1
|
Mata-Santos HA, Sousa Oliveira CV, Feijo DF, Vanzan DF, Vilar-Pereira G, Ramos IP, Carneiro VC, Moreno-Loaiza O, Silverio JC, Lannes-Vieira J, Medei E, Bozza MT, Paiva CN. Heart function enhancement by an Nrf2-activating antioxidant in acute Y-strain Chagas disease, but not in chronic Colombian or Y-strain. PLoS Negl Trop Dis 2024; 18:e0012612. [PMID: 39509468 PMCID: PMC11588235 DOI: 10.1371/journal.pntd.0012612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/25/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Oxidative stress promotes T. cruzi growth and development of chronic Chagas heart dysfunction. However, the literature contains gaps that must be fulfilled, largely due to variations in parasite DTU sources, cell types, mouse strains, and tools to manipulate redox status. We assessed the impact of oxidative environment on parasite burden in cardiomyoblasts and the effects of the Nrf2-inducer COPP on heart function in BALB/c mice infected with either DTU-II Y or DTU-I Colombian T. cruzi strains. Treatment with antioxidants CoPP, apocynin, resveratrol, and tempol reduced parasite burden in cardiomyoblasts H9C2 for both DTUI- and II-strains, while H2O2 increased it. CoPP treatment improved electrical heart function when administered during acute stage of Y-strain infection, coinciding with an overall trend towards increased survival and reduced heart parasite burden. These beneficial effects surpassed those of trypanocidal benznidazole, implying that CoPP directly affects heart physiology. CoPP treatment had beneficial impact on heart systolic function when performed during acute and evaluated during chronic stage. No impact of CoPP on heart parasite burden, electrical, or mechanical function was observed during the chronic stage of Colombian-strain infection, despite previous demonstrations of improvement with other antioxidants. Treatment with CoPP also did not improve heart function of mice chronically infected with Y-strain. Our findings indicate that amastigote growth is responsive to changes in oxidative environment within heart cells regardless of the DTU source, but CoPP influence on heart parasite burden in vivo and heart function is mostly confined to the acute phase. The nature of the antioxidant employed, T. cruzi DTU, and the stage of disease, emerge as crucial factors to consider in heart function studies.
Collapse
Affiliation(s)
| | | | - Daniel F. Feijo
- Instituto de Microbiologia Paulo de Goes, UFRJ, Rio de Janeiro, Brazil
| | | | | | - Isalira P. Ramos
- Centro Nacional de Biologia Estrutural e Bioimagem, UFRJ, Rio de Janeiro, Brazil
| | | | | | | | | | - Emiliano Medei
- Institute of Biophysics Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Instituto de Microbiologia Paulo de Goes, UFRJ, Rio de Janeiro, Brazil
| | - Claudia N. Paiva
- Instituto de Microbiologia Paulo de Goes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Siqueira-Neto JL, Lane TR, Bernatchez JA, Calvet Alvarez CM, Barbosa da Silva E, Giardini MA, Ekins S. Oral Pyronaridine Tetraphosphate Reduces Tissue Presence of Parasites in a Mouse Model of Chagas Disease. ACS OMEGA 2024; 9:37288-37298. [PMID: 39246496 PMCID: PMC11375811 DOI: 10.1021/acsomega.4c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
The eukaryotic parasite Trypanosoma cruzi (T. cruzi) is responsible for Chagas disease, which results in heart failure in patients. The disease is more common in Latin America, and is an emerging infection with The Centers for Disease Control estimating that greater than 300,000 people are currently infected in the United States. This disease has also spread from South and Central America, where it is endemic to many other countries, including Australia, Japan, and Spain. Current therapy for Chagas disease is inadequate due to limited efficacy in the indeterminate and chronic phases of the disease, in addition to the adverse effects from nifurtimox and benznidazole, which are nitro-containing drugs used for therapy. There is a clear need for new therapies for the Chagas disease. Using a computational machine learning approach, we have previously shown that the antimalarial pyronaridine tetraphosphate is active against T. cruzi Brazil-luc in vitro against parasites infecting a myoblast cell line and is also active in vivo in an acute mouse model of Chagas disease when dosed i.p. We now further evaluated oral pyronaridine as a monotherapy to determine the minimum effective dose to treat acute and chronic models of Chagas disease. Our results for T. cruzi Brazil-luc demonstrated daily oral dosing with pyronaridine from 150 to 600 mg/kg resulted in statistically significant inhibition in the 7 day acute mouse model. Combination therapy with daily dosing of benznidazole and pyronaridine in the acute infection model demonstrated that 300 mg/kg pyronaridine could return statistically significant antiparasitic activity to a subtherapetic 10 mg/kg benznidazole. In contrast, pyronaridine as monotherapy or combined with benznidazole lacked efficacy in the chronic mouse model, whereas 100 mg/kg benznidazole alone demonstrated undetectable parasites in the heart of mice. Pyronaridine requires further assessment in other chronic models to identify if it can be used beyond the acute stage of T. cruzi infection.
Collapse
Affiliation(s)
- Jair Lage Siqueira-Neto
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Jean A. Bernatchez
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Claudia Magalhaes Calvet Alvarez
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Laboratório
de Ultraestrutura Celular, Instituto Oswaldo
Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro 21040-300, Brazil
| | - Elany Barbosa da Silva
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Miriam A. Giardini
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
3
|
Belmino ACDC, Sousa EKS, da Silva JD, Rocha EA, Nunes FMM, Sampaio TL, Evangelista LF, Duque BR, Araújo ICDS, Jacó JIDO, Oliveira MDF. Causality and Severity of Adverse Reactions and Biochemical Changes to Benznidazole Treatment in Patients with Chronic Chagas Disease. Arq Bras Cardiol 2024; 121:e20230787. [PMID: 39292117 PMCID: PMC11495806 DOI: 10.36660/abc.20230787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Chagas disease (CD) is a serious public health problem in Latin America. Benznidazole (BNZ) is used for the treatment of CD and, despite its wide use, little information is available about its toxicity and mechanisms of adverse drug reactions (ADR). OBJECTIVES To identify and classify clinical and laboratory adverse reactions caused by BNZ in terms of causality and severity. METHODS Prospective cohort study from January 2018 to December 2021. Treatment follow-up included visits and biochemical tests (complete blood count, liver and kidney function tests) before, during and after treatment. ADR were classified according to causality and severity. In the statistical analysis, the significance level was set at p<0.05. RESULTS Forty patients with chronic CD were included. A high prevalence of ADR was observed 161 ADR in 30 patients [90%]; of these, 104 (64.6%) were classified as possible and 57 (35.4%) as probable. The ADR were classified as moderate and mild. Of the 40 patients, nine (22.5%) discontinued treatment. ADR associated with treatment discontinuation and interventions were those that affected the dermatological system, central and peripheral nervous system and sense organs such as ageusia. Mild hematological and biochemical changes such as lymphopenia were observed after 30 days of treatment. CONCLUSION Many patients were able to complete the treatment even with ADR, which can be attributed to the successful follow-up strategy with symptomatic treatment and counseling, leading to patient's awareness of symptoms and treatment adherence.
Collapse
Affiliation(s)
| | | | - José Damião da Silva
- Universidade Federal do CearáFortalezaCEBrasilUniversidade Federal do Ceará, Fortaleza, CE – Brasil
| | - Eduardo Arrais Rocha
- Universidade Federal do CearáFortalezaCEBrasilUniversidade Federal do Ceará, Fortaleza, CE – Brasil
| | | | - Tiago Lima Sampaio
- Universidade Federal do CearáFortalezaCEBrasilUniversidade Federal do Ceará, Fortaleza, CE – Brasil
| | | | - Bruna Ribeiro Duque
- Universidade Federal do CearáFortalezaCEBrasilUniversidade Federal do Ceará, Fortaleza, CE – Brasil
| | | | | | - Maria de Fátima Oliveira
- Universidade Federal do CearáFortalezaCEBrasilUniversidade Federal do Ceará, Fortaleza, CE – Brasil
| |
Collapse
|
4
|
de Araujo FF, Nagarkatti R, Mazzeti AL, Gonçalves KR, de Figueiredo Diniz L, Campos do Vale I, Martins-Filho OA, Debrabant A, Bahia MT, Teixeira-Carvalho A. Trypanosoma cruzi antigen detection in blood to assess treatment efficacy and cure in mice models of Chagas disease. Front Immunol 2024; 14:1340755. [PMID: 38283347 PMCID: PMC10811605 DOI: 10.3389/fimmu.2023.1340755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Chagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi. Although endemic mainly in Latin America, CD has become a global public health problem due to migration of infected individuals to non-endemic regions. Despite progress made in drug development, preclinical assays for drug discovery are required to accelerate the development of new drugs with reduced side effects, which are much needed for human treatment. Methods We used a cure model of infected mice treated with Fexinidazole (FZ) to further validate a novel Enzyme Linked Aptamer (ELA) assay that detects parasite biomarkers circulating in the blood of infected animals. Results The ELA assay showed cure by FZ in ~71% and ~77% of mice infected with the VL-10 and Colombiana strains of T. cruzi, respectively. The ELA assay also revealed superior treatment efficacy of FZ compared to Benznidazole prior to immunosuppression treatment. Discussion Our study supports the use of ELA assay as an alternative to traditional serology or blood PCR to assess the efficacy of antichagasic drugs during their preclinical phase of development. Further, the combination of high sensitivity and ease of use make this parasite antigen detection assay an attractive new tool to facilitate the development of much needed new therapies for CD.
Collapse
Affiliation(s)
- Fernanda Fortes de Araujo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Rana Nagarkatti
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ana Lia Mazzeti
- Laboratório de Doenças Parasitárias, Escola de Medicina, Departamento de Ciências Biológicas & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Karolina Ribeiro Gonçalves
- Laboratório de Doenças Parasitárias, Escola de Medicina, Departamento de Ciências Biológicas & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Lívia de Figueiredo Diniz
- Laboratório de Parasitologia Básica, Programa de Pós-Graduação em Ciências Biológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Isabela Campos do Vale
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Alain Debrabant
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina, Departamento de Ciências Biológicas & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Potential of Triterpenic Natural Compound Betulinic Acid for Neglected Tropical Diseases New Treatments. Biomedicines 2022; 10:biomedicines10040831. [PMID: 35453582 PMCID: PMC9027248 DOI: 10.3390/biomedicines10040831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Neglected tropical diseases are one of the most important public health problems in many countries around the world. Among them are leishmaniasis, Chagas disease, and malaria, which contribute to more than 250 million infections worldwide. There is no validated vaccine to prevent these infections and the treatments available are obsolete, highly toxic, and non-effective due to parasitic drug resistance. Additionally, there is a high incidence of these diseases, and they may require hospitalization, which is expensive to the public health systems. Therefore, there is an urgent need to develop new treatments to improve the management of infected people, control the spread of resistant strains, and reduce health costs. Betulinic acid (BA) is a triterpene natural product which has shown antiparasitic activity against Leishmania, Trypanosoma cruzi, and Plasmodium. Here, we review the main results regarding the in vitro and in vivo pharmacological activity of BA and its derivatives against these parasites. Some chemical modifications of BA have been shown to improve its activities against the parasites. Further improvement on studies of drug-derived, as well as structure–activity relationship, are necessary for the development of new betulinic acid-based treatments.
Collapse
|
6
|
Chakravarti I, Miranda-Schaeubinger M, Ruiz-Remigio A, Briones-Garduño C, Fernández-Figueroa EA, Villanueva-Cabello CC, Borge-Villareal A, Bejar-Ramírez Y, Pérez-González A, Rivera-Benitez C, Oren E, Brown HE, Becker I, Gilman RH. Chagas Disease in Pregnant Women from Endemic Regions Attending the Hospital General de Mexico, Mexico City. Trop Med Infect Dis 2022; 7:8. [PMID: 35051124 PMCID: PMC8779423 DOI: 10.3390/tropicalmed7010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/01/2023] Open
Abstract
Trypanosoma cruzi infection leads to Chagas disease (CD), a neglected tropical infection of significant public health importance in South and Central America and other, non-endemic, countries. Pregnant women and their children are of particular importance to screen as T. cruzi can be transmitted vertically. The objective of this study was to screen for T. cruzi infection among pregnant women from endemic areas seen at the Hospital General de Mexico for prenatal care, so that they and their children may be quickly connected to CD treatment. Pregnant women were recruited through the hospital prenatal clinic and screened for T. cruzi infection using a series of serological and molecular tests. Of 150 screened patients, mean age 26.8 (SD 6.4), 30 (20.0%) were positive by at least one diagnostic test. Of these, only nine (6%) were positive as determined by PCR. Diagnosis of chronic CD is difficult in endemic places like Mexico due to the limitations of current commercially available diagnostic tests. Further evaluation of diagnostic performance of various assays could improve current CD diagnostic algorithms and proper care management in these regions. Genetic variability in the parasite may also play a role in the differing assay performances seen in this study, and this may be a valuable avenue of further research.
Collapse
Affiliation(s)
- Indira Chakravarti
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD 21215, USA;
| | | | - Adriana Ruiz-Remigio
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.R.-R.); (E.A.F.-F.); (C.C.V.-C.)
| | - Carlos Briones-Garduño
- Servicio de Ginecología y Obstetricia, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México 06720, Mexico; (C.B.-G.); (A.B.-V.)
| | - Edith A. Fernández-Figueroa
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.R.-R.); (E.A.F.-F.); (C.C.V.-C.)
- Computational and Integrative Genomics, National Institute of Genomic Medicine, Ciudad de México 14610, Mexico
| | - Concepción Celeste Villanueva-Cabello
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.R.-R.); (E.A.F.-F.); (C.C.V.-C.)
| | - Alejandra Borge-Villareal
- Servicio de Ginecología y Obstetricia, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México 06720, Mexico; (C.B.-G.); (A.B.-V.)
| | - Yadira Bejar-Ramírez
- Banco de Sangre, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México 06720, Mexico; (Y.B.-R.); (A.P.-G.)
| | - Alejandro Pérez-González
- Banco de Sangre, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México 06720, Mexico; (Y.B.-R.); (A.P.-G.)
| | - César Rivera-Benitez
- Servicio de Infectología, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México 06720, Mexico;
| | - Eyal Oren
- Division of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, CA 92182, USA;
| | - Heidi E. Brown
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA;
| | - Ingeborg Becker
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.R.-R.); (E.A.F.-F.); (C.C.V.-C.)
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD 21215, USA;
| |
Collapse
|
7
|
The Oxidative Stress and Chronic Inflammatory Process in Chagas Disease: Role of Exosomes and Contributing Genetic Factors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4993452. [PMID: 34976301 PMCID: PMC8718323 DOI: 10.1155/2021/4993452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the flagellated protozoa Trypanosoma cruzi that affects several million people mainly in Latin American countries. Chagas disease has two phases, which are acute and chronic, both separated by an indeterminate time period in which the infected individual is relatively asymptomatic. The acute phase extends for 40-60 days with atypical and mild symptoms; however, about 30% of the infected patients will develop a symptomatic chronic phase, which is characterized by either cardiac, digestive, neurological, or endocrine problems. Cardiomyopathy is the most important and severe result of Chagas disease, which leads to left ventricular systolic dysfunction, heart failure, and sudden cardiac death. Most deaths are due to heart failure (70%) and sudden death (30%) resulting from cardiomyopathy. During the chronic phase, T. cruzi-infected macrophages respond with the production of proinflammatory cytokines and production of superoxide and nitric oxide by the NADPH oxidase 2 (NOX2) and inducible nitric oxide synthase (iNOS) enzymes, respectively. During the chronic phase, myocardial changes are produced as a result of chronic inflammation, oxidative stress, fibrosis, and cell death. The cellular inflammatory response is mainly the result of activation of the NF-κB-dependent pathway, which activates gene expression of inflammatory cytokines, leading to progressive tissue damage. The persisting production of reactive oxygen species (ROS) is the result of mitochondrial dysfunction in the cardiomyocytes. In this review, we will discuss inflammation and oxidative damage which is produced in the heart during the chronic phase of Chagas disease and recent evidence on the role of macrophages and the production of proinflammatory cytokines during the acute phase and the origin of macrophages/monocytes during the chronic phase of Chagas disease. We will also discuss the contributing factors and mechanisms leading to the chronic inflammation of the cardiac tissue during the chronic phase of the disease as well as the innate and adaptive host immune response. The contribution of genetic factors to the progression of the chronic inflammatory cardiomyopathy of chronic Chagas disease is also discussed. The secreted extracellular vesicles (exosomes) produced for both T. cruzi and infected host cells can play key roles in the host immune response, and those roles are described. Lastly, we describe potential treatments to attenuate the chronic inflammation of the cardiac tissue, designed to improve heart function in chagasic patients.
Collapse
|
8
|
Santos EDS, Silva DKC, dos Reis BPZC, Barreto BC, Cardoso CMA, Ribeiro dos Santos R, Meira CS, Soares MBP. Immunomodulation for the Treatment of Chronic Chagas Disease Cardiomyopathy: A New Approach to an Old Enemy. Front Cell Infect Microbiol 2021; 11:765879. [PMID: 34869068 PMCID: PMC8633308 DOI: 10.3389/fcimb.2021.765879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Chagas disease is a parasitic infection caused by the intracellular protozoan Trypanosoma cruzi. Chronic Chagas cardiomyopathy (CCC) is the most severe manifestation of the disease, developed by approximately 20-40% of patients and characterized by occurrence of arrhythmias, heart failure and death. Despite having more than 100 years of discovery, Chagas disease remains without an effective treatment, especially for patients with CCC. Since the pathogenesis of CCC depends on a parasite-driven systemic inflammatory profile that leads to cardiac tissue damage, the use of immunomodulators has become a rational alternative for the treatment of CCC. In this context, different classes of drugs, cell therapies with dendritic cells or stem cells and gene therapy have shown potential to modulate systemic inflammation and myocarditis in CCC models. Based on that, the present review provides an overview of current reports regarding the use of immunomodulatory agents in treatment of CCC, bringing the challenges and future directions in this field.
Collapse
Affiliation(s)
- Emanuelle de Souza Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
| | | | | | - Breno Cardim Barreto
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | | | - Ricardo Ribeiro dos Santos
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - Cássio Santana Meira
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
| |
Collapse
|
9
|
Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorg Med Chem 2021; 46:116365. [PMID: 34419821 DOI: 10.1016/j.bmc.2021.116365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.
Collapse
|
10
|
Hoffman KA, Villar MJ, Poveda C, Bottazzi ME, Hotez PJ, Tweardy DJ, Jones KM. Signal Transducer and Activator of Transcription-3 Modulation of Cardiac Pathology in Chronic Chagasic Cardiomyopathy. Front Cell Infect Microbiol 2021; 11:708325. [PMID: 34504808 PMCID: PMC8421853 DOI: 10.3389/fcimb.2021.708325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/23/2021] [Indexed: 01/31/2023] Open
Abstract
Chronic Chagasic cardiomyopathy (CCC) is a severe clinical manifestation that develops in 30%–40% of individuals chronically infected with the protozoal parasite Trypanosoma cruzi and is thus an important public health problem. Parasite persistence during chronic infection drives pathologic changes in the heart, including myocardial inflammation and progressive fibrosis, that contribute to clinical disease. Clinical manifestations of CCC span a range of symptoms, including cardiac arrhythmias, thromboembolic disease, dilated cardiomyopathy, and heart failure. This study aimed to investigate the role of signal transducer and activator of transcription-3 (STAT3) in cardiac pathology in a mouse model of CCC. STAT3 is a known cellular mediator of collagen deposition and fibrosis. Mice were infected with T. cruzi and then treated daily from 70 to 91 days post infection (DPI) with TTI-101, a small molecule inhibitor of STAT3; benznidazole; a combination of benznidazole and TTI-101; or vehicle alone. Cardiac function was evaluated at the beginning and end of treatment by echocardiography. By the end of treatment, STAT3 inhibition with TTI-101 eliminated cardiac fibrosis and fibrosis biomarkers but increased cardiac inflammation; serum levels of interleukin-6 (IL-6), and IFN−γ; cardiac gene expression of STAT1 and nuclear factor-κB (NF-κB); and upregulation of IL-6 and Type I and Type II IFN responses. Concurrently, decreased heart function was measured by echocardiography and myocardial strain. These results indicate that STAT3 plays a critical role in the cardiac inflammatory–fibrotic axis during CCC.
Collapse
Affiliation(s)
- Kristyn A Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Maria Jose Villar
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States
| | - Cristina Poveda
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States
| | - Maria Elena Bottazzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States.,Department of Biology, Baylor University, Waco, TX, United States
| | - Peter J Hotez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States.,Department of Biology, Baylor University, Waco, TX, United States
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine and Department of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kathryn M Jones
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital Center for Vaccine Development, Houston, TX, United States
| |
Collapse
|
11
|
Rawal K, Sinha R, Abbasi BA, Chaudhary A, Nath SK, Kumari P, Preeti P, Saraf D, Singh S, Mishra K, Gupta P, Mishra A, Sharma T, Gupta S, Singh P, Sood S, Subramani P, Dubey AK, Strych U, Hotez PJ, Bottazzi ME. Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Sci Rep 2021; 11:17626. [PMID: 34475453 PMCID: PMC8413327 DOI: 10.1038/s41598-021-96863-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Antigen identification is an important step in the vaccine development process. Computational approaches including deep learning systems can play an important role in the identification of vaccine targets using genomic and proteomic information. Here, we present a new computational system to discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study, we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as secretory/surface-exposed nature, low transmembrane helix (< 2), essentiality, virulence, antigenic, and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic MHC class I, MHC class II and B cell epitopes were extracted from top-ranking vaccine targets. The designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for its physicochemical properties using different tools, including docking analysis. Immunological simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity of the vaccine.
Collapse
Affiliation(s)
- Kamal Rawal
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India.
| | - Robin Sinha
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Bilal Ahmed Abbasi
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Amit Chaudhary
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Swarsat Kaushik Nath
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Priya Kumari
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - P Preeti
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Devansh Saraf
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Shachee Singh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kartik Mishra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Pranjay Gupta
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Astha Mishra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Trapti Sharma
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Srijanee Gupta
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Prashant Singh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Shriya Sood
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Preeti Subramani
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Aman Kumar Dubey
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
12
|
Social determinants in the access to health care for Chagas disease: A qualitative research on family life in the "Valle Alto" of Cochabamba, Bolivia. PLoS One 2021; 16:e0255226. [PMID: 34383775 PMCID: PMC8360591 DOI: 10.1371/journal.pone.0255226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Chagas disease is caused by the Trypanosoma cruzi infection. It is a neglected tropical disease with considerable impact on the physical, psychological, familiar, and social spheres. The Valle Alto of Cochabamba is a hyperendemic region of Bolivia where efforts to control the transmission of the disease have progressed over the years. However, many challenges remain, above all, timely detection and health-care access. Methods Following the Science Shop process, this bottom-up research emerged with the participation of the civil society from Valle Alto and representatives of the Association of Corazones Unidos por el Chagas from Cochabamba. The aim of this study is to explore the social determinants in the living realities of those affected by Chagas disease or the silent infection and how families in the Valle Alto of Cochabamba cope with it. An interdisciplinary research team conducted a case study of the life stories of three families using information from in-depth interviews and performed a descriptive qualitative content analysis and triangulation processes. Findings Findings provide insights into social circumstances of the research subjects’ lives; particularly, on how exposure to Trypanosoma cruzi infection affects their daily lives in terms of seeking comprehensive health care. Research subjects revealed needs and shared their experiences, thus providing an understanding of the complexity of Chagas disease from the socioeconomic, sociocultural, political, and biomedical perspectives. Results enlighten on three dimensions: structural, psychosocial, and plural health system. The diverse perceptions and attitudes toward Chagas within families, including the denial of its existence, are remarkable as gender and ethnocultural aspects. Findings support recommendations to various stakeholders and translation materials. Conclusions Intersectional disease management and community involvement are essential for deciding the most appropriate and effective actions. Education, detection, health care, and social programs engaging family units ought to be the pillars of a promising approach.
Collapse
|
13
|
Ferragut F, Acevedo GR, Gómez KA. T Cell Specificity: A Great Challenge in Chagas Disease. Front Immunol 2021; 12:674078. [PMID: 34267750 PMCID: PMC8276045 DOI: 10.3389/fimmu.2021.674078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
The CD4+ and CD8+ T cell immune response against T. cruzi, the parasite causing Chagas disease, are relevant for both parasite control and disease pathogenesis. Several studies have been focused on their phenotype and functionally, but only a few have drilled down to identify the parasite proteins that are processed and presented to these cells, especially to CD4+ T lymphocytes. Although approximately 10,000 proteins are encoded per haploid T. cruzi genome, fewer than 200 T cell epitopes from 49 T. cruzi proteins have been identified so far. In this context, a detailed knowledge of the specific targets of T cell memory response emerges as a prime tool for the conceptualization and development of prophylactic or therapeutic vaccines, an approach with great potential to prevent and treat this chronic disease. Here, we review the available information about this topic in a comprehensive manner and discuss the future challenges in the field.
Collapse
Affiliation(s)
- Fátima Ferragut
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gonzalo R Acevedo
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Karina A Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Salm A, Krishnan SR, Collu M, Danton O, Hamburger M, Leonti M, Almanza G, Gertsch J. Phylobioactive hotspots in plant resources used to treat Chagas disease. iScience 2021; 24:102310. [PMID: 33870129 PMCID: PMC8040286 DOI: 10.1016/j.isci.2021.102310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, more than six million people are infected with Trypanosoma cruzi, the causative protozoan parasite of the vector-borne Chagas disease (CD). We conducted a cross-sectional ethnopharmacological field study in Bolivia among different ethnic groups where CD is hyperendemic. A total of 775 extracts of botanical drugs used in Bolivia in the context of CD and botanical drugs from unrelated indications from the Mediterranean De Materia Medica compiled by Dioscorides two thousand years ago were profiled in a multidimensional assay uncovering different antichagasic natural product classes. Intriguingly, the phylobioactive anthraquinone hotspot matched the antichagasic activity of Senna chloroclada, the taxon with the strongest ethnomedical consensus for treating CD among the Izoceño-Guaraní. Testing common 9,10-anthracenedione derivatives in T. cruzi cellular infection assays demarcates hydroxyanthraquinone as a potential antichagasic lead scaffold. Our study systematically uncovers in vitro antichagasic phylogenetic hotspots in the plant kingdom as a potential resource for drug discovery based on ethnopharmacological hypotheses.
Collapse
Affiliation(s)
- Andrea Salm
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Sandhya R. Krishnan
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Marta Collu
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ombeline Danton
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Almanza
- Instituto de Investigaciones Químicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Valera-Vera EA, Reigada C, Sayé M, Digirolamo FA, Galceran F, Miranda MR, Pereira CA. Effect of capsaicin on the protozoan parasite Trypanosoma cruzi. FEMS Microbiol Lett 2020; 367:6000212. [PMID: 33232444 DOI: 10.1093/femsle/fnaa194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease. There are only two approved treatments, both of them unsuitable for the chronic phase, therefore the development of new drugs is a priority. Trypanosoma cruzi arginine kinase (TcAK) is a promising drug target since it is absent in humans and it is involved in cellular stress responses. In a previous study, possible TcAK inhibitors were identified through computer simulations resulting the best compounds capsaicin and cyanidin derivatives. Here, we evaluate the effect of capsaicin on TcAK activity and its trypanocidal effect. Although capsaicin produced a weak enzyme inhibition, it had a strong trypanocidal effect on epimastigotes and trypomastigotes (IC50 = 6.26 µM and 0.26 µM, respectively) being 20-fold more active on trypomastigotes than mammalian cells. Capsaicin was also active on the intracellular cycle reducing by half the burst of trypomastigotes at approximately 2 µM. Considering the difference between the concentrations at which parasite death and TcAK inhibition occur, other possible targets were predicted. Capsaicin is a selective trypanocidal agent active in nanomolar concentrations, with an IC50 57-fold lower than benznidazole, the drug currently used for treating Chagas disease.
Collapse
Affiliation(s)
- Edward A Valera-Vera
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Chantal Reigada
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Melisa Sayé
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Facundo Galceran
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Mariana R Miranda
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| | - Claudio A Pereira
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Universidad de Buenos Aires,Av. Combatientes de Malvinas 3150, (1427), Buenos Aires, Argentina
| |
Collapse
|
16
|
Soares AKA, Neves PAF, Nascimento AV, Esmeraldo AAM, Moreira LR, Higino TMM, C B Q Figueiredo R, G A M Cavalcanti M, Martins SM, Carrazone C, Júnior WO, Gomes YM, Lorena VMB. Benznidazole: Hero or villain of cellular immune response in chronic Chagas disease patients? Immunobiology 2020; 226:152046. [PMID: 33341661 DOI: 10.1016/j.imbio.2020.152046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Although the treatment of chronic Chagas disease (CCD) patients with Benznidazole (Bz) is still controversial, its use may prevent or delay the progression of the disease to the most severe forms. One of the main factors that can influence the effectiveness of the treatment is the possible cooperation between drug effect and the host immune response. Herein, we evaluated the immune response of peripheral blood mononuclear cells (PBMCs) infected with Trypanosoma cruzi and submitted to Bz treatment. Blood samples of CCD patients (n = 7) and non-infected individuals (n = 6) were drawn to obtain PBMCs. After cell culture, the supernatants were harvested and stored, and the cell analyzed by flow cytometer. The results showed that Bz positively regulated the molecular process of cell activation (CD80) and antigen presentation (HLA-DR), increased phagocytosis receptor and macrophage activation (CD64), and did not induce an exacerbated immune response. In conclusion, these results highlight the relevance of using Bz that, despite not being a true hero, it is also not a villain, as it presents a wide range of pharmacological/immunological response interactions, important for the immune balance in the clinical progression of CCD.
Collapse
Affiliation(s)
- Ana K A Soares
- Instituto Aggeu Magalhães - IAM/Fiocruz, Recife, PE, Brazil; Fundação Altino Ventura - FAV, Recife, PE, Brazil
| | - Patrícia A F Neves
- Instituto Aggeu Magalhães - IAM/Fiocruz, Recife, PE, Brazil; Hospital das Clínicas - HC/UFPE, Recife, PE, Brazil
| | | | | | | | - Taciana M M Higino
- Instituto Aggeu Magalhães - IAM/Fiocruz, Recife, PE, Brazil; Fundação Altino Ventura - FAV, Recife, PE, Brazil
| | | | - Maria G A M Cavalcanti
- Ambulatório de doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE) - Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | - Sílvia M Martins
- Ambulatório de doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE) - Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | - Cristina Carrazone
- Ambulatório de doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE) - Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | - Wilson O Júnior
- Ambulatório de doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco (PROCAPE) - Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | - Yara M Gomes
- Instituto Aggeu Magalhães - IAM/Fiocruz, Recife, PE, Brazil
| | | |
Collapse
|
17
|
Abstract
The aim of this review was to identify anti-inflammatory and antioxidant therapeutic agents and their effects on patients with chagasic myocarditis. A systematic review of the MEDLINE, EMBASE, WEB OF SCIENCE, SCOPUS, LILACS and CENTRAL databases (Cochrane Library) was carried out without language restrictions. The descriptors used were: 'Chagas cardiomyopathy', 'treatment', 'Chagas disease', 'anti-inflammatory agents', 'Trypanosoma cruzi' and 'antioxidants'. A total of 4,138 articles was identified, six of which were selected for data extraction. Of these, four were related to antioxidant therapy with vitamins C and E supplementation, and two using anti-inflammatory therapy. The studies were carried out in Brazil and were published between 2002 and 2017. Antioxidant therapy with vitamin C and E supplementation increases the activity of antioxidant enzymes and reduces the oxidative markers. There is no conclusive data to support the use of vitamin supplementation and anti-inflammatory therapy in the treatment of chagasic cardiomyopathy. However, the studies indicate the possibility of vitamin supplementation as a new approach to the treatment of Chagas disease. Antioxidant therapy was proven to be a viable alternative for attenuating the oxidative damage caused by chronic chagasic cardiopathy, leading to a better prognosis for patients.
Collapse
|
18
|
Din ZU, Lazarin-Bidóia D, Kaplum V, Garcia FP, Nakamura CV, Rodrigues-Filho E. The structure design of biotransformed unsymmetrical nitro-contained 1,5-diaryl-3-oxo-1,4-pentadienyls for the anti-parasitic activities. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Patterson S, Fairlamb AH. Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis. Curr Med Chem 2019; 26:4454-4475. [PMID: 29701144 DOI: 10.2174/0929867325666180426164352] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 01/13/2023]
Abstract
Interest in nitroheterocyclic drugs for the treatment of infectious diseases has undergone a resurgence in recent years. Here we review the current status of monocyclic and bicyclic nitroheterocyclic compounds as existing or potential new treatments for visceral leishmaniasis, Chagas' disease and human African trypanosomiasis. Both monocyclic (nifurtimox, benznidazole and fexinidazole) and bicyclic (pretomanid (PA-824) and delamanid (OPC-67683)) nitro-compounds are prodrugs, requiring enzymatic activation to exert their parasite toxicity. Current understanding of the nitroreductases involved in activation and possible mechanisms by which parasites develop resistance is discussed along with a description of the pharmacokinetic / pharmacodynamic behaviour and chemical structure-activity relationships of drugs and experimental compounds.
Collapse
Affiliation(s)
- Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
20
|
Silva ACC, Brelaz-de-Castro MCA, Leite ACL, Pereira VRA, Hernandes MZ. Chagas Disease Treatment and Rational Drug Discovery: A Challenge That Remains. Front Pharmacol 2019; 10:873. [PMID: 31427977 PMCID: PMC6690016 DOI: 10.3389/fphar.2019.00873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana Catarina Cristovão Silva
- Laboratório de Imunopatologia e Biologia Molecular, Departamento de Imunologia, Instituto Aggeu Magalhães, Recife, Brazil.,Programa de Pós-graduação em Inovação Terapêutica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Maria Carolina Accioly Brelaz-de-Castro
- Laboratório de Imunopatologia e Biologia Molecular, Departamento de Imunologia, Instituto Aggeu Magalhães, Recife, Brazil.,Laboratório de Parasitologia, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | | | - Valéria Rêgo Alves Pereira
- Laboratório de Imunopatologia e Biologia Molecular, Departamento de Imunologia, Instituto Aggeu Magalhães, Recife, Brazil
| | | |
Collapse
|
21
|
Pereiro AC, Lenardón M, Zeballos A, Chopita M, Abril M, Gold S. Reporting of adverse reactions to benznidazole: does medical expertise matter? Rev Panam Salud Publica 2019; 42:e69. [PMID: 31093097 PMCID: PMC6385644 DOI: 10.26633/rpsp.2018.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/23/2017] [Indexed: 12/03/2022] Open
Abstract
This study evaluated and compared follow-up and adverse drug reaction (ADR) reporting for Chagas disease (CD) patients treated with benznidazole (BZN) by two health teams with different levels of experience, using medical records for 204 patients participating in the first year of a scaled-up public health program for CD case detection and treatment conducted at all 46 primary health care centers in La Plata district, Buenos Aires, Argentina, in 2014. Both teams were experienced in CD patient management and trained in BZN administration, and included senior physicians, but one team had no experience in administering BZN while the other team had three years of experience due to their participation in the program's pilot project. Patients with positive serology for CD were treated with 5 mg/kg/day of BZN for 60 days. Patients’ median age was 35 years and 84.3% were female. There was a statistically significant difference in the number of ADRs reported by the experienced versus the inexperienced health teams (18 versus 44 respectively; P < 0.001). Health team experience in administering BZN to CD patients, and treatment duration, were significantly associated with reporting of ADRs (adjusted odds ratios (aORs) 0.340 (95% confidence interval (CI): 0.177–0.652) and 0.967 (CI: 0.942–0.993) respectively). ADR reporting increased with patient age, occurring at the highest frequency (42.9%) in people 50+ years old. All treatment discontinuations (nine) occurred in patients followed up by the inexperienced health team. Level of experience in BZN administration to CD patients was significantly and inversely associated with frequency of ADR reports: inexperienced health team members tended to report more.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Gold
- Fundación Mundo Sano, Buenos Aires, BA, Argentina
| |
Collapse
|
22
|
Gomes KS, da Costa-Silva TA, Oliveira IH, Aguilar AM, Oliveira-Silva D, Uemi M, Silva WA, Melo LR, Andrade CKZ, Tempone AG, Baldim JL, Lago JHG. Structure-activity relationship study of antitrypanosomal chalcone derivatives using multivariate analysis. Bioorg Med Chem Lett 2019; 29:1459-1462. [PMID: 31000155 DOI: 10.1016/j.bmcl.2019.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/30/2023]
Abstract
Chagas disease represents one of several neglected diseases with a reduced number of chemotherapeutical drugs including the highly toxic compounds benznidazole and nifurtimox. In this sense, natural products represent an import scaffold for the discovery of new biologically active compounds, in which chalcones are promising representatives due to their antitrypanosomal potential. In this work, a series of 36 chalcone derivatives were synthesized and tested against trypomastigotes of Trypanosoma cruzi. In addition, a detailed investigation on their molecular features was performed. The obtained results suggest that certain molecular features are fundamental for an efficient antitrypanosomal potential of chalcones, such as allylic groups, α,β-unsaturated carbonyl system, and aromatic hydroxyl groups. These results were obtained based on the interpretation of machine-learning and multivariate statistical methods, which revealed the essential characteristics of chalcone prototypes against trypomastigotes of T. cruzi.
Collapse
Affiliation(s)
- Kaio S Gomes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil
| | - Thais A da Costa-Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil
| | - Igor H Oliveira
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP 09972-270, Brazil
| | - Andrea M Aguilar
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP 09972-270, Brazil
| | - Diogo Oliveira-Silva
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP 09972-270, Brazil
| | - Miriam Uemi
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP 09972-270, Brazil
| | - Wender A Silva
- Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Lennine R Melo
- Instituto de Química, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | | | - Andre G Tempone
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, SP 01246-000, Brazil
| | - João L Baldim
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil.
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil.
| |
Collapse
|
23
|
The fecal, oral, and skin microbiota of children with Chagas disease treated with benznidazole. PLoS One 2019; 14:e0212593. [PMID: 30807605 PMCID: PMC6391005 DOI: 10.1371/journal.pone.0212593] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023] Open
Abstract
Background Chagas disease is still prevalent in rural areas of South America. In endemic areas of Bolivia, school children are screened for the program of Chagas disease eradication of the Ministry of Health, and positive children are treated. Here, we compared the fecal, oral and skin microbiomes of children with or without Chagas disease, and before and after benznidazol treatment of infected children. Methods A total of 543 Bolivian children (5–14 years old) were tested for Chagas disease, and 20 positive children were treated with Benznidazole. Fecal samples and oral and skin swabs were obtained before and after treatment, together with samples from a group of 35 uninfected controls. The 16S rRNA genes were sequenced and analyzed using QIIME to determine Alpha diversity differences and community distances, and linear discriminant analyses to determine marker taxa by infection status or treatment. Results Twenty out of 543 children screened were seropositive for Chagas disease (3.7%) and were included in the study, together with 35 control children that were seronegative for the disease. Fecal samples, oral and skin swabs were taken at the beginning of the study and after the anti-protozoa therapy with Benznidazole to the chagasic children. Infected children had higher fecal Firmicutes (Streptococcus, Roseburia, Butyrivibrio, and Blautia), and lower Bacteroides and also showed some skin -but not oral- microbiota differences. Treatment eliminated the fecal microbiota differences from control children, increasing Dialister (class Clostridia) and members of the Enterobacteriaceae, and decreasing Prevotella and Coprococcus, with minor effects on the oral and skin bacterial diversity. Conclusions The results of this study show differences in the fecal microbiota associated with Chagas disease in children, and also evidence that treatment normalizes fecal microbiota (makes it more similar to that in controls), but is associated with oral and skin microbiota differences from control children. Since microbiota impacts in children, it is important to determine the effect of drugs on the children microbiota, since dysbiosis could lead to physiological effects which might be avoidable with microbiota restoration interventions.
Collapse
|
24
|
|
25
|
Synthesis and biological evaluation of new long-chain squaramides as anti-chagasic agents in the BALB/c mouse model. Bioorg Med Chem 2019; 27:865-879. [PMID: 30728107 DOI: 10.1016/j.bmc.2019.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/28/2022]
Abstract
Chagas Disease is caused by infection with the insect-transmitted protozoan Trypanosoma cruzi and affects more than 10 million people. It is a paradigmatic example of a chronic disease without an effective treatment in Latin America where the current therapies, based on Benznidazole and Nifurtimox, are characterised by limited efficacy, toxic side-effects and frequent failures in the treatment. We present a series of new long-chain squaramides, identified based on their 1H and 13C NMR spectra, and their trypanocidal activity and cytotoxicity were tested in vitro through the determination of IC50 values. Compounds 4 and 7 were more active and less toxic than the reference drug Benznidazole, and these results were the basis of promoting in vivo assays, where parasitaemia levels, assignment of cure, reactivation of parasitaemia and others parameters were determined in mice treated in both the acute and chronic phases. Finally, the mechanisms of action were elucidated at metabolic and mitochondrial levels and superoxide dismutase inhibition. The experiments allowed us to select compound 7 as a promising candidate for treating Chagas Disease, where the activity, stability and low cost make long-chain squaramides appropriate molecules for the development of an affordable anti-chagasic agent versus current treatments.
Collapse
|
26
|
Schmidt A, Dias Romano MM, Marin-Neto JA, Rao-Melacini P, Rassi A, Mattos A, Avezum Á, Villena E, Sosa-Estani S, Bonilla R, Yusuf S, Morillo CA, Maciel BC. Effects of Trypanocidal Treatment on Echocardiographic Parameters in Chagas Cardiomyopathy and Prognostic Value of Wall Motion Score Index: A BENEFIT Trial Echocardiographic Substudy. J Am Soc Echocardiogr 2018; 32:286-295.e3. [PMID: 30420161 DOI: 10.1016/j.echo.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Serial echocardiographic studies in chronic Chagas cardiomyopathy are scarce. The aims of this study were to evaluate whether therapy with benznidazole modifies the progression of cardiac impairment and to identify baseline echocardiographic parameters related to prognosis. METHODS A prospective substudy was conducted in 1,508 patients with chronic Chagas cardiomyopathy randomized to benznidazole or placebo, who underwent two-dimensional echocardiography at enrollment, 2 years, and final follow-up (5.4 years). Left ventricular (LV) ejection fraction, LV wall motion score index (WMSI), indexed left atrial volume, and chamber dimensions were collected and correlated to all-cause death and a composite hard outcome using univariate and multivariate analyses. RESULTS At enrollment, most patients had normal chamber dimensions, and 70.5% had preserved LV ejection fractions. During follow-up, all chamber dimensions increased similarly in both treatment arms. LV ejection fraction was comparably reduced (55.7 ± 12.7% to 52.1 ± 14.6% vs 56.3 ± 12.7% to 52.8 ± 14.1%) and LV WMSI similarly increased (1.31 ± 0.41 to 1.49 ± 0.03 and 1.27 ± 0.38 to 1.51 ± 0.03) for the benznidazole and placebo groups, respectively (P > .05). A higher baseline LV WMSI was identified in subjects who died compared with those alive at final echocardiography (1.76 ± 0.517 vs 1.271 ± 0.393, P < .0001). There was a significant (P < .0001) graded increase in the risk for the composite outcome with worsening LV WMSI (hazard ratios, 2.27 [95% CI, 1.69-3.06] and 6.42 [95% CI, 4.94-8.33]) and also of death (hazard ratios, 2.45 [95% CI, 1.62-3.71] and 8.99 [95% CI, 6.3-12.82]) for 1 < LV WMSI < 1.5 and LV WMSI > 1.5, respectively. Both LV WMSI and indexed left atrial volume remained independent predictors in multivariate analysis. CONCLUSIONS Trypanocidal treatment had no effect on echocardiographic progression of chronic Chagas cardiomyopathy over 5.4 years. Despite normal global LV systolic function, regional wall motion abnormalities and indexed left atrial volume identified patients at higher risk for hard adverse clinical outcomes.
Collapse
Affiliation(s)
- André Schmidt
- Cardiology Division, Internal Medicine Department, Medical School of Ribeirão Preto, Ribeirão Preto, Brazil.
| | - Minna Moreira Dias Romano
- Cardiology Division, Internal Medicine Department, Medical School of Ribeirão Preto, Ribeirão Preto, Brazil
| | - José Antônio Marin-Neto
- Cardiology Division, Internal Medicine Department, Medical School of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Purnima Rao-Melacini
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Anis Rassi
- Hospital do Coração Anis Rassi, Goiânia, Brazil
| | - Antônio Mattos
- Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| | - Álvaro Avezum
- Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| | - Erick Villena
- Hospital Eduardo Eguia, Programa Chagas, Tupiza, Bolivia
| | - Sergio Sosa-Estani
- Instituto Nacional de Parasitologia Dr. Mario Fatala Chaben-Administración Nacional de Laboratórios e Institutos de Salud, CONICET, Instituto de Efectividad Clinica y Sanitaria, Buenos Aires, Argentina
| | - Rina Bonilla
- Hospital Nacional Rosales, San Salvador, El Salvador
| | - Salim Yusuf
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Carlos A Morillo
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Benedito Carlos Maciel
- Cardiology Division, Internal Medicine Department, Medical School of Ribeirão Preto, Ribeirão Preto, Brazil
| | | |
Collapse
|
27
|
Bey E, Paucara Condori MB, Gaget O, Solano P, Revollo S, Saussine C, Brenière SF. Lower urinary tract dysfunction in chronic Chagas disease: clinical and urodynamic presentation. World J Urol 2018; 37:1395-1402. [PMID: 30302592 PMCID: PMC6620250 DOI: 10.1007/s00345-018-2512-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 01/16/2023] Open
Abstract
Purpose To describe and give an estimation of the prevalence of urinary disorders in chronic Chagas disease, since most clinical research has been centered on the description of the cardiac and digestive forms. Methods To explore this topic, a cross-sectional study was conducted in 137 Bolivian adults of both sexes suffering from symptomatic chronic Chagas disease. All patients presenting confirmed chagasic cardiomyopathy, megacolon or both underwent a urologic symptom questionnaire, uroflowmetry, urinary tract ultrasonography and a creatinine assay. When urinary abnormality was detected, a complete urodynamic study was proposed including cystometry, pressure-flow studies and urethral pressure profile. Results Out of all study patients, 35 (26%) had a Chagas cardiomyopathy, 81 (59%) a megacolon, and 21 (15%) a megacolon associated with cardiomyopathy. In all, 63% presented urinary disorders defined by IPSS > 7 and/or ICIQ SF > 1. Among them, 62% were incontinent, mainly by bladder overactivity, and 45% presented grade 2 or 3 renal insufficiency. Of 49 patients, the urodynamic study identified 34 patients with detrusor overactivity (69%), mostly in those with Chagas megacolon. Median bladder functional capacity, urethral closure pressure and bladder compliance had normal values. Moreover, 36% of these patients presented moderate hypocontractility, without significant post-void residual. Conclusions This study evidenced lower urinary tract dysfunction in a majority of chronic chagasic patients; those presenting megacolon were more likely to suffer from urinary incontinence. These results strongly suggest including routine urological clinical investigation in chronic Chagas patients, as urinary incontinence due to overactive bladder is frequently observed in this population.
Collapse
Affiliation(s)
- Elsa Bey
- Service d'urologie et de la transplantation rénale, Centre Hospitalier Universitaire de Grenoble, La Tronche, France.
| | - Maria Brigitte Paucara Condori
- Instituto de Servicios de Laboratorios de Diagnóstico e Investigación en Salud (SELADIS), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | | | - Philippe Solano
- Intertryp, IRD-Cirad, Université de Montpellier, Montpellier, France
| | - Susana Revollo
- Instituto de Servicios de Laboratorios de Diagnóstico e Investigación en Salud (SELADIS), Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Christian Saussine
- Urological Department, Strasbourg University Hospital, Strasbourg University, Strasbourg, France
| | - Simone Frédérique Brenière
- Intertryp, IRD-Cirad, Université de Montpellier, Montpellier, France.,Center for Research on Health in Latin America (CISeAL), School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador
| |
Collapse
|
28
|
Martín-Escolano R, Aguilera-Venegas B, Marín C, Martín-Montes Á, Martín-Escolano J, Medina-Carmona E, Arán VJ, Sánchez-Moreno M. Synthesis and Biological in vitro and in vivo Evaluation of 2-(5-Nitroindazol-1-yl)ethylamines and Related Compounds as Potential Therapeutic Alternatives for Chagas Disease. ChemMedChem 2018; 13:2104-2118. [PMID: 30098232 DOI: 10.1002/cmdc.201800512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 12/17/2022]
Abstract
Chagas disease, a neglected tropical disease caused by infection with the protozoan parasite Trypanosoma cruzi, is a potentially life-threatening illness that affects 5-8 million people in Latin America, and more than 10 million people worldwide. It is characterized by an acute phase, which is partly resolved by the immune system, but then develops as a chronic disease without an effective treatment. There is an urgent need for new antiprotozoal agents, as the current standard therapeutic options based on benznidazole and nifurtimox are characterized by limited efficacy, toxicity, and frequent failures in treatment. In vitro and in vivo assays were used to identify some new low-cost 5-nitroindazoles as a potential antichagasic therapeutic alternative. Compound 16 (3-benzyloxy-5-nitro-1-vinyl-1H-indazole) showed improved efficiency and lower toxicity than benznidazole in both in vitro and in vivo experiments, and its trypanocidal activity seems to be related to its effect at the mitochondrial level. Therefore, compound 16 is a promising candidate for the development of a new anti-Chagas agent, and further preclinical evaluation should be considered.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Benjamín Aguilera-Venegas
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Box 233, Santiago, 8380492, Chile
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Álvaro Martín-Montes
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Vicente J Arán
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| |
Collapse
|
29
|
Otta DA, de Araújo FF, de Rezende VB, Souza-Fagundes EM, Elói-Santos SM, Costa-Silva MF, Santos RA, Costa HA, Siqueira-Neto JL, Martins-Filho OA, Teixeira-Carvalho A. Identification of Anti-Trypanosoma cruzi Lead Compounds with Putative Immunomodulatory Activity. Antimicrob Agents Chemother 2018; 62:e01834-17. [PMID: 29437629 PMCID: PMC5913944 DOI: 10.1128/aac.01834-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022] Open
Abstract
In seeking substitutions for the current Chagas disease treatment, which has several relevant side effects, new therapeutic candidates have been extensively investigated. In this context, a balanced interaction between mediators of the host immune response seems to be a key element for therapeutic success, as a proinflammatory microenvironment modulated by interleukin-10 (IL-10) is shown to be relevant to potentiate anti-Trypanosoma cruzi drug activity. This study aimed to identify the potential immunomodulatory activities of the anti-T. cruzi K777, pyronaridine (PYR), and furazolidone (FUR) compounds in peripheral blood mononuclear cells (PBMC) from noninfected (NI) subjects and chronic Chagas disease (CD) patients. Our results showed low cytotoxicity to PBMC populations, with 50% cytotoxic concentrations (CC50) of 71.0 μM (K777), 9.0 μM (PYR), and greater than 20 μM (FUR). In addition, K777 showed no impact on the exposure index (EI) of phytohemagglutinin-stimulated leukocytes (PHA), while PYR and FUR treatments induced increased EI of monocytes and T lymphocytes at late stages of apoptosis in NI subjects. Moreover, K777 induced a more prominent proinflammatory response (tumor necrosis factor alpha-positive [TNF-α+] CD8+/CD4+, gamma interferon-positive [IFN-γ+] CD4+/CD8+ modulated by interleukin-10-positive [IL-10+] CD4+ T/CD8+ T) than did PYR (TNF-α+ CD8+, IL-10+ CD8+) and FUR (TNF-α+ CD8+, IL-10+ CD8+). Signature analysis of intracytoplasmic cytokines corroborated the proinflammatory/modulated (K777) and proinflammatory (PYR and FUR) profiles previously found. In conclusion, the lead compound K777 may induce beneficial changes in the immunological profile of patients presenting the chronic phase of Chagas disease and may contribute to a more effective therapy against the disease.
Collapse
Affiliation(s)
- Dayane Andriotti Otta
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Fortes de Araújo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-graduação em Sanidade e Produção Animal nos Trópicos, Medicina Veterinária, Universidade de Uberaba (UNIUBE), Uberaba, Minas Gerais, Brazil
| | - Vitor Bortolo de Rezende
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Maria Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvana Maria Elói-Santos
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Propedêutica Complementar, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus Fernandes Costa-Silva
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Raiany Araújo Santos
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Heloísa Alves Costa
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Jair Lage Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Calvet CM, Choi JY, Thomas D, Suzuki B, Hirata K, Lostracco-Johnson S, de Mesquita LB, Nogueira A, Meuser-Batista M, Silva TA, Siqueira-Neto JL, Roush WR, de Souza Pereira MC, McKerrow JH, Podust LM. 4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection. PLoS Negl Trop Dis 2017; 11:e0006132. [PMID: 29281643 PMCID: PMC5744913 DOI: 10.1371/journal.pntd.0006132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/22/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Chagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS Both acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart. CONCLUSIONS/SIGNIFICANCE The positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of safe re-administration of the medication during the lifespan of a Chagas disease patient. A medication that reduces parasite burden may halt or slow progression of cardiomyopathy and therefore improve both life expectancy and quality of life.
Collapse
Affiliation(s)
- Claudia Magalhaes Calvet
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Cellular Ultra-Structure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jun Yong Choi
- Department of Chemistry, Scripps Florida, Jupiter, Florida, United States of America
| | - Diane Thomas
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Brian Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ken Hirata
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Sharon Lostracco-Johnson
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Liliane Batista de Mesquita
- Cellular Ultra-Structure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alanderson Nogueira
- Cellular Ultra-Structure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Meuser-Batista
- Department of Pathologic Anatomy, Fernandes Figueira Institute (IFF), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Araujo Silva
- Cellular Ultra-Structure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jair Lage Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - William R. Roush
- Department of Chemistry, Scripps Florida, Jupiter, Florida, United States of America
| | | | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
31
|
Volpato FCZ, Sousa GR, D'Ávila DA, Galvão LMDC, Chiari E. Combined parasitological and molecular-based diagnostic tools improve the detection of Trypanosoma cruzi in single peripheral blood samples from patients with Chagas disease. Rev Soc Bras Med Trop 2017; 50:506-515. [PMID: 28954072 DOI: 10.1590/0037-8682-0046-2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/10/2017] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION In order to detect Trypanosoma cruzi and determine the genetic profiles of the parasite during the chronic phase of Chagas disease (ChD), parasitological and molecular diagnostic methods were used to assess the blood of 91 patients without specific prior treatment. METHODS Blood samples were collected from 68 patients with cardiac ChD and 23 patients with an indeterminate form of ChD, followed by evaluation using blood culture and polymerase chain reaction. T . cruzi isolates were genotyped using three different genetic markers. RESULTS: Blood culture was positive in 54.9% of all patients, among which 60.3% had the cardiac form of ChD, and 39.1% the indeterminate form of ChD. There were no significant differences in blood culture positivity among patients with cardiac and indeterminate forms. Additionally, patient age and clinical forms did not influence blood culture results. Polymerase chain reaction (PCR) was positive in 98.9% of patients, although comparisons between blood culture and PCR results showed that the two techniques did not agree. Forty-two T . cruzi stocks were isolated, and TcII was detected in 95.2% of isolates. Additionally, one isolate corresponded to TcIII or TcIV, and another corresponded to TcV or TcVI. CONCLUSIONS Blood culture and PCR were both effective for identifying T. cruzi using a single blood sample, and their association did not improve parasite detection. However, we were not able to establish an association between the clinical form of ChD and the genetic profile of the parasite.
Collapse
Affiliation(s)
- Fabiana Caroline Zempulski Volpato
- Programa de Pós-Graduação em Parasitologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Giovane Rodrigo Sousa
- Section on Immunobiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniella Alchaar D'Ávila
- Programa de Pós-Graduação em Parasitologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Lúcia Maria da Cunha Galvão
- Programa de Pós-Graduação em Parasitologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Egler Chiari
- Programa de Pós-Graduação em Parasitologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
32
|
Sales Junior PA, Molina I, Fonseca Murta SM, Sánchez-Montalvá A, Salvador F, Corrêa-Oliveira R, Carneiro CM. Experimental and Clinical Treatment of Chagas Disease: A Review. Am J Trop Med Hyg 2017; 97:1289-1303. [PMID: 29016289 PMCID: PMC5817734 DOI: 10.4269/ajtmh.16-0761] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/24/2017] [Indexed: 01/16/2023] Open
Abstract
Chagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi that infects a broad range of triatomines and mammalian species, including man. It afflicts 8 million people in Latin America, and its incidence is increasing in nonendemic countries owing to rising international immigration and nonvectorial transmission routes such as blood donation. Since the 1960s, the only drugs available for the clinical treatment of this infection have been benznidazole (BZ) and nifurtimox (NFX). Treatment with these trypanocidal drugs is recommended in both the acute and chronic phases of CD. These drugs have low cure rates mainly during the chronic phase, in addition both drugs present side effects that may result in the interruption of the treatment. Thus, more efficient and better-tolerated new drugs or pharmaceutical formulations containing BZ or NFX are urgently needed. Here, we review the drugs currently used for CD chemotherapy, ongoing clinical assays, and most-promising new experimental drugs. In addition, the mechanism of action of the commercially available drugs, NFX and BZ, the biodistribution of the latter, and the potential for novel formulations of BZ based on nanotechnology are discussed. Taken together, the literature emphasizes the urgent need for new therapies for acute and chronic CD.
Collapse
Affiliation(s)
| | - Israel Molina
- Infectious Diseases Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Adrián Sánchez-Montalvá
- Infectious Diseases Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Fernando Salvador
- Infectious Diseases Department, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Rodrigo Corrêa-Oliveira
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
33
|
González L, García-Huertas P, Triana-Chávez O, García GA, Murta SMF, Mejía-Jaramillo AM. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi. Mol Microbiol 2017; 106:704-718. [PMID: 28884498 DOI: 10.1111/mmi.13830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/16/2022]
Abstract
The improvement of Chagas disease treatment is focused not only on the development of new drugs but also in understanding mechanisms of action and resistance to drugs conventionally used. Thus, some strategies aim to detect specific changes in proteins between sensitive and resistant parasites and to evaluate the role played in these processes by functional genomics. In this work, we used a natural Trypanosoma cruzi population resistant to benznidazole, which has clones with different susceptibilities to this drug without alterations in the NTR I gene. Using 2DE-gel electrophoresis, the aldo-keto reductase and the alcohol dehydrogenase proteins were found up regulated in the natural resistant clone and therefore their possible role in the resistance to benznidazole and glyoxal was investigated. Both genes were overexpressed in a drug sensitive T. cruzi clone and the biological changes in response to these compounds were evaluated. The results showed that the overexpression of these proteins enhances resistance to benznidazole and glyoxal in T. cruzi. Moreover, a decrease in mitochondrial and cell membrane damage was observed, accompanied by a drop in the intracellular concentration of reactive oxygen species after treatment. Our results suggest that these proteins are involved in the mechanism of action of benznidazole.
Collapse
Affiliation(s)
- Laura González
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Paola García-Huertas
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Gabriela Andrea García
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben"- ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | - Ana M Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| |
Collapse
|
34
|
Neeki MM, Park M, Sandhu K, Seiler K, Toy J, Rabiei M, Adigoupula S. Chagas Disease-induced Sudden Cardiac Arrest. Clin Pract Cases Emerg Med 2017; 1:354-358. [PMID: 29849341 PMCID: PMC5965213 DOI: 10.5811/cpcem.2017.5.33626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/29/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Sudden cardiac death (SCD) is the most common cause of death in patients with Chagas disease (ChD). There are over 300,000 ChD-infected individuals living in the United States, of whom 10–15% have undiagnosed Chagas cardiomyopathy (CCM). CCM patients have a higher risk of SCD compared to non-CCM patients, although early and appropriate treatment of CCM patients can result in a 95% relative risk reduction of SCD. Emergency physicians have a unique opportunity to improve outcomes among these patients by becoming more vigilant in recognizing the signs and symptoms of CCM in patients who present in sudden cardiac arrest. We report the case of a patient presenting to the emergency department with pulseless ventricular tachycardia and an undiagnosed history of CCM.
Collapse
Affiliation(s)
- Michael M Neeki
- Arrowhead Regional Medical Center, Department of Emergency Medicine, Colton, California.,California University of Science and Medicine, Colton, California
| | - Michelle Park
- Arrowhead Regional Medical Center, Department of Emergency Medicine, Colton, California
| | - Karan Sandhu
- Arrowhead Regional Medical Center, Department of Emergency Medicine, Colton, California
| | - Kathryn Seiler
- Arrowhead Regional Medical Center, Department of Emergency Medicine, Colton, California
| | - Jake Toy
- Arrowhead Regional Medical Center, Department of Emergency Medicine, Colton, California
| | - Massoud Rabiei
- Arrowhead Regional Medical Center, Department of Emergency Medicine, Colton, California
| | - Sasikanth Adigoupula
- Arrowhead Regional Medical Center, Department of Emergency Medicine, Colton, California.,Loma Linda University Medical Center, Department of Cardiology, Advanced Heart Failure and Transplantation, Loma Linda, California.,California University of Science and Medicine, Colton, California
| |
Collapse
|
35
|
da Silva CF, Batista DDGJ, de Araújo JS, Cunha-Junior EF, Stephens CE, Banerjee M, Farahat AA, Akay S, Fisher MK, Boykin DW, Soeiro MDNC. Phenotypic evaluation and in silico ADMET properties of novel arylimidamides in acute mouse models of Trypanosoma cruzi infection. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1095-1105. [PMID: 28435221 PMCID: PMC5388221 DOI: 10.2147/dddt.s120618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arylimidamides (AIAs), previously termed as reversed amidines, present a broad spectrum of activity against intracellular microorganisms. In the present study, three novel AIAs were evaluated in a mouse model of Trypanosoma cruzi infection, which is the causative agent of Chagas disease. The bis-AIAs DB1957, DB1959 and DB1890 were chosen based on a previous screening of their scaffolds that revealed a very promising trypanocidal effect at nanomolar range against both the bloodstream trypomastigotes (BTs) and the intracellular forms of the parasite. This study focused on both mesylate salts DB1957 and DB1959 besides the hydrochloride salt DB1890. Our current data validate the high activity of these bis-AIA scaffolds that exhibited EC50 (drug concentration that reduces 50% of the number of the treated parasites) values ranging from 14 to 78 nM and 190 to 1,090 nM against bloodstream and intracellular forms, respectively, also presenting reasonable selectivity indexes and no mutagenicity profile predicted by in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET). Acute toxicity studies using murine models revealed that these AIAs presented only mild toxic effects such as reversible abdominal contractions and ruffled fur. Efficacy assays performed with Swiss mice infected with the Y strain revealed that the administration of DB1957 for 5 consecutive days, with the first dose given at parasitemia onset, reduced the number of BTs at the peak, ranging between 21 and 31% of decrease. DB1957 was able to provide 100% of animal survival, while untreated animals showed 70% of mortality rates. DB1959 and DB1890B did not reduce circulating parasitism but yielded >80% of survival rates.
Collapse
Affiliation(s)
| | | | | | | | - Chad E Stephens
- Department of Chemistry and Physics, Augusta University, Augusta
| | - Moloy Banerjee
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Abdelbasset A Farahat
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Senol Akay
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Mary K Fisher
- Department of Chemistry and Physics, Augusta University, Augusta
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
36
|
Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi. PLoS Negl Trop Dis 2017; 11:e0005472. [PMID: 28306713 PMCID: PMC5371382 DOI: 10.1371/journal.pntd.0005472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/29/2017] [Accepted: 03/09/2017] [Indexed: 12/04/2022] Open
Abstract
Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6–10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of Chagas disease. Polyamines are polycationic compounds essential for the regulation of cell growth and differentiation. In contrast with other protozoa, Trypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for polyamines; therefore the intracellular availability of these molecules depends exclusively on transport processes. It was previously demonstrated that the lack of polyamines in T. cruzi leads to its death, making the polyamine transporter an excellent therapeutic target for Chagas disease. In this work, the polyamine permease TcPAT12 was selected as a target for drug screening using 3000 FDA-approved compounds and computational simulation techniques. Using two combined virtual screening methods, isotretinoin, a well-known and safe drug used for acne treatment, bound to substrate recognition residues of TcPAT12 and was chosen for further in vitro studies. Isotretinoin inhibited not only the polyamine transport but also all tested amino acid transporters from the same protein family as TcPAT12. Interestingly, isotretinoin showed a high trypanocidal effect on trypomastigotes, with an IC50 in the nanomolar range. Autophagy and apoptosis were proposed as mechanisms of parasites death induced by isotretinoin. These results suggest that isotretinoin is a promising trypanocidal drug, being a multi-target inhibitor of essential metabolites transporters.
Collapse
|
37
|
Mello CP, Lima DB, Menezes RRPPBD, Bandeira ICJ, Tessarolo LD, Sampaio TL, Falcão CB, Rádis-Baptista G, Martins AMC. Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland. Toxicon 2017; 130:56-62. [PMID: 28246023 DOI: 10.1016/j.toxicon.2017.02.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/18/2022]
Abstract
Antimicrobial peptides (AMPs) are potential alternatives to conventional antibiotics, as they have a fast mode of action, a low likelihood of resistance development and can act in conjunction with existing drug regimens. We report in this study the effects of batroxicidin (BatxC), a cathelicidin-related AMP from Bothrops atrox venom gland, over Trypanosoma cruzi, a protozoan that causes Chagas' disease. BatxC inhibited all T. cruzi (Y strain: benznidazole-resistant) developmental forms, with selectivity index of 315. Later, separate flow cytometry assays showed T. cruzi cell labeling by 7-aminoactinomycin D, the increase in reactive oxygen species and the loss of mitochondrial membrane potential when the parasite was treated with BatxC, which are indication of necrosis. T. cruzi cell death pathway by a necrotic mechanism was finally confirmed by scanning electron microscopy which observed loss of cell membrane integrity. In conclusion, BatxC was able to inhibit T. cruzi, with high selectivity index, by inducing necrosis.
Collapse
Affiliation(s)
- Clarissa Perdigão Mello
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Danya Bandeira Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | | | - Louise Donadello Tessarolo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tiago Lima Sampaio
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Claudio Borges Falcão
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Alice Maria Costa Martins
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
38
|
Ottilie S, Goldgof GM, Calvet CM, Jennings GK, LaMonte G, Schenken J, Vigil E, Kumar P, McCall LI, Lopes ESC, Gunawan F, Yang J, Suzuki Y, Siqueira-Neto JL, McKerrow JH, Amaro RE, Podust LM, Durrant JD, Winzeler EA. Rapid Chagas Disease Drug Target Discovery Using Directed Evolution in Drug-Sensitive Yeast. ACS Chem Biol 2017; 12:422-434. [PMID: 27977118 PMCID: PMC5649375 DOI: 10.1021/acschembio.6b01037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances in cell-based, high-throughput phenotypic screening have identified new chemical compounds that are active against eukaryotic pathogens. A challenge to their future development lies in identifying these compounds' molecular targets and binding modes. In particular, subsequent structure-based chemical optimization and target-based screening require a detailed understanding of the binding event. Here, we use directed evolution and whole-genome sequencing of a drug-sensitive S. cerevisiae strain to identify the yeast ortholog of TcCyp51, lanosterol-14-alpha-demethylase (TcCyp51), as the target of MMV001239, a benzamide compound with activity against Trypanosoma cruzi, the etiological agent of Chagas disease. We show that parasites treated with MMV0001239 phenocopy parasites treated with another TcCyp51 inhibitor, posaconazole, accumulating both lanosterol and eburicol. Direct drug-protein binding of MMV0001239 was confirmed through spectrophotometric binding assays and X-ray crystallography, revealing a binding site shared with other antitrypanosomal compounds that target Cyp51. These studies provide a new probe chemotype for TcCyp51 inhibition.
Collapse
Affiliation(s)
- Sabine Ottilie
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Gregory M Goldgof
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute , La Jolla, California 92037, United States
| | - Claudia Magalhaes Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
- Cellular Ultrastructure Laboratory, IOC, FIOCRUZ , Rio de Janeiro, Rio de Janeiro, Brazil 21045-360
| | - Gareth K Jennings
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Greg LaMonte
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Jake Schenken
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Edgar Vigil
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Prianka Kumar
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Laura-Isobel McCall
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Eduardo Soares Constantino Lopes
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
- Department of Pharmacy, Federal University of Paraná , Curitiba, Paraná, Brazil 80210-170
| | - Felicia Gunawan
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Jennifer Yang
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute , La Jolla, California 92037, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - James H McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry, University of California, San Diego , La Jolla, California 92093-0340, United States
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| |
Collapse
|
39
|
Brum-Soares L, Cubides JC, Burgos I, Monroy C, Castillo L, González S, Viñas PA, Urrutia PPP. High seroconversion rates in Trypanosoma cruzi chronic infection treated with benznidazole in people under 16 years in Guatemala. Rev Soc Bras Med Trop 2016; 49:721-727. [DOI: 10.1590/0037-8682-0415-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022] Open
|
40
|
Shender L, Niemela M, Conrad P, Goldstein T, Mazet J. Habitat Management to Reduce Human Exposure to Trypanosoma cruzi and Western Conenose Bugs (Triatoma protracta). ECOHEALTH 2016; 13:525-534. [PMID: 27515118 PMCID: PMC5063897 DOI: 10.1007/s10393-016-1153-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Chagas disease, which manifests as cardiomyopathy and severe gastrointestinal dysfunction, is caused by Trypanosoma cruzi, a vector-borne parasite. In California, the vector Triatoma protracta frequently colonizes woodrat (Neotoma spp.) lodges, but may also invade nearby residences, feeding upon humans and creating the dual risk of bite-induced anaphylaxis and T. cruzi transmission. Our research aimed to assess T. cruzi presence in woodrats in a previously unstudied northern California area, statistically evaluate woodrat microhabitat use with respect to vegetation parameters, and provide guidance for habitat modifications to mitigate public health risks associated with Tr. protracta exposure. Blood samples from big-eared woodrats (N. macrotis) trapped on rural private properties yielded a T. cruzi prevalence of 14.3%. Microhabitat analyses suggest that modifying vegetation to reduce understory density within a 40 meter radius of human residences might minimize woodrat lodge construction within this buffer area, potentially decreasing human exposure to Tr. protracta.
Collapse
Affiliation(s)
- Lisa Shender
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | | | - Patricia Conrad
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Jonna Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
41
|
Santos FM, Mazzeti AL, Caldas S, Gonçalves KR, Lima WG, Torres RM, Bahia MT. Chagas cardiomyopathy: The potential effect of benznidazole treatment on diastolic dysfunction and cardiac damage in dogs chronically infected with Trypanosoma cruzi. Acta Trop 2016; 161:44-54. [PMID: 27215760 DOI: 10.1016/j.actatropica.2016.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/24/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
Abstract
Cardiac involvement represents the main cause of mortality among patients with Chagas disease, and the relevance of trypanocidal treatment to improving diastolic dysfunction is still doubtful. In the present study, we used a canine model infected with the benznidazole-sensitive Berenice-78 Trypanosoma cruzi strain to verify the efficacy of an etiologic treatment in reducing the parasite load and ameliorating cardiac muscle tissue damage and left ventricular diastolic dysfunction in the chronic phase of the infection. The effect of the treatment on reducing the parasite load was monitored by blood PCR and blood culture assays, and the effect of the treatment on the outcome of heart tissue damage and on diastolic function was evaluated by histopathology and echo Doppler cardiogram. The benefit of the benznidazole-treatment in reducing the parasite burden was demonstrated by a marked decrease in positive blood culture and PCR assay results until 30days post-treatment. At this time, the PCR and blood culture assays yielded negative results for 82% of the treated animals, compared with only 36% of the untreated dogs. However, a progressive increase in the parasite load could be detected in the peripheral blood for one year post-treatment, as evidenced by a progressive increase in positive results for both the PCR and the blood culture assays at follow-up. The parasite load reduction induced by treatment was compatible with the lower degree of tissue damage among animals euthanized in the first month after treatment and with the increased cardiac damage after this period, reaching levels similar to those in untreated animals at the one-year follow-up. The two infected groups also presented similar, significantly smaller values for early tissue septal velocity (E' SIV) than the non-infected dogs did at this later time. Moreover, in the treated animals, an increase in the E/E' septal tissue filling pressure ratio was observed when compared with basal values as well as with values in non-infected dogs. These findings strongly suggest that the temporary reduction in the parasite load that was induced by benznidazole treatment was not able to prevent myocardial lesions and diastolic dysfunction for long after treatment.
Collapse
|
42
|
Chagas disease and transfusion medicine: a perspective from non-endemic countries. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 13:540-50. [PMID: 26513769 DOI: 10.2450/2015.0040-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/18/2015] [Indexed: 11/21/2022]
Abstract
In the last decades, increasing international migration and travel from Latin America to Europe have favoured the emergence of tropical diseases outside their "historical" boundaries. Chagas disease, a zoonosis endemic in rural areas of Central and South America represents a clear example of this phenomenon. In the absence of the vector, one of the potential modes of transmission of Chagas disease in non-endemic regions is through blood and blood products. As most patients with Chagas disease are asymptomatic and unaware of their condition, in case of blood donation they can inadvertently represent a serious threat to the safety of the blood supply in non-endemic areas. Since the first cases of transfusion-transmitted Chagas disease were described in the last years, non-endemic countries began to develop ad hoc strategies to prevent and control the spread of the infection. United States, Spain, United Kingdom and France first recognised the need for Trypanosoma cruzi screening in at-risk blood donors. In this review, we trace an up-to-date perspective on Chagas disease, describing its peculiar features, from epidemiological, pathological, clinical and diagnostic points of view. Moreover, we describe the possible transmission of Chagas disease through blood or blood products and the current strategies for its control, focusing on non-endemic areas.
Collapse
|
43
|
Souza DDSMD, Araujo MT, dos Santos PRSG, Furtado JCB, Figueiredo MTS, Povoa RMS. Anatomopathological Aspects of Acute Chagas Myocarditis by Oral Transmission. Arq Bras Cardiol 2016; 107:77-80. [PMID: 27533369 PMCID: PMC4976960 DOI: 10.5935/abc.20160110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | | | | | - Rui M S Povoa
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
44
|
Perspectives in Chagas disease treatment. Glob Heart 2016; 10:189-92. [PMID: 26407515 DOI: 10.1016/j.gheart.2015.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
|
45
|
Molecular Approaches for Diagnosis of Chagas' Disease and Genotyping of Trypanosoma cruzi. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Tanowitz HB, Machado FS, Spray DC, Friedman JM, Weiss OS, Lora JN, Nagajyothi J, Moraes DN, Garg NJ, Nunes MCP, Ribeiro ALP. Developments in the management of Chagas cardiomyopathy. Expert Rev Cardiovasc Ther 2015; 13:1393-409. [PMID: 26496376 DOI: 10.1586/14779072.2015.1103648] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over 100 years have elapsed since the discovery of Chagas disease and there is still much to learn regarding pathogenesis and treatment. Although there are antiparasitic drugs available, such as benznidazole and nifurtimox, they are not totally reliable and often toxic. A recently released negative clinical trial with benznidazole in patients with chronic Chagas cardiomyopathy further reinforces the concerns regarding its effectiveness. New drugs and new delivery systems, including those based on nanotechnology, are being sought. Although vaccine development is still in its infancy, the reality of a therapeutic vaccine remains a challenge. New ECG methods may help to recognize patients prone to developing malignant ventricular arrhythmias. The management of heart failure, stroke and arrhythmias also remains a challenge. Although animal experiments have suggested that stem cell based therapy may be therapeutic in the management of heart failure in Chagas cardiomyopathy, clinical trials have not been promising.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA.,b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Fabiana S Machado
- c Department of Biochemistry and Immunology, Institute of Biological Science , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - David C Spray
- b Department of Medicine , Albert Einstein College of Medicine , Bronx , NY , USA.,e Dominick P. Purpura Department of Neuroscience , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Joel M Friedman
- f Department of Physiology & Biophysics , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Oren S Weiss
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jose N Lora
- a Department of Pathology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jyothi Nagajyothi
- g Public Health Research Institute, New Jersey Medical School , Rutgers University , Newark , NJ , USA
| | - Diego N Moraes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Nisha Jain Garg
- i Department of Microbiology & Immunology and Institute for Human Infections and Immunity , University of Texas Medical Branch , Galveston , TX , USA
| | - Maria Carmo P Nunes
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Antonio Luiz P Ribeiro
- d Program in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,h Department of Internal Medicine and University Hospital , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
47
|
Rogers N. Bugging out over Chagas: Bioluminescent protozoans and old drugs might help unravel kissing-bug disease. Nat Med 2015; 21:1108-10. [DOI: 10.1038/nm1015-1108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Antitrypanosomal Treatment with Benznidazole Is Superior to Posaconazole Regimens in Mouse Models of Chagas Disease. Antimicrob Agents Chemother 2015; 59:6385-94. [PMID: 26239982 DOI: 10.1128/aac.00689-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/19/2015] [Indexed: 11/20/2022] Open
Abstract
Two CYP51 inhibitors, posaconazole and the ravuconazole prodrug E1224, were recently tested in clinical trials for efficacy in indeterminate Chagas disease. The results from these studies show that both drugs cleared parasites from the blood of infected patients at the end of the treatment but that parasitemia rebounded over the following months. In the current study, we sought to identify a dosing regimen of posaconazole that could permanently clear Trypanosoma cruzi from mice with experimental Chagas disease. Infected mice were treated with posaconazole or benznidazole, an established Chagas disease drug, and parasitological cure was defined as an absence of parasitemia recrudescence after immunosuppression. Twenty-day therapy with benznidazole (10 to 100 mg/kg of body weight/day) resulted in a dose-dependent increase in antiparasitic activity, and the 100-mg/kg regimen effected parasitological cure in all treated mice. In contrast, all mice remained infected after a 25-day treatment with posaconazole at all tested doses (10 to 100 mg/kg/day). Further extension of posaconazole therapy to 40 days resulted in only a marginal improvement of treatment outcome. We also observed similar differences in antiparasitic activity between benznidazole and posaconazole in acute T. cruzi heart infections. While benznidazole induced rapid, dose-dependent reductions in heart parasite burdens, the antiparasitic activity of posaconazole plateaued at low doses (3 to 10 mg/kg/day) despite increasing drug exposure in plasma. These observations are in good agreement with the outcomes of recent phase 2 trials with posaconazole and suggest that the efficacy models combined with the pharmacokinetic analysis employed here will be useful in predicting clinical outcomes of new drug candidates.
Collapse
|
49
|
A family cluster of Chagas disease detected through selective screening of blood donors: A case report and brief review. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2015; 26:157-61. [PMID: 26236358 PMCID: PMC4507842 DOI: 10.1155/2015/628981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chagas disease is rare in Canada, and is most frequently observed among individuals who have resided in Latin America. The disease can enter a prolonged asymptomatic phase during which infected individuals do not experience symptoms, thus hindering its diagnosis – particularly in nonendemic regions such as Canada. This article describes a cluster of cases of Chagas disease among a single family, which was discovered on screening after two affected members of the family donated blood. The current state of screening programs for Trypanosoma cruzi are discussed, and suggestions for future directions are included. Chagas disease (CD) is a protozoan infection caused by Trypanosoma cruzi, which is transmitted by triatomine insect vectors in parts of Latin America. In a nonendemic country, such as Canada, spread can still occur via vertical transmission, and infected blood or organ donations. The Canadian Blood Services and Héma-Québec have both implemented selective screening of blood donors for CD based on risk factors. In 2011, Héma-Québec identified two seropositive ‘at-risk’ Chilean siblings who had donated blood in Montreal, Quebec. They were referred to the JD MacLean Centre for Tropical Diseases (Montreal, Quebec) for confirmatory testing (T cruzi excreted-secreted antigen ELISA, polymerase chain reaction and/or radioimmunoprecipitation assay) and follow-up. Screening of the rest of the family revealed two other seropositive family members (the mother and sister). While their geographical history in Chile suggests vectorial transmission, this family cluster of CD raises the possibility of vertical transmission. Congenital infection should always be considered among CD-positive mothers and pregnant women. With blood donor screening, Canadian physicians will increasingly see patients with CD and should know how to manage them appropriately. In addition to the case presentation, the authors review the transmission, screening and clinical management of CD in a nonendemic context.
Collapse
|
50
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|