1
|
Waldock J, Cox RJ, Chiu C, Subbarao K, Wildfire A, Barclay W, van Kasteren PB, McCauley J, Russell CA, Smith D, Thwaites RS, Tregoning JS, Engelhardt OG. Inno4Vac Workshop Report Part 1: Controlled Human Influenza Virus Infection Model (CHIVIM) Strain Selection and Immune Assays for CHIVIM Studies, November 2021, MHRA, UK. Influenza Other Respir Viruses 2024; 18:e70014. [PMID: 39496425 PMCID: PMC11534430 DOI: 10.1111/irv.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/06/2024] Open
Abstract
Controlled human infection models (CHIMs) are a critical tool for the understanding of infectious disease progression, characterising immune responses to infection and rapid assessment of vaccines or drug treatments. There is increasing interest in using CHIMs for vaccine development and an obvious need for widely available and fit-for-purpose challenge agents. Inno4Vac is a large European consortium working towards accelerating and de-risking the development of new vaccines, including the development of CHIMs for influenza, respiratory syncytial virus and Clostridioides difficile. This report (in two parts) summarises a workshop held at the MHRA in 2021, focused on how to select CHIM candidate strains of influenza and respiratory syncytial virus (RSV) based on desirable virus characteristics and which immune assays would provide relevant information for assessing pre-existing and post-infection immune responses and defining correlates of protection. This manuscript (Part 1) summarises presentations and discussions centred around influenza CHIMs and immune assays (a second manuscript summarises RSV CHIM and immune assays: Inno4Vac workshop report Part 2: RSV CHIM strain selection and immune assays for RSV CHIM studies, November 2021, MHRA, UK).
Collapse
Affiliation(s)
- Joanna Waldock
- Influenza Resource Centre, Vaccines, Science Research & InnovationMedicines and Healthcare Products Regulatory AgencyPotters BarUK
| | - Rebecca J. Cox
- Influenza Centre, Department of Clinical SciencesUniversity of BergenBergenNorway
| | | | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza and Department of Microbiology and ImmunologyUniversity of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | - Wendy Barclay
- Department of Infectious DiseaseImperial College LondonLondonUK
| | - Puck B. van Kasteren
- Centre for Immunology of Infectious Diseases and Vaccines (IIV)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - John McCauley
- World‐wide Influenza CentreFrancis Crick InstituteLondonUK
| | - Colin A. Russell
- Amsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Derek Smith
- Centre for Pathogen Evolution, Infectious Diseases Research Centre, Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Ryan S. Thwaites
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | | - Othmar G. Engelhardt
- Influenza Resource Centre, Vaccines, Science Research & InnovationMedicines and Healthcare Products Regulatory AgencyPotters BarUK
| |
Collapse
|
2
|
Hill-Batorski L, Hatta Y, Moser MJ, Sarawar S, Neumann G, Kawaoka Y, Bilsel P. Quadrivalent Formulation of Intranasal Influenza Vaccine M2SR (M2-Deficient Single Replication) Protects against Drifted Influenza A and B Virus Challenge. Vaccines (Basel) 2023; 11:vaccines11040798. [PMID: 37112710 PMCID: PMC10142185 DOI: 10.3390/vaccines11040798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Current influenza vaccines demonstrate low vaccine efficacy, especially when the predominantly circulating strain and vaccine are mismatched. The novel influenza vaccine platform M2- or BM2-deficient single replication (M2SR and BM2SR) has been shown to safely induce strong systemic and mucosal antibody responses and provide protection against significantly drifted influenza strains. In this study, we demonstrate that both monovalent and quadrivalent (Quad) formulations of M2SR are non-pathogenic in mouse and ferret models, eliciting robust neutralizing and non-neutralizing serum antibody responses to all strains within the formulation. Following challenge with wildtype influenza strains, vaccinated mice and ferrets demonstrated reduced weight loss, decreased viral replication in the upper and lower airways, and enhanced survival as compared to mock control groups. Mice vaccinated with H1N1 M2SR were completely protected from heterosubtypic H3N2 challenge, and BM2SR vaccines provided sterilizing immunity to mice challenged with a cross-lineage influenza B virus. Heterosubtypic cross-protection was also seen in the ferret model, with M2SR vaccinated animals exhibiting decreased viral titers in nasal washes and lungs following the challenge. BM2SR-vaccinated ferrets elicited robust neutralizing antibodies toward significantly drifted past and future influenza B strains. Mice and ferrets that received quadrivalent M2SR were able to mount immune responses equivalent to those seen with each of the four monovalent vaccines, demonstrating the absence of strain interference in the commercially relevant quadrivalent formulation.
Collapse
Affiliation(s)
| | | | | | - Sally Sarawar
- The Biomedical Research Institute of Southern California, Oceanside, CA 92056, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | | |
Collapse
|
3
|
Mannocci A, Pellacchia A, Millevolte R, Chiavarini M, de Waure C. Quadrivalent Vaccines for the Immunization of Adults against Influenza: A Systematic Review of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9425. [PMID: 35954781 PMCID: PMC9368426 DOI: 10.3390/ijerph19159425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022]
Abstract
Vaccination is the most effective intervention to prevent influenza. Adults at risk of complications are among the targets of the vaccination campaigns and can be vaccinated with different types of quadrivalent influenza vaccines (QIVs). In the light of assessing the relative immunogenicity and efficacy of different QIVs, a systematic review was performed. Randomized controlled trials conducted in adults aged 18-64 years until 30 March 2021 were searched through three databases (Medline, Cochrane Library and Scopus). Twenty-four RCTs were eventually included. After data extraction, a network meta-analysis was not applicable due to the lack of common comparators. However, in the presence of at least two studies, single meta-analyses were performed to evaluate immunogenicity and efficacy; on the contrary, data from single studies were considered. Seroconversion rate for H1N1 was higher for standard QIVs, while for the remaining strains it was higher for low-dose adjuvanted QIVs. For seroprotection rate, the recombinant vaccine recorded the highest values for H3N2, while for the other strains, the cell-based QIVs achieved better results. In general, standard and cell-based QIVs showed an overall good immunogenicity profile. Nevertheless, as a relative comparative analysis was not possible, further research would be deserved.
Collapse
Affiliation(s)
- Alice Mannocci
- Faculty of Economics, Universitas Mercatorum, 00186 Rome, Italy;
| | - Andrea Pellacchia
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (R.M.); (M.C.); (C.d.W.)
| | - Rossella Millevolte
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (R.M.); (M.C.); (C.d.W.)
| | - Manuela Chiavarini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (R.M.); (M.C.); (C.d.W.)
| | - Chiara de Waure
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (R.M.); (M.C.); (C.d.W.)
| |
Collapse
|
4
|
Abstract
Live attenuated, cold-adapted influenza vaccines exhibit several desirable characteristics, including the induction of systemic, mucosal, and cell-mediated immunity resulting in breadth of protection, ease of administration, and yield. Seasonal live attenuated influenza vaccines (LAIVs) were developed in the United States and Russia and have been used in several countries. In the last decade, following the incorporation of the 2009 pandemic H1N1 strain, the performance of both LAIVs has been variable and the U.S.-backbone LAIV was less effective than the corresponding inactivated influenza vaccines. The cause appears to be reduced replicative fitness of some H1N1pdm09 viruses, indicating a need for careful selection of strains included in multivalent LAIV formulations. Assays are now being implemented to select optimal strains. An improved understanding of the determinants of replicative fitness of vaccine strains and of vaccine effectiveness of LAIVs is needed for public health systems to take full advantage of these valuable vaccines.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza and Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Lee ACY, Zhang AJ, Li C, Chen Y, Liu F, Zhao Y, Chu H, Fong CHY, Wang P, Lau SY, To KKW, Chen H, Yuen KY. Intradermal vaccination of live attenuated influenza vaccine protects mice against homologous and heterologous influenza challenges. NPJ Vaccines 2021; 6:95. [PMID: 34349128 PMCID: PMC8339132 DOI: 10.1038/s41541-021-00359-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Abstract
We previously developed a temperature-sensitive, and NS1 gene deleted live attenuated influenza vaccine (DelNS1-LAIV) and demonstrated its potent protective efficacy in intranasally vaccinated mice. Here we investigated whether intradermal (i.d.) vaccination induces protective immunity. Our results showed that DelNS1-LAIV intradermal vaccination conferred effective and long-lasting protection against lethal virus challenge in mice. A single intradermal injection of DelNS1-LAIV conferred 100% survival with no weight loss in mice after A(H1N1)09 influenza virus (H1N1/415742Md) challenge. DelNS1-LAIV injection resulted in a significant reduction of lung viral load and reduced airway epithelial cell death and lung inflammatory cytokine responses at day 2 and 4 post challenge. Full protections of mice lasted for 6 months after immunization. In vitro infection of DelNS1-LAIV in monocyte-derived dendritic cells (MoDCs) demonstrated activation of antigen-presenting cells at 33 °C, together with the results of abortive replication of DelNS1-LAIV in skin tissue and strong upregulation of inflammatory cytokines/chemokines expression, our results suggested the strong immunogenicity of this vaccine. Further, we demonstrate that the underlying protection mechanism induced by intradermal DelNS1-LAIV is mainly attributed to antibody responses. Together, this study opens up an alternative route for the administration of LAIV, which may benefit individuals not suitable for intranasal LAIV immunization.
Collapse
Affiliation(s)
- Andrew Chak-Yiu Lee
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anna Jinxia Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Can Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yanxia Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Feifei Liu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hin Chu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carol Ho-Yan Fong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pui Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Siu-Ying Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kelvin Kai-Wang To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Honglin Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Wen S, Wu Z, Zhong S, Li M, Shu Y. Factors influencing the immunogenicity of influenza vaccines. Hum Vaccin Immunother 2021; 17:2706-2718. [PMID: 33705263 DOI: 10.1080/21645515.2021.1875761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Annual vaccination is the best prevention of influenza. However, the immunogenicity of influenza vaccines varies among different populations. It is important to fully identify the factors that may affect the immunogenicity of the vaccines to provide best protection for vaccine recipients. This paper reviews the factors that may influence the immunogenicity of influenza vaccines from the aspects of vaccine factors, adjuvants, individual factors, repeated vaccination, and genetic factors. The confirmed or hypothesized molecular mechanisms of these factors have also been briefly summarized.
Collapse
Affiliation(s)
- Simin Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Zhengyu Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Shuyi Zhong
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Mao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
7
|
Padayachee Y, Flicker S, Linton S, Cafferkey J, Kon OM, Johnston SL, Ellis AK, Desrosiers M, Turner P, Valenta R, Scadding GK. Review: The Nose as a Route for Therapy. Part 2 Immunotherapy. FRONTIERS IN ALLERGY 2021; 2:668781. [PMID: 35387044 PMCID: PMC8974912 DOI: 10.3389/falgy.2021.668781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The nose provides a route of access to the body for inhalants and fluids. Unsurprisingly it has a strong immune defense system, with involvement of innate (e.g., epithelial barrier, muco- ciliary clearance, nasal secretions with interferons, lysozyme, nitric oxide) and acquired (e.g., secreted immunoglobulins, lymphocytes) arms. The lattice network of dendritic cells surrounding the nostrils allows rapid uptake and sampling of molecules able to negotiate the epithelial barrier. Despite this many respiratory infections, including SARS-CoV2, are initiated through nasal mucosal contact, and the nasal mucosa is a significant "reservoir" for microbes including Streptococcus pneumoniae, Neisseria meningitidis and SARS -CoV-2. This review includes consideration of the augmentation of immune defense by the nasal application of interferons, then the reduction of unnecessary inflammation and infection by alteration of the nasal microbiome. The nasal mucosa and associated lymphoid tissue (nasopharynx-associated lymphoid tissue, NALT) provides an important site for vaccine delivery, with cold-adapted live influenza strains (LAIV), which replicate intranasally, resulting in an immune response without significant clinical symptoms, being the most successful thus far. Finally, the clever intranasal application of antibodies bispecific for allergens and Intercellular Adhesion Molecule 1 (ICAM-1) as a topical treatment for allergic and RV-induced rhinitis is explained.
Collapse
Affiliation(s)
- Yorissa Padayachee
- Department of Respiratory Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, Imperial College London, London, United Kingdom
| | - Sabine Flicker
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sophia Linton
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre (KHSC), Kingston, ON, Canada
| | - John Cafferkey
- Department of Respiratory Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, Imperial College London, London, United Kingdom
| | - Onn Min Kon
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sebastian L. Johnston
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anne K. Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Martin Desrosiers
- Department of Otorhinolaryngologie, The University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - Paul Turner
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rudolf Valenta
- Division of Immunopathology, Medical University of Vienna, Vienna, Austria
| | - Glenis Kathleen Scadding
- Royal National Ear Nose and Throat Hospital, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|
8
|
Landgraf G, Desheva YA, Rudenko LG. Evaluation of influenza A and B cold-adapted reassortant virus reproduction in trivalent live influenza vaccines. Virus Res 2021; 300:198396. [PMID: 33744337 DOI: 10.1016/j.virusres.2021.198396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The objective of the present study was to compare reproduction of trivalent LAIV vaccine strains in MDCK cells and to perform quantitative RT-PCR analysis of trivalent LAIV replication after inoculation in mice. METHODS We applied a reverse transcriptase real-time PCR (rRT-PCR) analysis using TaqMan technique to evaluate the infectious titers of vaccine strains containing in trivalent live influenza vaccines (LAIVs). We confirmed the PCR data in ELISA using staining of MDCK monolayer with mouse monoclonal antibodies to hemagglutinin. RESULTS The viral load during the reproduction of mono-vaccines and trivalent LAIV in MDCK cells was similar at low dilutions. The content of vaccine viruses was evaluated using quantitative RT-PCR analysis in the nasal turbinate and lungs of CBA mice on day 3 after intranasal immunization. It was shown that despite the almost complete absence of reproduction of the A/H3N2 virus in mice, the immune response of A/H3N2-specific antibodies was formed at the same level as to other viruses. In MDCK cells, a decreased infectious titers of vaccine viruses in trivalent LAIV compared to mono-vaccines was demonstrated except for B/Yamagata virus. CONCLUSION RT-PCR analysis is applicable to assess the growth characteristics of cold-adapted reassortant influenza viruses in vitro and in mice. The interference of trivalent LAIV vaccine viruses in MDCK cells was minimal at low dilutions. In mice, decrease in infectious titers did not lead to a decline of the immunogenicity.
Collapse
Affiliation(s)
- G Landgraf
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russian Federation; Federal State Budgetary Educational Institution of Higher Professional Education "St. Petersburg State University", St. Petersburg, Russian Federation.
| | - Y A Desheva
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russian Federation; Federal State Budgetary Educational Institution of Higher Professional Education "St. Petersburg State University", St. Petersburg, Russian Federation
| | - L G Rudenko
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russian Federation
| |
Collapse
|
9
|
Rebuli ME, Glista-Baker E, Hoffman JR, Duffney PF, Robinette C, Speen AM, Pawlak EA, Dhingra R, Noah TL, Jaspers I. Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. Am J Respir Cell Mol Biol 2021; 64:126-137. [PMID: 33095645 PMCID: PMC7781000 DOI: 10.1165/rcmb.2020-0164oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhalation of tobacco smoke has been linked to increased risk of viral infection, such as influenza. Inhalation of electronic-cigarette (e-cigarette) aerosol has also recently been linked to immune suppression within the respiratory tract, specifically the nasal mucosa. We propose that changes in the nasal mucosal immune response modify antiviral host-defense responses in e-cigarette users. Nonsmokers, cigarette smokers, and e-cigarette users were inoculated with live-attenuated influenza virus (LAIV) to safely examine the innate immune response to influenza infection. Before and after LAIV inoculation, we collected nasal epithelial-lining fluid, nasal lavage fluid, nasal-scrape biopsy specimens, urine, and blood. Endpoints examined include cytokines and chemokines, influenza-specific IgA, immune-gene expression, and markers of viral load. Statistical analysis included primary comparisons of cigarette and e-cigarette groups with nonsmokers, as well as secondary analysis of demographic factors as potential modifiers. Markers of viral load did not differ among the three groups. Nasal-lavage-fluid anti-LAIV IgA levels increased in nonsmokers after LAIV inoculation but did not increase in e-cigarette users and cigarette smokers. LAIV-induced gene-expression changes in nasal biopsy specimens differed in cigarette smokers and e-cigarette users as compared with nonsmokers, with a greater number of genes changed in e-cigarette users, mostly resulting in decreased expression. The top downregulated genes in cigarette smokers were SMPD3, NOS2A, and KLRB1, and the top downregulated genes in e-cigarette users were MR1, NT5E, and HRAS. Similarly, LAIV-induced cytokine levels in nasal epithelial-lining fluid differed among the three groups, including decreased antiviral host-defense mediators (IFNγ, IL6, and IL12p40). We also detected that sex interacted with tobacco-product exposure to modify LAIV-induced immune-gene expression. Our results demonstrate that e-cigarette use altered nasal LAIV-induced immune responses, including gene expression, cytokine and chemokine release, and LAIV-specific IgA levels. Together, these data suggest that e-cigarette use induces changes in the nasal mucosa that are consistent with the potential for altered respiratory antiviral host-defense function. Clinical trial registered with www.clinicaltrials.gov (NCT 02019745).
Collapse
Affiliation(s)
- Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine.,Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine
| | | | - Jessica R Hoffman
- Curriculum for the Environment and Ecology, College of Arts and Sciences
| | | | | | - Adam M Speen
- Curriculum in Toxicology and Environmental Medicine
| | - Erica A Pawlak
- Center for Environmental Medicine, Asthma and Lung Biology, and
| | - Radhika Dhingra
- Institute for Environmental Health Solutions, and.,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Terry L Noah
- Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine.,Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine.,Institute for Environmental Health Solutions, and
| |
Collapse
|
10
|
Jackson D, Pitcher M, Hudson C, Andrews N, Southern J, Ellis J, Höschler K, Pebody R, Turner PJ, Miller E, Zambon M. Viral Shedding in Recipients of Live Attenuated Influenza Vaccine in the 2016-2017 and 2017-2018 Influenza Seasons in the United Kingdom. Clin Infect Dis 2021; 70:2505-2513. [PMID: 31642899 PMCID: PMC7286380 DOI: 10.1093/cid/ciz719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Background The (H1N1)pdm09 live attenuated influenza vaccine (LAIV) strain was changed for the 2017–2018 influenza season to improve viral fitness, following poor protection against (H1N1)pdm09 viruses in 2015–2016. We conducted LAIV virus shedding studies to assess the effect of this change. Methods Children aged 2–18 years were recruited to receive LAIV in the 2016–2017 (n = 641) and 2017–2018 (n = 362) influenza seasons. Viruses from nasal swabs taken 1, 3, and 6 days postvaccination were quantified by reverse-transcription polymerase chain reaction and area under the curve titers were determined. Presence and quantity of shedding were compared between strains and seasons with adjustment for age and prior LAIV (n = 436), inactivated seasonal vaccine (n = 100), or (H1N1)pdm09 vaccine (n = 166) receipt. Results (H1N1)pdm09 detection (positivity) in 2016–2017 and 2017–2018 (11.2% and 3.9%, respectively) was lower than that of H3N2 (19.7% and 18.7%, respectively) and B/Victoria (28.9% and 33.9%, respectively). (H1N1)pdm09 positivity was higher in 2016–2017 than 2017–2018 (P = .005), but within shedding-positive participants, the (H1N1)pdm09 titer increased in 2017–2018 (P = .02). H3N2 and influenza B titers were similar between seasons. Positivity declined with age, and prior vaccination reduced the likelihood of shedding influenza B but not (H1N1)pdm09. Conclusions The (H1N1)pdm09 titer increased in 2017–2018, indicating more efficient virus replication in shedding-positive children than the 2016–2017 strain, although overall positivity was reduced. Age and vaccination history require consideration when correlating virus shedding and protection. Clinical Trials Registration NCT02143882, NCT02866942, and NCT03104790.
Collapse
Affiliation(s)
- David Jackson
- Virus Reference Department, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Max Pitcher
- Virus Reference Department, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Chris Hudson
- Virus Reference Department, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Nick Andrews
- Statistics, Modelling and Economics Department, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Jo Southern
- Immunisation and Countermeasures, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Joanna Ellis
- Immunisation and Countermeasures, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Katja Höschler
- Virus Reference Department, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Richard Pebody
- Immunisation and Countermeasures, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Paul J Turner
- Immunisation and Countermeasures, National Infection Service, Public Health England, Colindale, United Kingdom.,Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Elizabeth Miller
- Immunisation and Countermeasures, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Maria Zambon
- Virus Reference Department, National Infection Service, Public Health England, Colindale, United Kingdom
| |
Collapse
|
11
|
Preclinical study of influenza bivalent vaccine delivered with a two compartmental microneedle array. J Control Release 2020; 324:280-288. [DOI: 10.1016/j.jconrel.2020.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022]
|
12
|
Rudraraju R, Mordant F, Subbarao K. How Live Attenuated Vaccines Can Inform the Development of Broadly Cross-Protective Influenza Vaccines. J Infect Dis 2020; 219:S81-S87. [PMID: 30715386 PMCID: PMC7313962 DOI: 10.1093/infdis/jiy703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne
| | | | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne.,World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
13
|
Shannon I, White CL, Nayak JL. Understanding Immunity in Children Vaccinated With Live Attenuated Influenza Vaccine. J Pediatric Infect Dis Soc 2020; 9:S10-S14. [PMID: 31848606 DOI: 10.1093/jpids/piz083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Live attenuated influenza vaccine (LAIV), or FluMist, was approved for use in the United States in 2003. This vaccine, administered intranasally, offers the advantage of stimulating immunity at the site of infection in the upper respiratory tract and, by mimicking natural infection, has the potential to elicit a multifaceted immune response. However, the development of immunity following LAIV administration requires viral replication, causing vaccine effectiveness to be impacted by both the replicative fitness of the attenuated viruses being administered and the degree of the host's preexisting immunity. In this review, we discuss the current state of knowledge regarding the mechanisms of protection elicited by LAIV in children, contrast this with immune protection that develops upon vaccination with inactivated influenza vaccines, and briefly discuss both the potential advantages as well as challenges offered by this vaccination platform.
Collapse
Affiliation(s)
- Ian Shannon
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Chantelle L White
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jennifer L Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
14
|
Mallory RM, Nyborg A, Kalyani RN, Yuan Y, Block SL, Dubovsky F. A study to evaluate the immunogenicity and shedding of live attenuated influenza vaccine strains in children 24–<48 months of age. Vaccine 2020; 38:1001-1008. [DOI: 10.1016/j.vaccine.2019.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/09/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022]
|
15
|
Holzer B, Morgan SB, Martini V, Sharma R, Clark B, Chiu C, Salguero FJ, Tchilian E. Immunogenicity and Protective Efficacy of Seasonal Human Live Attenuated Cold-Adapted Influenza Virus Vaccine in Pigs. Front Immunol 2019; 10:2625. [PMID: 31787986 PMCID: PMC6856147 DOI: 10.3389/fimmu.2019.02625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/22/2019] [Indexed: 01/31/2023] Open
Abstract
Influenza A virus infection is a global health threat to livestock and humans, causing substantial mortality and morbidity. As both pigs and humans are readily infected with influenza viruses of similar subtype, the pig is a robust and appropriate model for investigating swine and human disease. We evaluated the efficacy of the human cold-adapted 2017–2018 quadrivalent seasonal LAIV in pigs against H1N1pdm09 challenge. LAIV immunized animals showed significantly reduced viral load in nasal swabs. There was limited replication of the H1N1 component of the vaccine in the nose, a limited response to H1N1 in the lung lymph nodes and a low H1N1 serum neutralizing titer. In contrast there was better replication of the H3N2 component of the LAIV, accompanied by a stronger response to H3N2 in the tracheobronchial lymph nodes (TBLN). Our data demonstrates that a single administration of human quadrivalent LAIV shows limited replication in the nose and induces detectable responses to the H1N1 and H3N2 components. These data suggest that pigs may be a useful model for assessing LAIV against influenza A viruses.
Collapse
Affiliation(s)
- Barbara Holzer
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Sophie B Morgan
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Veronica Martini
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Rajni Sharma
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Becky Clark
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Christopher Chiu
- Department of Infectious Disease, Hammersmith Campus Imperial College London, London, United Kingdom
| | | | - Elma Tchilian
- Enhanced Host Responses, The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
16
|
Monto AS. Effectiveness of the Live Attenuated Influenza Vaccine: Was the Addition of the Second Type B Lineage a Step Too Far? Clin Infect Dis 2019; 70:2514-2516. [DOI: 10.1093/cid/ciz722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Arnold S Monto
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Lindsey BB, Jagne YJ, Armitage EP, Singanayagam A, Sallah HJ, Drammeh S, Senghore E, Mohammed NI, Jeffries D, Höschler K, Tregoning JS, Meijer A, Clarke E, Dong T, Barclay W, Kampmann B, de Silva TI. Effect of a Russian-backbone live-attenuated influenza vaccine with an updated pandemic H1N1 strain on shedding and immunogenicity among children in The Gambia: an open-label, observational, phase 4 study. THE LANCET. RESPIRATORY MEDICINE 2019; 7:665-676. [PMID: 31235405 PMCID: PMC6650545 DOI: 10.1016/s2213-2600(19)30086-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND The efficacy and effectiveness of the pandemic H1N1 (pH1N1) component in live attenuated influenza vaccine (LAIV) is poor. The reasons for this paucity are unclear but could be due to impaired replicative fitness of pH1N1 A/California/07/2009-like (Cal09) strains. We assessed whether an updated pH1N1 strain in the Russian-backbone trivalent LAIV resulted in greater shedding and immunogenicity compared with LAIV with Cal09. METHODS We did an open-label, prospective, observational, phase 4 study in Sukuta, a periurban area in The Gambia. We enrolled children aged 24-59 months who were clinically well. Children received one dose of the WHO prequalified Russian-backbone trivalent LAIV containing either A/17/California/2009/38 (Cal09) or A/17/New York/15/5364 (NY15) based on their year of enrolment. Primary outcomes were the percentage of children with LAIV strain shedding at day 2 and day 7, haemagglutinin inhibition seroconversion, and an increase in influenza haemagglutinin-specific IgA and T-cell responses at day 21 after LAIV. This study is nested within a randomised controlled trial investigating LAIV-microbiome interactions (NCT02972957). FINDINGS Between Feb 8, 2017, and April 12, 2017, 118 children were enrolled and received one dose of the Cal09 LAIV from 2016-17. Between Jan 15, 2018, and March 28, 2018, a separate cohort of 135 children were enrolled and received one dose of the NY15 LAIV from 2017-18, of whom 126 children completed the study. Cal09 showed impaired pH1N1 nasopharyngeal shedding (16 of 118 children [14%, 95% CI 8·0-21·1] with shedding at day 2 after administration of LAIV) compared with H3N2 (54 of 118 [46%, 36·6-55·2]; p<0·0001) and influenza B (95 of 118 [81%, 72·2-87·2]; p<0·0001), along with suboptimal serum antibody (seroconversion in six of 118 [5%, 1·9-10·7]) and T-cell responses (CD4+ interferon γ-positive and/or CD4+ interleukin 2-positive responses in 45 of 111 [41%, 31·3-50·3]). After the switch to NY15, a significant increase in pH1N1 shedding was seen (80 of 126 children [63%, 95% CI 54·4-71·9]; p<0·0001 compared with Cal09), along with improvements in seroconversion (24 of 126 [19%, 13·2-26·8]; p=0·011) and influenza-specific CD4+ T-cell responses (73 of 111 [66%, 60·0-75·6; p=0·00028]). The improvement in pH1N1 seroconversion with NY15 was even greater in children who were seronegative at baseline (24 of 64 children [38%, 95% CI 26·7-49·8] vs six of 79 children with Cal09 [8%, 2·8-15·8]; p<0·0001). Persistent shedding to day 7 was independently associated with both seroconversion (odds ratio 12·69, 95% CI 4·1-43·6; p<0·0001) and CD4+ T-cell responses (odds ratio 7·83, 95% CI 2·99-23·5; p<0·0001) by multivariable logistic regression. INTERPRETATION The pH1N1 component switch that took place between 2016 and 2018 might have overcome the poor efficacy and effectiveness reported with previous LAIV formulations. LAIV effectiveness against pH1N1 should, therefore, improve in upcoming influenza seasons. Our data highlight the importance of assessing replicative fitness, in addition to antigenicity, when selecting annual LAIV components. FUNDING The Wellcome Trust.
Collapse
Affiliation(s)
- Benjamin B Lindsey
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia; Department of Medicine, Imperial College London, London, UK
| | - Ya Jankey Jagne
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Edwin P Armitage
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | | | - Hadijatou J Sallah
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Sainabou Drammeh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Elina Senghore
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Nuredin I Mohammed
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - David Jeffries
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Katja Höschler
- Virus Reference Department, Reference Microbiology Services, Public Health England, London, UK
| | | | - Adam Meijer
- Centre for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ed Clarke
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, and Chinese Academy of Medical Science-Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Wendy Barclay
- Department of Medicine, Imperial College London, London, UK
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia; The Vaccine Centre, London School of Hygiene & Tropical Medicine, Faculty of Infectious and Tropical Diseases, London, UK
| | - Thushan I de Silva
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia; Department of Medicine, Imperial College London, London, UK; The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
| |
Collapse
|
18
|
Yang H, Yan Z, Zhang Z, Realivazquez A, Ma B, Liu Y. Anti-caries vaccine based on clinical cold-adapted influenza vaccine: A promising alternative for scientific and public-health protection against dental caries. Med Hypotheses 2019; 126:42-45. [PMID: 31010498 DOI: 10.1016/j.mehy.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 01/20/2023]
Abstract
Dental caries remains one of the most pervasive infectious disease around the world. Protection against dental caries can be achieved experimentally by eliciting salivary IgA targeting surficial antigens of S. mutans, however, no such a vaccine has been launched for human use yet. Live vectored vaccines hold the greatest feasibility to induce potent and long-lasting immunity in the host. The FDA approved intranasal cold-adapted influenza vaccine has been used in clinical settings for many years. The vaccine can not only induce broad adaptive immune responses especially mucosal immunity, but the member strains can also circumvent existing immunity, presenting promising candidates for live vectored anti-caries vaccine. Moreover, the genetic techniques for modification of cold-adapted influenza viruses are well developed and widely applicable. Thus, we hypothesize that effective anti-caries vaccine can be developed with the backbone of cold-adapted influenza viruses by inserting specific antigenic identifier sequences of S. mutans into the viral genome, which is anticipated to protect against dental caries in humans with easy inoculation. The immune efficacies of recombinant cold-adapted influenza viruses expressing exogenous antigens have been verified by in vivo experiments for multiple infectious diseases, giving us great confidence to validate the safety properties and protection effect with this chimeric vaccine in animals or even humans. Existing data suggests that the live anti-caries vaccine may help improve public oral health by controlling the caries disease itself.
Collapse
Affiliation(s)
- Huixiao Yang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, PR China
| | - Zhonghai Yan
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Zijian Zhang
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Adilene Realivazquez
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Binger Ma
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, PR China
| | - Yi Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
19
|
Rudenko L, Kiseleva I, Krutikova E, Stepanova E, Rekstin A, Donina S, Pisareva M, Grigorieva E, Kryshen K, Muzhikyan A, Makarova M, Sparrow EG, Torelli G, Kieny MP. Rationale for vaccination with trivalent or quadrivalent live attenuated influenza vaccines: Protective vaccine efficacy in the ferret model. PLoS One 2018; 13:e0208028. [PMID: 30507951 PMCID: PMC6277076 DOI: 10.1371/journal.pone.0208028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIM The majority of seasonal influenza vaccines are trivalent, containing two A virus strains (H1N1 and H3N2) and one B virus strain. The co-circulation of two distinct lineages of B viruses can lead to mismatch between the influenza B virus strain recommended for the trivalent seasonal vaccine and the circulating B virus. This has led some manufacturers to produce quadrivalent influenza vaccines containing one strain from each B lineage in addition to H1N1 and H3N2 strains. However, it is also important to know whether vaccines containing a single influenza B strain can provide cross-protectivity against viruses of the antigenically distinct lineage. The aim of this study was to assess in naïve ferrets the potential cross-protective activity of trivalent live attenuated influenza vaccine (T-LAIV) against challenge with a heterologous wild-type influenza B virus belonging to the genetically different lineage and to compare this activity with effectiveness of quadrivalent LAIV (Q-LAIV) in the ferret model. METHODS AND RESULTS Ferrets were vaccinated with either one dose of trivalent LAIV containing B/Victoria or B/Yamagata lineage virus, or quadrivalent LAIV (containing both B lineages), or placebo. They were then challenged with B/Victoria or B/Yamagata lineage wild-type virus 28 days after vaccination. The ferrets were monitored for clinical signs and morbidity. Nasal swabs and lung tissue samples were analyzed for the presence of challenge virus. Antibody response to vaccination was assessed by routine hemagglutination inhibition assay. All LAIVs tested were found to be safe and effective against wild-type influenza B viruses based on clinical signs, and virological and histological data. The absence of interference between vaccine strains in trivalent and quadrivalent vaccine formulations was confirmed. Trivalent LAIVs were shown to have the potential to be cross-protective against infection with genetically different influenza B/Victoria and B/Yamagata lineages. CONCLUSIONS In this ferret model, quadrivalent vaccine provided higher protection to challenge against both B/Victoria and B/Yamagata lineage viruses. However, T-LAIV provided some cross-protection in the case of a mismatch between circulating and vaccine type B strains. Notably, B/Victoria-based T-LAIV was more protective compared to B/Yamagata-based T-LAIV.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Cross Protection/genetics
- Cross Protection/immunology
- Disease Models, Animal
- Female
- Ferrets
- Humans
- Immunogenicity, Vaccine
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza B virus/genetics
- Influenza B virus/immunology
- Influenza B virus/pathogenicity
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Elena Krutikova
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Ekaterina Stepanova
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Andrey Rekstin
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Svetlana Donina
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Maria Pisareva
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Elena Grigorieva
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Kirill Kryshen
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd, St Petersburg, Russia
| | - Arman Muzhikyan
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd, St Petersburg, Russia
| | - Marina Makarova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd, St Petersburg, Russia
| | - Erin Grace Sparrow
- Universal Health Coverage and Health Systems, World Health Organization, Geneva, Switzerland
| | - Guido Torelli
- Universal Health Coverage and Health Systems, World Health Organization, Geneva, Switzerland
| | - Marie-Paule Kieny
- International Institutional Cooperation, Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| |
Collapse
|
20
|
Immunogenicity and efficacy of the monovalent, trivalent and quadrivalent intranasal live attenuated influenza vaccines containing different pdmH1N1 strains. Vaccine 2018; 36:6944-6952. [PMID: 30322745 DOI: 10.1016/j.vaccine.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 01/20/2023]
Abstract
A ferret challenge study was conducted to address the efficacy of the egg-based and Madin-Darby canine kidney (MDCK)-based live attenuated influenza vaccine (LAIV) strains. Vaccines derived as 6:2 reassortants from the A/Leningrad/134/17/57 master donor strain and the HA and NA components from the A/California/07/2009 (A/Cal)- and A/Michigan/45/2015 (A/Mich)-like strains of type A H1N1 influenza virus were used in the study. Monovalent, trivalent and quadrivalent formulations of the LAIV containing either of the two H1N1 strains were analysed. A total of ten groups of six animals each were immunised intranasally (i.n.) with a single dose of 0.5-ml vaccine formulation or placebo and challenged on day 28 with the homologous wild-type A/Cal or A/Mich strain. Immune response post immunisation and virus replication post challenge were studied. Both the strains derived from embryonated eggs or MDCK cells, irrespective of the vaccine valency, were capable of rendering complete protection from virus replication in the lung. The A/Mich vaccine strain showed higher immune titres and efficacy than the A/Cal vaccine strain in all the vaccine formulations. The haemagglutination inhibition and virus neutralisation antibody titres were induced, and the reduction in the virus load in the respiratory tract was observed to be higher in animals treated with the monovalent formulation compared to the trivalent and quadrivalent formulations. Overall, it appears that the monovalent formulations render better protection from infection and would therefore be the best candidate during a pandemic.
Collapse
|
21
|
Buchan SA, Booth S, Scott AN, Simmonds KA, Svenson LW, Drews SJ, Russell ML, Crowcroft NS, Loeb M, Warshawsky BF, Kwong JC. Effectiveness of Live Attenuated vs Inactivated Influenza Vaccines in Children During the 2012-2013 Through 2015-2016 Influenza Seasons in Alberta, Canada: A Canadian Immunization Research Network (CIRN) Study. JAMA Pediatr 2018; 172:e181514. [PMID: 29971427 PMCID: PMC6143060 DOI: 10.1001/jamapediatrics.2018.1514] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE Recent observational studies report conflicting results regarding the effectiveness of live attenuated influenza vaccine (LAIV), particularly against influenza A(H1N1)pdm09. OBJECTIVE To compare the effectiveness of LAIV and inactivated influenza vaccine (IIV) against laboratory-confirmed influenza. DESIGN, SETTING, AND PARTICIPANTS A test-negative study to estimate influenza vaccine effectiveness (VE) using population-based, linked, individual-level laboratory, health administrative, and immunization data. Data were obtained from 10 169 children and adolescents aged 2 to 17 years (children) who were tested for influenza in inpatient or outpatient settings during periods when influenza was circulating based on a threshold level of 5% weekly test positivity for the province during the 4 influenza seasons spanning from November 11, 2012, to April 30, 2016, in Alberta, Canada. Logistic regression was used to estimate VE by vaccine type, influenza season, and influenza type and subtype. The relative effectiveness of each vaccine type was assessed by comparing the odds of laboratory-confirmed influenza infection for LAIV recipients with that for IIV recipients. EXPOSURES The primary exposure was receipt of LAIV or IIV before testing for influenza. MAIN OUTCOMES AND MEASURES The primary outcome was influenza case status as determined by reverse-transcriptase polymerase chain reaction testing. RESULTS A total of 10 779 respiratory specimens (from 10 169 children) collected and tested for influenza during the 4 influenza seasons were included, with 53.4% from males; the mean (SD) age was 7.0 (4.6) years. Across the 4 influenza seasons, 3161 children tested positive for influenza. Combining the 4 influenza seasons, the adjusted VE against influenza A(H1N1)pdm09 was 69% (95% CI, 56%-78%) for LAIV compared with 79% (95% CI, 70%-86%) for IIV. Vaccine effectiveness against influenza A(H3N2) was 36% (95% CI, 14%-53%) for LAIV and 43% (95% CI, 22%-59%) for IIV. Against influenza B, VE was 74% (95% CI, 62%-82%) for LAIV and 56% (95% CI, 41%-66%) for IIV. There were no significant differences in the odds of influenza infection for LAIV recipients compared with IIV recipients except for influenza B during the 2015-2016 season, when LAIV recipients had lower odds of infection than IIV recipients (odds ratio, 0.36; 95% CI, 0.17-0.76). CONCLUSIONS AND RELEVANCE There was no evidence to support the lack of effectiveness of LAIV against influenza A(H1N1)pdm09. These results support administration of either vaccine type in this age group.
Collapse
Affiliation(s)
- Sarah A. Buchan
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada,Primary Care & Population Health Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Stephanie Booth
- Analytics and Performance Reporting Branch, Alberta Ministry of Health, Edmonton, Alberta, Canada,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Allison N. Scott
- Analytics and Performance Reporting Branch, Alberta Ministry of Health, Edmonton, Alberta, Canada
| | - Kimberley A. Simmonds
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Research and Innovation Branch, Alberta Ministry of Health, Edmonton, Alberta, Canada
| | - Lawrence W. Svenson
- Analytics and Performance Reporting Branch, Alberta Ministry of Health, Edmonton, Alberta, Canada,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Division of Preventive Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Steven J. Drews
- Diagnostic Virology, Provincial Laboratory (ProvLab) for Public Health, Edmonton, Alberta, Canada,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Margaret L. Russell
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Natasha S. Crowcroft
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada,Applied Immunization Research and Evaluation, Public Health Ontario, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark Loeb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Bryna F. Warshawsky
- Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario, Toronto, Ontario, Canada,Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Jeffrey C. Kwong
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada,Primary Care & Population Health Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada,Applied Immunization Research and Evaluation, Public Health Ontario, Toronto, Ontario, Canada,Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada,Toronto Western Family Health Team, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Shcherbik S, Carney P, Pearce N, Stevens J, Dugan VG, Wentworth DE, Bousse T. Monoclonal antibody against N2 neuraminidase of cold adapted A/Leningrad/134/17/57 (H2N2) enables efficient generation of live attenuated influenza vaccines. Virology 2018; 522:65-72. [PMID: 30014859 DOI: 10.1016/j.virol.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/13/2023]
Abstract
Cold adapted influenza virus A/Leningrad/134/17/57 (H2N2) is a reliable master donor virus (Len/17-MDV) for preparing live attenuated influenza vaccines (LAIV). LAIVs are 6:2 reasortants that contain 6 segments of Len/17-MDV and the hemagglutinin (HA) and neuraminidase (NA) of contemporary circulating influenza A viruses. The problem with the classical reassortment procedure used to generate LAIVs is that there is limited selection pressure against NA of the Len/17-MDV resulting in 7:1 reassortants with desired HA only, which are not suitable LAIVs. The monoclonal antibodies (mAb) directed against the N2 of Len/17-MDV were generated. 10C4-8E7 mAb inhibits cell-to-cell spread of viruses containing the Len/17-MDV N2, but not viruses with the related N2 from contemporary H3N2 viruses. 10C4-8E7 antibody specifically inhibited the Len/17-MDV replication in vitro and in ovo but didn't inhibit replication of H3N2 or H1N1pdm09 reassortants. Our data demonstrate that addition of 10C4-8E7 in the classical reassortment improves efficiency of LAIV production.
Collapse
Affiliation(s)
- Svetlana Shcherbik
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Paul Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | | | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Vivien G Dugan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Tatiana Bousse
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States.
| |
Collapse
|
23
|
Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. J Virol 2018; 92:JVI.01970-17. [PMID: 29444938 DOI: 10.1128/jvi.01970-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/26/2018] [Indexed: 01/05/2023] Open
Abstract
Pandemic live attenuated influenza vaccines (pLAIV) prime subjects for a robust neutralizing antibody response upon subsequent administration of a pandemic inactivated subunit vaccine (pISV). However, a difference was not detected in H5-specific memory B cells in the peripheral blood between pLAIV-primed and unprimed subjects prior to pISV boost. To investigate the mechanism underlying pLAIV priming, we vaccinated groups of 12 African green monkeys (AGMs) with H5N1 pISV or pLAIV alone or H5N1 pLAIV followed by pISV and examined immunity systemically and in local draining lymph nodes (LN). The AGM model recapitulated the serologic observations from clinical studies. Interestingly, H5N1 pLAIV induced robust germinal center B cell responses in the mediastinal LN (MLN). Subsequent boosting with H5N1 pISV drove increases in H5-specific B cells in the axillary LN, spleen, and circulation in H5N1 pLAIV-primed animals. Thus, H5N1 pLAIV primes localized B cell responses in the MLN that are recalled systemically following pISV boost. These data provide mechanistic insights for the generation of robust humoral responses via prime-boost vaccination.IMPORTANCE We have previously shown that pandemic live attenuated influenza vaccines (pLAIV) prime for a rapid and robust antibody response on subsequent administration of inactivated subunit vaccine (pISV). This is observed even in individuals who had undetectable antibody (Ab) responses following the initial vaccination. To define the mechanistic basis of pLAIV priming, we turned to a nonhuman primate model and performed a detailed analysis of B cell responses in systemic and local lymphoid tissues following prime-boost vaccination with pLAIV and pISV. We show that the nonhuman primate model recapitulates the serologic observations from clinical studies. Further, we found that pLAIVs induced robust germinal center B cell responses in the mediastinal lymph node. Subsequent boosting with pISV in pLAIV-primed animals resulted in detection of B cells in the axillary lymph nodes, spleen, and peripheral blood. We demonstrate that intranasally administered pLAIV elicits a highly localized germinal center B cell response in the mediastinal lymph node that is rapidly recalled following pISV boost into germinal center reactions at numerous distant immune sites.
Collapse
|
24
|
Czakó R, Vogel L, Sutton T, Matsuoka Y, Krammer F, Chen Z, Jin H, Subbarao K. H5N2 vaccine viruses on Russian and US live attenuated influenza virus backbones demonstrate similar infectivity, immunogenicity and protection in ferrets. Vaccine 2018; 36:1871-1879. [PMID: 29503113 PMCID: PMC5854182 DOI: 10.1016/j.vaccine.2018.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 11/19/2022]
Abstract
The continued detection of zoonotic influenza infections, most notably due to the avian influenza A H5N1 and H7N9 subtypes, underscores the need for pandemic preparedness. Decades of experience with live attenuated influenza vaccines (LAIVs) for the control of seasonal influenza support the safety and effectiveness of this vaccine platform. All LAIV candidates are derived from one of two licensed master donor viruses (MDVs), cold-adapted (ca) A/Ann Arbor/6/60 or ca A/Leningrad/134/17/57. A number of LAIV candidates targeting avian H5 influenza viruses derived with each MDV have been evaluated in humans, but have differed in their infectivity and immunogenicity. To understand these differences, we generated four H5N2 candidate pandemic LAIVs (pLAIVs) derived from either MDV and compared their biological characteristics in vitro and in vivo. We demonstrate that all candidate pLAIVs, regardless of gene constellation and derivation, were comparable with respect to infectivity, immunogenicity, and protection from challenge in the ferret model of influenza. These observations suggest that differences in clinical performance of H5 pLAIVs may be due to factors other than inherent biological properties of the two MDVs.
Collapse
Affiliation(s)
- Rita Czakó
- Emerging Respiratory Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, USA
| | - Leatrice Vogel
- Emerging Respiratory Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, USA
| | - Troy Sutton
- Emerging Respiratory Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, USA
| | - Yumiko Matsuoka
- Emerging Respiratory Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Hong Jin
- MedImmune Vaccines, Mountain View, CA, USA
| | - Kanta Subbarao
- Emerging Respiratory Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH, USA.
| |
Collapse
|
25
|
Mohn KGI, Smith I, Sjursen H, Cox RJ. Immune responses after live attenuated influenza vaccination. Hum Vaccin Immunother 2018; 14:571-578. [PMID: 28933664 PMCID: PMC5861782 DOI: 10.1080/21645515.2017.1377376] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/07/2017] [Accepted: 09/03/2017] [Indexed: 01/06/2023] Open
Abstract
Since 2003 (US) and 2012 (Europe) the live attenuated influenza vaccine (LAIV) has been used as an alternative to the traditional inactivated influenza vaccines (IIV). The immune responses elicted by LAIV mimic natural infection and have been found to provide broader clinical protection in children compared to the IIVs. However, our knowledge of the detailed immunological mechanisims induced by LAIV remain to be fully elucidated, and despite 14 years on the global market, there exists no correlate of protection. Recently, matters are further complicated by differing efficacy data from the US and Europe which are not understood. Better understanding of the immune responses after LAIV may aid in achieving the ultimate goal of a future "universal influenza vaccine". In this review we aim to cover the current understanding of the immune responses induced after LAIV.
Collapse
Affiliation(s)
| | - Ingrid Smith
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - Haakon Sjursen
- Medical Department, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- The Influenza Center
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
- Jebsen Center for Influenza Vaccines, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
26
|
Gill MA, Schlaudecker EP. Perspectives from the Society for Pediatric Research: Decreased Effectiveness of the Live Attenuated Influenza Vaccine. Pediatr Res 2018; 83:31-40. [PMID: 28945700 DOI: 10.1038/pr.2017.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/15/2017] [Indexed: 11/09/2022]
Abstract
The intranasal live attenuated influenza vaccine (LAIV), FluMist, has been widely appreciated by pediatricians, parents, and children alike for its ease of administration. However, concerns regarding lack of effectiveness in recent influenza seasons led to the CDC Advisory Committee on Immunization Practices (ACIP) recommendation to administer inactivated influenza vaccines (IIVs), and not LAIV, during the 2016-17 and 2017-18 seasons. Given that data from previous years demonstrated equivalent and even improved efficacy of LAIV compared with IIV, these recent data were surprising, raising many questions about the potential mechanisms underlying this change. This review seeks to summarize the history of LAIV studies and ACIP recommendations with a focus on the recent decrease in vaccine effectiveness (VE) and discordant results among studies performed in different countries. Decreased VE for A/H1N1pdm09 viruses represents the most consistent finding across studies, as VE has been low every season these viruses predominated since 2010-11. Potential explanations underlying diminished effectiveness include the hypothesis that prior vaccination, reduced thermostability of A/H1N1pdm09, addition of a fourth virus, or reduced replication fitness of A/H1N1pdm09 strains may have contributed to this phenomenon. Ongoing studies and potential alterations to LAIV formulations provide hope for a return of effective LAIV in future influenza seasons.
Collapse
Affiliation(s)
- Michelle A Gill
- Division of Infectious Diseases, Departments of Pediatrics, Internal Medicine, and Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth P Schlaudecker
- Division of Infectious Diseases, Global Health Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
27
|
Pebody R, McMenamin J, Nohynek H. Live attenuated influenza vaccine (LAIV): recent effectiveness results from the USA and implications for LAIV programmes elsewhere. Arch Dis Child 2018; 103:101-105. [PMID: 28855230 DOI: 10.1136/archdischild-2016-312165] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 01/09/2023]
Abstract
The USA has a long-standing paediatric influenza vaccination programme, including use of live attenuated influenza vaccine (LAIV). Following US evidence of apparent lack of vaccine effectiveness (VE) of LAIV in 2015/2016, particularly against A(H1N1)pdm09, the USA suspended the use of LAIV in the 2016/2017 season. The UK introduced LAIV for children in 2013/2014 and Finland in 2015/2016. Both countries have since been closely monitoring programme performance. In 2015/2016, the UK and Finland, unlike the USA, found evidence of significant VE of LAIV against laboratory-confirmed influenza. Several studies, however, reported relatively lower VE of LAIV against A(H1N1)pdm09 infection compared with inactivated influenza vaccine, although not for A(H3N2) or B. The reasons for these apparent differences remain under investigation. Both the UK and Finland continue to recommend the use of LAIV in children for the 2017/2018 season and are intensifying further monitoring of their childhood programmes against a range of end-points.
Collapse
Affiliation(s)
- Richard Pebody
- Respiratory Diseases Department, National Infection Service, Public Health England, London, UK
| | | | - Hanna Nohynek
- Vaccine Programme Unit, Health Security Department, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
28
|
Mohn KGI, Zhou F, Brokstad KA, Sridhar S, Cox RJ. Boosting of Cross-Reactive and Protection-Associated T Cells in Children After Live Attenuated Influenza Vaccination. J Infect Dis 2017; 215:1527-1535. [PMID: 28368530 PMCID: PMC5461427 DOI: 10.1093/infdis/jix165] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/26/2017] [Indexed: 01/27/2023] Open
Abstract
Background Live attenuated influenza vaccines (LAIVs) stimulate a multifaceted immune response including cellular immunity, which may provide protection against newly emerging strains. This study shows proof of concept that LAIVs boost preexisting, cross-reactive T cells in children to genetically diverse influenza A virus (IAV) strains to which the children had not been exposed. Methods We studied the long-term cross-reactive T-cell response in 14 trivalent LAIV-vaccinated children using the fluorescent immunospot assay (FluoroSpot) with heterologous H1N1 and H3N2 IAVs and CD8+ peptides from the internal proteins (matrix protein 1 [M1], nucleoprotein [NP], polymerase basic protein 1 [PB1]). Serum antibody responses were determined by means of hemagglutination inhibition assay. Blood samples were collected before vaccination and up to 1 year after vaccination. Results Preexisting cross-reactive T cells to genetically diverse IAV strains were found in the majority of the children, which were further boosted in 50% of them after receipt of LAIV. Further analyses of these T cells showed significant increases in CD8+ T cells, mainly dominated by NP-specific responses. After vaccination with LAIV, the youngest children showed the highest increase in T-cell responses. Conclusion LAIV boosts durable, cross-reactive T-cell responses in children and may have a clinically protective effect at the population level. LAIV may be a first step toward the desired universal influenza vaccine.
Collapse
Affiliation(s)
| | - Fan Zhou
- The Influenza Centre.,K. G. Jebsen Centre for Influenza Vaccines, and
| | - Karl A Brokstad
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, and
| | | | - Rebecca J Cox
- The Influenza Centre.,K. G. Jebsen Centre for Influenza Vaccines, and.,Department of Research & Development, Haukeland University Hospital, Bergen, Norway ; and
| |
Collapse
|
29
|
Boikos C, Papenburg J, Martineau C, Joseph L, Scheifele D, Chilvers M, Lands LC, De Serres G, Quach C. Viral interference and the live-attenuated intranasal influenza vaccine: Results from a pediatric cohort with cystic fibrosis. Hum Vaccin Immunother 2017; 13:1-7. [PMID: 28273006 PMCID: PMC5489283 DOI: 10.1080/21645515.2017.1287641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The objective of this study was to explore the effects of viral co-detection in individuals recently vaccinated with the live-attenuated intranasal influenza virus vaccine (LAIV) on the detection of influenza RNA. METHODS Before the 2013-2014 influenza season, nasal swabs were obtained from 59 pediatric participants with cystic fibrosis (CF) and 17 of their healthy siblings immediately before vaccination and 4 times during the week of follow-up. Real-time RT-PCR assays were used to detect influenza RNA. Co-detection of a non-influenza respiratory virus (NIRV) at the time of vaccination was determined by a multiplex RT-PCR assay. Differences in the proportions and rates of influenza detection and their 95% credible intervals (CrI) were estimated. RESULTS Influenza RNA was detected in 16% fewer participants (95% CrI: -7, 39%) throughout follow-up in the NIRV-positive group compared with the NIRV-negative group (59% vs. 75%). This was also observed in participants with CF alone (66% vs. 74%; RD = 8% 95% CrI: -16, 33%) as well as in healthy participants only (75% vs. 30%; RD = 45%, 95% CrI: -2, 81%). Influenza was detected in NIRV-negative subjects for 0.49 d more compared with NIRV-positive subjects (95% CrI: -0.37, 1.26). CONCLUSION The observed proportion of subjects in whom influenza RNA was detected and the duration of detection differed slightly between NIRV- positive and -negative subjects. However, wide credible intervals for the difference preclude definitive conclusions. If true, this observed association may be related to a recent viral respiratory infection, a phenomenon known as viral interference.
Collapse
Affiliation(s)
- Constantina Boikos
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
| | - Jesse Papenburg
- Department of Pediatrics, Division of Infectious Diseases, The Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Christine Martineau
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, QC, Canada
| | - Lawrence Joseph
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
| | - David Scheifele
- Vaccine Evaluation Center, Child & Family Research Institute, University of British Columbia, BC, Canada
| | - Mark Chilvers
- Director, Cystic Fibrosis Clinic, University of British Columbia, BC, Canada
| | - Larry C. Lands
- Department of Pediatrics, Division of Respiratory Medicine, The Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Gaston De Serres
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, QC, Canada
| | - Caroline Quach
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
- Department of Pediatrics, Division of Infectious Diseases, The Montreal Children's Hospital, McGill University, Montreal, QC, Canada
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, QC, Canada
- McGill University Health Centre, Vaccine Study Centre, Research Institute of the MUHC, Montreal, QC, Canada
| |
Collapse
|
30
|
Pebody R, Warburton F, Ellis J, Andrews N, Potts A, Cottrell S, Johnston J, Reynolds A, Gunson R, Thompson C, Galiano M, Robertson C, Byford R, Gallagher N, Sinnathamby M, Yonova I, Pathirannehelage S, Donati M, Moore C, de Lusignan S, McMenamin J, Zambon M. Effectiveness of seasonal influenza vaccine for adults and children in preventing laboratory-confirmed influenza in primary care in the United Kingdom: 2015/16 end-of-season results. ACTA ACUST UNITED AC 2017; 21:30348. [PMID: 27684603 PMCID: PMC5073201 DOI: 10.2807/1560-7917.es.2016.21.38.30348] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022]
Abstract
The United Kingdom (UK) is in the third season of introducing universal paediatric influenza vaccination with a quadrivalent live attenuated influenza vaccine (LAIV). The 2015/16 season in the UK was initially dominated by influenza A(H1N1)pdm09 and then influenza of B/Victoria lineage, not contained in that season's adult trivalent inactivated influenza vaccine (IIV). Overall adjusted end-of-season vaccine effectiveness (VE) was 52.4% (95% confidence interval (CI): 41.0-61.6) against influenza-confirmed primary care consultation, 54.5% (95% CI: 41.6-64.5) against influenza A(H1N1)pdm09 and 54.2% (95% CI: 33.1-68.6) against influenza B. In 2-17 year-olds, adjusted VE for LAIV was 57.6% (95% CI: 25.1 to 76.0) against any influenza, 81.4% (95% CI: 39.6-94.3) against influenza B and 41.5% (95% CI: -8.5 to 68.5) against influenza A(H1N1)pdm09. These estimates demonstrate moderate to good levels of protection, particularly against influenza B in children, but relatively less against influenza A(H1N1)pdm09. Despite lineage mismatch in the trivalent IIV, adults younger than 65 years were still protected against influenza B. These results provide reassurance for the UK to continue its influenza immunisation programme planned for 2016/17.
Collapse
|
31
|
Mohn KGI, Brokstad KA, Pathirana RD, Bredholt G, Jul-Larsen Å, Trieu MC, Lartey SL, Montomoli E, Tøndel C, Aarstad HJ, Cox RJ. Live Attenuated Influenza Vaccine in Children Induces B-Cell Responses in Tonsils. J Infect Dis 2016; 214:722-31. [PMID: 27247344 PMCID: PMC4978372 DOI: 10.1093/infdis/jiw230] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/23/2016] [Indexed: 11/17/2022] Open
Abstract
Background. Tonsils play a key role in eliciting immune responses against respiratory pathogens. Little is known about how tonsils contribute to the local immune response after intranasal vaccination. Here, we uniquely report the mucosal humoral responses in tonsils and saliva after intranasal live attenuated influenza vaccine (LAIV) vaccination in children. Methods. Blood, saliva, and tonsils samples were collected from 39 children before and after LAIV vaccination and from 16 age-matched, nonvaccinated controls. Serum antibody responses were determined by a hemagglutination inhibition (HI) assay. The salivary immunoglobulin A (IgA) level was measured by an enzyme-linked immunosorbent assay. Antibody-secreting cell (ASC) and memory B-cell (MBC) responses were enumerated in tonsils and blood. Results. Significant increases were observed in levels of serum antibodies and salivary IgA to influenza A(H3N2) and influenza B virus strains as early as 14 days after vaccination but not to influenza A(H1N1). Influenza virus–specific salivary IgA levels correlated with serum HI responses, making this a new possible indicator of vaccine immunogenicity in children. LAIV augmented influenza virus–specific B-cell responses in tonsils and blood. Tonsillar MBC responses correlated with systemic MBC and serological responses. Naive children showed significant increases in MBC counts after LAIV vaccination. Conclusions. This is the first study to demonstrate that LAIV elicits humoral B-cell responses in tonsils of young children. Furthermore, salivary IgA analysis represents an easy method for measuring immunogenicity after vaccination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena VisMederi, Siena, Italy
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen Department of Pediatrics
| | - Hans Jørgen Aarstad
- Department of Clinical Medicine, University of Bergen Department of Otolaryngology/Head and Neck Surgery
| | - Rebecca Jane Cox
- The Influenza Center Department of Research & Development, Haukeland University Hospital, Bergen K.G. Jebsen Center for Influenza Vaccines, University of Bergen, Norway
| |
Collapse
|
32
|
Shcherbik S, Pearce N, Kiseleva I, Larionova N, Rudenko L, Xu X, Wentworth DE, Bousse T. Implementation of new approaches for generating conventional reassortants for live attenuated influenza vaccine based on Russian master donor viruses. J Virol Methods 2015; 227:33-9. [PMID: 26519883 PMCID: PMC4773654 DOI: 10.1016/j.jviromet.2015.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022]
Abstract
Cold-adapted influenza strains A/Leningrad/134/17/57 (H2N2) and B/USSR/60/69, originally developed in Russia, have been reliable master donors of attenuation for preparing live attenuated influenza vaccines (LAIV). The classical strategy for generating LAIV reassortants is robust, but has some disadvantages. The generation of reassortants requires at least 3 passages under selective conditions after co-infection; each of these selective passages takes six days. Screening the reassortants for a genomic composition traditionally starts after a second limiting dilution cloning procedure, and the number of suitable reassortants is limited. We developed a new approach to shorten process of preparing LAIV seed viruses. Introducing the genotyping of reassortants by pyrosequencing and monitoring sequence integrity of surface antigens starting at the first selective passage allowed specific selection of suitable reassortants for the next cloning procedure and also eliminate one of the group selective passage in vaccine candidate generation. Homogeneity analysis confirmed that reducing the number of selective passages didn't affect the quality of LAIV seed viruses. Finally, the two-way hemagglutination inhibition test, implemented for all the final seed viruses, confirmed that any amino acid substitutions acquired by reassortants during egg propagation didn't affect antigenicity of the vaccine. Our new strategy reduces the time required to generate a vaccine and was used to generate seasonal LAIVs candidates for the 2012/2013, 2014/2015, and 2015/2016 seasons more rapidly.
Collapse
Affiliation(s)
- Svetlana Shcherbik
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States; Battelle, Atlanta, GA 30329, United States
| | - Nicholas Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States; Battelle, Atlanta, GA 30329, United States
| | - Irina Kiseleva
- Institute of Experimental Medicine, Department of Virology, St. Petersburg, Russia
| | - Natalie Larionova
- Institute of Experimental Medicine, Department of Virology, St. Petersburg, Russia
| | - Larisa Rudenko
- Institute of Experimental Medicine, Department of Virology, St. Petersburg, Russia
| | - Xiyan Xu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Tatiana Bousse
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States.
| |
Collapse
|
33
|
Abstract
New vaccine technologies are being investigated for their ability to elicit broadly cross-protective immunity against a range of influenza viruses. We compared the efficacies of two intranasally delivered nonreplicating influenza virus vaccines (H1 and H5 S-FLU) that are based on the suppression of the hemagglutinin signal sequence, with the corresponding H1N1 and H5N1 cold-adapted (ca) live attenuated influenza virus vaccines in mice and ferrets. Administration of two doses of H1 or H5 S-FLU vaccines protected mice and ferrets from lethal challenge with homologous, heterologous, and heterosubtypic influenza viruses, and two doses of S-FLU and ca vaccines yielded comparable effects. Importantly, when ferrets immunized with one dose of H1 S-FLU or ca vaccine were challenged with the homologous H1N1 virus, the challenge virus failed to transmit to naive ferrets by the airborne route. S-FLU technology can be rapidly applied to any emerging influenza virus, and the promising preclinical data support further evaluation in humans. Influenza viruses continue to represent a global public health threat, and cross-protective vaccines are needed to prevent seasonal and pandemic influenza. Currently licensed influenza vaccines are based on immunity to the hemagglutinin protein that is highly variable. However, T cell responses directed against highly conserved viral proteins contribute to clearance of the virus and confer broadly cross-reactive and protective immune responses against a range of influenza viruses. In this study, two nonreplicating pseudotyped influenza virus vaccines were compared with their corresponding live attenuated influenza virus vaccines, and both elicited robust protection against homologous and heterosubtypic challenge in mice and ferrets, making them promising candidates for further evaluation in humans.
Collapse
|
34
|
Czako R, Subbarao K. Refining the approach to vaccines against influenza A viruses with pandemic potential. Future Virol 2015; 10:1033-1047. [PMID: 26587050 DOI: 10.2217/fvl.15.69] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vaccination is the most effective strategy for prevention and control of influenza. Timely production and deployment of seasonal influenza vaccines is based on an understanding of the epidemiology of influenza and on global disease and virologic surveillance. Experience with seasonal influenza vaccines guided the initial development of pandemic influenza vaccines. A large investment in pandemic influenza vaccines in the last decade has resulted in much progress and a body of information that can now be applied to refine the established paradigm. Critical and complementary considerations for pandemic influenza vaccines include improved assessment of the pandemic potential of animal influenza viruses, proactive development and deployment of pandemic influenza vaccines, and application of novel platforms and strategies for vaccine production and administration.
Collapse
Affiliation(s)
- Rita Czako
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
35
|
Isakova-Sivak I, Rudenko L. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines 2015; 14:1313-29. [PMID: 26289975 DOI: 10.1586/14760584.2015.1075883] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Live attenuated influenza vaccines (LAIVs) are believed to be immunologically superior to inactivated influenza vaccines, because they can induce a variety of adaptive immune responses, including serum antibodies, mucosal and cell-mediated immunity. In addition to the licensed cold-adapted LAIV backbones, a number of alternative LAIV approaches are currently being developed and evaluated in preclinical and clinical studies. This review summarizes recent progress in the development and evaluation of LAIVs, with special attention to their safety, immunogenicity and infectivity for humans, and discusses their perspectives for the future.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- a Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, Saint Petersburg, Russia
| | | |
Collapse
|
36
|
Peng Y, Wang B, Talaat K, Karron R, Powell TJ, Zeng H, Dong D, Luke CJ, McMichael A, Subbarao K, Dong T. Boosted Influenza-Specific T Cell Responses after H5N1 Pandemic Live Attenuated Influenza Virus Vaccination. Front Immunol 2015; 6:287. [PMID: 26082783 PMCID: PMC4451682 DOI: 10.3389/fimmu.2015.00287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background In a phase I clinical trial, a H5N1 pandemic live attenuated influenza virus (pLAIV) VN2004 vaccine bearing avian influenza H5N1 hemagglutinin (HA) and NA genes on the A/Ann Arbor cold-adapted vaccine backbone displayed very restricted replication. We evaluated T cell responses to H5N1 pLAIV vaccination and assessed pre-existing T cell responses to determine whether they were associated with restricted replication of the H5N1 pLAIV. Method ELISPOT assays were performed using pools of overlapping peptides spanning the entire H5N1 proteome and the HA proteins of relevant seasonal H1N1 and H3N2 viruses. We tested stored peripheral blood mononuclear cells (PBMCs) from 21 study subjects who received two doses of the H5N1 pLAIV. The PBMCs were collected 1 day before and 7 days after the first and second pLAIV vaccine doses, respectively. Result T cell responses to conserved internal proteins M and NP were significantly boosted by vaccination (p = 0.036). In addition, H5N1 pLAIV appeared to preferentially stimulate and boost pre-existing seasonal influenza virus HA-specific T cell responses that showed low cross-reactivity with the H5 HA. We confirmed this observation by T cell cloning and identified a novel HA-specific epitope. However, we did not find any evidence that pre-existing T cells prevented pLAIV replication and take. Conclusion We found that cross-reactive T cell responses could be boosted by pLAIV regardless of the induction of antibody. The impact of the “original antigenic sin” phenomenon in a subset of volunteers, with preferential expansion of seasonal influenza-specific but not H5N1-specific T cell responses merits further investigation.
Collapse
Affiliation(s)
- YanChun Peng
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford , UK
| | - Beibei Wang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford , UK ; Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University , Beijing , China
| | - Kawsar Talaat
- Center for Immunization Research, Johns Hopkins University Bloomberg School of Public Health , Baltimore, MD , USA
| | - Ruth Karron
- Center for Immunization Research, Johns Hopkins University Bloomberg School of Public Health , Baltimore, MD , USA
| | - Timothy J Powell
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford , UK
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University , Beijing , China
| | - Danning Dong
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford , UK
| | - Catherine J Luke
- Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health , Bethesda, MD , USA
| | - Andrew McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford , UK
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health , Bethesda, MD , USA
| | - Tao Dong
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
37
|
Mohn KGI, Bredholt G, Brokstad KA, Pathirana RD, Aarstad HJ, Tøndel C, Cox RJ. Longevity of B-cell and T-cell responses after live attenuated influenza vaccination in children. J Infect Dis 2014; 211:1541-9. [PMID: 25425696 PMCID: PMC4407761 DOI: 10.1093/infdis/jiu654] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background. The live attenuated influenza vaccine (LAIV) is the preferred vaccine for children, but the mechanisms behind protective immune responses are unclear, and the duration of immunity remains to be elucidated. This study reports on the longevity of B-cell and T-cell responses elicited by the LAIV. Methods. Thirty-eight children (3–17 years old) were administered seasonal LAIV. Blood samples were collected before vaccination with sequential sampling up to 1 year after vaccination. Humoral responses were evaluated by a hemagglutination inhibition assay, and memory B-cell responses were evaluated by an enzyme-linked immunosorbent spot assay (ELISpot). T-cell responses were evaluated by interferon γ (IFN-γ) ELISpot analysis, and intracellular cytokine staining of CD4+ T cells for detection of IFN-γ, interleukin 2, and tumor necrosis factor α was performed using flow cytometry. Results. LAIV induced significant increases in B-cell and T-cell responses, which were sustained at least 1 year after vaccination. Strain variations were observed, in which the B strain elicited stronger responses. IFN-γ–expressing T cell counts increased significantly, and remained higher than prevaccination levels 1 year later. Expression of T-helper type 1 intracellular cytokines (interleukin 2, IFN-γ, and tumor necrosis factor α) increased after 1 dose and were boosted after the second dose. Hemagglutination inhibition titers were sustained for 1 year. Vaccine-induced memory B cell counts were significantly increased, and the response persisted for one year. Conclusions. LAIV elicited B-cell and T-cell responses that persisted for at least 1 year in children. This is a novel finding that will aid future vaccine policy.
Collapse
Affiliation(s)
| | - Geir Bredholt
- Influenza Center K. G. Jebsen Center for Influenza Vaccines
| | - Karl A Brokstad
- Broegelman Research Laboratory, Department of Clinical Science
| | | | - Hans J Aarstad
- Department of Clinical Medicine, University of Bergen Department of Otolaryngology/Head and Neck Surgery
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen Department of Pediatrics
| | - Rebecca J Cox
- Influenza Center K. G. Jebsen Center for Influenza Vaccines Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
38
|
Broadbent AJ, Santos CP, Paskel M, Matsuoka Y, Lu J, Chen Z, Jin H, Subbarao K. Replication of live attenuated cold-adapted H2N2 influenza virus vaccine candidates in non human primates. Vaccine 2014; 33:193-200. [PMID: 25444799 DOI: 10.1016/j.vaccine.2014.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/10/2014] [Accepted: 10/27/2014] [Indexed: 11/30/2022]
Abstract
The development of an H2N2 vaccine is a priority in pandemic preparedness planning. We previously showed that a single dose of a cold-adapted (ca) H2N2 live attenuated influenza vaccine (LAIV) based on the influenza A/Ann Arbor/6/60 (AA ca) virus was immunogenic and efficacious in mice and ferrets. However, in a Phase I clinical trial, viral replication was restricted and immunogenicity was poor. In this study, we compared the replication of four H2N2 LAIV candidate viruses, AA ca, A/Tecumseh/3/67 (TEC67 ca), and two variants of A/Japan/305/57 (JAP57 ca) in three non-human primate (NHP) species: African green monkeys (AGM), cynomolgus macaques (CM) and rhesus macaques (RM). One JAP57 ca virus had glutamine and glycine at HA amino acid positions 226 and 228 (Q-G) that binds to α2-3 linked sialic acids, and one had leucine and serine that binds to α2-3 and α2-6 linked residues (L-S). The replication of all ca viruses was restricted, with low titers detected in the upper respiratory tract of all NHP species, however replication was detected in significantly more CMs than AGMs. The JAP57 ca Q-G and TEC67 ca viruses replicated in a significantly higher percentage of NHPs than the AA ca virus, with the TEC67 ca virus recovered from the greatest percentage of animals. Altering the receptor specificity of the JAP57 ca virus from α2-3 to both α2-3 and α2-6 linked sialic acid residues did not significantly increase the number of animals infected or the titer to which the virus replicated. Taken together, our data show that in NHPs the AA ca virus more closely reflects the human experience than mice or ferret studies. We suggest that CMs and RMs may be the preferred species for evaluating H2N2 LAIV viruses, and the TEC67 ca virus may be the most promising H2N2 LAIV candidate for further evaluation.
Collapse
Affiliation(s)
- Andrew J Broadbent
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Celia P Santos
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Myeisha Paskel
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yumiko Matsuoka
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Janine Lu
- MedImmune LLC, Mountain View, CA, USA
| | | | - Hong Jin
- MedImmune LLC, Mountain View, CA, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Dormitzer P, Tsai T, Del Giudice G. New technologies for influenza vaccines. Hum Vaccin Immunother 2014; 8:45-58. [DOI: 10.4161/hv.8.1.18859] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Heldens J, Hulskotte E, Voeten T, Breedveld B, Verweij P, van Duijnhoven W, Rudenko L, van Damme P, van den Bosch H. Safety and immunogenicity in man of a cell culture derived trivalent live attenuated seasonal influenza vaccine: a Phase I dose escalating study in healthy volunteers. Vaccine 2014; 32:5118-24. [PMID: 24858566 DOI: 10.1016/j.vaccine.2014.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 11/17/2022]
Abstract
Live attenuated influenza vaccine (LAIV) offers the promise of inducing a variety of immune responses thereby conferring protection to circulating field strains. LAIVs are based on cold adapted and temperature sensitive phenotypes of master donor viruses (MDVs) containing the surface glycoprotein genes of seasonal influenza strains. Two types of MDV lineages have been described, the Ann Arbor lineages and the A/Leningrad/17 and B/USSR/60 lineages. Here the safety and immunogenicity of a Madin Darby Canine Kidney - cell culture based, intranasal LAIV derived from A/Leningrad/17 and B/USSR, was evaluated in healthy influenza non-naive volunteers 18-50 years of age. In a double-blind, randomized, placebo-controlled design, single escalating doses of 1×10(5), 1×10(6), or 1×10(7) tissue culture infectious dose 50% (TCID50) of vaccine containing each of the three influenza virus re-assortants recommended by the World Health Organization for the 2008-2009 season were administered intranasally. A statistically significant geometric mean increase in hemagglutination inhibition titer was reached for influenza strain A/H3N2 after immunization with all doses of LAIV. For the A/H1N1 and B strains, the GMI in HI titer did not increase for any of the doses. Virus neutralization antibody titers showed a similar response pattern. A dose-response effect could not be demonstrated for any of the strains, neither for the HI antibody nor for the VN antibody responses. No influenza like symptoms, no nasal congestions, no rhinorrhea, or other influenza related upper respiratory tract symptoms were observed. In addition, no difference in the incidence or nature of adverse events was found between vaccine and placebo treated subjects. Overall, the results indicated that the LAIV for nasal administration is immunogenic (i.e. able to provoke an immune response) and safe both from the perspective of the attenuated virus and the MDCK cell line from which it was derived, and it warrants further development.
Collapse
Affiliation(s)
- Jacco Heldens
- Nobilon International BV, Wim de Körverstraat 35, 5831 AN Boxmeer, The Netherlands.
| | - Ellen Hulskotte
- Merck Sharpe and Dohme Oss BV, Moleneind 110, 5342 CC Oss, The Netherlands
| | - Theo Voeten
- Nobilon International BV, Wim de Körverstraat 35, 5831 AN Boxmeer, The Netherlands
| | - Belinda Breedveld
- Merck Sharpe and Dohme Oss BV, Moleneind 110, 5342 CC Oss, The Netherlands
| | - Pierre Verweij
- Merck Sharpe and Dohme Oss BV, Moleneind 110, 5342 CC Oss, The Netherlands
| | | | - Larissa Rudenko
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, 12 Acad. Pavlov Street, St. Petersburg, 197376, Russia
| | - Pierre van Damme
- Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, B2610 Antwerp, Belgium
| | - Han van den Bosch
- Nobilon International BV, Wim de Körverstraat 35, 5831 AN Boxmeer, The Netherlands
| |
Collapse
|
41
|
Jang YH, Seong BL. Options and obstacles for designing a universal influenza vaccine. Viruses 2014; 6:3159-80. [PMID: 25196381 PMCID: PMC4147691 DOI: 10.3390/v6083159] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of antibodies specific to a highly conserved stalk region of the influenza virus hemagglutinin (HA), eliciting such antibodies has been considered the key to developing a universal influenza vaccine that confers broad-spectrum protection against various influenza subtypes. To achieve this goal, a prime/boost immunization strategy has been heralded to redirect host immune responses from the variable globular head domain to the conserved stalk domain of HA. While this approach has been successful in eliciting cross-reactive antibodies against the HA stalk domain, protective efficacy remains relatively poor due to the low immunogenicity of the domain, and the cross-reactivity was only within the same group, rather than among different groups. Additionally, concerns are raised on the possibility of vaccine-associated enhancement of viral infection and whether multiple boost immunization protocols would be considered practical from a clinical standpoint. Live attenuated vaccine hitherto remains unexplored, but is expected to serve as an alternative approach, considering its superior cross-reactivity. This review summarizes recent advancements in the HA stalk-based universal influenza vaccines, discusses the pros and cons of these approaches with respect to the potentially beneficial and harmful effects of neutralizing and non-neutralizing antibodies, and suggests future guidelines towards the design of a truly protective universal influenza vaccine.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| |
Collapse
|
42
|
Protective efficacy of intranasally administered bivalent live influenza vaccine and immunological mechanisms underlying the protection. Vaccine 2014; 32:3835-42. [PMID: 24837774 DOI: 10.1016/j.vaccine.2014.04.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/04/2014] [Accepted: 04/21/2014] [Indexed: 02/03/2023]
|
43
|
Coelingh KL, Luke CJ, Jin H, Talaat KR. Development of live attenuated influenza vaccines against pandemic influenza strains. Expert Rev Vaccines 2014; 13:855-71. [PMID: 24867587 DOI: 10.1586/14760584.2014.922417] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Avian and animal influenza viruses can sporadically transmit to humans, causing outbreaks of varying severity. In some cases, further human-to-human virus transmission does not occur, and the outbreak in humans is limited. In other cases, sustained human-to-human transmission occurs, resulting in worldwide influenza pandemics. Preparation for future pandemics is an important global public health goal. A key objective of preparedness is to gain an understanding of how to design, test, and manufacture effective vaccines that could be stockpiled for use in a pandemic. This review summarizes results of an ongoing collaboration to produce, characterize, and clinically test a library of live attenuated influenza vaccine strains (based on Ann Arbor attenuated Type A strain) containing protective antigens from influenza viruses considered to be of high pandemic potential.
Collapse
|
44
|
Toback SL, Levin MJ, Block SL, Belshe RB, Ambrose CS, Falloon J. Quadrivalent Ann Arbor strain live-attenuated influenza vaccine. Expert Rev Vaccines 2014; 11:1293-303. [DOI: 10.1586/erv.12.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
|
46
|
Coelingh KL, Wu XW, Mallory RM, Ambrose CS. An integrated multi-study analysis of serum HAI antibody responses to Ann Arbor strain live attenuated influenza vaccine in children and adults. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2014.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Jang YH, Lee EY, Byun YH, Jung EJ, Lee YJ, Lee YH, Lee KH, Lee J, Seong BL. Protective efficacy in mice of monovalent and trivalent live attenuated influenza vaccines in the background of cold-adapted A/X-31 and B/Lee/40 donor strains. Vaccine 2013; 32:535-43. [PMID: 24342248 DOI: 10.1016/j.vaccine.2013.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/19/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022]
Abstract
Influenza virus continues to take a heavy toll on human health and vaccination remains the mainstay of efforts to reduce the clinical impact imposed by viral infections. Proven successful for establishing live attenuated vaccine donor strains, cold-adapted live attenuated influenza vaccines (CAIVs) have become an attractive modality for controlling the virus infection. Previously, we developed the cold-adapted strains A/X-31 and B/Lee/40 as novel donor strains of CAIVs against influenza A and B viruses. In this study, we investigated the protective immune responses of both mono- and trivalent vaccine formulations in the mouse model. Two type A vaccines and one type B vaccine against A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), and B/Shangdong/7/97 in the background of the A/X-31 ca or B/Lee/40 ca were generated by a reassortment procedure and evaluated for their immunogenicity and protective efficacy. Each monovalent vaccine elicited high levels of serum antibodies and conferred complete protection against homologous wild type virus infection. As compared to the monovalent vaccines, trivalent formulation induced higher levels of type A-specific serum antibodies and slightly lower levels of type B-specific antibodies, suggesting an immunological synergism within type A viruses and an interference in the replication of type B virus. Relatively lower type B-specific immunogenicity in trivalent vaccine formulation could be effectively implemented by increasing the vaccine dose of influenza B virus. These results of immunogenicity, protection efficacy, and immunological synergism between type A vaccines provide an experimental basis for optimal composition of trivalent vaccines for subsequent developments of multivalent CAIVs against seasonal and pandemic influenza viruses.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eun-Young Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eun-Ju Jung
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yoon Jae Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yun Ha Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang-Hee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Translational Vaccine Research Center, Yonsei University, Seoul, South Korea; Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.
| |
Collapse
|
48
|
Cox RJ. Correlates of protection to influenza virus, where do we go from here? Hum Vaccin Immunother 2013; 9:405-8. [PMID: 23291930 DOI: 10.4161/hv.22908] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Influenza vaccination is the cornerstone of prophylaxis. The regulatory authorities currently annually license vaccines based on serum antibodies directed toward the major surface glycoprotein haemagglutinin (HA). The most commonly used serological test, the haemagglutination inhibition (HI) assay utilizes red blood cells, which show considerable biological variation. There is a need for validated, standardized assays to reduce laboratory variation steps that are currently being taken by the regulatory agencies. Here we examine the historical evidence for defining the HI titer ≥ 40 as a surrogate correlate of protection and examine alternative assays. Moreover, the immune response to influenza is multifacated and there are probably multiple correlates of protection. We conclude there is a need for detailed immunological analysis including kinetic studies and head to head comparison of vaccines by a range of immunological assays to further define correlates of protection.
Collapse
Affiliation(s)
- Rebecca J Cox
- Department of Clinical Science; University of Bergen; Haukeland University Hospital; Bergen, Norway; Department of Research & Development; Haukeland University Hospital; Bergen, Norway
| |
Collapse
|
49
|
Stewart M, Dubois E, Sailleau C, Bréard E, Viarouge C, Desprat A, Thiéry R, Zientara S, Roy P. Bluetongue virus serotype 8 virus-like particles protect sheep against virulent virus infection as a single or multi-serotype cocktail immunogen. Vaccine 2012; 31:553-8. [PMID: 23159460 DOI: 10.1016/j.vaccine.2012.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/26/2012] [Accepted: 11/02/2012] [Indexed: 11/15/2022]
Abstract
Since 1998, there have been multiple separate outbreaks of Bluetongue disease (BT) in Europe with the largest outbreak ever recorded in Northern Europe caused by Bluetongue virus serotype 8 (BTV-8). Coinciding with the BTV-8 outbreak, a virulent strain of BTV-1 emerged and co-infections of these two serotypes were reported. In response, we generated VLPs for BTV-8 and tested the efficacy of BTV-8 VLPs as a single immunogen and as a component of a multivalent vaccine, with VLPs of BTV-1 and BTV-2, in order to test if there was any interference between serotypes. All pre-Alps sheep vaccinated with BTV-8 VLPs developed a strong neutralising antibody response to BTV-8 and multivalent VLP vaccinated animals also developed neutralising antibodies to BTV-1 and BTV-2. There were no side effects observed due to the vaccination with either the single- or multivalent VLP cocktail. All VLP-vaccinated animals had no clinical manifestation of BT or viraemia after challenge with a virulent BTV-8 isolate. This data indicates that BTV-8 VLPs delivered as a single immunogen or as a component of a multivalent vaccine are highly efficacious. Moreover, there was no interference on the development of a strong protective immune response due to the combination of different phylogenetically unrelated BTV serotypes in the vaccinated animals. This report further highlights that BTV VLPs are safe and efficacious immunogens that are able to afford complete protection against a virulent virus challenge.
Collapse
Affiliation(s)
- Meredith Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, WC1E 7HT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reisler RB, Gibbs PH, Danner DK, Boudreau EF. Immune interference in the setting of same-day administration of two similar inactivated alphavirus vaccines: eastern equine and western equine encephalitis. Vaccine 2012; 30:7271-7. [PMID: 23031498 DOI: 10.1016/j.vaccine.2012.09.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 09/14/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
We compared the effect on primary vaccination plaque-reduction neutralization 80% titers (PRNT80) responses of same-day administration (at different injection sites) of two similar investigational inactivated alphavirus vaccines, eastern equine encephalitis (EEE) vaccine (TSI-GSD 104) and western equine encephalitis (WEE) vaccine (TSI-GSD 210) to separate administration. Overall, primary response rate for EEE vaccine was 524/796 (66%) and overall primary response rate for WEE vaccine was 291/695 (42%). EEE vaccine same-day administration yielded a 59% response rate and a responder geometric mean titer (GMT)=89 while separate administration yielded a response rate of 69% and a responder GMT=119. WEE vaccine same-day administration yielded a 30% response rate and a responder GMT=53 while separate administration yielded a response rate of 54% and a responder GMT=79. EEE response rates for same-day administration (group A) vs. non-same-day administration (group B) were significantly affected by gender. A logistic regression model predicting response to EEE comparing group B to group A for females yielded an OR=4.10 (95% CL 1.97-8.55; p=.0002) and for males yielded an OR=1.25 (95% CL 0.76-2.07; p=.3768). WEE response rates for same-day administration vs. non-same-day administration were independent of gender. A logistic regression model predicting response to WEE comparing group B to group A yielded an OR=2.14 (95% CL 1.22-3.73; p=.0077). We report immune interference occurring with same-day administration of two completely separate formalin inactivated viral vaccines in humans. These findings combined with the findings of others regarding immune interference would argue for a renewed emphasis on studying the immunological mechanisms of induction of inactivated viral vaccine protection.
Collapse
Affiliation(s)
- Ronald B Reisler
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, United States.
| | | | | | | |
Collapse
|