1
|
Hakimi H, Yamagishi J, Sakaguchi M, Fathi A, Lee JS, Verocai GG, Kawazu SI, Asada M. ves1α genes expression is the major determinant of Babesia bovis-infected erythrocytes cytoadhesion to endothelial cells. PLoS Pathog 2025; 21:e1012583. [PMID: 40294074 DOI: 10.1371/journal.ppat.1012583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Babesia bovis causes the most pathogenic form of babesiosis in cattle, resulting in high mortality in naive adults. This parasite invades red blood cells (RBCs) within the bovine hosts where they multiply and produce clinical disease. Babesia bovis exports numerous proteins into invaded RBCs changing its properties. Thus, the infected RBCs (iRBCs) are capable to cytoadhere in the microvasculature of internal organs and brain, leading to respiratory distress, neurologic signs, and mortality. Variant Erythrocyte Surface Antigen 1 (VESA1) is one of those exported proteins by B. bovis which represents a major virulence factor due to its central role in immune evasion by antigenic variation and intravascular parasite sequestration. VESA1 is a heterodimer protein encoded by ves1α and ves1β multigene family and localized on the ridges, the focal point for cytoadhesion. To gain further insights into the molecular mechanisms of cytoadhesion of B. bovis, we panned the parasites with bovine brain microvasculature endothelial cells, which resulted in obtaining several clones with different cytoadherence abilities. The transcriptome analysis of 2 high and 2 low cytoadherent clones revealed that ves1α sequences were diversified, likely resulting from genomic recombination. On the other hand, ves1β sequences were almost identical among these 4 clones. Insertion and expression of ves1α of a clone with high binding into ef-1α locus of a low binding clone increased cytoadherence confirming the role of ves1α suggested by our transcriptome data. Whole genome sequencing of cytoadherent clones revealed active locus of ves1 on chromosome 2. These results suggest that VESA1a proteins encoded by ves1α genes determine the cytoadherence strength of B. bovis and they are in the active site for recombination.
Collapse
Affiliation(s)
- Hassan Hakimi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Atefeh Fathi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Jae Seung Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Guilherme G Verocai
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
2
|
Fathi A, Hakimi H, Sakaguchi M, Yamagishi J, Kawazu SI, Asada M. Critical role of Babesia bovis spherical body protein 3 in ridge formation on infected red blood cells. PLoS Pathog 2024; 20:e1012294. [PMID: 39527619 PMCID: PMC11581398 DOI: 10.1371/journal.ppat.1012294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Babesia bovis, an apicomplexan intraerythrocytic protozoan parasite, causes serious economic loss to cattle industries around the world. Infection with this parasite leads to accumulation of infected red blood cells (iRBCs) in the brain microvasculature that results in severe clinical complications known as cerebral babesiosis. Throughout its growth within iRBCs, the parasite exports various proteins to the iRBCs that lead to the formation of protrusions known as "ridges" on the surface of iRBCs, which serve as sites for cytoadhesion to endothelial cells. Spherical body proteins (SBPs; proteins secreted from spherical bodies, which are organelles specific to Piroplasmida) are exported into iRBCs, and four proteins (SBP1-4) have been reported to date. In this study, we elucidated the function of SBP3 using an inducible gene knockdown (KD) system. Localization of SBP3 was assessed by immunofluorescence assay, and only partial colocalization was detected between SBP3 and SBP4 inside the iRBCs. In contrast, colocalization was observed with VESA-1, which is a major parasite ligand responsible for the cytoadhesion. Immunoelectron microscopy confirmed localization of SBP3 at the ridges. SBP3 KD was performed using the glmS system, and effective KD was confirmed by Western blotting, immunofluorescence assay, and RNA-seq analysis. The SBP3 KD parasites showed severe growth defect suggesting its importance for parasite survival in the iRBCs. VESA-1 on the surface of iRBCs was scarcely detected in SBP3 KD parasites, whereas SBP4 was still detected in the iRBCs. Moreover, abolition of ridges on the iRBCs and reduction of iRBCs cytoadhesion to the bovine brain endothelial cells were observed in SBP3 KD parasites. Immunoprecipitation followed by mass spectrometry analysis detected the host Band 3 multiprotein complex, suggesting an association of SBP3 with iRBC cytoskeleton proteins. Taken together, this study revealed the vital role of SBP3 in ridge formation and its significance in the pathogenesis of cerebral babesiosis.
Collapse
Affiliation(s)
- Atefeh Fathi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Graduate School of Animal and Veterinary Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hassan Hakimi
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
3
|
Neog S, Vinjamuri SR, Vijayan K, Kumar S, Trivedi V. NDV targets the invasion pathway in malaria parasite through cell surface sialic acid interaction. FASEB J 2024; 38:e23856. [PMID: 39092913 DOI: 10.1096/fj.202400004rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.
Collapse
Affiliation(s)
- Siddharth Neog
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sandeep Reddy Vinjamuri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Kamalakannan Vijayan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Sachin Kumar
- Viral Immunology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
4
|
Locke S, O'Bryan J, Zubair AS, Rethana M, Moffarah AS, Krause PJ, Farhadian SF. Neurologic Complications of Babesiosis, United States, 2011-2021. Emerg Infect Dis 2023; 29:1127-1135. [PMID: 37209667 PMCID: PMC10202888 DOI: 10.3201/eid2906.221890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
Babesiosis is a globally distributed parasitic infection caused by intraerythrocytic protozoa. The full spectrum of neurologic symptoms, the underlying neuropathophysiology, and neurologic risk factors are poorly understood. Our study sought to describe the type and frequency of neurologic complications of babesiosis in a group of hospitalized patients and assess risk factors that might predispose patients to neurologic complications. We reviewed medical records of adult patients who were admitted to Yale-New Haven Hospital, New Haven, Connecticut, USA, during January 2011-October 2021 with laboratory-confirmed babesiosis. More than half of the 163 patients experienced >1 neurologic symptoms during their hospital admissions. The most frequent symptoms were headache, confusion/delirium, and impaired consciousness. Neurologic symptoms were associated with high-grade parasitemia, renal failure, and history of diabetes mellitus. Clinicians working in endemic areas should recognize the range of symptoms associated with babesiosis, including neurologic.
Collapse
|
5
|
Kumar A, Kabra A, Igarashi I, Krause PJ. Animal models of the immunology and pathogenesis of human babesiosis. Trends Parasitol 2023; 39:38-52. [PMID: 36470781 DOI: 10.1016/j.pt.2022.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
Animal models of human babesiosis have provided a basic understanding of the immunological mechanisms that clear, or occasionally exacerbate, Babesia infection and those pathological processes that cause disease complications. Human Babesia infection can cause asymptomatic infection, mild to moderate disease, or severe disease resulting in organ dysfunction and death. More than 100 Babesia species infect a wide array of wild and domestic animals, and many of the immunologic and pathologic responses to Babesia infection are similar in animals and humans. In this review, we summarize the knowledge gained from animal studies, their limitations, and how animal models or alternative approaches can be further leveraged to improve our understanding of human babesiosis.
Collapse
Affiliation(s)
- Abhinav Kumar
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Aditya Kabra
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Department of Infectious Diseases, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
6
|
Hakimi H, Yamagishi J, Kawazu SI, Asada M. Advances in understanding red blood cell modifications by Babesia. PLoS Pathog 2022; 18:e1010770. [PMID: 36107982 PMCID: PMC9477259 DOI: 10.1371/journal.ppat.1010770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Babesia are tick-borne protozoan parasites that can infect livestock, pets, wildlife animals, and humans. In the mammalian host, they invade and multiply within red blood cells (RBCs). To support their development as obligate intracellular parasites, Babesia export numerous proteins to modify the RBC during invasion and development. Such exported proteins are likely important for parasite survival and pathogenicity and thus represent candidate drug or vaccine targets. The availability of complete genome sequences and the establishment of transfection systems for several Babesia species have aided the identification and functional characterization of exported proteins. Here, we review exported Babesia proteins; discuss their functions in the context of immune evasion, cytoadhesion, and nutrient uptake; and highlight possible future topics for research and application in this field.
Collapse
Affiliation(s)
- Hassan Hakimi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (HH); (MA)
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- * E-mail: (HH); (MA)
| |
Collapse
|
7
|
Rojas-Pirela M, Medina L, Rojas MV, Liempi AI, Castillo C, Pérez-Pérez E, Guerrero-Muñoz J, Araneda S, Kemmerling U. Congenital Transmission of Apicomplexan Parasites: A Review. Front Microbiol 2021; 12:751648. [PMID: 34659187 PMCID: PMC8519608 DOI: 10.3389/fmicb.2021.751648] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Isabel Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | | | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Goodswen SJ, Kennedy PJ, Ellis JT. Applying Machine Learning to Predict the Exportome of Bovine and Canine Babesia Species That Cause Babesiosis. Pathogens 2021; 10:660. [PMID: 34071992 PMCID: PMC8226867 DOI: 10.3390/pathogens10060660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Babesia infection of red blood cells can cause a severe disease called babesiosis in susceptible hosts. Bovine babesiosis causes global economic loss to the beef and dairy cattle industries, and canine babesiosis is considered a clinically significant disease. Potential therapeutic targets against bovine and canine babesiosis include members of the exportome, i.e., those proteins exported from the parasite into the host red blood cell. We developed three machine learning-derived methods (two novel and one adapted) to predict for every known Babesia bovis, Babesia bigemina, and Babesia canis protein the probability of being an exportome member. Two well-studied apicomplexan-related species, Plasmodium falciparum and Toxoplasma gondii, with extensive experimental evidence on their exportome or excreted/secreted proteins were used as important benchmarks for the three methods. Based on 10-fold cross validation and multiple train-validation-test splits of training data, we expect that over 90% of the predicted probabilities accurately provide a secretory or non-secretory indicator. Only laboratory testing can verify that predicted high exportome membership probabilities are creditable exportome indicators. However, the presented methods at least provide those proteins most worthy of laboratory validation and will ultimately save time and money.
Collapse
Affiliation(s)
- Stephen J. Goodswen
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia;
| | - Paul J. Kennedy
- School of Computer Science, Faculty of Engineering and Information Technology, Australian Artificial Intelligence Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia;
| | - John T. Ellis
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia;
| |
Collapse
|
9
|
Hakimi H, Templeton TJ, Sakaguchi M, Yamagishi J, Miyazaki S, Yahata K, Uchihashi T, Kawazu SI, Kaneko O, Asada M. Novel Babesia bovis exported proteins that modify properties of infected red blood cells. PLoS Pathog 2020; 16:e1008917. [PMID: 33017449 PMCID: PMC7561165 DOI: 10.1371/journal.ppat.1008917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/15/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022] Open
Abstract
Babesia bovis causes a pathogenic form of babesiosis in cattle. Following invasion of red blood cells (RBCs) the parasite extensively modifies host cell structural and mechanical properties via the export of numerous proteins. Despite their crucial role in virulence and pathogenesis, such proteins have not been comprehensively characterized in B. bovis. Here we describe the surface biotinylation of infected RBCs (iRBCs), followed by proteomic analysis. We describe a multigene family (mtm) that encodes predicted multi-transmembrane integral membrane proteins which are exported and expressed on the surface of iRBCs. One mtm gene was downregulated in blasticidin-S (BS) resistant parasites, suggesting an association with BS uptake. Induced knockdown of a novel exported protein encoded by BBOV_III004280, named VESA export-associated protein (BbVEAP), resulted in a decreased growth rate, reduced RBC surface ridge numbers, mis-localized VESA1, and abrogated cytoadhesion to endothelial cells, suggesting that BbVEAP is a novel virulence factor for B. bovis.
Collapse
Affiliation(s)
- Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- * E-mail: (HH); (MA)
| | - Thomas J. Templeton
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinya Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | | | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- * E-mail: (HH); (MA)
| |
Collapse
|
10
|
Allred DR. Variable and Variant Protein Multigene Families in Babesia bovis Persistence. Pathogens 2019; 8:pathogens8020076. [PMID: 31212587 PMCID: PMC6630957 DOI: 10.3390/pathogens8020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022] Open
Abstract
Cattle infected with Babesia bovis face a bifurcated fate: Either die of the severe acute infection, or survive and carry for many years a highly persistent but generally asymptomatic infection. In this review, the author describes known and potential contributions of three variable or highly variant multigene-encoded families of proteins to persistence in the bovine host, and the mechanisms by which variability arises among these families. Ramifications arising from this variability are discussed.
Collapse
Affiliation(s)
- David R Allred
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32611, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Leisewitz A, Turner G, Clift S, Pardini A. The neuropathology of canine cerebral babesiosis compared to human cerebral malaria. Malar J 2014. [PMCID: PMC4179402 DOI: 10.1186/1475-2875-13-s1-p55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Milner DA, Whitten RO, Kamiza S, Carr R, Liomba G, Dzamalala C, Seydel KB, Molyneux ME, Taylor TE. The systemic pathology of cerebral malaria in African children. Front Cell Infect Microbiol 2014; 4:104. [PMID: 25191643 PMCID: PMC4139913 DOI: 10.3389/fcimb.2014.00104] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/14/2014] [Indexed: 11/23/2022] Open
Abstract
Pediatric cerebral malaria carries a high mortality rate in sub-Saharan Africa. We present our systematic analysis of the descriptive and quantitative histopathology of all organs sampled from a series of 103 autopsies performed between 1996 and 2010 in Blantyre, Malawi on pediatric cerebral malaria patients and control patients (without coma, or without malaria infection) who were clinically well characterized prior to death. We found brain swelling in all cerebral malaria patients and the majority of controls. The histopathology in patients with sequestration of parasites in the brain demonstrated two patterns: (a) the “classic” appearance (i.e., ring hemorrhages, dense sequestration, and extra-erythrocytic pigment) which was associated with evidence of systemic activation of coagulation and (b) the “sequestration only” appearance associated with shorter duration of illness and higher total burden of parasites in all organs including the spleen. Sequestration of parasites was most intense in the gastrointestinal tract in all parasitemic patients (those with cerebral malarial and those without).
Collapse
Affiliation(s)
- Danny A Milner
- Department of Pathology, Brigham and Women's Hospital Boston, MA, USA ; Department of Immunology and Infectious Disease, Harvard School of Public Health Boston, MA, USA ; The Blantyre Malaria Project, College of Medicine, University of Malawi Blantyre, Malawi
| | | | - Steve Kamiza
- Department of Histopathology, College of Medicine, University of Malawi Blantyre, Malawi
| | - Richard Carr
- Department of Histopathology, South Warwickshire General Hospitals Warwick, UK
| | - George Liomba
- Department of Histopathology, College of Medicine, University of Malawi Blantyre, Malawi
| | - Charles Dzamalala
- Department of Histopathology, College of Medicine, University of Malawi Blantyre, Malawi
| | - Karl B Seydel
- The Blantyre Malaria Project, College of Medicine, University of Malawi Blantyre, Malawi ; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University East Lansing, MI, USA
| | - Malcolm E Molyneux
- Department of Histopathology, College of Medicine, University of Malawi Blantyre, Malawi ; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine Blantyre, Malawi ; Liverpool School of Tropical Medicine, University of Liverpool Liverpool, UK
| | - Terrie E Taylor
- The Blantyre Malaria Project, College of Medicine, University of Malawi Blantyre, Malawi ; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University East Lansing, MI, USA
| |
Collapse
|
13
|
Sondgeroth KS, McElwain TF, Allen AJ, Chen AV, Lau AOT. Loss of neurovirulence is associated with reduction of cerebral capillary sequestration during acute Babesia bovis infection. Parasit Vectors 2013; 6:181. [PMID: 23777713 PMCID: PMC3708820 DOI: 10.1186/1756-3305-6-181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe neurological signs that develop during acute infection by virulent strains of Babesia bovis are associated with sequestration of infected erythrocytes in cerebral capillaries. Serial passage of virulent strains in cattle results in attenuated derivatives that do not cause neurologic disease. We evaluated whether serial passage also results in a loss of cerebral capillary sequestration by examining brain biopsies during acute disease and at necropsy. FINDINGS Cerebral biopsies of spleen intact calves inoculated intravenously with a virulent or attenuated strain pair of B. bovis were evaluated for capillary sequestration at the onset of babesiosis and during severe disease. In calves infected with the virulent strain, there was a significant increase in sequestration between the first and second biopsy timepoint. The attenuated strain was still capable of sequestration, but at a reduced level, and did not change significantly between the first and second biopsy. Necropsy examination confirmed the second biopsy results and demonstrated that sequestration identified at necropsy reflects pathologic changes occurring in live animals. CONCLUSIONS Loss of neurovirulence after serial in vivo passage of the highly virulent T2Bo strain of B. bovis in splenectomized animals is associated with a significant reduction of cerebral capillary sequestration. Previous genomic analysis of this and two other strain pairs suggests that this observation could be related to genomic complexity, particularly of the ves gene family, rather than consistent gene specific differences. Additional experiments will examine whether differential gene expression of ves genes is also associated with reduced cerebral sequestration and neurovirulence in attenuated strains.
Collapse
Affiliation(s)
- Kerry S Sondgeroth
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
14
|
Characterization of the unusual bidirectional ves promoters driving VESA1 expression and associated with antigenic variation in Babesia bovis. EUKARYOTIC CELL 2012; 11:260-9. [PMID: 22286091 DOI: 10.1128/ec.05318-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid clonal antigenic variation in Babesia bovis involves the variant erythrocyte surface antigen-1 (VESA1) protein expressed on the infected-erythrocyte surface. Because of the significance of this heterodimeric protein for demonstrated mechanisms of parasite survival and virulence, there is a need to understand how expression of the ves multigene family encoding this protein is controlled. As an initial step toward this goal, we present here initial characterization of the ves promoter driving transcription of VESA1a and -1b subunits. A series of transfection constructs containing various sequence elements from the in vivo locus of active ves transcription (LAT) were used to drive expression of the firefly luciferase gene in a dual luciferase-normalized assay. The results of this approach reveal the presence of two bidirectional promoter activities within the 434-bp intergenic region (IGr), influenced by putative regulatory sequences embedded within the flanking ves1α and ves1β genes. Repressor-like effects on the apposing gene were observed for intron 1 of both ves1α and ves1β. This effect is apparently not dependent upon intronic promoter activity and acts only in cis. The expression of genes within the ves family is likely modulated by local elements embedded within ves coding sequences outside the intergenic promoter region in concert with chromatin modifications. These results provide a framework to help us begin to understand gene regulation during antigenic variation in B. bovis.
Collapse
|
15
|
Li A, Lim TS, Shi H, Yin J, Tan SJ, Li Z, Low BC, Tan KSW, Lim CT. Molecular mechanistic insights into the endothelial receptor mediated cytoadherence of Plasmodium falciparum-infected erythrocytes. PLoS One 2011; 6:e16929. [PMID: 21437286 PMCID: PMC3060092 DOI: 10.1371/journal.pone.0016929] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/12/2011] [Indexed: 01/25/2023] Open
Abstract
Cytoadherence or sequestration is essential for the pathogenesis of the most virulent human malaria species, Plasmodium falciparum (P. falciparum). Similar to leukocyte-endothelium interaction in response to inflammation, cytoadherence of P. falciparum infected red blood cells (IRBCs) to endothelium occurs under physiological shear stresses in blood vessels and involves an array of molecule complexes which cooperate to form stable binding. Here, we applied single-molecule force spectroscopy technique to quantify the dynamic force spectra and characterize the intrinsic kinetic parameters for specific ligand-receptor interactions involving two endothelial receptor proteins: thrombospondin (TSP) and CD36. It was shown that CD36 mediated interaction was much more stable than that mediated by TSP at single molecule level, although TSP-IRBC interaction appeared stronger than CD36-IRBC interaction in the high pulling rate regime. This suggests that TSP-mediated interaction may initiate cell adhesion by capturing the fast flowing IRBCs whereas CD36 functions as the ‘holder’ for providing stable binding.
Collapse
Affiliation(s)
- Ang Li
- Singapore-MIT Alliance for Research & Technology (SMART), Singapore, Singapore
| | - Tong Seng Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hui Shi
- Singapore-MIT Alliance for Research & Technology (SMART), Singapore, Singapore
| | - Jing Yin
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Swee Jin Tan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhengjun Li
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kevin Shyong Wei Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- * E-mail: (KSWT); (CTL)
| | - Chwee Teck Lim
- Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- * E-mail: (KSWT); (CTL)
| |
Collapse
|
16
|
Babesia gibsoni: Detection in blood smears and formalin-fixed, paraffin-embedded tissues using deoxyribonucleic acid in situ hybridization analysis. Exp Parasitol 2011; 127:119-26. [DOI: 10.1016/j.exppara.2010.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 05/08/2010] [Accepted: 07/02/2010] [Indexed: 11/23/2022]
|
17
|
Gohil S, Kats LM, Sturm A, Cooke BM. Recent insights into alteration of red blood cells by Babesia bovis: moovin' forward. Trends Parasitol 2010; 26:591-9. [PMID: 20598944 DOI: 10.1016/j.pt.2010.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/07/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
Over the past decade or so, our understanding of the biology of apicomplexan parasites has increased dramatically, particularly in the case of malaria. Notable achievements are the availability of complete genome sequences, transcriptome and proteome profiles and the establishment of in vitro transfection techniques for asexual-stage malaria parasites. Interestingly, despite their major economic importance and striking similarities with malaria, Babesia parasites have been relatively ignored, but change is on the horizon. Here, we bring together recent work on Babesia bovis parasites which are beginning to unravel the molecular mechanisms that underlie the pathogenesis of babesiosis and highlight some opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Sejal Gohil
- Department of Microbiology, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
18
|
Nagao E, Arie T, Dorward DW, Fairhurst RM, Dvorak JA. The avian malaria parasite Plasmodium gallinaceum causes marked structural changes on the surface of its host erythrocyte. J Struct Biol 2008; 162:460-7. [PMID: 18442920 DOI: 10.1016/j.jsb.2008.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 11/25/2022]
Abstract
Using a combination of atomic force, scanning and transmission electron microscopy, we found that avian erythrocytes infected with the avian malaria parasite Plasmodium gallinaceum develop approximately 60 nm wide and approximately 430 nm long furrow-like structures on the surface. Furrows begin to appear during the early trophozoite stage of the parasite's development. They remain constant in size and density during the course of parasite maturation and are uniformly distributed in random orientations over the erythrocyte surface. In addition, the density of furrows is directly proportional to the number of parasites contained within the erythrocyte. These findings suggest that parasite-induced intraerythrocytic processes are involved in modifying the surface of host erythrocytes. These processes may be analogous to those of the human malaria parasite P. falciparum, which induces knob-like protrusions that mediate the pathogenic adherence of parasitized erythrocytes to microvessels. Although P. gallinaceum-infected erythrocytes do not seem to adhere to microvessels in the host chicken, the furrows might be involved in the pathogenesis of P. gallinaceum infections by some other mechanism involving host-pathogen interactions.
Collapse
Affiliation(s)
- Eriko Nagao
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Hutchings CL, Li A, Fernandez KM, Fletcher T, Jackson LA, Molloy JB, Jorgensen WK, Lim CT, Cooke BM. New insights into the altered adhesive and mechanical properties of red blood cells parasitized by Babesia bovis. Mol Microbiol 2007; 65:1092-105. [PMID: 17640278 DOI: 10.1111/j.1365-2958.2007.05850.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sequestration of parasite-infected red blood cells (RBCs) in the microvasculature is an important pathological feature of both bovine babesiosis caused by Babesia bovis and human malaria caused by Plasmodium falciparum. Surprisingly, when compared with malaria, the cellular and molecular mechanisms that underlie this abnormal circulatory behaviour for RBCs infected with B. bovis have been relatively ignored. Here, we present some novel insights into the adhesive and mechanical changes that occur in B. bovis-infected bovine RBCs and compare them with the alterations that occur in human RBCs infected with P. falciparum. After infection with B. bovis, bovine RBCs become rigid and adhere to vascular endothelial cells under conditions of physiologically relevant flow. These alterations are accompanied by the appearance of ridge-like structures on the RBC surface that are analogous, but morphologically and biochemically different, to the knob-like structures on the surface of human RBCs infected with P. falciparum. Importantly, albeit for a limited number of parasite lines examined here, the extent of these cellular and rheological changes appear to be related to parasite virulence. Future investigations to identify the precise molecular composition of ridges and the proteins that mediate adhesion will provide important insight into the pathogenesis of both babesiosis and malaria.
Collapse
|
20
|
Abstract
Antigenic variation of surface membrane proteins by protozoan parasites enables these pathogenic organisms to avoid host immune responses and thus perpetuate long-term infections. Babesia bovis, the causative agent of severe babesiosis in cattle, was previously shown to undergo antigenic variation through modifications to its primary surface antigen, a protein called VESA1. In this issue, Al-Khedery and Allred provide a detailed description of the genes that encode VESA1 and present convincing evidence for progressive, segmental gene conversion in the generation of variant forms of this surface antigen.
Collapse
Affiliation(s)
- Ron Dzikowski
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
21
|
Abstract
Babesia bovis and its bovine host interact in many ways, resulting in a range of disease and infection phenotypes. Host responses to the parasite elicit or select for a variety of responses on the part of the parasite, the full range of which is not yet known. One well-established phenomenon, thought to aid parasite survival by evasion of host adaptive immune responses, is the sequential expansion of antigenically variant populations during an infection, a phenomenon referred to as "antigenic variation". Antigenic variation in B. bovis, like that in the human malarial parasite, Plasmodium falciparum, is intimately linked to a second survival mechanism, cytoadhesion. In cytoadhesion, mature parasite-containing erythrocytes bind to the capillary and post-capillary venous endothelium through parasite-derived ligands. The reliance of these parasites on both functions, and on their linkage, may provide opportunities to develop anti-babesial and, perhaps, anti-malarial protection strategies. The development of inhibitors of DNA metabolism in B. bovis may be used to abrogate the process of antigenic variation, whereas small molecular mimics may provide the means to vaccinate against a wide range of variants or to prevent the surface export of variant antigen ligands. In this article, aspects of antigenic variation and cytoadhesion in bovine babesiosis are explored, with a discussion of opportunities for prophylactic or therapeutic intervention in these intertwined processes.
Collapse
Affiliation(s)
- David R Allred
- Department of Pathobiology, University of Florida, Gainesville, FL 32611-0880, USA.
| | | |
Collapse
|
22
|
Wassmer SC, Combes V, Candal FJ, Juhan-Vague I, Grau GE. Platelets potentiate brain endothelial alterations induced by Plasmodium falciparum. Infect Immun 2006; 74:645-53. [PMID: 16369021 PMCID: PMC1346683 DOI: 10.1128/iai.74.1.645-653.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brain lesions of cerebral malaria (CM) are characterized by a sequestration of Plasmodium falciparum-parasitized red blood cells (PRBC) and platelets within brain microvessels, as well as by blood-brain barrier (BBB) disruption. In the present study, we evaluated the possibility that PRBC and platelets induce functional alterations in brain endothelium. In a human brain endothelial cell line, named HBEC-5i, exhibiting most of the features demanded for a pathophysiological study of BBB, tumor necrosis factor (TNF) or lymphotoxin alpha (LT-alpha) reduced transendothelial electrical resistance (TEER), enhanced the permeability to 70-kDa dextran, and increased the release of microparticles, a recently described indicator of disease severity in CM patients. In vitro cocultures showed that platelets or PRBC can have a direct cytotoxic effect on activated, but not on resting, HBEC-5i cells. Platelet binding was required, as platelet supernatant had no effect. Furthermore, platelets potentiated the cytotoxicity of PRBC for TNF- or LT-alpha-activated HBEC-5i cells when they were added prior to these cells on the endothelial monolayers. This effect was not observed when platelets were added after PRBC. Both permeability and TEER were strongly affected, and the apoptosis rate of HBEC-5i cells was dramatically increased. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM.
Collapse
Affiliation(s)
- Samuel C Wassmer
- Laboratory of Immunopathology, Unité des Rickettsies CNRS UMR6020, IFR 48, Faculty of Medicine, Université de la Méditerranée, 27 Boulevard Jean Moulin, F-13385 Marseille Cedex 05, France
| | | | | | | | | |
Collapse
|
23
|
Al-Khedery B, Allred DR. Antigenic variation inBabesia bovisoccurs through segmental gene conversion of thevesmultigene family, within a bidirectional locus of active transcription. Mol Microbiol 2005; 59:402-14. [PMID: 16390438 DOI: 10.1111/j.1365-2958.2005.04993.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antigenic variation in Babesia bovis is one aspect of a multifunctional virulence/survival mechanism mediated by the heterodimeric variant erythrocyte surface antigen 1 (VESA1) protein that also involves endothelial cytoadhesion with sequestration of mature parasitized erythrocytes. The ves1alpha gene encoding the VESA1a subunit was previously identified. In this study, we present the unique organization of the genomic locus from which ves1alpha is transcribed, and identify a novel branch of the ves multigene family, ves1beta. These genes are found together, closely juxtaposed and divergently oriented, at the locus of active transcription. We provide compelling evidence that variation of both transcriptionally active genes occurs through a mechanism of segmental gene conversion involving sequence donor genes of similar organization. These results also suggest the possibility of epigenetic regulation through in situ switching among gene loci, further expanding the potential repertoire of variant proteins.
Collapse
Affiliation(s)
- Basima Al-Khedery
- Department of Pathobiology, University of Florida, Gainesville, 32611, USA.
| | | |
Collapse
|
24
|
Cooke BM, Mohandas N, Cowman AF, Coppel RL. Cellular adhesive phenomena in apicomplexan parasites of red blood cells. Vet Parasitol 2005; 132:273-95. [PMID: 16087297 DOI: 10.1016/j.vetpar.2005.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The apicomplexan parasites Babesia and Plasmodium are related, yet phylogenetically distinct haemoprotozoa that infect red blood cells and cause severe diseases of major human and veterinary importance. A variety of cellular and molecular interactions are pivotal in many aspects of the pathogenicity of these two parasites. Comparison of the cellular and molecular mechanisms that culminate in accumulation of parasitised red blood cells in the microvasculature of cattle infected with Babesia bovis (babesiosis) and humans infected with Plasmodium falciparum (falciparum malaria) is particularly instructive given the striking similarities in the pathophysiology of these two important medical and veterinary diseases. While such adhesive phenomena have been studied extensively in malaria, they have received relatively little attention in babesiosis. In this review, we summarise the findings of more than 25 years of research into cellular adhesive phenomena in malaria and speculate on how this body of work can now be applied to Babesia parasites. Such information is fundamental if we are to learn more about the biology of Babesia parasites, the cellular and molecular mechanisms by which they cause infection and disease and how to develop novel therapeutic strategies or vaccines for both Babesia and malaria infections.
Collapse
Affiliation(s)
- Brian M Cooke
- Department of Microbiology, Monash University, Vic. 3800, Australia.
| | | | | | | |
Collapse
|
25
|
Allred DR, Al-Khedery B. Antigenic variation and cytoadhesion in Babesia bovis and Plasmodium falciparum: different logics achieve the same goal. Mol Biochem Parasitol 2004; 134:27-35. [PMID: 14747140 DOI: 10.1016/j.molbiopara.2003.09.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Babesia bovis is a protozoal hemoparasite of cattle which behaves in certain crucial respects like Plasmodium falciparum, despite being phylogenetically distant and having many differences in its life cycle. The shared behavioral attributes of rapid antigenic variation and cytoadhesion/sequestration are thought to contribute significantly to immune evasion, establishment of persistent infections, and disease pathology. Although differing in their genetic and biochemical strategies for achieving these behaviors, information from studies of each parasite may further our understanding of the overall host-parasite interaction. In this review we contrast the molecular basis and 'genetic logic' for these critical behaviors in the two parasites, with emphasis on the biology of B. bovis.
Collapse
Affiliation(s)
- David R Allred
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | | |
Collapse
|
26
|
Abstract
Many babesial parasites establish infections of long duration in immune hosts. Among different species, at least four mechanisms are known that could facilitate evasion of the host immune response, although no one species is (yet) known to use them all. This update strives to illustrate the ramifications of these mechanisms and the interplay between them.
Collapse
Affiliation(s)
- David R Allred
- Dept of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| |
Collapse
|
27
|
Abstract
It has been suggested that sequestration of parasitized red blood cells might contribute to the pathogenesis of cerebral malaria (CM), by hypoxia causing either: (i) compensatory vasodilatation with a resultant increase in the brain volume; or (ii) enhancing cytokine-induced nitric oxide (NO) production via induction of inducible NO synthase (iNOS). Available evidence suggests that cerebral oedema is the initiating and probably the most important factor in the pathogenesis of murine CM. The relevance of this model in the study of the pathogenesis of CM has been questioned. However, a closer look at published reports on both human and murine CM, in this review, suggests that the pathogenesis of the murine model of CM might reflect more closely the CM seen in African children than that seen in Asian adults. It is also proposed that the role of iNOS induction during CM is protective: that the primary purpose of iNOS induction is to inhibit the side effects of brain indoleamine 2,3-dioxygenase (IDO) induction and quinolinic acid accumulation during hypoxia.
Collapse
MESH Headings
- Adult
- Africa
- Animals
- Asia, Southeastern
- Blood-Brain Barrier
- Brain Edema/etiology
- Brain Edema/physiopathology
- Cell Adhesion
- Cerebrovascular Circulation
- Child
- Cytokines/physiology
- Energy Metabolism
- Humans
- Hypoxia-Ischemia, Brain/etiology
- Hypoxia-Ischemia, Brain/physiopathology
- Indoleamine-Pyrrole 2,3,-Dioxygenase
- Malaria/complications
- Malaria/physiopathology
- Malaria, Cerebral/etiology
- Malaria, Falciparum/complications
- Malaria, Falciparum/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Models, Biological
- NAD/metabolism
- Nerve Tissue Proteins/metabolism
- Nitric Oxide/physiology
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Plasmodium berghei
- Quinolinic Acid/metabolism
- Tryptophan Oxygenase/metabolism
- Vasodilation
Collapse
Affiliation(s)
- L A Sanni
- Division of Parasitology, National Institute for Medical Research, London, UK.
| |
Collapse
|
28
|
Lou J, Lucas R, Grau GE. Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin Microbiol Rev 2001; 14:810-20, table of contents. [PMID: 11585786 PMCID: PMC89004 DOI: 10.1128/cmr.14.4.810-820.2001] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Malaria still is a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria, remains incompletely understood. Experimental models represent useful tools to better understand the mechanisms of this syndrome. Here, data generated by several models are reviewed both in vivo and in vitro; we propose that some pathogenic mechanisms, drawn from data obtained from experiments in a mouse model, may be instrumental in humans. In particular, tumor necrosis factor (TNF) receptor 2 is involved in this syndrome, implying that the transmembrane form of TNF may be more important than the soluble form of the cytokine. It has also been shown that in addition to differences in immune responsiveness between genetically resistant and susceptible mice, there are marked differences at the level of the target cell of the lesion, namely, the brain endothelial cell. In murine cerebral malaria, a paradoxical role of platelets has been proposed. Indeed, platelets appear to be pathogenic rather than protective in inflammatory conditions because they can potentiate the deleterious effects of TNF. More recently, it has been shown that interactions among platelets, leukocytes, and endothelial cells have phenotypic and functional consequences for the endothelial cells. A better understanding of these complex interactions leading to vascular injury will help improve the outcome of cerebral malaria.
Collapse
Affiliation(s)
- J Lou
- Department of Surgery, CH-1211 Geneva 14, Switzerland
| | | | | |
Collapse
|
29
|
Schetters TP, Eling WM. Can Babesia infections be used as a model for cerebral malaria? PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:492-7. [PMID: 10557150 DOI: 10.1016/s0169-4758(99)01566-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infections with certain species of Plasmodium and Babesia induce, among other symptoms, cerebral pathology. The finding of heavily parasitized cerebral capillaries upon postmortem examination has led to the assumption that blockage of capillaries with infected red blood cells caused the cerebral symptoms and subsequent death. As this type of cerebrovascular pathology is found both in humans dying from malaria and in cattle dying from babesiosis, the latter could possibly be used as an animal model for the study of human cerebral malaria. However, before such a model system is adopted, the experimental data concerning cerebral pathology of babesiosis needs critical evaluation. Here, Theo Schetters and Wijnand Eling review the pathological mechanisms in cerebral babesiosis and relate these to cerebral malaria. Finally, they discuss the use of animal model systems for specific aspects of the pathological picture.
Collapse
Affiliation(s)
- T P Schetters
- Intervet International b.v., Parasitology R&D Department, PO Box 31, 5830 AA Boxmeer, The Netherlands.
| | | |
Collapse
|
30
|
O'Connor RM, Long JA, Allred DR. Cytoadherence of Babesia bovis-infected erythrocytes to bovine brain capillary endothelial cells provides an in vitro model for sequestration. Infect Immun 1999; 67:3921-8. [PMID: 10417157 PMCID: PMC96673 DOI: 10.1128/iai.67.8.3921-3928.1999] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Babesia bovis, an intraerythrocytic parasite of cattle, is sequestered in the host microvasculature, a behavior associated with cerebral and vascular complications of this disease. Despite the importance of this behavior to disease etiology, the underlying mechanisms have not yet been investigated. To study the components involved in sequestration, B. bovis parasites that induce adhesion of the infected erythrocytes (IRBCs) to bovine brain capillary endothelial cells (BBEC) in vitro were isolated. Two clonal lines, CD7(A+I+) and CE11(A+I-), were derived from a cytoadherent, monoclonal antibody 4D9.1G1-reactive parasite population. This antibody recognizes a variant, surface-exposed epitope of the variant erythrocyte surface antigen 1 (VESA1) of B. bovis IRBCs. Both clonal lines were cytoadhesive to BBEC and two other bovine endothelial cell lines but not to COS7 cells, FBK-4 cells, C32 melanoma cells, or bovine brain pericytes. By transmission electron microscopy, IRBCs were observed to bind to BBEC via the knobby protrusions on the IRBC surface, indicating involvement of components associated with these structures. Inhibition of protein export in intact, trypsinized IRBCs ablated both erythrocyte surface reexpression of parasite protein and cytoadhesion. IRBCs allowed to recover surface antigen expression regained the ability to bind endothelial cells, demonstrating that parasite protein export is required for cytoadhesion. We propose the use of this assay as an in vitro model to study the components involved in B. bovis cytoadherence and sequestration.
Collapse
Affiliation(s)
- R M O'Connor
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|
31
|
Abstract
Malaria infection of the Central Nervous System (CNS) can cause a severe neurological syndrome termed Cerebral Malaria (CM). The central neuropathological feature of CM is the preferential sequestration of parasitised red blood cells (PRBC) in the cerebral microvasculature. The level of sequestration is related to the incidence of cerebral symptoms in severe malaria. Other neuropathological features of CM include petechial hemorrhages in the brain parenchyma, ring hemorrhages and Dürck's granuloma's. Immunohisto-chemical and electron microscopy studies have shown widespread cerebral endothelial cell activation and morphological changes occur in CM, as well as focal endothelial cell damage and necrosis. The immune cell response to intravascular sequestration appears to be limited, although activation of pigment-phagocytosing monocytes is a late feature. The mechanisms by which PRBC cause coma in malaria remain unclear. In vitro parasitised erythrocytes bind to endothelial cells by specific, receptor mediated interactions with host adhesion molecules such as ICAM-1, whose expression on cerebral endothelial cells is increased during CM as part of a systemic endothelial activation. Induction of local neuro-active mediators such as nitric oxide and systemic cytokines like TNF alpha may be responsible for the rapidly reversible symptoms of the coma of CM. The recent cloning of the parasite ligand PfEMP-1, thought to mediate binding to host sequestration receptors, promises further insight into the relationship between patterns of sequestration and the incidence and pathogenesis of coma in cerebral malaria.
Collapse
Affiliation(s)
- G Turner
- Oxford Centre for Tropical Medicine.
| |
Collapse
|
32
|
Dowling SC, Perryman LE, Jasmer DP. A Babesia bovis 225-kilodalton spherical-body protein: localization to the cytoplasmic face of infected erythrocytes after merozoite invasion. Infect Immun 1996; 64:2618-26. [PMID: 8698487 PMCID: PMC174118 DOI: 10.1128/iai.64.7.2618-2626.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A 225-kDa Babesia bovis protein occurs on the cytoplasmic side of infected-erythrocyte membranes. Here it is demonstrated that the 225-kDa protein localizes to spherical-body organelles of merozoites. Organelles consistent in size and shape with spherical bodies were isolated between 1.17 and 1.21 g/cm(3) in a sucrose density gradient. Organelles consistent with rhoptries and micronemes were also present in fractions from 1.17 to 1.19 g/cm(3). Antisera generated by immunizing mice with the fraction (1.20 to 1.21 g/cm(3)) most enriched for spherical bodies reacted predominantly with spherical bodies in B. bovis merozoites. A monoclonal antibody generated from this immunization (70/97.14) recognized an epitope that occurs in the repeat region of the 225-kDa protein (now referred to as SBP2). Monoclonal antibody 70/97.14 bound to merozoite spherical bodies, vesicles in infected-host cytoplasm, and the cytoplasmic face of the infected-erythrocyte membrane. These results indicate that spherical-body proteins become associated with the host membrane via transport through the erythrocyte cytoplasm after intracellular invasion.
Collapse
Affiliation(s)
- S C Dowling
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7040, USA.
| | | | | |
Collapse
|
33
|
Grau GE, de Kossodo S. Cerebral malaria: Mediators, mechanical obstruction or more? ACTA ACUST UNITED AC 1994; 10:408-9. [PMID: 15275551 DOI: 10.1016/0169-4758(94)90236-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- G E Grau
- Department of Pathology, CMU University of Geneva, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|