.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022]
Abstract
Ebola virus disease (EVD) is characterised by systemic viral replication, immuno-suppression, abnormal inflammatory responses, large volume fluid and electrolyte losses, and high mortality in under-resourced settings. There are various therapeutic strategies targeting EVD including vaccines utilizing different antigen delivery methods, antibody-based therapies and antiviral drugs. These therapies remain experimental, but received attention following their use particularly in cases treated outside West Africa during the 2014-15 outbreak, in which 20 (80%) out of 25 patients survived. Emerging data from current trials look promising and are undergoing further study, however optimised supportive care remains the key to reducing mortality from EVD.
Collapse
Affiliation(s)
- M A Trad
- Department of Infectious Diseases, Wollongong Hospital, Wollongong, NSW, Australia; Graduate School of Medicine, University of Wollongong, Wollongong, Australia; Medecins Sans Frontieres, Paris, France.
| | - W Naughton
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - A Yeung
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - L Mazlin
- Medecins Sans Frontieres, Brussels, Belgium
| | - M O'sullivan
- Centre for Infectious Diseases and Microbiology, Pathology West, Westmead Hospital, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW, Australia
| | - N Gilroy
- Centre for Infectious Diseases and Microbiology, Pathology West, Westmead Hospital, NSW, Australia
| | - D A Fisher
- Division of Infectious Diseases, University Medicine Cluster, National University Hospital, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - R L Stuart
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia; Department of Medicine, Monash University, Victoria, Australia
| |
Collapse
|
39
|
Abstract
For 40 years ebolaviruses have been responsible for sporadic outbreaks of severe and often fatal hemorrhagic fever in humans and nonhuman primates. In December 2013 an unprecedented Zaire ebolavirus epidemic began in West Africa. Although "patient zero" has finally been reached after 2 years, the virus is again causing disease in the region. Currently there are no licensed vaccines or therapeutic countermeasures against ebolaviruses; however, the epidemic in West Africa has focused attention on the potential vaccine platforms developed over the past 15 years. There has been remarkable progress using a variety of platforms including DNA, subunit, and several viral vector approaches, replicating and non-replicating, which have shown varying degrees of protective efficacy in the "gold-standard" nonhuman primate models for Ebolavirus infections. A number of these vaccine platforms have moved into clinical trials over the past year with the hope of finding an efficacious vaccine to prevent future outbreaks/epidemics of Ebola hemorrhagic fever on the scale of the West African epidemic.
Collapse
Affiliation(s)
- Chad E Mire
- a Galveston National Laboratory, and Department of Microbiology and Immunology , University of Texas Medical Branch , Galveston , TX , USA
| | - Thomas W Geisbert
- a Galveston National Laboratory, and Department of Microbiology and Immunology , University of Texas Medical Branch , Galveston , TX , USA
| | - Heinz Feldmann
- b Laboratory of Virology, Division of Intramural Research , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| | - Andrea Marzi
- b Laboratory of Virology, Division of Intramural Research , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| |
Collapse
|
40
|
Immunization with electroporation enhances the protective effect of a DNA vaccine candidate expressing prME antigen against dengue virus serotype 2 infection. Clin Immunol 2016; 171:41-49. [DOI: 10.1016/j.clim.2016.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 11/24/2022]
|
41
|
Abstract
Long-term control of viral outbreaks requires the use of vaccines to impart acquired resistance and ensuing protection. In the wake of an epidemic, established immunity against a particular disease can limit spread and significantly decrease mortality. Creation of a safe and efficacious vaccine against Ebola virus (EBOV) has proven elusive so far, but various inventive strategies are now being employed to counteract the threat of outbreaks caused by EBOV and related filoviruses. Here, we present a current overview of progress in the field of Ebola virus vaccine development.
Collapse
Affiliation(s)
- Rohan Keshwara
- Department of Microbiology and Immunology, Sidney Kimmel Medical College,Thomas Jefferson University, Philadelphia, Pennsylvania 19107;
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College,Thomas Jefferson University, Philadelphia, Pennsylvania 19107;
| |
Collapse
|
42
|
Bagley K, Xu R, Ota-Setlik A, Egan M, Schwartz J, Fouts T. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses. Hum Vaccin Immunother 2016; 11:2228-40. [PMID: 26042527 PMCID: PMC4635876 DOI: 10.1080/21645515.2015.1026498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action.
Collapse
|
43
|
Su Y, Connolly M, Marketon A, Heiland T. CryJ-LAMP DNA Vaccines for Japanese Red Cedar Allergy Induce Robust Th1-Type Immune Responses in Murine Model. J Immunol Res 2016; 2016:4857869. [PMID: 27239481 PMCID: PMC4867073 DOI: 10.1155/2016/4857869] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 12/29/2022] Open
Abstract
Allergies caused by Japanese Red Cedar (JRC) pollen affect up to a third of Japanese people, necessitating development of an effective therapeutic. We utilized the lysosomal targeting property of lysosomal-associated membrane protein-1 (LAMP-1) to make DNA vaccines that encode LAMP-1 and the sequences of immunodominant allergen CryJ1 or CryJ2 from the JRC pollen. This novel strategy is designed to skew the CD4 T cell responses to the target allergens towards a nonallergenic Th1 response. CryJ1-LAMP and CryJ2-LAMP were administrated to BALB/c mice and antigen-specific Th1-type IgG2a and Th2-type IgG1 antibodies, as well as IgE antibodies, were assayed longitudinally. We also isolated different T cell populations from immunized mice and adoptively transferred them into naïve mice followed by CryJ1/CryJ2 protein boosts. We demonstrated that CryJ-LAMP immunized mice produce high levels of IFN-γ and anti-CryJ1 or anti-CryJ2 IgG2a antibodies and low levels of IgE antibodies, suggesting that a Th1 response was induced. In addition, we found that CD4(+) T cells are the immunological effectors of DNA vaccination in this allergy model. Together, our results suggest the CryJ-LAMP Vaccine has a potential as an effective therapeutic for JRC induced allergy by skewing Th1/Th2 responses.
Collapse
Affiliation(s)
- Yan Su
- Department of R&D, Immunomic Therapeutics, Inc. (ITI), Rockville, MD 20850, USA
| | - Michael Connolly
- Department of R&D, Immunomic Therapeutics, Inc. (ITI), Rockville, MD 20850, USA
| | - Anthony Marketon
- Department of R&D, Immunomic Therapeutics, Inc. (ITI), Rockville, MD 20850, USA
| | - Teri Heiland
- Department of R&D, Immunomic Therapeutics, Inc. (ITI), Rockville, MD 20850, USA
| |
Collapse
|
44
|
Dalmia N, Klimstra WB, Mason C, Ramsay AJ. DNA-Launched Alphavirus Replicons Encoding a Fusion of Mycobacterial Antigens Acr and Ag85B Are Immunogenic and Protective in a Murine Model of TB Infection. PLoS One 2015; 10:e0136635. [PMID: 26317509 PMCID: PMC4552820 DOI: 10.1371/journal.pone.0136635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/immunology
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Disease Models, Animal
- Encephalitis Virus, Venezuelan Equine/genetics
- Encephalitis Virus, Venezuelan Equine/immunology
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Replicon/immunology
- Tuberculosis Vaccines/genetics
- Tuberculosis Vaccines/immunology
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Vaccination
- alpha-Crystallins/genetics
- alpha-Crystallins/immunology
Collapse
Affiliation(s)
- Neha Dalmia
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - William B. Klimstra
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carol Mason
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Alistair J. Ramsay
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
45
|
Hogan NC, Taberner AJ, Jones LA, Hunter IW. Needle-free delivery of macromolecules through the skin using controllable jet injectors. Expert Opin Drug Deliv 2015; 12:1637-48. [PMID: 26004884 DOI: 10.1517/17425247.2015.1049531] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Transdermal delivery of drugs has a number of advantages in comparison to other routes of administration. The mechanical properties of skin, however, impose a barrier to administration and so most compounds are administered using hypodermic needles and syringes. In order to overcome some of the issues associated with the use of needles, a variety of non-needle devices based on jet injection technology has been developed. AREAS COVERED Jet injection has been used primarily for vaccine administration but has also been used to deliver macromolecules such as hormones, monoclonal antibodies and nucleic acids. A critical component in the more recent success of jet injection technology has been the active control of pressure applied to the drug during the time course of injection. EXPERT OPINION Jet injection systems that are electronically controllable and reversible offer significant advantages over conventional injection systems. These devices can consistently create the high pressures and jet speeds necessary to penetrate tissue and then transition smoothly to a lower jet speed for delivery of the remainder of the desired dose. It seems likely that in the future this work will result in smart drug delivery systems incorporated into personal medical devices and medical robots for in-home disease management and healthcare.
Collapse
Affiliation(s)
- Nora C Hogan
- a 1 Massachusetts Institute of Technology, Department of Mechanical Engineering , 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrew J Taberner
- b 2 University of Auckland, Auckland Bioengineering Institute and Department of Engineering Science , 70 Symonds Street, Auckland 1010, New Zealand
| | - Lynette A Jones
- c 3 Massachusetts Institute of Technology, Department of Mechanical Engineering , 77 Massachusetts Avenue, Cambridge, MA 02139, USA +1 617 253 3973 ; +1 617 253 2218 ;
| | - Ian W Hunter
- d 4 Massachusetts Institute of Technology, Department of Mechanical Engineering , 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Xie X, Wang L, Yang W, Yu R, Li Q, Pang X. Co-administration of antigen with chemokine MCP-3 or MDC/CCL22 enhances DNA vaccine potency. Invest New Drugs 2015; 33:810-5. [DOI: 10.1007/s10637-015-0250-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
|
47
|
Lambracht-Washington D, Rosenberg RN. A noninflammatory immune response in aged DNA Aβ42-immunized mice supports its safety for possible use as immunotherapy in AD patients. Neurobiol Aging 2014; 36:1274-81. [PMID: 25725942 DOI: 10.1016/j.neurobiolaging.2014.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/02/2014] [Accepted: 12/06/2014] [Indexed: 12/17/2022]
Abstract
Aging in the immune system results in tendency to proinflammatory responses. Intradermal DNA immunization showed Th2 polarized noninflammatory immune responses. We tested here 18-month-old mice which were immunized with Aβ42 peptide, DNA Aβ42 trimer, or 2 different prime boost protocols identical to previous experiments. High Aβ42 antibody levels were found in aged mice which had received peptide immunizations (900 μg/mL plasma), and in mice which had received peptide prime and DNA boost immunizations (500 μg/mL), compared with antibodies in DNA Aβ42 immunized mice with 50 μg/mL. Although we found T-cell proliferation and inflammatory cytokines in mice which had received peptide or prime boost immunization, these were not found in DNA-immunized mice. The results are concordant with proinflammatory responses because of immunosenescence and contraindicate the use of Aβ42 peptide immunizations or prime boost immunization protocols for the use in elderly Alzheimer's disease patients. DNA Aβ42 immunization only on the other hand does lead to effective levels of antibodies without inflammatory cytokine or T-cell responses in the aged animal model tested.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
48
|
Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 2:e23803. [PMID: 23734328 PMCID: PMC3654598 DOI: 10.4161/onci.23803] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022] Open
Abstract
The foundation of modern vaccinology dates back to the 1790s, when the English physician Edward Jenner uncovered the tremendous medical potential of prophylactic vaccination. Jenner’s work ignited a wave of nationwide vaccination campaigns abating the incidence of multiple life-threatening infectious diseases and culminating with the eradication of natural smallpox virus, which was definitively certified by the WHO in 1980. The possibility of using vaccines against cancer was first proposed at the end of the 19th century by Paul Ehrlich and William Coley. However, it was not until the 1990s that such a hypothesis began to be intensively investigated, following the realization that the immune system is not completely unresponsive to tumors and that neoplastic cells express immunogenic tumor-associated antigens (TAAs). Nowadays, anticancer vaccines are rapidly moving from the bench to the bedside, and a few prophylactic and therapeutic preparations have already been approved by FDA for use in humans. In this setting, one interesting approach is constituted by DNA vaccines, i.e., TAA-encoding circularized DNA constructs, often of bacterial origin, that are delivered to patients as such or by means of specific vectors, including (but not limited to) liposomal preparations, nanoparticles, bacteria and viruses. The administration of DNA vaccines is most often performed via the intramuscular or subcutaneous route and is expected to cause (1) the endogenous synthesis of the TAA by myocytes and/or resident antigen-presenting cells; (2) the presentation of TAA-derived peptides on the cell surface, in association with MHC class I molecules; and (3) the activation of potentially therapeutic tumor-specific immune responses. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating DNA vaccines as therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; INSERM; U848; Villejuif, France ; INSERM; U1015 labelisée par la Ligue Nationale contre le Cancer; CICBT507; Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
van den Doel P, Volz A, Roose JM, Sewbalaksing VD, Pijlman GP, van Middelkoop I, Duiverman V, van de Wetering E, Sutter G, Osterhaus ADME, Martina BEE. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge. PLoS Negl Trop Dis 2014; 8:e3101. [PMID: 25188230 PMCID: PMC4154657 DOI: 10.1371/journal.pntd.0003101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 07/07/2014] [Indexed: 01/04/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections.
Collapse
Affiliation(s)
- Petra van den Doel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Jouke M. Roose
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | - Vincent Duiverman
- Erasmus Medical Center Laboratory Animal Science Center (EDC), Rotterdam, The Netherlands
| | - Eva van de Wetering
- Erasmus Medical Center Laboratory Animal Science Center (EDC), Rotterdam, The Netherlands
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Artemis One Health, Utrecht, The Netherlands
| | - Byron E. E. Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Artemis One Health, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Targeted DNA vaccines eliciting crossreactive anti-idiotypic antibody responses against human B cell malignancies in mice. J Transl Med 2014; 12:207. [PMID: 25059102 PMCID: PMC4119056 DOI: 10.1186/1479-5876-12-207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/25/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Therapeutic idiotypic (Id) vaccination is an experimental treatment for selected B cell malignancies. A broader use of Id-based vaccination, however, is hampered by the complexity and costs due to the individualized production of protein vaccines. These limitations may be overcome by targeted DNA vaccines encoding stereotyped immunoglobulin V regions of B cell malignancies. We have here investigated whether such vaccines might elicit cross-reactive immune responses thus offering the possibility to immunize subsets of patients with the same vaccine. METHODS Fusion vaccines targeting patient Id to mouse Major Histocompatibility Complex (MHC) class II molecules (chimeric mouse/human) or chemokine receptors (fully human) on antigen-presenting cells (APC) were genetically constructed for two Chronic Lymphocytic Leukemia (CLL) patients and one prototypic stereotyped B-cell receptor (BCR) commonly expressed by Hepatitis C Virus (HCV)-associated Non Hodgkin Lymphoma (NHL). The A20 murine B lymphoma cells were engineered to express prototypic HCV-associated B cell lymphoma BCR. Anti-Id antibody responses were studied against stereotyped and non-stereotyped BCRs on CLL patients' cells as well as transfected A20 cells. RESULTS DNA vaccination of mice with Id vaccines that target APC elicited increased amounts of antibodies specific for the patient's Id as compared with non targeted control vaccines. Anti-Id antibodies cross-reacted between CLL cells with closely related BCR. A20 cells engineered to express patients' V regions were not tumorigenic in mice, preventing tumor challenge experiments. CONCLUSIONS These findings provide experimental support for use of APC-targeted fusion Id DNA vaccines for the treatment of B cell lymphoma and CLL that express stereotyped BCRs.
Collapse
|