1
|
Doherty TM, Weinberger B, Didierlaurent A, Lambert PH. Age-related changes in the immune system and challenges for the development of age-specific vaccines. Ann Med 2025; 57:2477300. [PMID: 40110678 PMCID: PMC11926906 DOI: 10.1080/07853890.2025.2477300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND A better understanding of how the immune system evolves with age and how vaccines work in older people has led to increasing focus on the development of vaccines aimed specifically at older age groups. We discuss strategies used to improve vaccine immunogenicity for older adults, focusing on licensed adjuvants. FINDINGS With age-related immune decline (immunosenescence), older adults face increased vulnerability to infections and severe complications. Immunosenescence affects T-cell and B-cell populations and innate immunity, leading to reduced chemotaxis, cytotoxicity, and altered cytokine production. This contributes to inflammaging-low-grade, chronic inflammation linked to aging. However, immune responses vary due to genetics and life-long exposures, making chronological age an imperfect indicator of immune health. Vaccination remains key to prevention, yet immune dysfunction complicates vaccine efficacy. Strategies to enhance responses in older adults include mRNA vaccines, high-antigen content vaccines, intradermal administration, and adjuvants. mRNA COVID-19 vaccines generated strong immune responses in older adults, though lower than in younger groups. High-antigen content influenza vaccines have shown superior efficacy compared to standard vaccination. Adjuvants offer a well-established approach to boosting vaccine responses by enhancing innate immunity. CONCLUSIONS Of various strategies used to improve immunogenicity of vaccines for older adults, adjuvants have been the most consistently effective and practical. More recently, mRNA vaccines have also shown great promise.
Collapse
Affiliation(s)
| | - Birgit Weinberger
- Universität Innsbruck, Institute for Biomedical Aging Research, Innsbruck, Austria
| | | | | |
Collapse
|
2
|
Kakh M, Doroudchi M, Talepoor A. Induction of Regulatory T Cells After Virus Infection and Vaccination. Immunology 2025. [PMID: 40329764 DOI: 10.1111/imm.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 05/08/2025] Open
Abstract
Vaccines have been proven to be one of the safest and most effective ways to prevent and combat diseases. However, the main focus has been on the evaluation of the potency of effector mechanisms and the lack of adverse effects of vaccine candidates. Recently, the importance of induced regulatory mechanisms of the immune system after vaccination has come to light. With the increase in our knowledge about these regulatory mechanisms including the regulatory T cells (Tregs), we have come to understand the significance of this arm of the immune system in controlling immunopathology and/or diminishing the effectiveness of vaccines, especially viral vaccines. Tregs play a dual role during infectious diseases by limiting immune-mediated pathology and also contributing to chronic pathogen persistence by decreasing effector immunity and clearance of infection. Tregs may also affect immune responses after vaccination primarily by inhibiting antigen presenting cell function such as cytokine secretion and co-stimulatory molecule expression as well as effector T (Teff) and B cell function. In this article, we review the current knowledge on the induction of Tregs after several life-threatening virus infections and their available vaccines to bring them to the spotlight and emphasise that studying viral-induced antigen-specific Tregs will help us improve the effectiveness and decrease the immunopathology or side effects of viral vaccines. Trial Registration: ClinicalTrials.gov identifier: NCT04357444.
Collapse
Affiliation(s)
- MansourehKarimi Kakh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - AtefeGhamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Pal PB, Iyer SS. Transient pain and long-term gain: adjuvant dose directs immune memory. J Clin Invest 2025; 135:e190524. [PMID: 40231461 PMCID: PMC11996847 DOI: 10.1172/jci190524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Vaccine hesitancy is often fueled by fears of side effects; however, most reactions result from innate immune activation and cytokine production, which are required for lasting immunity. For effective vaccines against HIV, innate activation is essential for differentiation of CD4+ T cells into T follicular helper cells (TFH), which guide rare B cells to mature into long-lived plasma cells that produce durable neutralizing antibodies (nAbs). In this issue of the JCI, Parham Ramezani-Rad et al. show that higher doses of saponin QS-21-MPLA nanoparticle (SMNP) adjuvant, combined with BG505 MD39 envelope (Env) protein, enhanced cytokine responses, drove stronger Env-specific TFH responses in blood, and increased Env-specific bone marrow plasma cells compared with lower doses. While tier 2 nAbs were sustained at memory in only a subset of animals, predominantly at the highest adjuvant dose, these findings highlight transient reactogenicity as an essential mechanism - not a flaw - for building durable immune memory.
Collapse
Affiliation(s)
- Pabitra B. Pal
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Smita S. Iyer
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- California National Primate Research Center, UCD, Davis, California, USA
| |
Collapse
|
4
|
Yang J, Hu X, Chen X, Li W, Yin Q, Xiong Y, An Y, Li H, Liu Z. A novel MF59 and CpG1018 adjuvant combination enhances the humoral and cellular immune responses against a truncated varicella-zoster viral glycoprotein E. Immunol Lett 2025; 275:107025. [PMID: 40239819 DOI: 10.1016/j.imlet.2025.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Vaccination is the only effective strategy for preventing herpes zoster (HZ), a disease caused by reactivation of the varicella-zoster virus (VZV). Cell-mediated immunity (CMI) plays a pivotal role in controlling VZV reactivation and is a critical factor in the efficacy of the HZ vaccine. This research introduced the preliminary utilization of truncated glycoprotein E (tgE) as the antigen in the formulation of an innovative recombinant HZ vaccine and explored the combination of tgE with several adjuvants to assess their effectiveness in eliciting robust humoral and CMI responses in C57BL/6 mice, followed by the immunogenicity validation of the optimal vaccine formulation in Sprague-Dawley (SD) rats and cynomolgus monkeys. The results demonstrated that the combination of tgE with MF59 and CpG1018, designated as tgE/MF59+CpG1018, elicited significantly stronger gE-specific humoral and cellular immune responses in C57BL/6 mice compared to any single adjuvant or other adjuvant combinations. The optimal dosages for MF59 and CpG1018 were determined to be 0.025 ml and 10 μg, respectively, for each 0.05 ml of the vaccine formulation. Notably, the increasing in the dosage of the adjuvant does not inherently correlate with a more pronounced immune response. Furthermore, the tgE/MF59+CpG1018 also elicited robust humoral and CMI responses in both SD rats and cynomolgus monkeys. These findings established the novel tgE/MF59+CpG1018 vaccine as a highly promising prophylactic candidate against HZ.
Collapse
Affiliation(s)
- Jing Yang
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Xue Hu
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Xiguang Chen
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Wanzhen Li
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Quanyi Yin
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Yelin Xiong
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China
| | - Youcai An
- Ab&B Biotech Co., Ltd., Taizhou Jiangsu 225300, PR China
| | - Haiyan Li
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China.
| | - Zhilei Liu
- Yither Biotech Co., Ltd., Pudong, Shanghai 200120, PR China.
| |
Collapse
|
5
|
Khalifa AZ, Perrie Y, Shahiwala A. Subunit antigen delivery: emulsion and liposomal adjuvants for next-generation vaccines. Expert Opin Drug Deliv 2025; 22:583-597. [PMID: 40021342 DOI: 10.1080/17425247.2025.2474088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/26/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Developing new vaccines to combat emerging infectious diseases has gained more significance after the COVID-19 pandemic. Vaccination is the most cost-effective method for preventing infectious diseases, and subunit antigens are a safer alternative to traditional live, attenuated, and inactivated vaccines. AREAS COVERED Challenges in delivering subunit antigens and the status of different vaccine adjuvants. Recent research developments involving emulsion and liposomal adjuvants and their compositions and properties affecting their adjuvancy. EXPERT OPINION Lipid-based adjuvants, e.g. emulsions and liposomes, represent a paradigm shift in vaccine technology by enabling robust humoral and cellular immune responses with lower antigen doses, a property that is particularly critical during pandemics or in resource-limited settings. These adjuvants can optimize vaccine administration strategies by potentially reducing the frequency of booster doses, thereby improving patient compliance and lowering healthcare costs. While emulsions excel in dose-sparing and broadening immune responses, liposomes offer customization and precision in antigen delivery. However, the broader clinical application of these technologies is not without challenges. Stability issues, e.g. the susceptibility of emulsion-based adjuvants to freezing and their reliance on cold-chain logistics, pose significant barriers to their use in remote/underserved regions. Future developments will likely focus on improving manufacturing scalability and cost-effectiveness.
Collapse
Affiliation(s)
- Al Zahraa Khalifa
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, United Arab Emirates
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Aliasgar Shahiwala
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, United Arab Emirates
| |
Collapse
|
6
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Domnich A, Trombetta CS, Fallani E, Salvatore M. Immunogenicity and safety of the MF59-adjuvanted seasonal influenza vaccine in non-elderly adults: A systematic review and meta-analysis. PLoS One 2024; 19:e0310677. [PMID: 39775353 PMCID: PMC11684710 DOI: 10.1371/journal.pone.0310677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/27/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE In Europe, the age indication for the MF59-adjuvanted quadrivalent influenza vaccine (aQIV) has recently been extended from ≥65 to ≥50 years. Considering that the earliest approval of its trivalent formulation (aTIV) in Italy was for people aged ≥12 years, we aimed to systematically appraise data on the immunogenicity, efficacy, and safety of aTIV/aQIV in non-elderly adults. METHODS A systematic literature review was conducted according to the available guidelines and studies were searched in MEDLINE, Biological Abstracts, Web of Science, Cochrane Library and clinical trial registries. Studies on absolute and relative immunogenicity, efficacy, effectiveness, and safety of aTIV/aQIV in non-elderly adults (<65 years) were potentially eligible. These endpoints were analyzed by virus (sub)types and characteristics of vaccinees. Fixed- and random-effects meta-analyses were performed for data synthesis. Protocol registration: CRD42024512472. RESULTS Twenty-four publications were analyzed. aTIV/aQIV was more immunogenic than non-adjuvanted vaccines towards vaccine-like strains: the absolute differences in seroconversion rates were 8.8% (95% CI: 3.7%, 14.0%), 13.1% (95% CI: 6.7%, 19.6%) and 11.7% (95% CI: 7.2%, 16.2%) for A(H1N1), A(H3N2), and B strains, respectively. This immunogenicity advantage was more pronounced in immunosuppressed adults. Additionally, aTIV/aQIV was more immunogenic than non-adjuvanted counterparts towards heterologous A(H3N2) strains with a 10.7% (95% CI: 3.2%, 18.2%) difference in seroconversion rates. Data on antibody persistence and efficacy were limited and inconclusive. Overall, aTIV/aQIV was judged safe and well tolerated, although reactogenic events were more frequent in aTIV/aQIV recipients versus comparators. Serious adverse events were uncommon and no difference (risk ratio 1.02; 95% CI: 0.64, 1.63) between aTIV/aQIV and non-adjuvanted formulations was found. CONCLUSIONS In non-elderly adults, aTIV/aQIV is safe and generally more immunogenic than non-adjuvanted standard-dose vaccines.
Collapse
Affiliation(s)
- Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital—IRCCS for Oncology and Neurosciences, Genoa, Italy
| | | | | | - Marco Salvatore
- Seqirus S.r.l., Monteriggioni (Siena), Italy
- Department of Life Sciences; University of Siena, Siena, Italy
| |
Collapse
|
8
|
Hojo-Souza NS, de Castro JT, Rivelli GG, Azevedo PO, Oliveira ER, Faustino LP, Salazar N, Bagno FF, Carvalho AF, Rattis B, Lourenço KL, Gomes IP, Assis BRD, Piccin M, Fonseca FG, Durigon E, Silva JS, de Souza RP, Goulart GAC, Santiago H, Fernandes APS, Teixeira SR, Gazzinelli RT. SpiN-Tec: A T cell-based recombinant vaccine that is safe, immunogenic, and shows high efficacy in experimental models challenged with SARS-CoV-2 variants of concern. Vaccine 2024; 42:126394. [PMID: 39368129 DOI: 10.1016/j.vaccine.2024.126394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/07/2024]
Abstract
The emergence of new SARS-CoV-2 variants of concern associated with waning immunity induced by natural infection or vaccines currently in use suggests that the COVID-19 pandemic will become endemic. Investing in new booster vaccines using different platforms is a promising way to enhance protection and keep the disease under control. Here, we evaluated the immunogenicity, efficacy, and safety of the SpiN-Tec vaccine, based on a chimeric recombinant protein (SpiN) adjuvanted with CTVad1 (MF59-based adjuvant), aiming at boosting immunity against variants of concern of SARS-CoV-2. Immunization of K18-hACE-2 transgenic mice and hamsters induced high antibody titers and cellular immune response to the SpiN protein as well as to its components, RBD and N proteins. Importantly in a heterologous prime/boost protocol with a COVID-19 vaccine approved for emergency use (ChAdOx1), SpiN-Tec enhanced the level of circulation neutralizing antibodies (nAb). In addition to protection against the Wuhan isolate, protection against the Delta and Omicron variants was also observed as shown by reduced viral load and lung pathology. Toxicity and safety tests performed in rats demonstrated that the SpiN-Tec vaccine was safe and, based on these results, the SpiN-Tec phase I/II clinical trial was approved.
Collapse
MESH Headings
- Animals
- COVID-19 Vaccines/immunology
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Mice
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Cricetinae
- Mice, Transgenic
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- T-Lymphocytes/immunology
- Female
- Immunogenicity, Vaccine
- Humans
- Rats
- Disease Models, Animal
- Adjuvants, Vaccine
- Immunization, Secondary
- Vaccine Efficacy
Collapse
Affiliation(s)
- Natália S Hojo-Souza
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil
| | - Júlia T de Castro
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil; Plataforma Bi-Institucional de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Graziella G Rivelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Patrick O Azevedo
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil
| | | | - Lídia P Faustino
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil
| | - Natália Salazar
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Flávia F Bagno
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Alex F Carvalho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Bruna Rattis
- Plataforma Bi-Institucional de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Karine L Lourenço
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Isabela P Gomes
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil
| | - Bruna R D Assis
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Mariela Piccin
- Plataforma Bi-Institucional de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Flávio G Fonseca
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - Edison Durigon
- Instituto de Ciências Biológicas, Universidade de São Paulo, Brazil
| | - João S Silva
- Plataforma Bi-Institucional de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Renan P de Souza
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Brazil
| | - Gisele A C Goulart
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Helton Santiago
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil
| | - Ana Paula S Fernandes
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Brazil
| | - Santuza R Teixeira
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil
| | - Ricardo T Gazzinelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Brazil; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
9
|
Bhangde S, Fresnay-Murray S, Garretson T, Ashraf A, O’Hagan DT, Amiji MM, Lodaya RN. Microfluidic-Chip-Based Formulation and In Vivo Evaluations of Squalene Oil Emulsion Adjuvants for Subunit Vaccines. Vaccines (Basel) 2024; 12:1343. [PMID: 39772005 PMCID: PMC11680198 DOI: 10.3390/vaccines12121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Adjuvants play a crucial role in improving the immunogenicity of various antigens in vaccines. Squalene-in-water emulsions are clinically established vaccine adjuvants that improve immune responses, particularly during a pandemic. Current manufacturing processes for these emulsion adjuvants include microfluidizers and homogenizers and these processes have been used to produce emulsion adjuvants to meet global demands during a pandemic. These processes, however, are complex and expensive and may not meet the global needs based on the growing populations in low- and middle-income countries. At the forefront of adjuvant research, there is a pressing need to manufacture emulsion adjuvants using novel approaches that balance efficacy, scalability, speed of production, and cost-effectiveness. METHODS In this study, we explored the feasibility of a microfluidic chip platform to address these challenges and evaluated the adjuvanticity of the emulsion adjuvant prepared using the microfluidic chip process in CB6F1 mice model, and compared it with a control formulation. We developed and optimized the process parameters to produce emulsion adjuvants with characteristics similar to SEA160 (control formulation). RESULTS The resulting emulsion prepared using the microfluidic chip process (MC160) when mixed with ovalbumin, maintained antigen structural integrity. Immunogenicity studies in a CB6F1 mouse model, with the Cytomegalovirus glycoprotein B (CMV gB) antigen, resulted in humoral responses that were non-inferior between MC160 and SEA160, thereby validating the microfluidic chip approach for manufacturing emulsion adjuvants. CONCLUSIONS These findings demonstrate a proof of concept for using microfluidic chip platforms for formulating emulsion adjuvants, offering a simpler manufacturing platform that can be deployed to low- and middle-income countries for rapid production, improving adjuvant access and aiding in pandemic preparedness.
Collapse
Affiliation(s)
- Shashank Bhangde
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA (M.M.A.)
| | | | - Tyler Garretson
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| | - Asma Ashraf
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| | - Derek T. O’Hagan
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA (M.M.A.)
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Rushit N. Lodaya
- GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA
| |
Collapse
|
10
|
Ge P, Ross TM. COBRA HA and NA vaccination elicits long-live protective immune responses against pre-pandemic H2, H5, and H7 influenza virus subtypes. Virology 2024; 597:110119. [PMID: 38850895 DOI: 10.1016/j.virol.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Highly pathogenic avian influenza (HPAI) viruses remain a major threat to both the poultry industry and human public health, and these viruses continue to spread worldwide. In this study, mice were vaccinated with COBRA H2, H5, and H7 hemagglutinin (HA) and two neuraminidase (NA) proteins, N1 and N2. Vaccinated mice were fully protected against lethal challenge with H5N6 influenza virus. Sera collected after vaccination showed cross-reactive IgG antibodies against a panel of wild-type H2, H5, and H7 HA proteins, and N1 and N2 NA proteins. Mice with pre-existing immunity to H1N1 and H3N2 influenza viruses that were subsequently vaccinated with COBRA HA/NA vaccines had enhanced anti-HA stem antibodies compared to vaccinated mice without pre-existing immunity. In addition, sera collected after vaccination had hemagglutinin inhibitory activity against a panel of H2Nx, H5Nx, and H7Nx influenza viruses. These protective antibodies were maintained up for up to 4 months after vaccination.
Collapse
Affiliation(s)
- Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA; Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
11
|
Shams N, Jaydari A, Najafi H, Hataminejad M, Khanizadeh S, Pouladi I. An Overview of the Types of Adjuvants Used in the Vaccination Industry And Their Mechanisms of Action. Viral Immunol 2024; 37:324-336. [PMID: 39172659 DOI: 10.1089/vim.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The widespread use of efficient vaccines against infectious diseases is regarded as one of the most significant advancements in public health and techniques for preventing and protecting against infectious diseases and cancer. Because the purpose of vaccination is to elicit an appropriate, powerful, and long-lasting immune response against the pathogen, compounds such as adjuvants must be used to enhance these responses. Adjuvants have been widely used since their discovery to boost immune responses, prevent diseases, and activate protective immunity. Today, several types of adjuvants with varying properties are available for specific applications. Adjuvants are supramolecular substances or complexes that strengthen and prolong the immune response to antigens. These compounds have long-term immunological effects and are low in toxicity. They also lower the amount of antigen or the number of immunogenic reactions needed to improve vaccine efficacy and are used in specific populations. This article provides an overview of the adjuvants commonly used in the vaccination industry, their respective mechanisms of action, and discusses how they function to stimulate the immune system. Understanding the mechanisms of action of adjuvants is crucial for the development of effective and safe vaccines.
Collapse
Affiliation(s)
- Nemat Shams
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Amin Jaydari
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Hataminejad
- Department of Parasitology and Mycology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Ji J, Tang T, Zhu M, Wu Z, Zhang J, Shi D, Zhu L, Zhang X, Lu X, Chen L, Yao H. Boosting the immune response in COVID-19 vaccines via an Alum:CpG complex adjuvant. Antiviral Res 2024; 229:105954. [PMID: 38964615 DOI: 10.1016/j.antiviral.2024.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Selecting appropriate adjuvants is crucial for developing an effective vaccine. However, studies on the immune responses triggered by different adjuvants in COVID-19 inactivated vaccines are scarce. Herein, we evaluated the efficacy of Alum, CpG HP021, Alum combined with CpG HP021 (Alum/CpG), or MF-59 adjuvants with COVID-19 inactivated vaccines in K18-hACE2 mice, and compared the different immune responses between K18-hACE2 and BALB/c mice. In K18-hACE2 mice, the Alum/CpG group produced a 6.5-fold increase in anti-receptor-binding domain (RBD) IgG antibody titers compared to the Alum group, and generated a comparable level of antibodies even when the antigen amount was reduced by two-thirds, possibly due to the significant activation of germinal center (GC) structures in the central region of the spleen. Different adjuvants induced a variety of binding antibody isotypes. CpG HP021 and Alum/CpG were biased towards Th1/IgG2c, while Alum and MF-59 were biased toward Th2/IgG1. Cytokines IFN-γ, IL-2, and TNF-α were significantly increased in the culture supernatants of splenocytes specifically stimulated in the Alum/CpG group. The antibody responses in BALB/c mice were similar to those in K18-hACE2 mice, but with lower levels of neutralizing antibodies (NAbs). Notably, the Alum/CpG-adjuvanted inactivated vaccine induced a higher number of T cells secreting IFN-γ and IL-2, increased the percentage of effector memory T (TEM) cells among CD8+ T cells, and effectively protected K18-hACE2 mice from Delta variant challenge. Our results showed that Alum/CpG complex adjuvant significantly enhanced the immune response to inactivated COVID-19 antigens and could induce a long-lasting immune response.
Collapse
MESH Headings
- Animals
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Mice
- Adjuvants, Immunologic/administration & dosage
- Mice, Inbred BALB C
- Alum Compounds/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- SARS-CoV-2/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Adjuvants, Vaccine/administration & dosage
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Cytokines/immunology
- Humans
Collapse
Affiliation(s)
- Jia Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Taoming Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiale Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaodi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lei Chen
- Zhejiang Toyouvax Bio-pharmaceutical Co., Ltd., Hangzhou, 311103, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Wu Q, Li C, Zhu B, Zhu J, Yang K, Liu Z, Liu W, Gao T, Yuan F, Guo R, Tian Y, Zhou D. Advancement in the Antigenic Epitopes and Vaccine Adjuvants of African Swine Fever Virus. Pathogens 2024; 13:706. [PMID: 39204306 PMCID: PMC11357537 DOI: 10.3390/pathogens13080706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
African swine fever virus (ASFV), a highly virulent double-stranded DNA virus, poses a significant threat to global pig farming, with mortality rates in domestic pigs reaching up to 100%. Originating in Kenya in 1921, ASFV has since proliferated to Western Europe, Latin America, Eastern Europe, and most recently China in 2018, resulting in substantial global agricultural losses. Antigenic epitopes, recognized by the immune system's T cells and B cells, are pivotal in antiviral immune responses. The identification and characterization of these antigenic epitopes can offer invaluable insights into the immune response against ASFV and aid in the development of innovative immunotherapeutic strategies. Vaccine adjuvants, substances that amplify the body's specific immune response to antigens, also play a crucial role. This review provides an overview of the progress in studying T/B-cell epitopes in ASFV proteins and ASFV vaccine adjuvants, highlighting their role in the immune response and potential use in new vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Q.W.); (C.L.); (B.Z.); (J.Z.); (K.Y.); (Z.L.); (W.L.); (T.G.); (F.Y.); (R.G.)
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Q.W.); (C.L.); (B.Z.); (J.Z.); (K.Y.); (Z.L.); (W.L.); (T.G.); (F.Y.); (R.G.)
| |
Collapse
|
14
|
Zimna M, Brzuska G, Salát J, Růžek D, Krol E. Influence of adjuvant type and route of administration on the immunogenicity of Leishmania-derived tick-borne encephalitis virus-like particles - A recombinant vaccine candidate. Antiviral Res 2024; 228:105941. [PMID: 38901737 DOI: 10.1016/j.antiviral.2024.105941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Tick-borne encephalitis virus (TBEV) is a tick-borne flavivirus that induces severe central nervous system disorders. It has recently raised concerns due to an expanding geographical range and increasing infection rates. Existing vaccines, though effective, face low coverage rates in numerous TBEV endemic regions. Our previous work demonstrated the immunogenicity and full protection afforded by a TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells in immunization studies in a mouse model. In the present study, we explored the impact of adjuvants (AddaS03™, Alhydrogel®+MPLA) and administration routes (subcutaneous, intramuscular) on the immune response. Adjuvanted groups exhibited significantly enhanced antibody responses, higher avidity, and more balanced Th1/Th2 response. IFN-γ responses depended on the adjuvant type, while antibody levels were influenced by both adjuvant and administration routes. The combination of Leishmania-derived TBEV VLPs with Alhydrogel® and MPLA via intramuscular administration emerged as a highly promising prophylactic vaccine candidate, eliciting a robust, balanced immune response with substantial neutralization potential.
Collapse
MESH Headings
- Animals
- Encephalitis Viruses, Tick-Borne/immunology
- Mice
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Adjuvants, Immunologic/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Encephalitis, Tick-Borne/prevention & control
- Encephalitis, Tick-Borne/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Leishmania/immunology
- Female
- Adjuvants, Vaccine/administration & dosage
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Mice, Inbred BALB C
- Interferon-gamma/immunology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Jiří Salát
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic.
| | - Daniel Růžek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, CZ-62500, Brno, Czech Republic.
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
15
|
Goetz M, Thotathil N, Zhao Z, Mitragotri S. Vaccine adjuvants for infectious disease in the clinic. Bioeng Transl Med 2024; 9:e10663. [PMID: 39036089 PMCID: PMC11256182 DOI: 10.1002/btm2.10663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 07/23/2024] Open
Abstract
Adjuvants, materials added to vaccines to enhance the resulting immune response, are important components of vaccination that are many times overlooked. While vaccines always include an antigen to tell the body what to vaccinate to, of equal importance the adjuvant provides the how, a significant factor in producing a complete response. The adjuvant space has been slow to develop with the first use of an adjuvant in a licensed vaccine occurring in the 1930s, and remaining the only adjuvant in licensed vaccines for the next 80 years. However, with vaccination at the forefront of protection against new and complex pathogens, it is important to consider all components when designing an effective vaccine. Here we summarize the adjuvant space in licensed vaccines as well as the novel adjuvant space in clinical trials with a specific focus on the materials utilized and their resulting impact on the immune response. We discuss five major categories of adjuvant materials: aluminum salts, nanoparticles, viral vectors, TLR agonists, and emulsions. For each category, we delve into the current clinical trials space, the impact of these materials on vaccination, as well as some of the ways in which they could be improved. Adjuvants present an exciting opportunity to improve vaccine responses and stability, this review will help inform about the current progress of this space. Translational impact statement In the aftermath of the COVID-19 pandemic, vaccines for infectious diseases have come into the spotlight. While antigens have always been an important focus of vaccine design, the adjuvant is a significant tool for enhancing the immune response to the vaccine that has been largely underdeveloped. This article provides a broad review of the history of adjuvants and, the current vaccine adjuvant space, and the progress seen in adjuvants in clinical trials. There is specific emphasis on the material landscape for adjuvants and their resulting mechanism of action. Looking ahead, while the novel vaccine adjuvant space features exciting new technologies and materials, there is still a need for more to meet the protective needs of new and complex pathogens.
Collapse
Affiliation(s)
- Morgan Goetz
- John A Paulson School of Engineering & Applied SciencesHarvard UniversityAllstonMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Naaz Thotathil
- University of Massachusetts AmherstAmherstMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Illinois ChicagoChicagoIllinoisUSA
| | - Samir Mitragotri
- John A Paulson School of Engineering & Applied SciencesHarvard UniversityAllstonMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
16
|
Nakkala JR, Li Y, Akter L, Kang X, Chen X. Differential Regulation of DC Function, Adaptive Immunity, and MyD88 Dependence by Two Squalene Emulsion-Based Vaccine Adjuvants. Vaccines (Basel) 2024; 12:531. [PMID: 38793782 PMCID: PMC11125884 DOI: 10.3390/vaccines12050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
MF59 and AS03 are squalene emulsion-based vaccine adjuvants with similar compositions and droplet sizes. Despite their broad use in licensed influenza vaccines, few studies compared their adjuvant effects and action mechanisms side by side. Considering the majority of adjuvants act on dendritic cells (DCs) to achieve their adjuvant effects, this study compared AddaVax and AddaS03 with similar compositions to MF59 and AS03 adjuvants to enhance antigen uptake, DC maturation, ovalbumin (OVA), and seasonal influenza vaccine-induced immune responses. Considering MF59 was reported to activate MyD88 to mediate its adjuvant effects, this study also investigated whether the above-explored adjuvant effects of AddaVax and AddaS03 depended on MyD88. We found AddaVax more potently enhanced antigen uptake at the local injection site, while AddaS03 more potently enhanced antigen uptake in the draining lymph nodes. AddaS03 but not AddaVax stimulated DC maturation. Adjuvant-enhanced antigen uptake was MyD88 independent, while AddaS03-induced DC maturation was MyD88 dependent. AddaVax and AddaS03 similarly enhanced OVA-induced IgG and subtype IgG1 antibody responses as well as influenza vaccine-induced hemagglutination inhibition antibody titers, whileAddaS03 more potently enhanced OVA-specific IgG2c antibody responses. Both adjuvants depended on MyD88 to enhance vaccine-induced antibody responses, while AddaVax depended more on MyD88 to achieve its adjuvant effects. Our study reveals similarities and differences of the two squalene emulsion-based vaccine adjuvants, contributing to our improved understanding of their action mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, USA; (J.R.N.); (Y.L.); (L.A.); (X.K.)
| |
Collapse
|
17
|
Cui Y, Ho M, Hu Y, Shi Y. Vaccine adjuvants: current status, research and development, licensing, and future opportunities. J Mater Chem B 2024; 12:4118-4137. [PMID: 38591323 PMCID: PMC11180427 DOI: 10.1039/d3tb02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Megan Ho
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Oladejo M, Tijani AO, Puri A, Chablani L. Adjuvants in cutaneous vaccination: A comprehensive analysis. J Control Release 2024; 369:475-492. [PMID: 38569943 DOI: 10.1016/j.jconrel.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Skin is the body's largest organ and serves as a protective barrier from physical, thermal, and mechanical environmental challenges. Alongside, the skin hosts key immune system players, such as the professional antigen-presenting cells (APCs) like the Langerhans cells in the epidermis and circulating macrophages in the blood. Further, the literature supports that the APCs can be activated by antigen or vaccine delivery via multiple routes of administration through the skin. Once activated, the stimulated APCs drain to the associated lymph nodes and gain access to the lymphatic system. This further allows the APCs to engage with the adaptive immune system and activate cellular and humoral immune responses. Thus, vaccine delivery via skin offers advantages such as reliable antigen delivery, superior immunogenicity, and convenient delivery. Several preclinical and clinical studies have demonstrated the significance of vaccine delivery using various routes of administration via skin. However, such vaccines often employ adjuvant/(s), along with the antigen of interest. Adjuvants augment the immune response to a vaccine antigen and improve the therapeutic efficacy. Due to these reasons, adjuvants have been successfully used with infectious disease vaccines, cancer immunotherapy, and immune-mediated diseases. To capture these developments, this review will summarize preclinical and clinical study results of vaccine delivery via skin in the presence of adjuvants. A focused discussion regarding the FDA-approved adjuvants will address the experiences of using such adjuvant-containing vaccines. In addition, the challenges and regulatory concerns with these adjuvants will be discussed. Finally, the review will share the prospects of adjuvant-containing vaccines delivered via skin.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| | - Lipika Chablani
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY 14618, USA.
| |
Collapse
|
19
|
Senpuku K, Kataoka-Nakamura C, Kunishima Y, Hirai T, Yoshioka Y. An inactivated whole-virion vaccine for Enterovirus D68 adjuvanted with CpG ODN or AddaVax elicits potent protective immunity in mice. Vaccine 2024; 42:2463-2474. [PMID: 38472067 DOI: 10.1016/j.vaccine.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Enterovirus D68 (EV-D68), a pathogen that causes respiratory symptoms, mainly in children, has been implicated in acute flaccid myelitis, which is a poliomyelitis-like paralysis. Currently, there are no licensed vaccines or treatments for EV-D68 infections. Here, we investigated the optimal viral inactivation reagents, vaccine adjuvants, and route of vaccination in mice to optimize an inactivated whole-virion (WV) vaccine against EV-D68. We used formalin, β-propiolactone (BPL), and hydrogen peroxide as viral inactivation reagents and compared their effects on antibody responses. Use of any of these three viral inactivation reagents effectively induced neutralizing antibodies. Moreover, the antibody response induced by the BPL-inactivated WV vaccine was enhanced when adjuvanted with cytosine phosphoguanine oligodeoxynucleotide (CpG ODN) or AddaVax (MF59-like adjuvant), but not with aluminum hydroxide (alum). Consistent with the antibody response results, the protective effect of the inactivated WV vaccine against the EV-D68 challenge was enhanced when adjuvanted with CpG ODN or AddaVax, but not with alum. Further, while the intranasal inactivated WV vaccine induced EV-D68-specific IgA antibodies in the respiratory tract, it was less protective against EV-D68 challenge than the injectable vaccine. Thus, an injectable inactivated EV-D68 WV vaccine prepared with appropriate viral inactivation reagents and an optimal adjuvant is a promising EV-D68 vaccine.
Collapse
Affiliation(s)
- Kota Senpuku
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikako Kataoka-Nakamura
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Kunishima
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
20
|
Huang Z, Gong H, Sun Q, Yang J, Yan X, Xu F. Research progress on emulsion vaccine adjuvants. Heliyon 2024; 10:e24662. [PMID: 38317888 PMCID: PMC10839794 DOI: 10.1016/j.heliyon.2024.e24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Vaccination is the most cost-effective method for preventing various infectious diseases. Compared with conventional vaccines, new-generation vaccines, especially recombinant protein or synthetic peptide vaccines, are safer but less immunogenic than crude inactivated microbial vaccines. The immunogenicity of these vaccines can be enhanced using suitable adjuvants. This is the main reason why adjuvants are of great importance in vaccine development. Several novel human emulsion-based vaccine adjuvants (MF59, AS03) have been approved for clinical use. This paper reviews the research progress on emulsion-based adjuvants and focuses on their mechanism of action. An outlook can be provided for the development of emulsion-based vaccine adjuvants.
Collapse
Affiliation(s)
- Zhuanqing Huang
- Department of Ophthalmology, The No. 944 Hospital of Joint Logistic Support Force of PLA, Gansu 735000, China
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| | - Hui Gong
- Medical School of Chinese PLA, Beijing 100853, China
| | - Qi Sun
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| | - Jinjin Yang
- The Fifth medical center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaochuan Yan
- Department of Ophthalmology, The No. 944 Hospital of Joint Logistic Support Force of PLA, Gansu 735000, China
| | - Fenghua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| |
Collapse
|
21
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Wang N, Wang T. Innovative translational platforms for rapid developing clinical vaccines against COVID-19 and other infectious disease. Biotechnol J 2024; 19:e2300658. [PMID: 38403469 DOI: 10.1002/biot.202300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
A vaccine is a biological preparation that contains the antigen capable of stimulating the immune system to form the defense against pathogens. Vaccine development often confronts big challenges, including time/energy-consuming, low efficacy, lag to pathogen emergence and mutation, and even safety concern. However, these seem now mostly conquerable through constructing the advanced translational platforms that can make innovative vaccines, sometimes, potentiated with a distinct multifunctional VADS (vaccine adjuvant delivery system), as evidenced by the development of various vaccines against the covid-19 pandemic at warp speed. Particularly, several covid-19 vaccines, such as the viral-vectored vaccines, mRNA vaccines and DNA vaccines, regarded as the innovative ones that are rapidly made via the high technology-based translational platforms. These products have manifested powerful efficacy while showing no unacceptable safety profile in clinics, allowing them to be approved for massive vaccination at also warp speed. Now, the proprietary translational platforms integrated with the state-of-the-art biotechnologies, and even the artificial intelligence (AI), represent an efficient mode for rapid making innovative clinical vaccines against infections, thus increasingly attracting interests of vaccine research and development. Herein, the advanced translational platforms for making innovative vaccines, together with their design principles and immunostimulatory efficacies, are comprehensively elaborated.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Biological engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
23
|
Hsieh WS, Chao CH, Shen CY, Cheng D, Huang SW, Wang YF, Chen CC, Chen SH, Hsu LJ, Wang JR. VP1 codon deoptimization and high-fidelity substitutions in 3D polymerase as potential vaccine strategies for eliciting immune responses against enterovirus A71. J Virol 2024; 98:e0155823. [PMID: 38174926 PMCID: PMC10804986 DOI: 10.1128/jvi.01558-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Enterovirus A71 (EV-A71) can induce severe neurological complications and even fatal encephalitis in children, and it has caused several large outbreaks in Taiwan since 1998. We previously generated VP1 codon-deoptimized (VP1-CD) reverse genetics (rg) EV-A71 viruses (rgEV-A71s) that harbor a high-fidelity (HF) 3D polymerase. These VP1-CD-HF rgEV-A71s showed lower replication kinetics in vitro and decreased virulence in an Institute of Cancer Research (ICR) mouse model of EV-A71 infection, while still retaining their antigenicity in comparison to the wild-type virus. In this study, we aimed to further investigate the humoral and cellular immune responses elicited by VP1-CD-HF rgEV-A71s to assess the potential efficacy of these EV-A71 vaccine candidates. Following intraperitoneal (i.p.) injection of VP1-CD-HF rgEV-A71s in mice, we observed a robust induction of EV-A71-specific neutralizing IgG antibodies in the antisera after 21 days. Splenocytes isolated from VP1-CD-HF rgEV-A71s-immunized mice exhibited enhanced proliferative activities and cytokine production (IL-2, IFN-γ, IL-4, IL-6, and TNF-α) upon re-stimulation with VP1-CD-HF rgEV-A71, as compared to control mice treated with adjuvant only. Importantly, administration of antisera from VP1-CD-HF rgEV-A71s-immunized mice protected against lethal EV-A71 challenge in neonatal mice. These findings highlight that our generated VP1-CD-HF rgEV-A71 viruses are capable of inducing both cellular and humoral immune responses, supporting their potential as next-generation EV-A71 vaccines for combating EV-A71 infection.IMPORTANCEEV-A71 can cause severe neurological diseases and cause death in young children. Here, we report the development of synthetic rgEV-A71s with the combination of codon deoptimization and high-fidelity (HF) substitutions that generate genetically stable reverse genetics (rg) viruses as potential attenuated vaccine candidates. Our work provides insight into the development of low-virulence candidate vaccines through a series of viral genetic editing for maintaining antigenicity and genome stability and suggests a strategy for the development of an innovative next-generation vaccine against EV-A71.
Collapse
Affiliation(s)
- Wen-Sheng Hsieh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiao-Hsuan Chao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Yu Shen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Dayna Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Ya-Fang Wang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Chien-Chin Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| |
Collapse
|
24
|
Sobral MC, Mooney DJ. Materials-Based Approaches for Cancer Vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:179-187. [PMID: 38166245 DOI: 10.4049/jimmunol.2300482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 01/04/2024]
Abstract
Therapeutic cancer vaccines offer the promise of stimulating the immune system to specifically eradicate tumor cells and establish long-term memory to prevent tumor recurrence. However, despite showing benign safety profiles and the ability to generate Ag-specific cellular responses, cancer vaccines have been hampered by modest clinical efficacy. Lessons learned from these studies have led to the emergence of innovative materials-based strategies that aim to boost the clinical activity of cancer vaccines. In this Brief Review, we provide an overview of the key elements needed for an effective vaccine-induced antitumor response, categorize current approaches to therapeutic cancer vaccination, and explore recent advances in materials-based strategies to potentiate cancer vaccines.
Collapse
Affiliation(s)
- Miguel C Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; and Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; and Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| |
Collapse
|
25
|
Grabenstein JD, Ferrara P, Mantovani LG, McGovern I. Evaluating risk of bias using ROBINS-I tool in nonrandomized studies of adjuvanted influenza vaccine. Vaccine 2023; 41:7409-7418. [PMID: 37953097 DOI: 10.1016/j.vaccine.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Seasonal variation in influenza vaccine effectiveness (VE) makes real-world evidence (RWE) useful in supplementing the clinical-evidence base from randomized clinical trials. Adjuvanted inactivated influenza vaccine (aIIV) VE has been evaluated in multiple nonrandomized RWE studies. A systematic literature review of RWE studies evaluating the absolute or relative VE of aIIV was conducted. Identified studies were assessed by evaluators for risk of bias (RoB) by means of the ROBINS-I (Reduction of Bias In Non-randomized Studies of Interventions) tool to inform evidence-based medicine deliberations. Differences in evaluator assessments were resolved by consensus. The literature review yielded 14 follow-up studies, seven test-negative case-control (TNCC) studies, five traditional case-control studies, and one cluster-randomized clinical trial. Most follow-up studies and three TNCC studies were judged at low RoB. Issues increasing RoB included inadequate control of confounding, selection of controls, and reliance on recall of vaccination. The concerns identified in any of the designs could be mitigated with straightforward revisions to design or implementation. 17 of 27 nonrandomized studies of adjuvanted influenza-vaccine effectiveness, some from each of four study designs, were judged at low risk of material bias. These studies merit credence in assessing aIIV effectiveness relative to other influenza vaccines.
Collapse
Affiliation(s)
| | - Pietro Ferrara
- Center for Public Health Research, University of Milan-Bicocca, Monza, Italy; Laboratory of Public Health, Istituto Auxologico Italiano - IRCCS, Milan, Italy
| | - Lorenzo G Mantovani
- Center for Public Health Research, University of Milan-Bicocca, Monza, Italy; Laboratory of Public Health, Istituto Auxologico Italiano - IRCCS, Milan, Italy
| | | |
Collapse
|
26
|
Azevedo IR, Amamura TA, Isaac L. Human leptospirosis: In search for a better vaccine. Scand J Immunol 2023; 98:e13316. [PMID: 39008520 DOI: 10.1111/sji.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/17/2024]
Abstract
Leptospirosis is a neglected disease caused by bacteria of the genus Leptospira and is more prevalent in tropical and subtropical countries. This pathogen infects humans and other animals, responsible for the most widespread zoonosis in the world, estimated to be responsible for 60 000 deaths and 1 million cases per year. To date, commercial vaccines against human leptospirosis are available only in some countries such as Japan, China, Cuba and France. These vaccines prepared with inactivated Leptospira (bacterins) induce a short-term and serovar-specific immune response, with strong adverse side effects. To circumvent these limitations, several research groups are investigating new experimental vaccines in order to ensure that they are safe, efficient, and protect against several pathogenic Leptospira serovars, inducing sterilizing immunity. Most of these protocols use attenuated cultures, preparations after LPS removal, recombinant proteins or DNA from pathogenic Leptospira spp. The aim of this review was to highlight several promising vaccine candidates, considering their immunogenicity, presence in different pathogenic Leptospira serovars, their role in virulence or immune evasion and other factors.
Collapse
Affiliation(s)
- Isabela Resende Azevedo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Akemi Amamura
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Mittal N, Kumar S, Rajmani RS, Singh R, Lemoine C, Jakob V, Bj S, Jagannath N, Bhat M, Chakraborty D, Pandey S, Jory A, Sa SS, Kleanthous H, Dubois P, Ringe RP, Varadarajan R. Enhanced protective efficacy of a thermostable RBD-S2 vaccine formulation against SARS-CoV-2 and its variants. NPJ Vaccines 2023; 8:161. [PMID: 37880298 PMCID: PMC10600342 DOI: 10.1038/s41541-023-00755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
With the rapid emergence of variants of concern (VOC), the efficacy of currently licensed vaccines has reduced drastically. VOC mutations largely occur in the S1 subunit of Spike. The S2 subunit of SARS-CoV-2 is conserved and thus more likely to elicit broadly reactive immune responses that could improve protection. However, the contribution of the S2 subunit in improving the overall efficacy of vaccines remains unclear. Therefore, we designed, and evaluated the immunogenicity and protective potential of a stabilized SARS-CoV-2 Receptor Binding Domain (RBD) fused to a stabilized S2. Immunogens were expressed as soluble proteins with approximately fivefold higher purified yield than the Spike ectodomain and formulated along with Squalene-in-water emulsion (SWE) adjuvant. Immunization with S2 alone failed to elicit a neutralizing immune response, but significantly reduced lung viral titers in mice challenged with the heterologous Beta variant. In hamsters, SWE-formulated RS2 (a genetic fusion of stabilized RBD with S2) showed enhanced immunogenicity and efficacy relative to corresponding RBD and Spike formulations. Despite being based on the ancestral Wuhan strain of SARS-CoV-2, RS2 elicited broad neutralization, including against Omicron variants (BA.1, BA.5 and BF.7), and the clade 1a WIV-1 and SARS-CoV-1 strains. RS2 elicited sera showed enhanced competition with both S2 directed and RBD Class 4 directed broadly neutralizing antibodies, relative to RBD and Spike elicited sera. When lyophilized, RS2 retained antigenicity and immunogenicity even after incubation at 37 °C for a month. The data collectively suggest that the RS2 immunogen is a promising modality to combat SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Nidhi Mittal
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India
| | - Raju S Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Randhir Singh
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Céline Lemoine
- Vaccine Formulation Institute; Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Virginie Jakob
- Vaccine Formulation Institute; Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Sowrabha Bj
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Nayana Jagannath
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Madhuraj Bhat
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Debajyoti Chakraborty
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Suman Pandey
- Mynvax Private Limited; 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru, 560004, India
| | - Aurélie Jory
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Suba Soundarya Sa
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | | | - Patrice Dubois
- Vaccine Formulation Institute; Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Rajesh P Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India.
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
28
|
Yang Y, Xiong Y, Xu G. New insights of antineutrophil cytoplasmic antibody-associated vasculitis from the perspective of COVID-19 vaccination. Clin Exp Immunol 2023; 213:301-309. [PMID: 37074008 PMCID: PMC10570996 DOI: 10.1093/cei/uxad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023] Open
Abstract
The occurrence of antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) has been reported since the coronavirus disease 2019 (COVID-19) vaccination, but whether there is a causal relationship or coincidence remains to be verified. We combined the term COVID-19 vaccination with each word of AAV to search for case reports and case series published in PubMed, EMBASE, and Web of Science databases before 13 March 2023. A total of 56 patients who developed AAV after COVID-19 vaccination were identified from 44 research centers. Of the 56 subjects, 43 (76.7%) were vaccinated with the mRNA vaccine, followed by the adenovirus vaccine (14.3%) and inactivated vaccine (9.0%) (P = 0.015). Compared with relapsed AAV, new-onset AAV patients had at least two other diseases previously (P < 0.001). Twenty-five (44.6%) patients presented symptoms after the first injection, and the medium onset time was 12 (1-77) days, while Twenty-eight (50.0%) patients developed symptoms after the second dose, and their medium period was 14 (1-60) days. Forty-four (78.5%) patients achieved remission after immunosuppressive agents, plasma exchange, and hemodialysis. One (1.8%) patient died from progressive respiratory failure and nine (16.1%) did not recover, leaving five patients permanently dependent on hemodialysis. Pathogenic ANCA may be activated by enhanced immune response and epitope spreading after COVID-19 vaccination and induced the occurrence of AAV, especially in genetically susceptible populations.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Yi Xiong
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| |
Collapse
|
29
|
Poder A, Oberije J, Meyer J, Heymer P, Molrine D, Versage E, Isakov L, Zhang Q, Hohenboken M. Immunogenicity and Safety of MF59-Adjuvanted Quadrivalent Influenza Vaccine Compared with a Nonadjuvanted, Quadrivalent Influenza Vaccine in Adults 50-64 Years of Age. Vaccines (Basel) 2023; 11:1528. [PMID: 37896932 PMCID: PMC10611124 DOI: 10.3390/vaccines11101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Adults aged 50-64 years have a high incidence of symptomatic influenza associated with substantial disease and economic burden each year. We conducted a randomized, controlled trial to compare the immunogenicity and safety of an adjuvanted quadrivalent inactivated influenza vaccine (aIIV4; n = 1027) with a nonadjuvanted standard dose IIV4 (n = 1017) in this population. Immunogenicity was evaluated on Days 22, 181, and 271. On Day 22, upper limits (UL) of 95% confidence intervals (CI) for geometric mean titer (GMT) ratios (IIV4/aIIV4) were <1.5 and 95% CI ULs for the difference in seroconversion rate (SCR IIV4 - aIIV4) were <10% for all four vaccine strains, meeting primary endpoint noninferiority criteria. Protocol-defined superiority criteria (95% CI ULs < 1.0) were also met for A(H1N1) and A(H3N2). Immune responses following aIIV4 vaccination were more pronounced in persons with medical comorbidities and those not recently vaccinated against influenza. Safety data were consistent with previous studies of MF59 adjuvanted seasonal and pandemic influenza vaccines. These findings support the immunological benefit of aIIV4 for persons aged 50-64 years, especially those with comorbidities.
Collapse
Affiliation(s)
- Airi Poder
- Tartu University Hospital, 50406 Tartu, Estonia
| | | | - Jay Meyer
- Velocity Clinical Research, Lincoln, NE 68510, USA
| | - Peter Heymer
- Klinische Forschung Dresden GmbH, 01069 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Toth EA, Andrianov AK, Fuerst TR. Prospects for developing an Hepatitis C virus E1E2-based nanoparticle vaccine. Rev Med Virol 2023; 33:e2474. [PMID: 37565536 PMCID: PMC10626635 DOI: 10.1002/rmv.2474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Globally, more than 58 million people are chronically infected with Hepatitis C virus (HCV) with 1.5 million new infections occurring each year. An effective vaccine for HCV is therefore a major unmet medical and public health need. Since HCV rapidly accumulates mutations, vaccines must elicit the production of broadly neutralising antibodies (bnAbs) in a reproducible fashion. Decades of research have generated a number of HCV vaccine candidates. Based on the available data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice, but robust induction of humoral and cellular responses leading to virus neutralisation has not yet been achieved. One issue that has arisen in developing an HCV vaccine (and many other vaccines as well) is the platform used for antigen delivery. The majority of viral vaccine trials have employed subunit vaccines. However, subunit vaccines often have limited immunogenicity, as seen for HCV, and thus multiple formats must be examined in order to elicit a robust anti-HCV immune response. Nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both arms of the immune system. This review discusses the potential for development of a nanoparticle-based HCV E1E2 vaccine, with an emphasis on the potential benefits of such an approach along with the major challenges facing the incorporation of E1E2 into nanoparticulate delivery systems and how those challenges can be addressed.
Collapse
Affiliation(s)
- Eric A. Toth
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Alexander K. Andrianov
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Thomas R. Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
31
|
Shichinohe S, Watanabe T. Advances in Adjuvanted Influenza Vaccines. Vaccines (Basel) 2023; 11:1391. [PMID: 37631959 PMCID: PMC10459454 DOI: 10.3390/vaccines11081391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/29/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023] Open
Abstract
The numerous influenza infections that occur every year present a major public health problem. Influenza vaccines are important for the prevention of the disease; however, their effectiveness against infection can be suboptimal. Particularly in the elderly, immune induction can be insufficient, and the vaccine efficacy against infection is usually lower than that in young adults. Vaccine efficacy can be improved by the addition of adjuvants, and an influenza vaccine with an oil-in-water adjuvant MF59, FLUAD, has been recently licensed in the United States and other countries for persons aged 65 years and older. Although the adverse effects of adjuvanted vaccines have been a concern, many adverse effects of currently approved adjuvanted influenza vaccines are mild and acceptable, given the overriding benefits of the vaccine. Since sufficient immunity can be induced with a small amount of vaccine antigen in the presence of an adjuvant, adjuvanted vaccines promote dose sparing and the prompt preparation of vaccines for pandemic influenza. Adjuvants not only enhance the immune response to antigens but can also be effective against antigenically different viruses. In this narrative review, we provide an overview of influenza vaccines, both past and present, before presenting a discussion of adjuvanted influenza vaccines and their future.
Collapse
Grants
- JP16H06429, JP16K21723, JP17H05809, JP16H06434, JP22H02521, JP22H02876 Japan Society for the Promotion of Science
- JP20jk0210021h0002, JP19fk0108113, JP223fa627002, JP22am0401030, JP23fk0108659, JP22gm1610010 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Shintaro Shichinohe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tokiko Watanabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease and Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Yihunie W, Nibret G, Aschale Y. Recent Advances in Messenger Ribonucleic Acid (mRNA) Vaccines and Their Delivery Systems: A Review. Clin Pharmacol 2023; 15:77-98. [PMID: 37554660 PMCID: PMC10405914 DOI: 10.2147/cpaa.s418314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Messenger ribonucleic acid (mRNA) was found as the intermediary that transfers genetic information from DNA to ribosomes for protein synthesis in 1961. The emergency use authorization of the two covid-19 mRNA vaccines, BNT162b2 and mRNA-1273, is a significant achievement in the history of vaccine development. Because they are generated in a cell-free environment using the in vitro transcription (IVT) process, mRNA vaccines are risk-free. Moreover, chemical modifications to the mRNA molecule, such as cap structures and changed nucleosides, have proved critical in overcoming immunogenicity concerns, achieving sustained stability, and achieving effective, accurate protein production in vivo. Several vaccine delivery strategies (including protamine, lipid nanoparticles (LNPs), polymers, nanoemulsions, and cell-based administration) were also optimized to load and transport RNA into the cytosol. LNPs, which are composed of a cationic or a pH-dependent ionizable lipid layer, a polyethylene glycol (PEG) component, phospholipids, and cholesterol, are the most advanced systems for delivering mRNA vaccines. Moreover, modifications of the four components that make up the LNPs showed to increase vaccine effectiveness and reduce side effects. Furthermore, the introduction of biodegradable lipids improved LNP biocompatibility. Furthermore, mRNA-based therapies are expected to be effective treatments for a variety of refractory conditions, including infectious diseases, metabolic genetic diseases, cancer, cardiovascular and cerebrovascular diseases. Therefore, the present review aims to provide the scientific community with up-to-date information on mRNA vaccines and their delivery systems.
Collapse
Affiliation(s)
- Wubetu Yihunie
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getinet Nibret
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
33
|
Dias Assis BR, Gomes IP, de Castro JT, Rivelli GG, de Castro NS, Gomez-Mendoza DP, Bagno FF, Hojo-Souza NS, Chaves Maia AL, Lages EB, da Fonseca FG, Ribeiro Teixeira SM, Fernandes AP, Gazzinelli RT, Castro Goulart GA. Quality attributes of CTVad1, a nanoemulsified adjuvant for phase I clinical trial of SpiN COVID-19 vaccine. Nanomedicine (Lond) 2023; 18:1175-1194. [PMID: 37712604 DOI: 10.2217/nnm-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Aim: To develop, characterize and evaluate an oil/water nanoemulsion with squalene (CTVad1) to be approved as an adjuvant for the SpiN COVID-19 vaccine clinical trials. Materials & methods: Critical process parameters (CPPs) of CTVad1 were standardized to meet the critical quality attributes (CQAs) of an adjuvant for human use. CTVad1 and the SpiN-CTVad1 vaccine were submitted to physicochemical, stability, in vitro and in vivo studies. Results & conclusion: All CQAs were met in the CTVad1 production process. SpiN- CTVad1 met CQAs and induced high levels of antibodies and specific cellular responses in in vivo studies. These results represented a critical step in the process developed to meet regulatory requirements for the SpiN COVID-19 vaccine clinical trial.
Collapse
Affiliation(s)
- Bruna Rodrigues Dias Assis
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Isabela Pereira Gomes
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Júlia Teixeira de Castro
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Graziella Gomes Rivelli
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Natália Salazar de Castro
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Diana Paola Gomez-Mendoza
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Flávia Fonseca Bagno
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Natália Satchiko Hojo-Souza
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
| | - Ana Luiza Chaves Maia
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Eduardo Burgarelli Lages
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Flávio Guimaraes da Fonseca
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Paula Fernandes
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| |
Collapse
|
34
|
McCraw DM, Myers ML, Gulati NM, Prabhakaran M, Brand J, Andrews S, Gallagher JR, Maldonado-Puga S, Kim AJ, Torian U, Syeda H, Boyoglu-Barnum S, Kanekiyo M, McDermott AB, Harris AK. Designed nanoparticles elicit cross-reactive antibody responses to conserved influenza virus hemagglutinin stem epitopes. PLoS Pathog 2023; 19:e1011514. [PMID: 37639457 PMCID: PMC10491405 DOI: 10.1371/journal.ppat.1011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/08/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023] Open
Abstract
Despite the availability of seasonal vaccines and antiviral medications, influenza virus continues to be a major health concern and pandemic threat due to the continually changing antigenic regions of the major surface glycoprotein, hemagglutinin (HA). One emerging strategy for the development of more efficacious seasonal and universal influenza vaccines is structure-guided design of nanoparticles that display conserved regions of HA, such as the stem. Using the H1 HA subtype to establish proof of concept, we found that tandem copies of an alpha-helical fragment from the conserved stem region (helix-A) can be displayed on the protruding spikes structures of a capsid scaffold. The stem region of HA on these designed chimeric nanoparticles is immunogenic and the nanoparticles are biochemically robust in that heat exposure did not destroy the particles and immunogenicity was retained. Furthermore, mice vaccinated with H1-nanoparticles were protected from lethal challenge with H1N1 influenza virus. By using a nanoparticle library approach with this helix-A nanoparticle design, we show that this vaccine nanoparticle construct design could be applicable to different influenza HA subtypes. Importantly, antibodies elicited by H1, H5, and H7 nanoparticles demonstrated homosubtypic and heterosubtypic cross-reactivity binding to different HA subtypes. Also, helix-A nanoparticle immunizations were used to isolate mouse monoclonal antibodies that demonstrated heterosubtypic cross-reactivity and provided protection to mice from viral challenge via passive-transfer. This tandem helix-A nanoparticle construct represents a novel design to display several hundred copies of non-trimeric conserved HA stem epitopes on vaccine nanoparticles. This design concept provides a new approach to universal influenza vaccine development strategies and opens opportunities for the development of nanoparticles with broad coverage over many antigenically diverse influenza HA subtypes.
Collapse
Affiliation(s)
- Dustin M. McCraw
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mallory L. Myers
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Neetu M. Gulati
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Gallagher
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samantha Maldonado-Puga
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander J. Kim
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Udana Torian
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Audray K. Harris
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
35
|
Kumru OS, Bajoria S, Kaur K, Hickey JM, Van Slyke G, Doering J, Berman K, Richardson C, Lien H, Kleanthous H, Mantis NJ, Joshi SB, Volkin DB. Effects of aluminum-salt, CpG and emulsion adjuvants on the stability and immunogenicity of a virus-like particle displaying the SARS-CoV-2 receptor-binding domain (RBD). Hum Vaccin Immunother 2023; 19:2264594. [PMID: 37932241 PMCID: PMC10760504 DOI: 10.1080/21645515.2023.2264594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023] Open
Abstract
Second-generation COVID-19 vaccines with improved immunogenicity (e.g., breadth, duration) and availability (e.g., lower costs, refrigerator stable) are needed to enhance global coverage. In this work, we formulated a clinical-stage SARS-CoV-2 receptor-binding domain (RBD) virus-like particle (VLP) vaccine candidate (IVX-411) with widely available adjuvants. Specifically, we assessed the in vitro storage stability and in vivo mouse immunogenicity of IVX-411 formulated with aluminum-salt adjuvants (Alhydrogel™, AH and Adjuphos™, AP), without or with the TLR-9 agonist CpG-1018™ (CpG), and compared these profiles to IVX-411 adjuvanted with an oil-in-water nano-emulsion (AddaVax™, AV). Although IVX-411 bound both AH and AP, lower binding strength of antigen to AP was observed by Langmuir binding isotherms. Interestingly, AH- and AP-adsorbed IVX-411 had similar storage stability profiles as measured by antigen-binding assays (competitive ELISAs), but the latter displayed higher pseudovirus neutralizing titers (pNT) in mice, at levels comparable to titers elicited by AV-adjuvanted IVX-411. CpG addition to alum (AP or AH) resulted in a marginal trend of improved pNTs in stressed samples only, yet did not impact the storage stability profiles of IVX-411. In contrast, previous work with AH-formulations of a monomeric RBD antigen showed greatly improved immunogenicity and decreased stability upon CpG addition to alum. At elevated temperatures (25, 37°C), IVX-411 formulated with AH or AP displayed decreased in vitro stability compared to AV-formulated IVX-411and this rank-ordering correlated with in vivo performance (mouse pNT values). This case study highlights the importance of characterizing antigen-adjuvant interactions to develop low cost, aluminum-salt adjuvanted recombinant subunit vaccine candidates.
Collapse
Affiliation(s)
- Ozan S. Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - John M. Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Greta Van Slyke
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jennifer Doering
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Katherine Berman
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | | | - Harry Kleanthous
- Discovery & Translational Sciences, Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
36
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Singh A, Boggiano C, Eller MA, Maciel M, Marovich MA, Mehra VL, Mo AX, Singleton KL, Leitner WW. Optimizing the Immunogenicity of HIV Vaccines by Adjuvants - NIAID Workshop Report. Vaccine 2023; 41:4439-4446. [PMID: 37331838 DOI: 10.1016/j.vaccine.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
This report summarizes the highlights of a workshop convened by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), on April 4-5, 2022, to provide a discussion forum for sharing insights on the current status, key challenges, and next steps to advance the current landscape of promising adjuvants in preclinical and clinical human immunodeficiency virus (HIV) vaccine studies. A key goal was to solicit and share recommendations on scientific, regulatory, and operational guidelines for bridging the gaps in rational selection, access, and formulation of clinically relevant adjuvants for HIV vaccine candidates. The NIAID Vaccine Adjuvant Program working group remains committed to accentuate promising adjuvants and nurturing collaborations between adjuvant and HIV vaccine developers.
Collapse
Affiliation(s)
- Anjali Singh
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - César Boggiano
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Eller
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Milton Maciel
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary A Marovich
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vijay L Mehra
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annie X Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kentner L Singleton
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wolfgang W Leitner
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
38
|
Pendyala G, Calvo‐Calle JM, Moreno A, Kane RS. A multivalent Plasmodium falciparum circumsporozoite protein-based nanoparticle malaria vaccine elicits a robust and durable antibody response against the junctional epitope and the major repeats. Bioeng Transl Med 2023; 8:e10514. [PMID: 37476056 PMCID: PMC10354751 DOI: 10.1002/btm2.10514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Plasmodium falciparum (Pf) malaria continues to cause considerable morbidity and mortality worldwide. The circumsporozoite protein (CSP) is a particularly attractive candidate for designing vaccines that target sporozoites-the first vertebrate stage in a malaria infection. Current PfCSP-based vaccines, however, do not include epitopes that have recently been shown to be the target of potent neutralizing antibodies. We report the design of a SpyCatcher-mi3-nanoparticle-based vaccine presenting multiple copies of a chimeric PfCSP (cPfCSP) antigen that incorporates these important "T1/junctional" epitopes as well as a reduced number of (NANP)n repeats. cPfCSP-SpyCatcher-mi3 was immunogenic in mice eliciting high and durable IgG antibody levels as well as a balanced antibody response against the T1/junctional region and the (NANP)n repeats. Notably, the antibody concentration elicited by immunization was significantly greater than the reported protective threshold defined in a murine challenge model. Refocusing the immune response toward functionally relevant subdominant epitopes to induce a more balanced and durable immune response may enable the design of a more effective second generation PfCSP-based vaccine.
Collapse
Affiliation(s)
- Geetanjali Pendyala
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
| | - J. Mauricio Calvo‐Calle
- Department of PathologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts01655USA
| | - Alberto Moreno
- Emory Vaccine Center, Emory National Primate Research CenterEmory UniversityAtlantaGeorgia30329USA
- Division of Infectious Diseases, Department of MedicineEmory UniversityAtlantaGeorgia30303USA
| | - Ravi S. Kane
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
| |
Collapse
|
39
|
Heidarinia H, Tajbakhsh E, Rostamian M, Momtaz H. Two peptides derivate from Acinetobacter baumannii outer membrane protein K as vaccine candidates: a comprehensive in silico study. BMC Res Notes 2023; 16:128. [PMID: 37391796 DOI: 10.1186/s13104-023-06409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND The lack of appropriate vaccines is an obstacle to the effective management of A. baumannii infections. Peptide vaccines offer an attractive and promising preventive strategy against A. baumannii. OBJECTIVE In this study, we identified specific T cell epitopes of A. baumannii outer membrane protein K (OMPK) using comprehensive bioinformatics and detailed molecular docking analysis. METHODS Both class-I and class-II T cell epitopes of A. baumannii OMPK were predicted by three tools namely IEDB, SYFPEITHI, and ProPred. The predicted epitopes were shortlisted based on several analyses including prediction scoring, clustering, exclusion of human similarity, considering immunogenicity and cytokine production, and removal of toxic and/or allergen epitopes. The epitopic peptides with high prediction scores and appropriate properties containing both class-I and class-II T cell epitopes were selected. Two of these class I/II epitopic peptides were chosen for molecular docking studies and assessing their physicochemical properties as vaccine candidates. RESULTS The results showed many T-cell epitopes of OMPK that could be evaluated for possible immunogenicity. Two of these epitopes (containing both class-I and II epitopes) had high prediction scores, were predicted by several tools, attached to several HLAs, and had the best docking score. They had different physicochemical properties and were conserved among Acinetobacter species. DISCUSSION We identified the A. baumannii OMPK high immunogenic class-I and class-II T cell epitopes and introduced two promising high immunogenic peptides as vaccine candidates. It is recommended to perform in vitro/in vivo investigation of these peptides to determine their true efficacy and efficiency.
Collapse
Affiliation(s)
- Hana Heidarinia
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Elahe Tajbakhsh
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Imam Reza Hospital, Parastar Blvd, Kermanshah, 6714415333, Iran.
| | - Hassan Momtaz
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
40
|
Filipić B, Pantelić I, Nikolić I, Majhen D, Stojić-Vukanić Z, Savić S, Krajišnik D. Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines. Vaccines (Basel) 2023; 11:1172. [PMID: 37514991 PMCID: PMC10385383 DOI: 10.3390/vaccines11071172] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Ever since the development of the first vaccine, vaccination has had the great impact on global health, leading to the decrease in the burden of numerous infectious diseases. However, there is a constant need to improve existing vaccines and develop new vaccination strategies and vaccine platforms that induce a broader immune response compared to traditional vaccines. Modern vaccines tend to rely on certain nanotechnology platforms but are still expected to be readily available and easy for large-scale manufacturing and to induce a durable immune response. In this review, we present an overview of the most promising nanoadjuvants and nanoparticulate delivery systems and discuss their benefits from tehchnological and immunological standpoints as well as their objective drawbacks and possible side effects. The presented nano alums, silica and clay nanoparticles, nanoemulsions, adenoviral-vectored systems, adeno-associated viral vectors, vesicular stomatitis viral vectors, lentiviral vectors, virus-like particles (including bacteriophage-based ones) and virosomes indicate that vaccine developers can now choose different adjuvants and/or delivery systems as per the requirement, specific to combatting different infectious diseases.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
- Section of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| |
Collapse
|
41
|
Castrodeza-Sanz J, Sanz-Muñoz I, Eiros JM. Adjuvants for COVID-19 Vaccines. Vaccines (Basel) 2023; 11:vaccines11050902. [PMID: 37243006 DOI: 10.3390/vaccines11050902] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, the improvement of traditional vaccines has meant that we have moved from inactivated whole virus vaccines, which provoke a moderate immune response but notable adverse effects, to much more processed vaccines such as protein subunit vaccines, which despite being less immunogenic have better tolerability profiles. This reduction in immunogenicity is detrimental to the prevention of people at risk. For this reason, adjuvants are a good solution to improve the immunogenicity of this type of vaccine, with much better tolerability profiles and a low prevalence of side effects. During the COVID-19 pandemic, vaccination focused on mRNA-type and viral vector vaccines. However, during the years 2022 and 2023, the first protein-based vaccines began to be approved. Adjuvanted vaccines are capable of inducing potent responses, not only humoral but also cellular, in populations whose immune systems are weak or do not respond properly, such as the elderly. Therefore, this type of vaccine should complete the portfolio of existing vaccines, and could help to complete vaccination against COVID-19 worldwide now and over the coming years. In this review we analyze the advantages and disadvantages of adjuvants, as well as their use in current and future vaccines against COVID-19.
Collapse
Affiliation(s)
- Javier Castrodeza-Sanz
- National Influenza Centre, 47005 Valladolid, Spain
- Preventive Medicine and Public Health Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Iván Sanz-Muñoz
- National Influenza Centre, 47005 Valladolid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León, ICSCYL, 42002 Soria, Spain
| | - Jose M Eiros
- National Influenza Centre, 47005 Valladolid, Spain
- Microbiology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
- Microbiology Unit, Hospital Universitario Río Hortega, 47013 Valladolid, Spain
| |
Collapse
|
42
|
Malik S, Muhammad K, Aslam SM, Waheed Y. Tracing the recent updates on vaccination approaches and significant adjuvants being developed against HIV. Expert Rev Anti Infect Ther 2023; 21:431-446. [PMID: 36803177 DOI: 10.1080/14787210.2023.2182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus type 1 (HIV1); the causative agent of Acquired Immunodeficiency Syndrome (AIDS), has been a major target of the scientific community to develop an anti-viral therapy. Some successful discoveries have been made during the last two decades in the form of availability of antiviral therapy in endemic regions. Nevertheless, a total cure and safety vaccine has not yet been designed to eradicate HIV from the world. AREAS COVERED The purpose of this comprehensive study is to compile recent data regarding therapeutic interventions against HIV and to determine future research needs in this field. A systematic research strategy has been used to gather data from recent, most advanced published electronic sources. Literature based results show that experiments at the invitro level and animal models are continuously in research annals and are providing hope for human trials. EXPERT OPINION There is still a gap and more work is needed in the direction of modern drug and vaccination designs. Moreover coordination is necessary among researchers, educationists, public health workers, and the general community to communicate and coordinate the repercussions associated with the deadly disease. It is important for taking timely measures regarding mitigation and adaptation with HIV in future.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sanaa Masood Aslam
- Foundation University College of Dentistry, Foundation University Islamabad, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
43
|
Yu YB, Liu Y, Li S, Yang XY, Guo Z. The pH-responsive zeolitic imidazolate framework nanoparticle as a promising immune-enhancing adjuvant for anti-caries vaccine. J Dent 2023; 130:104413. [PMID: 36634754 DOI: 10.1016/j.jdent.2023.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Streptococcus mutans (S. mutans) is the main aetiologic bacterium of dental caries, whose protein antigen (PAc) has been administered as an anti-caries vaccine. In addition, several fusion proteins or PAc combined with adjuvants were used as anti-caries vaccines to improve the relatively weak immunogenicity of PAc. However, there are no nanoparticle-based adjuvants with good biocompatibility, excellent biodegradability, or the high loading performance of antigens used for anti-caries vaccines. This study aimed to prepare an innovative nanoparticle-based anti-caries vaccine and evaluate immune responses elicited by this vaccine in vitro and in vivo. METHODS In this study, an anti-caries vaccine was prepared by an antigen of recombinant protein PAc from S. mutans and an adjuvant of zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) synthesized using a hydrothermal method. Then, mice were administrated intranasally by ZIF-8@PAc vaccine, and immune responses were evaluated. RESULTS ZIF-8 NPs not only greatly improved the internalization of the antigen but also released the PAc protein after degradation of ZIF-8 NPs in lysosomes for the further processing and presentation of antigen-presenting cells. In addition, ZIF-8@PAc induced significantly more potent PAc-specific serum IgG and saliva IgA antibodies, a higher splenocyte proliferation index, higher levels of the cytokines IL-4, IL-6, IL-10, IL-17A and IFN-γ, and a higher percentage of mature DCs and CD4+ memory T cells in vivo. CONCLUSIONS The ZIF-8 NPs, as an anti-caries vaccine adjuvant-assisted antigen PAc, elicit significantly potent immune responses, aiding in the further prevention of dental caries. CLINICAL SIGNIFICANCE Vaccine immunotherapy is an attractive strategy for prevention and treatment of dental caries. The ZIF-8@PAc vaccine can induce significantly high level of immune responses in this study, which indicates great potential for prevention and treatment of caries.
Collapse
Affiliation(s)
- You-Bo Yu
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China; Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, College of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Ying Liu
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, College of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Sha Li
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, College of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xiao-Yan Yang
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, College of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Zhong Guo
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
44
|
Verma SK, Mahajan P, Singh NK, Gupta A, Aggarwal R, Rappuoli R, Johri AK. New-age vaccine adjuvants, their development, and future perspective. Front Immunol 2023; 14:1043109. [PMID: 36911719 PMCID: PMC9998920 DOI: 10.3389/fimmu.2023.1043109] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/26/2023] Open
Abstract
In the present scenario, immunization is of utmost importance as it keeps us safe and protects us from infectious agents. Despite the great success in the field of vaccinology, there is a need to not only develop safe and ideal vaccines to fight deadly infections but also improve the quality of existing vaccines in terms of partial or inconsistent protection. Generally, subunit vaccines are known to be safe in nature, but they are mostly found to be incapable of generating the optimum immune response. Hence, there is a great possibility of improving the potential of a vaccine in formulation with novel adjuvants, which can effectively impart superior immunity. The vaccine(s) in formulation with novel adjuvants may also be helpful in fighting pathogens of high antigenic diversity. However, due to the limitations of safety and toxicity, very few human-compatible adjuvants have been approved. In this review, we mainly focus on the need for new and improved vaccines; the definition of and the need for adjuvants; the characteristics and mechanisms of human-compatible adjuvants; the current status of vaccine adjuvants, mucosal vaccine adjuvants, and adjuvants in clinical development; and future directions.
Collapse
Affiliation(s)
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, United States
| | - Ankit Gupta
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
45
|
Recent Advances in the Development of Adenovirus-Vectored Vaccines for Parasitic Infections. Pharmaceuticals (Basel) 2023; 16:ph16030334. [PMID: 36986434 PMCID: PMC10058461 DOI: 10.3390/ph16030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Vaccines against parasites have lagged centuries behind those against viral and bacterial infections, despite the devastating morbidity and widespread effects of parasitic diseases across the globe. One of the greatest hurdles to parasite vaccine development has been the lack of vaccine strategies able to elicit the complex and multifaceted immune responses needed to abrogate parasitic persistence. Viral vectors, especially adenovirus (AdV) vectors, have emerged as a potential solution for complex disease targets, including HIV, tuberculosis, and parasitic diseases, to name a few. AdVs are highly immunogenic and are uniquely able to drive CD8+ T cell responses, which are known to be correlates of immunity in infections with most protozoan and some helminthic parasites. This review presents recent developments in AdV-vectored vaccines targeting five major human parasitic diseases: malaria, Chagas disease, schistosomiasis, leishmaniasis, and toxoplasmosis. Many AdV-vectored vaccines have been developed for these diseases, utilizing a wide variety of vectors, antigens, and modes of delivery. AdV-vectored vaccines are a promising approach for the historically challenging target of human parasitic diseases.
Collapse
|
46
|
Fisher KJ, Kinsey R, Mohamath R, Phan T, Liang H, Orr MT, Lykins WR, Guderian JA, Bakken J, Argilla D, Ramer-Denisoff G, Larson E, Qi Y, Sivananthan S, Smolyar K, Carter D, Paddon CJ, Fox CB. Semi-synthetic terpenoids with differential adjuvant properties as sustainable replacements for shark squalene in vaccine emulsions. NPJ Vaccines 2023; 8:14. [PMID: 36797262 PMCID: PMC9935550 DOI: 10.1038/s41541-023-00608-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Synthetic biology has allowed for the industrial production of supply-limited sesquiterpenoids such as the antimalarial drug artemisinin and β-farnesene. One of the only unmodified animal products used in medicine is squalene, a triterpenoid derived from shark liver oil, which when formulated into an emulsion is used as a vaccine adjuvant to enhance immune responses in licensed vaccines. However, overfishing is depleting deep-sea shark populations, leading to potential supply problems for squalene. We chemically generated over 20 squalene analogues from fermentation-derived β-farnesene and evaluated adjuvant activity of the emulsified compounds compared to shark squalene emulsion. By employing a desirability function approach that incorporated multiple immune readouts, we identified analogues with enhanced, equivalent, or decreased adjuvant activity compared to shark squalene emulsion. Availability of a library of structurally related analogues allowed elucidation of structure-function relationships. Thus, combining industrial synthetic biology with chemistry and immunology enabled generation of sustainable terpenoid-based vaccine adjuvants comparable to current shark squalene-based adjuvants while illuminating structural properties important for adjuvant activity.
Collapse
Affiliation(s)
| | - Robert Kinsey
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Raodoh Mohamath
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Tony Phan
- Infectious Disease Research Institute, Seattle, WA, USA
- Neoleukin, Seattle, WA, USA
| | - Hong Liang
- Infectious Disease Research Institute, Seattle, WA, USA
- Bristol-Myers Squibb, Seattle, WA, USA
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA, USA
- Bristol-Myers Squibb, Seattle, WA, USA
| | - William R Lykins
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Jeffrey A Guderian
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Julie Bakken
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - David Argilla
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Gabi Ramer-Denisoff
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Elise Larson
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Yizhi Qi
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA
| | - Sandra Sivananthan
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA
| | | | - Darrick Carter
- Infectious Disease Research Institute, Seattle, WA, USA
- HDT Bio Corp., Seattle, WA, USA
- PAI Life Sciences Inc., Seattle, WA, USA
| | | | - Christopher B Fox
- Access to Advanced Health Institute, formerly Infectious Disease Research Institute, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
47
|
Chen X. Emerging adjuvants for intradermal vaccination. Int J Pharm 2023; 632:122559. [PMID: 36586639 PMCID: PMC9794530 DOI: 10.1016/j.ijpharm.2022.122559] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
The majority of vaccines have been delivered into the muscular tissue. Skin contains large amounts of antigen-presenting cells and has been recognized as a more immunogenic site for vaccine delivery. Intradermal delivery has been approved to improve influenza vaccine efficacy and spare influenza vaccine doses. In response to the recent monkeypox outbreak, intradermal delivery has been also approved to stretch the limited monkeypox vaccine doses to immunize more people at risk. Incorporation of vaccine adjuvants is promising to further increase intradermal vaccine efficacy and spare more vaccine doses. Yet, intradermal vaccination is associated with more significant local reactions than intramuscular vaccination. Thus, adjuvants suitable to boost intradermal vaccination need to have a good local safety without inducing overt local reactions. This review introduces currently approved adjuvants in licensed human vaccines and their relative reactogenicity for intradermal delivery and then introduces emerging chemical and physical adjuvants with a good local safety to boost intradermal vaccination. The rational to develop physical adjuvants, the types of physical adjuvants, and the unique advantages of physical adjuvants to boost intradermal vaccination are also introduced in this review.
Collapse
Affiliation(s)
- Xinyuan Chen
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, United States.
| |
Collapse
|
48
|
Khaleeq S, Sengupta N, Kumar S, Patel UR, Rajmani RS, Reddy P, Pandey S, Singh R, Dutta S, Ringe RP, Varadarajan R. Neutralizing Efficacy of Encapsulin Nanoparticles against SARS-CoV2 Variants of Concern. Viruses 2023; 15:346. [PMID: 36851560 PMCID: PMC9961482 DOI: 10.3390/v15020346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Rapid emergence of the SARS-CoV-2 variants has dampened the protective efficacy of existing authorized vaccines. Nanoparticle platforms offer a means to improve vaccine immunogenicity by presenting multiple copies of desired antigens in a repetitive manner which closely mimics natural infection. We have applied nanoparticle display combined with the SpyTag-SpyCatcher system to design encapsulin-mRBD, a nanoparticle vaccine displaying 180 copies of the monomeric SARS-CoV-2 spike receptor-binding domain (RBD). Here we show that encapsulin-mRBD is strongly antigenic and thermotolerant for long durations. After two immunizations, squalene-in-water emulsion (SWE)-adjuvanted encapsulin-mRBD in mice induces potent and comparable neutralizing antibody titers of 105 against wild-type (B.1), alpha, beta, and delta variants of concern. Sera also neutralizes the recent Omicron with appreciable neutralization titers, and significant neutralization is observed even after a single immunization.
Collapse
Affiliation(s)
- Sara Khaleeq
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Nayanika Sengupta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
| | - Unnatiben Rajeshbhai Patel
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Poorvi Reddy
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Suman Pandey
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Randhir Singh
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No. 50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| | - Rajesh P. Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
49
|
The Function of DNA and RNA Nanovaccines in the Treatment of Cancer. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
50
|
Zeng Y, Zou F, Xia N, Li S. In-depth review of delivery carriers associated with vaccine adjuvants: current status and future perspectives. Expert Rev Vaccines 2023; 22:681-695. [PMID: 37496496 DOI: 10.1080/14760584.2023.2238807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Vaccines are powerful tools for controlling microbial infections and preventing epidemics. To enhance the immune response to antigens, effective subunit vaccines or mRNA vaccines often require the combination of adjuvants or delivery carriers. In recent years, with the rapid development of immune mechanism research and nanotechnology, various studies based on the optimization of traditional adjuvants or various novel carriers have been intensified, and the construction of vaccine adjuvant delivery systems (VADS) with both adjuvant activity and antigen delivery has become more and more important in vaccine research. AREAS COVERED This paper reviews the common types of vaccine adjuvant delivery carriers, classifies the VADS according to their basic carrier types, introduces the current research status and future development trend, and emphasizes the important role of VADS in novel vaccine research. EXPERT OPINION As the number of vaccine types increases, conventional aluminum adjuvants show limitations in effectively stimulating cellular immune responses, limiting their use in therapeutic vaccines for intracellular infections or tumors. In contrast, the use of conventional adjuvants as VADS to carry immunostimulatory molecules or deliver antigens can greatly enhance the immune boosting effect of classical adjuvants. A comprehensive understanding of the various delivery vehicles will further facilitate the development of vaccine adjuvant research.
Collapse
Affiliation(s)
- Yarong Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Feihong Zou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| |
Collapse
|