1
|
Correa-Macedo W, Dallmann-Sauer M, Orlova M, Manry J, Fava VM, Huong NT, Ba NN, Van Thuc N, Thai VH, Schurr E. Transcriptome immune-regulatory differences between leprosy patients and type 1 reaction patients, before onset of symptoms. PLoS Negl Trop Dis 2024; 18:e0011866. [PMID: 39680574 PMCID: PMC11684701 DOI: 10.1371/journal.pntd.0011866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/30/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Leprosy is a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. A major public health and clinical problem are leprosy reactions, which are inflammatory episodes that often contribute to nerve damage and disability. Type I reversal reactions (T1R) can occur after microbiological cure of leprosy and affect up to 50% of leprosy patients. Early intervention to prevent T1R and, hence, nerve damage, is a major focus of current leprosy control efforts. In a prospective study, we enrolled and collected samples from 32 leprosy patients before the onset of T1R. Whole blood aliquots were challenged with M. leprae sonicate or media and total RNA was extracted. After a three-year follow-up, the transcriptomic response was compared between cells from 22 patients who remained T1R-free and 10 patients who developed T1R during that period. Our analysis focused on differential transcript (i.e. isoform) expression and usage. Results showed that, at baseline, cells from T1R-destined and T1R-free subjects had no main difference in their transcripts expression and usage. However, the cells of T1R patients displayed a transcriptomic immune response to M. leprae antigens that was significantly different from the one of cells from leprosy patients who remained T1R-free. Transcripts with significantly higher upregulation in the T1R-destined group, compared to the cells from T1R-free patients, were enriched for pathways and GO terms involved in response to intracellular pathogens, apoptosis regulation and inflammatory processes. Similarly, transcript usage analysis pinpointed different transcript proportions in response to the in-vitro challenge of cells from T1R-destined patients. Hence, transcript usage in concert with transcript expression suggested a dysregulated inflammatory response including increased apoptosis regulation in the peripheral blood cells of T1R-destined patients before the onset of T1R symptoms. Combined, these results provided detailed insight into the pathogenesis of T1R.
Collapse
Affiliation(s)
- Wilian Correa-Macedo
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, McGill University, Montréal, Québec, Canada
| | - Monica Dallmann-Sauer
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, McGill University, Montréal, Québec, Canada
- Departments of Human Genetics and Medicine, Faculty of Medicine and Health Science, McGill University; Montreal, Québec, Canada
| | - Marianna Orlova
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, McGill University, Montréal, Québec, Canada
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Vinicius M. Fava
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, McGill University, Montréal, Québec, Canada
| | | | - Nguyen Ngoc Ba
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | | | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Erwin Schurr
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, McGill University, Montréal, Québec, Canada
- Departments of Human Genetics and Medicine, Faculty of Medicine and Health Science, McGill University; Montreal, Québec, Canada
| |
Collapse
|
2
|
Wallings RL, McFarland K, Staley HA, Neighbarger N, Schaake S, Brüggemann N, Zittel S, Usnich T, Klein C, Sammler EM, Tansey MG. The R1441C-Lrrk2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner in mice. Sci Transl Med 2024; 16:eadl1535. [PMID: 39504353 DOI: 10.1126/scitranslmed.adl1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/19/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Age is the greatest risk factor for many neurodegenerative diseases, yet immune system aging, a contributor to neurodegeneration, is understudied. Genetic variation in the LRRK2 gene affects risk for both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein is implicated in peripheral immune cell signaling, but the effects of an aging immune system on LRRK2 function remain unclear. We analyzed peritoneal macrophages from R1441C-Lrrk2 knock-in mice and observed a biphasic, age-dependent effect of the R1441C-Lrrk2 mutation on peritoneal macrophage function. We report increases in antigen presentation, anti-inflammatory cytokine production, lysosomal activity, and pathogen uptake in peritoneal macrophages from young (2- to 3-month-old) female R1441C-Lrrk2 mice. Conversely, macrophages from aged (18- to 21-month-old) female R1441C-Lrrk2 mice exhibited decreased antigen presentation after inflammatory insult, decreased lysosomal function, and pathogen uptake, with a concomitant increase in DNA fragmentation in the presence of pathogens. This immune cell exhaustion phenotype was not observed in male R1441C-Lrrk2 mice and was driven by increased LRRK2 protein kinase activity. This phenotype was also observed in human peripheral myeloid cells, with monocyte-derived macrophages from patients with PD who had either the R1441C- or Y1699C-LRRK2 mutation exhibiting decreased pathogen uptake and increased PDL1 expression, consistent with immune cell exhaustion. Our findings that LRRK2 mutations conferred an immunological advantage at a young age but could predispose the carrier to age-acquired immune cell exhaustion have implications for the therapeutic development of LRRK2 inhibitors.
Collapse
Affiliation(s)
- Rebecca L Wallings
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Karen McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Department of Neurology and Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Hannah A Staley
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
| | - Noelle Neighbarger
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Klein
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Esther M Sammler
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Neurology, School of Medicine, Ninewells Hospital, Ninewells Drive, Dundee DD1 9SY, UK
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurology and Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
3
|
Wallings R, McFarland K, Staley H, Neighbarger N, Schaake S, Brueggemann N, Zittel S, Usnich T, Klein C, Sammler E, Tansey MG. The R1441C-LRRK2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562063. [PMID: 37905053 PMCID: PMC10614788 DOI: 10.1101/2023.10.12.562063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Considering age is the greatest risk factor for many neurodegenerative diseases, aging, in particular aging of the immune system, is the most underappreciated and understudied contributing factor in the neurodegeneration field. Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein has been implicated in peripheral immune signaling, however, the effects of an aging immune system on LRRK2 function have been neglected to be considered. We demonstrate here that the R1441C mutation induces a hyper-responsive phenotype in macrophages from young female mice, characterized by increased effector functions, including stimulation-dependent antigen presentation, cytokine release, phagocytosis, and lysosomal function. This is followed by age-acquired immune cell exhaustion in a Lrrk2-kinase-dependent manner. Immune-exhausted macrophages exhibit suppressed antigen presentation and hypophagocytosis, which is also demonstrated in myeloid cells from R1441C and Y1699C-PD patients. Our novel findings that LRRK2 mutations confer immunological advantage at a young age but may predispose the carrier to age-acquired immune exhaustion have significant implications for LRRK2 biology and therapeutic development. Indeed, LRRK2 has become an appealing target in PD, but our findings suggest that more research is required to understand the cell-type specific consequences and optimal timing of LRRK2-targeting therapeutics.
Collapse
|
4
|
Gutierrez-Castañeda LD, Acosta CR, Bustos MA, García DK, Bohada DP, Rodríguez R, Guerrero MI. Single Nucleotide Variants in the TLR1, TLR2 and TLR6 Genes: A Case-Control Study in a Colombian Population. Trop Med Infect Dis 2023; 8:473. [PMID: 37888601 PMCID: PMC10610572 DOI: 10.3390/tropicalmed8100473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Single nucleotide variants in toll-like receptor genes play a crucial role in leprosy susceptibility or resistance. METHODS With an epidemiology case-control study, associations between SNVs rs5743618 in TLR1, rs5743708 in TLR2, and rs5743810 in TLR6 and overall susceptibility for leprosy were estimated in 114 cases and 456 controls. Following that, stratified analysis was performed. DNA was extracted from peripheral blood. Genotyping was performed using predesigned TaqMan probes. RESULTS The A/G genotype of rs5743810 behaved as a protective factor for the development of leprosy in the codominant (OR= 0.37; 95% CI = 016-0.86, p = 0.049) and over-dominant (OR = 0.38; 95% CI = 0.16-0.88, p = 0.019) inheritance models. The A/G and A/A genotypes behaved as a protective factor (OR = 0.39; 95% CI = 0.17-0.87, p = 0.016) in the dominant model. The SNVs rs5743618 and rs5743708 showed no association with any of the models. The CGG haplotype (rs5743618-rs5743708-rs5743810) behaved as a susceptibility factor for developing leprosy (OR = 1.86; 95% CI = 1.11-3.10, p = 0.019). The latter haplotype behaved as a susceptibility factor for leprosy development in women (OR = 2.39; 95% CI = 1.21-4.82, p = 0.013). CONCLUSIONS The identified variants in the genes encoding TLRs, specifically rs5743810 in TLR6 and CGG (rs5743618-rs5743708-rs5743810) haplotypes, may somehow explain leprosy susceptibility in the studied population in a leprosy endemic region in Colombia.
Collapse
Affiliation(s)
- Luz D. Gutierrez-Castañeda
- Grupo de Ciencias Básicas en Salud (CBS)-FUCS, Instituto de Investigación, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá 111411, Colombia
- Grupo Dermatología General, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá 111511, Colombia;
| | - Carmen R. Acosta
- Grupo Dermatología Tropical, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá 111511, Colombia;
| | - Mónica A. Bustos
- Grupo de Investigación en Enfermedades Parasitarias, Tropicales e Infecciosas (GIEPATI) Universidad de Pamplona, Pamplona 543058, Colombia; (M.A.B.); (D.P.B.); (R.R.)
| | - Diana K. García
- Grupo Dermatología General, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá 111511, Colombia;
| | - Diana P. Bohada
- Grupo de Investigación en Enfermedades Parasitarias, Tropicales e Infecciosas (GIEPATI) Universidad de Pamplona, Pamplona 543058, Colombia; (M.A.B.); (D.P.B.); (R.R.)
| | - Raúl Rodríguez
- Grupo de Investigación en Enfermedades Parasitarias, Tropicales e Infecciosas (GIEPATI) Universidad de Pamplona, Pamplona 543058, Colombia; (M.A.B.); (D.P.B.); (R.R.)
| | - Martha Inirida Guerrero
- Grupo Dermatología Tropical, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá 111511, Colombia;
| |
Collapse
|
5
|
de Andrade Rodrigues RS, Heise EFJ, Hartmann LF, Rocha GE, Olandoski M, de Araújo Stefani MM, Latini ACP, Soares CT, Belone A, Rosa PS, de Andrade Pontes MA, de Sá Gonçalves H, Cruz R, Penna MLF, Carvalho DR, Fava VM, Bührer-Sékula S, Penna GO, Moro CMC, Nievola JC, Mira MT. Prediction of the occurrence of leprosy reactions based on Bayesian networks. Front Med (Lausanne) 2023; 10:1233220. [PMID: 37564037 PMCID: PMC10411956 DOI: 10.3389/fmed.2023.1233220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Leprosy reactions (LR) are severe episodes of intense activation of the host inflammatory response of uncertain etiology, today the leading cause of permanent nerve damage in leprosy patients. Several genetic and non-genetic risk factors for LR have been described; however, there are limited attempts to combine this information to estimate the risk of a leprosy patient developing LR. Here we present an artificial intelligence (AI)-based system that can assess LR risk using clinical, demographic, and genetic data. Methods The study includes four datasets from different regions of Brazil, totalizing 1,450 leprosy patients followed prospectively for at least 2 years to assess the occurrence of LR. Data mining using WEKA software was performed following a two-step protocol to select the variables included in the AI system, based on Bayesian Networks, and developed using the NETICA software. Results Analysis of the complete database resulted in a system able to estimate LR risk with 82.7% accuracy, 79.3% sensitivity, and 86.2% specificity. When using only databases for which host genetic information associated with LR was included, the performance increased to 87.7% accuracy, 85.7% sensitivity, and 89.4% specificity. Conclusion We produced an easy-to-use, online, free-access system that identifies leprosy patients at risk of developing LR. Risk assessment of LR for individual patients may detect candidates for close monitoring, with a potentially positive impact on the prevention of permanent disabilities, the quality of life of the patients, and upon leprosy control programs.
Collapse
Affiliation(s)
- Rafael Saraiva de Andrade Rodrigues
- School of Medicine and Life Sciences, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, Paraná, Brazil
| | - Eduardo Ferreira José Heise
- School of Medicine and Life Sciences, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, Paraná, Brazil
| | | | | | - Marcia Olandoski
- School of Medicine and Life Sciences, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, Paraná, Brazil
| | | | | | | | - Andrea Belone
- Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | | | | | | | - Rossilene Cruz
- Tropical Dermatology and Venerology Alfredo da Matta Foundation, Amazonas, Brazil
| | | | | | - Vinicius Medeiros Fava
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, and The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, QC, Canada
| | - Samira Bührer-Sékula
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiania, Brazil
| | - Gerson Oliveira Penna
- Tropical Medicine Centre, University of Brasília, and Fiocruz School of Government – Brasilia, Brasília, Brazil
| | | | | | - Marcelo Távora Mira
- School of Medicine and Life Sciences, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná – PUCPR, Curitiba, Paraná, Brazil
- Pharmacy Program, School of Health and Biosciences, PUCPR, Curitiba, Paraná, Brazil
| |
Collapse
|
6
|
Tsafaras G, Baekelandt V. The role of LRRK2 in the periphery: link with Parkinson's disease and inflammatory diseases. Neurobiol Dis 2022; 172:105806. [PMID: 35781002 DOI: 10.1016/j.nbd.2022.105806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is currently considered a multisystemic disorder rather than a pure brain disease, in line with the multiple hit hypothesis from Braak. However, despite increasing evidence that the pathology might originate in the periphery, multiple unknown aspects and contradictory data on the pathological processes taking place in the periphery jeopardize the interpretation and therapeutic targeting of PD. Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene have been widely linked with familial and sporadic PD cases. However, the actual role of LRRK2 in PD pathophysiology is far from understood. There is evidence that LRRK2 may be involved in alpha-synuclein (α-synuclein) pathology and immune cell regulation, but it has also been associated with inflammatory diseases such as inflammatory bowel disease, tuberculosis, leprosy, and several other bacterial infections. In this review, we focus on the different roles of LRRK2 in the periphery. More specifically, we discuss the involvement of LRRK2 in the propagation of α-synuclein pathology and its regulatory role in peripheral inflammation. A deeper understanding of the multidimensional functions of LRRK2 will pave the way for more accurate characterization of PD pathophysiology and its association with other inflammatory diseases.
Collapse
Affiliation(s)
- George Tsafaras
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Antas PRZ, Santos DO. Editorial: The Role of Biomarkers in the Immunopathology and Diagnosis of Immune Exacerbations in Leprosy-New Frontiers to Manage This Neglected Disease. Front Med (Lausanne) 2022; 9:878781. [PMID: 35402438 PMCID: PMC8989726 DOI: 10.3389/fmed.2022.878781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paulo R Z Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Dilvani O Santos
- Programa de Pós-graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Coriolano CRF, Freitas Neto WAD, Penna GO, Sanchez MN. [Factors associated with timing of lepra reactions in a cohort from 2008 to 2016 in Rondônia, Amazon Region, Brazil]. CAD SAUDE PUBLICA 2021; 37:e00045321. [PMID: 34932680 DOI: 10.1590/0102-311x00045321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
The clinical management of leprosy patients poses a specific challenge, namely lepra reactions. This non-concurrent cohort study aimed to analyze the timing of the first lepra reaction during and after polychemotherapy (PCT) and associated factors. A total of 1,621 patients were assessed (PB = 8.9% and MB = 91.1%) from 2008 to 2016, reported to the System of Reaction States in Leprosy (SisReação/RO) database. Reactions occurred predominantly during PCT (997; 61.5%) and less frequently only after PCT (624; 38.5%). Earliness of the reaction after diagnosis was analyzed with Kaplan-Meier survival curves, with comparison between the PB and MB groups using the Mantel-Cox log-rank test. Univariate and multivariate Cox regression models were constructed to identify factors associated with occurrence of lepra reactions (hazard ratio) and the corresponding 95%CI. The multivariate model included variables with p-values < 0.20 in the univariate analysis. PB patients developed reactions earlier than MB patients. Other characteristics were associated with earlier reactions: female gender and negative smear microscopy. In the aggregate period (during and after PCT), PB presented 24% higher risk of lepra reaction than MB patients, and negative smear microscopy increased this risk by 40% compared to positive smear microscopy. During and after PCT, PB presented 1.3 and 1.6 times the risk, respectively, of reactions when compared to MB patients. We thus recommend prioritizing surveillance of lepra reactions during and after PCT as measures to prevent physical disabilities and to improve quality of life for persons with leprosy.
Collapse
Affiliation(s)
| | | | - Gerson Oliveira Penna
- Universidade de Brasília, Brasília, Brasil.,Escola de Governo, Fundação Oswaldo Cruz, Brasília, Brasil
| | | |
Collapse
|
9
|
Long SY, Wang L, Jiang HQ, Shi Y, Zhang WY, Xiong JS, Sun PW, Chen YQ, Mei YM, Pan C, Ge G, Wang ZZ, Wu ZW, Yu MW, Wang HS. Single-Nucleotide Polymorphisms Related to Leprosy Risk and Clinical Phenotypes Among Chinese Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:813-821. [PMID: 34285550 PMCID: PMC8285297 DOI: 10.2147/pgpm.s314861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
Background Genome-wide association studies (GWASs) have identified some immune-related single-nucleotide polymorphisms (SNPs) to be associated with leprosy. Methods This study investigated the association of 17 SNPs based on previously published GWAS studies with susceptibility to leprosy, different polar forms and immune states of leprosy in a case–control study from southwestern China, including 1344 leprosy patients and 2732 household contacts (HHCs) (1908 relatives and 824 genetically unrelated contact individuals). The differences of allele distributions were analyzed using chi-squared analysis and logistic regression. Results After adjusting covariate factors, rs780668 and rs3764147 polymorphisms influenced susceptibilities to genetically related or unrelated leprosy contact individuals. rs142179458 was associated with onset early cases, rs73058713 A allele and rs3764147 A allele increased the risk of reversal reaction, while rs3764147 G allele had higher risk to present lepromatous leprosy and erythema nodosum leprosum. Conclusion Our results demonstrated that genetic variants in the LACC1, HIF1A, SLC29A3 and CDH18 genes were positively correlated with the occurrence of leprosy and leprosy clinical phenotypes, providing new insights into the immunogenetics of the disease.
Collapse
Affiliation(s)
- Si-Yu Long
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Le Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China
| | - Hai-Qin Jiang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Ying Shi
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Wen-Yue Zhang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Jing-Shu Xiong
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Pei-Wen Sun
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China
| | - Yan-Qing Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - You-Ming Mei
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Chun Pan
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Gai Ge
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Zhen-Zhen Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Zi-Wei Wu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Mei-Wen Yu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China
| | - Hong-Sheng Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, People's Republic of China.,National Centre for Leprosy Control, China CDC, Nanjing, People's Republic of China.,Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
van Hooij A, Geluk A. In search of biomarkers for leprosy by unraveling the host immune response to Mycobacterium leprae. Immunol Rev 2021; 301:175-192. [PMID: 33709405 PMCID: PMC8251784 DOI: 10.1111/imr.12966] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022]
Abstract
Mycobacterium leprae, the causative agent of leprosy, is still actively transmitted in endemic areas reflected by the fairly stable number of new cases detected each year. Recognizing the signs and symptoms of leprosy is challenging, especially at an early stage. Improved diagnostic tools, based on sensitive and specific biomarkers, that facilitate diagnosis of leprosy are therefore urgently needed. In this review, we address the challenges that leprosy biomarker research is facing by reviewing cell types reported to be involved in host immunity to M leprae. These cell types can be associated with different possible fates of M leprae infection being either protective immunity, or pathogenic immune responses inducing nerve damage. Unraveling these responses will facilitate the search for biomarkers. Implications for further studies to disentangle the complex interplay between host responses that lead to leprosy disease are discussed, providing leads for the identification of new biomarkers to improve leprosy diagnostics.
Collapse
Affiliation(s)
- Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Dos Santos EC, Silvestre MDPSCA, Paz JLP, Machado RLD, Lima LNGC. Study of TNF-α, IFN-γ, TGF-β, IL-6, and IL-10 Gene Polymorphism in Individuals from the Leprosy-Endemic Area in the Brazilian Amazon. J Interferon Cytokine Res 2021; 41:125-131. [PMID: 33656915 DOI: 10.1089/jir.2018.0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed at verifying the relationship between the polymorphisms of the cytokines tumor necrosis factor-alpha (TNF-α) -308 G → A (rs1800629); interferon gamma (IFN-γ) +874 T → A (rs2430561); transforming growth factor-beta (TGF-β) códon 10 (rs1982073) and códon 25 (rs1800471); interleukin (IL)-6 - 174 G → C (rs180079) and IL-10 - 1082 A→T (rs1800896); -819 C → T (rs1800871); -592 A→C (rs1800872); and leprosy. Blood samples were analyzed from 106 individuals, of whom 24 were paucibacillary (PB), 28 were multibacillary (MB), and 54 were patient contacts. Analysis of cytokine polymorphisms was typified by the polymerase chain reaction technique. For TGF-β +869 T → C and +915 G→C, a tendency to associate the presence of the C allele at codon 10 with leprosy was demonstrated, with the T allele being most frequently found in the CCOSI (P = 0.056). For the polymorphisms IL-10 - 1082 A→T, -819 C→T, and -592 A→C, we found an association of the GCC/GCC genotype with the susceptibility to the disease and the A allele at position 1082 with the leprosy protection. Greater predominance was found of ACC/ATA (31.3%) and GCC/ATA (37.5%) (P = 0.03) and the A allele at position -1082 (76.85%) (P = 0.043) in the CCOSI groups, whereas the GCC/GCC was found in the MB group (22.2%) (P = 0.05). For the other cytokines's single-nucleotide polymorphisms, there were no associations with susceptibility to leprosy. These results are limited by sample size, may not be conclusive, and will need further confirmation in a larger cohort.
Collapse
Affiliation(s)
- Everaldina Cordeiro Dos Santos
- Bacteriology Section of the Evandro Chagas Institute, Ministry of Health, Ananindeua, Brasil
- Postgraduate Program in Epidemiology and Health Surveillance of the Evandro Chagas Institute, Ananindeua, Brasil
| | | | - Jasna Letícia Pinto Paz
- Postgraduate Program in Parasitic Biology in the Amazon, State University of Pará, Belém, Brasil
| | | | - Luana Nepomuceno Gondim Costa Lima
- Bacteriology Section of the Evandro Chagas Institute, Ministry of Health, Ananindeua, Brasil
- Postgraduate Program in Parasitic Biology in the Amazon, State University of Pará, Belém, Brasil
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Ocular manifestations of leprosy do occur despite advances in the areas of leprosy research. Understanding the nuances in the domain shall guide the clinician for effective patient-centered care. RECENT FINDINGS Despite the existence of microbiologic cure for leprosy, ocular manifestations of this disease do occur. Advances in genetic and genomic studies have better characterized the interaction that the bacteria has with the host. The ocular features vary with the spectrum of the disease. Its careful correlation can help to predict the bacillary load of the patient. Investigations are particularly relevant in multibacillary cases. The WHO suggests a treatment duration longer than the 2 years in ocular involvement. SUMMARY The isolation of lepra bacilli from the iris biopsy in negative skin smear patients and multidrug therapy completion highlights the potential role of bactericidal agents in the planned intraocular treatment. Lepra reactions need careful titration of oral steroids and appropriate antibacterial agents. Advances in phacoemulsification with in the bag implantation of intraocular lenses is a game changer in the management of the most common cause of blindness of leprosy. Advances in vaccine research in leprosy are promising.
Collapse
|
13
|
dos Santos EC, Machado RLD, Paz JL, Silvestre MDPSCA, Lima KVB, Lima LNGC. Study of TNF-α, IFN-γ, TGF-β, IL-6, and IL-10 gene polymorphism in individuals from the leprosy endemic area in the Brazilian Amazon. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Bhat RM, Vaidya TP. What is New in the Pathogenesis and Management of Erythema Nodosum Leprosum. Indian Dermatol Online J 2020; 11:482-492. [PMID: 32832433 PMCID: PMC7413435 DOI: 10.4103/idoj.idoj_561_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 01/23/2023] Open
Abstract
Erythema nodosum leprosum (ENL) is a manifestation of type II lepra reaction, seen in lepromatous or borderline lepromatous leprosy. Although it is a common reaction encountered in clinical practice, there are an increasingly large number of newer updates in the pathophysiology and management of this condition. The treatment options have expanded far beyond just thalidomide and steroids and now extends to TNF-α inhibitors, thalidomide analogs, tenidap, cyclosporine A, plasma exchange, and even IVIG amongst others. These updates and the current knowledge of ENL are summarized in this review.
Collapse
Affiliation(s)
- Ramesh M Bhat
- Department of Dermatology, Father Muller Medical College, Mangalore, Karnataka, India
| | - Tanvi P Vaidya
- Department of Dermatology, Father Muller Medical College, Mangalore, Karnataka, India
| |
Collapse
|
15
|
Mi Z, Liu H, Zhang F. Advances in the Immunology and Genetics of Leprosy. Front Immunol 2020; 11:567. [PMID: 32373110 PMCID: PMC7176874 DOI: 10.3389/fimmu.2020.00567] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Leprosy, a disease caused by the intracellular parasite Mycobacterium leprae or Mycobacterium lepromatosis, has affected humans for more than 4,000 years and is a stigmatized disease even now. Since clinical manifestations of leprosy patients present as an immune-related spectrum, leprosy is regarded as an ideal model for studying the interaction between host immune response and infection; in fact, the landscape of leprosy immune responses has been extensively investigated. Meanwhile, leprosy is to some extent a genetic disease because the genetic factors of hosts have long been considered major contributors to this disease. Many immune-related genes have been discovered to be associated with leprosy. However, immunological and genetic findings have rarely been studied and discussed together, and as a result, the effects of gene variants on leprosy immune responses and the molecular mechanisms of leprosy pathogenesis are largely unknown. In this context, we summarized advances in both the immunology and genetics of leprosy and discussed the perspective of the combination of immunological and genetic approaches in studying the molecular mechanism of leprosy pathogenesis. In our opinion, the integrating of immunological and genetic approaches in the future may be promising to elucidate the molecular mechanism of leprosy onset and how leprosy develops into different types of leprosy.
Collapse
Affiliation(s)
- Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
Abstract
Buruli ulcer, the third most common mycobacterial disease worldwide, is caused by Mycobacterium ulcerans and characterized by devastating necrotizing skin lesions. Susceptibility to Buruli ulcer is thought to depend on host genetics, but very few genetic studies have been performed. The identification of a microdeletion on chromosome 8 in a familial form of severe Buruli ulcer suggested a monogenic basis of susceptibility. The role of common host genetic variants in Buruli ulcer development has been investigated in only three candidate-gene studies targeting genes involved in mycobacterial diseases. A recent genome-wide association study suggested a probable role for long non-coding RNAs and strengthened the contribution of autophagy as a major defense mechanism against mycobacteria. In this review, we summarize the history, epidemiological and clinical aspects of Buruli ulcer, focusing particularly on genetic findings relating to susceptibility to this disease. Finally, we discuss exciting new genetic avenues arising, in particular, from studies of mouse models, and the need for different disciplines to work together, to benefit from the extensive work on other mycobacterial diseases, mostly tuberculosis and leprosy. We are convinced that such pooling of effort will lead to the development of efficient novel strategies for combatting Buruli ulcer.
Collapse
|
17
|
Fairley JK, Ferreira JA, de Oliveira ALG, de Filippis T, de Faria Grossi MA, Chaves LP, Caldeira LN, Dos Santos PS, Costa RR, Diniz MC, Duarte CS, Bomjardim Pôrto LA, Suchdev PS, Negrão-Corrêa DA, do Carmo Magalhães F, Peixoto Moreira JM, de Melo Freire Júnior A, Cerqueira MC, Kitron U, Lyon S. The Burden of Helminth Coinfections and Micronutrient Deficiencies in Patients with and without Leprosy Reactions: A Pilot Study in Minas Gerais, Brazil. Am J Trop Med Hyg 2020; 101:1058-1065. [PMID: 31549606 DOI: 10.4269/ajtmh.18-0502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Leprosy reactions are immune-mediated complications occurring in up to 50% of patients. The immune consequences of helminth infections and micronutrient deficiencies suggest a potential role in type 1 reactions (T1R) or type 2 reactions (T2R). We conducted a case-control study in Minas Gerais, Brazil, to evaluate whether comorbidities and other factors are associated with reactions in patients with multibacillary leprosy. Stool and serum were tested for helminth infections. Deficiencies of vitamin A, D, and iron were measured using serum retinol, 25-hydroxyvitamin D, and ferritin, respectively. Logistic regression models identified associations between reactions and helminth infections, micronutrient deficiencies, and other variables. Seventy-three patients were enrolled, 24 (33%) with T1R, 21 (29%) with T2R, 8 (15%) with mixed T1R/T2R, and 20 (27%) without reactions. Evidence of helminth infections were found in 11 participants (15%) and included IgG4 reactivity against Schistosoma mansoni, Strongyloides, and Ascaris antigens. Thirty-eight (52%) had vitamin D deficiency, eight (11%) had vitamin A insufficiency, 21 (29%) had anemia, and one (1.4%) had iron deficiency. Multivariable logistic regression showed no statistically significant associations between helminth coinfections and total reactions (adjusted odds ratios [aOR]: 1.36, 95% CI: 0.22, 8.33), T1R (aOR: 0.85, 95% CI: 0.17, 4.17), or T2R (aOR: 2.41, 95% CI: 0.29, 20.0). Vitamin D deficiency and vitamin A insufficiency were also not statistically associated with reactions. However, vitamin deficiencies and helminth infections were prevalent in these patients, suggesting a potential role for additional treatment interventions. Studying reactions prospectively may further clarify the role of comorbidities in the clinical presentation of leprosy.
Collapse
Affiliation(s)
- Jessica K Fairley
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jose A Ferreira
- Faculdade Saúde e Ecologia Humana (FASEH), Vespasiano, Brazil
| | | | | | | | | | | | | | | | | | | | | | - Parminder S Suchdev
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | | | | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Sandra Lyon
- Faculdade Saúde e Ecologia Humana (FASEH), Vespasiano, Brazil
| |
Collapse
|
18
|
LRRK2 regulation of immune-pathways and inflammatory disease. Biochem Soc Trans 2020; 47:1581-1595. [PMID: 31769472 PMCID: PMC6925522 DOI: 10.1042/bst20180463] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene are associated with familial and sporadic cases of Parkinson's disease but are also found in immune-related disorders such as inflammatory bowel disease, tuberculosis and leprosy. LRRK2 is highly expressed in immune cells and has been functionally linked to pathways pertinent to immune cell function, such as cytokine release, autophagy and phagocytosis. Here, we examine the current understanding of the role of LRRK2 kinase activity in pathway regulation in immune cells, drawing upon data from multiple diseases associated with LRRK2 to highlight the pleiotropic effects of LRRK2 in different cell types. We discuss the role of the bona fide LRRK2 substrate, Rab GTPases, in LRRK2 pathway regulation as well as downstream events in the autophagy and inflammatory pathways.
Collapse
|
19
|
Pleiotropic effects for Parkin and LRRK2 in leprosy type-1 reactions and Parkinson's disease. Proc Natl Acad Sci U S A 2019; 116:15616-15624. [PMID: 31308240 PMCID: PMC6681704 DOI: 10.1073/pnas.1901805116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type-1 reactions (T1R) are pathological immune responses in leprosy and a frequent cause of peripheral nerve damage. Employing a candidate gene approach combined with deep resequencing, we identified amino acid mutations in the E3 ligase Parkin and the polyfunctional kinase LRRK2 that were associated with T1R. This finding directly linked both proteins with the extent of the immune response in an infectious disease. Moreover, amino acids associated with T1R mutations were significantly enriched for mutations found in patients suffering from Parkinson’s disease (PD). These findings confirm Parkin and LRRK2 as 2 key inflammatory regulators and suggest that T1R and PD share overlapping pathways of pathogenesis. Type-1 reactions (T1R) are pathological inflammatory episodes and main contributors to nerve damage in leprosy. Here, we evaluate the genewise enrichment of rare protein-altering variants in 7 genes where common variants were previously associated with T1R. We selected 474 Vietnamese leprosy patients of which 237 were T1R-affected and 237 were T1R-free matched controls. Genewise enrichment of nonsynonymous variants was tested with both kernel-based (sequence kernel association test [SKAT]) and burden methods. Of the 7 genes tested 2 showed statistical evidence of association with T1R. For the LRRK2 gene an enrichment of nonsynonymous variants was observed in T1R-free controls (PSKAT-O = 1.6 × 10−4). This genewise association was driven almost entirely by the gain-of-function variant R1628P (P = 0.004; odds ratio = 0.29). The second genewise association was found for the Parkin coding gene PRKN (formerly PARK2) where 7 rare variants were enriched in T1R-affected cases (PSKAT-O = 7.4 × 10−5). Mutations in both PRKN and LRRK2 are known causes of Parkinson’s disease (PD). Hence, we evaluated to what extent such rare amino acid changes observed in T1R are shared with PD. We observed that amino acids in Parkin targeted by nonsynonymous T1R-risk mutations were also enriched for mutations implicated in PD (P = 1.5 × 10−4). Hence, neuroinflammation in PD and peripheral nerve damage due to inflammation in T1R share overlapping genetic control of pathogenicity.
Collapse
|
20
|
do Socorro Silva Costa P, Woycinck Kowalski T, Rosa Fraga L, Furtado Feira M, Nazário AP, MarceloAranha Camargo L, Iop de Oliveira Caldoncelli D, Irismar da Silva Silveira M, Hutz MH, Schüler-Faccini L, Sales Luiz Vianna F. NR3C1, ABCB1, TNF and CYP2C19 polymorphisms association with the response to the treatment of erythema nodosum leprosum. Pharmacogenomics 2019; 20:503-516. [PMID: 31124417 DOI: 10.2217/pgs-2018-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To evaluate the effects of gene polymorphisms in the treatment of erythema nodosum leprosum with prednisone/thalidomide. Patients & methods: A total of 152 patients from different regions of Brazil were included. Generalized estimating equation was used to evaluate the influence of polymorphisms and haplotypes on the drug dose variation throughout the treatment. Results: An association between the genotype tuberculoid of polymorphism ABCB1 3435C>T (rs1045642; p = 0.02) and prednisone dose was found in the recessive model. An association between the haplotypes 1031T/-863C/-857C/-308A/-238G (p = 0.006) and 1031T/-863C/-857T/-308A/-238G (p = 0.040) of the TNF gene and the CYP2C19*2 polymorphism were also identified, in relation to thalidomide dosage variation over the course of treatment. Conclusion: This work presents the first pharmacogenetic report of association between gene polymorphisms and erythema nodosum leprosum treatment with prednisone/thalidomide.
Collapse
Affiliation(s)
- Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics & Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Center of Social Sciences, Health & Technology, Universidade Federal do Maranhão, Imperatriz, MA, Brazil
| | - Thayne Woycinck Kowalski
- Postgraduate Program in Genetics & Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Teratogen Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lucas Rosa Fraga
- INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Teratogen Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mariléa Furtado Feira
- INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Center of Experimental Research, Genomics Medicine Laboratory & Laboratory of Research in Bioethics & Ethics in Research (LAPEBEC), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Paula Nazário
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Luis MarceloAranha Camargo
- Institute of Biomedical Sciences-5, Universidade de São Paulo, Monte Negro, Rondônia, Brazil.,Center for Research in Tropical Medicine, Porto Velho, Rondônia, Brazil.,National Institute of Science and Technology-EpiAmo, Rondônia, Brazil.,Department of Medicine, Centro Universitário São Lucas, Porto Velho, Rondônia, Brazil
| | | | | | - Mara Helena Hutz
- Postgraduate Program in Genetics & Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lavínia Schüler-Faccini
- Postgraduate Program in Genetics & Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Teratogen Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics & Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,INAGEMP, Instituto Nacional de Genética Médica Populacional, Porto Alegre, RS, Brazil.,Teratogen Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Center of Experimental Research, Genomics Medicine Laboratory & Laboratory of Research in Bioethics & Ethics in Research (LAPEBEC), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Dallmann-Sauer M, Correa-Macedo W, Schurr E. Human genetics of mycobacterial disease. Mamm Genome 2018; 29:523-538. [PMID: 30116885 PMCID: PMC6132723 DOI: 10.1007/s00335-018-9765-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
Abstract
Mycobacterial diseases are caused by members of the genus Mycobacterium, acid-fast bacteria characterized by the presence of mycolic acids within their cell walls. Claiming almost 2 million lives every year, tuberculosis (TB) is the most common mycobacterial disease and is caused by infection with M. tuberculosis and, in rare cases, by M. bovis or M. africanum. The second and third most common mycobacterial diseases are leprosy and buruli ulcer (BU), respectively. Both diseases affect the skin and can lead to permanent sequelae and deformities. Leprosy is caused by the uncultivable M. leprae while the etiological agent of BU is the environmental bacterium M. ulcerans. After exposure to these mycobacterial species, a majority of individuals will not progress to clinical disease and, among those who do, inter-individual variability in disease manifestation and outcome can be observed. Susceptibility to mycobacterial diseases carries a human genetic component and intense efforts have been applied over the past decades to decipher the exact nature of the genetic factors controlling disease susceptibility. While for BU this search was mostly conducted on the basis of candidate genes association studies, genome-wide approaches have been widely applied for TB and leprosy. In this review, we summarize some of the findings achieved by genome-wide linkage, association and transcriptome analyses in TB disease and leprosy and the recent genetic findings for BU susceptibility.
Collapse
Affiliation(s)
- Monica Dallmann-Sauer
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada. .,The McGill International TB Centre, McGill University, Montreal, QC, Canada. .,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Cambri G, Mira MT. Genetic Susceptibility to Leprosy-From Classic Immune-Related Candidate Genes to Hypothesis-Free, Whole Genome Approaches. Front Immunol 2018; 9:1674. [PMID: 30079069 PMCID: PMC6062607 DOI: 10.3389/fimmu.2018.01674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/06/2018] [Indexed: 01/15/2023] Open
Abstract
Genetics plays a crucial role in controlling susceptibility to infectious diseases by modulating the interplay between humans and pathogens. This is particularly evident in leprosy, since the etiological agent, Mycobacterium leprae, displays semiclonal characteristics not compatible with the wide spectrum of disease phenotypes. Over the past decades, genetic studies have unraveled several gene variants as risk factors for leprosy per se, disease clinical forms and the occurrence of leprosy reactions. As expected, several of these genes are immune-related; yet, hypothesis-free approaches have led to genes not classically linked to immune response. The PARK2, originally described as a Parkinson's disease gene, illustrates the case: Parkin-the protein coded by PARK2-was defined as an important player regulating innate and adaptive immune responses only years after its description as a leprosy susceptibility gene. Interestingly, even with the use of powerful hypothesis-free study designs such as genome-wide association studies, most of the major gene effect controlling leprosy susceptibility remains elusive. One hypothesis to explain this "hidden heritability" is that rare variants not captured by classic association studies are of critical importance. To address this question, massively parallel sequencing of large segments of the human genome-even whole exomes/genomes-is an alternative to properly identify rare, disease-causing mutations. These mutations may then be investigated through sophisticated approaches such as cell reprogramming and genome editing applied to create in vitro models for functional leprosy studies.
Collapse
Affiliation(s)
- Geison Cambri
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Marcelo Távora Mira
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
23
|
Costa PDSS, Fraga LR, Kowalski TW, Daxbacher ELR, Schuler-Faccini L, Vianna FSL. Erythema Nodosum Leprosum: Update and challenges on the treatment of a neglected condition. Acta Trop 2018; 183:134-141. [PMID: 29474830 DOI: 10.1016/j.actatropica.2018.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 01/25/2023]
Abstract
Erythema Nodosum Leprosum (ENL) occurs due to the immunological complication of multibacillary leprosy and is characterized by painful nodules and systemic compromising. It is usually recurrent and/or chronic and has both physical and economic impact on the patient, being a very important cause of disability. In addition, ENL is a major health problem in countries where leprosy is endemic. Therefore, adequate control of this condition is important. The management of ENL aims to control acute inflammation and neuritis and prevent the onset of new episodes. However, all currently available treatment modalities have one or two drawbacks and are not effective for all patients. Corticosteroid is the anti-inflammatory of choice in ENL but may cause dependence, especially for chronic patients. Thalidomide has a rapid action but its use is limited due the teratogenicity and neurotoxicity. Clofazimine and pentoxifylline have slow action and have important adverse effects. Finally, there is no pattern or guidelines for treating these patients, becoming more difficult to evaluate and to control this condition. This review aims to show the main drugs used in the treatment of ENL and the challenges in the management of the reaction.
Collapse
|
24
|
Geluk A. Correlates of immune exacerbations in leprosy. Semin Immunol 2018; 39:111-118. [PMID: 29950273 DOI: 10.1016/j.smim.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/13/2023]
Abstract
Leprosy is still a considerable health threat in pockets of several low and middle income countries worldwide where intense transmission is witnessed, and often results in irreversible disabilities and deformities due to delayed- or misdiagnosis. Early detection of leprosy represents a substantial hurdle in present-day leprosy health care. The dearth of timely diagnosis has, however, particularly severe consequences in the case of inflammatory episodes, designated leprosy reactions, which represent the major cause of leprosy-associated irreversible neuropathy. There is currently no accurate, routine diagnostic test to reliably detect leprosy reactions, or to predict which patients will develop these immunological exacerbations. Identification of host biomarkers for leprosy reactions, particularly if correlating with early onset prior to development of clinical symptoms, will allow timely interventions that contribute to decreased morbidity. Development of a point-of-care (POC) test based on such correlates would be a definite game changer in leprosy health care. In this review, proteomic-, transcriptomic and metabolomic research strategies aiming at identification of host biomarker-based correlates of leprosy reactions are discussed, next to external factors associated with occurrence of these episodes. The vast diversity in research strategies combined with the variability in patient- and control cohorts argues for harmonisation of biomarker discovery studies with geographically overarching study sites. This will improve identification of specific correlates associated with risk of these damaging inflammatory episodes in leprosy and subsequent application to rapid field tests.
Collapse
Affiliation(s)
- Annemieke Geluk
- Dept. of Infectious Diseases, LUMC, PO Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
25
|
Sales-Marques C, Cardoso CC, Alvarado-Arnez LE, Illaramendi X, Sales AM, Hacker MDA, Barbosa MGDM, Nery JADC, Pinheiro RO, Sarno EN, Pacheco AG, Moraes MO. Genetic polymorphisms of the IL6 and NOD2 genes are risk factors for inflammatory reactions in leprosy. PLoS Negl Trop Dis 2017; 11:e0005754. [PMID: 28715406 PMCID: PMC5531687 DOI: 10.1371/journal.pntd.0005754] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 07/27/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023] Open
Abstract
The pathways that trigger exacerbated immune reactions in leprosy could be determined by genetic variations. Here, in a prospective approach, both genetic and non-genetic variables influencing the amount of time before the development of reactional episodes were studied using Kaplan-Meier survival curves, and the genetic effect was estimated by the Cox proportional-hazards regression model. In a sample including 447 leprosy patients, we confirmed that gender (male), and high bacillary clinical forms are risk factors for leprosy reactions. From the 15 single nucleotide polymorphisms (SNPs) at the 8 candidate genes genotyped (TNF/LTA, IFNG, IL10, TLR1, NOD2, SOD2, and IL6) we observed statistically different survival curves for rs751271 at the NOD2 and rs2069845 at the IL6 genes (log-rank p-values = 0.002 and 0.023, respectively), suggesting an influence on the amount of time before developing leprosy reactions. Cox models showed associations between the SNPs rs751271 at NOD2 and rs2069845 at IL6 with leprosy reactions (HRGT = 0.45, p = 0.002; HRAG = 1.88, p = 0.0008, respectively). Finally, IL-6 and IFN-γ levels were confirmed as high, while IL-10 titers were low in the sera of reactional patients. Rs751271-GT genotype-bearing individuals correlated (p = 0.05) with lower levels of IL-6 in sera samples, corroborating the genetic results. Although the experimental size may be considered a limitation of the study, the findings confirm the association of classical variables such as sex and clinical forms with leprosy, demonstrating the consistency of the results. From the results, we conclude that SNPs at the NOD2 and IL6 genes are associated with leprosy reactions as an outcome. NOD2 also has a clear functional pro-inflammatory link that is coherent with the exacerbated responses observed in these patients.
Collapse
Affiliation(s)
| | | | | | - Ximena Illaramendi
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Anna Maria Sales
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
26
|
Santana NDL, Rêgo JL, Oliveira JM, Almeida LFD, Braz M, Machado LMM, Machado PRL, Castellucci LC. Polymorphisms in genes TLR1, 2 and 4 are associated with differential cytokine and chemokine serum production in patients with leprosy. Mem Inst Oswaldo Cruz 2017; 112:260-268. [PMID: 28327786 PMCID: PMC5354609 DOI: 10.1590/0074-02760160366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/23/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Leprosy or hansen's disease is a spectral disease whose clinical forms mostly depends on host's immune and genetic factors. Different Toll-like receptors (TLR) variants have been described associated with leprosy, but with some lack of replication across different populations. OBJECTIVES To evaluate the role of polymorphisms in genes TLR1, TLR2 and TLR4 and susceptibility to leprosy in a genetic case control study; to verify the association between genotypes of these markers and the immunological profile in the serum of patients with leprosy. METHODS Pre-designed TaqMan® assays were used to genotype markers at TLR1 (rs4833095, rs5743551), TLR2 (rs7656411, rs3804099) and TLR4 (rs1927914, rs1927911). A panel of cytokines and chemokines was accessed by enzime-linked immunosorbent assay (ELISA) test in the serum of a subgroup of patients with and without leprosy reactions. FINDINGS Our results show an association between the T allele of rs3804099 at the TLR2 gene and increased risk for leprosy per se [Odds ratio (OR) = 1.296, p = 0,022]. In addition, evaluating the association between different genotypes of the TLR1, 2 and 4 markers and cytokine/chemokine serological levels, IL-17 appears as an immunological marker regulated by the polymorphism of the three TLR genes evaluated, whereas different TLR1 genotypes were associated with differential production of IL-12p40 and MCP-1(CCL2). Furthermore, other relevant serum markers such as CXCL-10 and IL-6 seemed to be regulated by TLR2 variants and IL-1β was related to TLR4 genotypes. MAIN CONCLUSIONS All together our data points that the tested TLR markers may have a regulatory role in the immunity against Mycobacterium leprae, by driving the host's production of key cytokines and chemokines involved in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Nadja de Lima Santana
- Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | - Jamile Leão Rêgo
- Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | - Joyce Moura Oliveira
- Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Serviço de Imunologia, Salvador, BA, Brasil
| | - Lucas Frederico de Almeida
- Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Serviço de Imunologia, Salvador, BA, Brasil
| | - Marcos Braz
- Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | | | - Paulo Roberto Lima Machado
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Salvador, BA, Brasil.,Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | - Léa Cristina Castellucci
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Salvador, BA, Brasil.,Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Serviço de Imunologia, Salvador, BA, Brasil.,Universidade Federal da Bahia, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| |
Collapse
|
27
|
Fava VM, Manry J, Cobat A, Orlova M, Van Thuc N, Moraes MO, Sales-Marques C, Stefani MMA, Latini ACP, Belone AF, Thai VH, Abel L, Alcaïs A, Schurr E. A genome wide association study identifies a lncRna as risk factor for pathological inflammatory responses in leprosy. PLoS Genet 2017; 13:e1006637. [PMID: 28222097 PMCID: PMC5340414 DOI: 10.1371/journal.pgen.1006637] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/07/2017] [Accepted: 02/14/2017] [Indexed: 01/23/2023] Open
Abstract
Leprosy Type-1 Reactions (T1Rs) are pathological inflammatory responses that afflict a sub-group of leprosy patients and result in peripheral nerve damage. Here, we employed a family-based GWAS in 221 families with 229 T1R-affect offspring with stepwise replication to identify risk factors for T1R. We discovered, replicated and validated T1R-specific associations with SNPs located in chromosome region 10p21.2. Combined analysis across the three independent samples resulted in strong evidence of association of rs1875147 with T1R (p = 4.5x10-8; OR = 1.54, 95% CI = 1.32–1.80). The T1R-risk locus was restricted to a lncRNA-encoding genomic interval with rs1875147 being an eQTL for the lncRNA. Since a genetic overlap between leprosy and inflammatory bowel disease (IBD) has been detected, we evaluated if the shared genetic control could be traced to the T1R endophenotype. Employing the results of a recent IBD GWAS meta-analysis we found that 10.6% of IBD SNPs available in our dataset shared a common risk-allele with T1R (p = 2.4x10-4). This finding points to a substantial overlap in the genetic control of clinically diverse inflammatory disorders. Leprosy still affects approximately 200,000 new victims each year. A major challenge of leprosy control is the prevention of permanent disability due to nerve damage. Nerve damage occurs if leprosy remains undiagnosed for extended periods or when patients undergo pathological inflammatory responses termed Type-1 Reactions (T1R). T1R is a rare example where beneficial inflammatory responses are temporal separated from host pathological responses. There is strong experimental evidence that supports a role of host genetic factors in T1R susceptibility. Here, we employed a genome-wide association study (GWAS) to investigate susceptibility factors for T1R in Vietnamese families. We followed up the initial GWAS findings in independent population samples from Vietnam and Brazil and identified a set of cis-eQTL genetic variants for the ENSG00000235140 lncRNA as global risk factors for T1R. To test our proposal that T1R is a strong model for pathological inflammatory responses we evaluated if inflammatory bowel disease (IBD) genetic risk-factors were enriched among T1R risk factors. We observed that more than 10% of IBD-risk loci were nominally associated with risk for T1R suggesting a shared mechanism of excessive inflammatory response in the both disease etiologies.
Collapse
Affiliation(s)
- Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (ES); (VMF)
| | - Jeremy Manry
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Milton O. Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Mariane M. A. Stefani
- Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia, Brazil
| | | | | | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (ES); (VMF)
| |
Collapse
|
28
|
Fava VM, Sales-Marques C, Alcaïs A, Moraes MO, Schurr E. Age-Dependent Association of TNFSF15/ TNFSF8 Variants and Leprosy Type 1 Reaction. Front Immunol 2017; 8:155. [PMID: 28261213 PMCID: PMC5306391 DOI: 10.3389/fimmu.2017.00155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/30/2017] [Indexed: 11/21/2022] Open
Abstract
A current major challenge in leprosy control is the prevention of permanent disabilities. Host pathological inflammatory responses termed type 1 reaction (T1R) are a leading cause of nerve damage for leprosy patients. The environmental or inherited factors that predispose leprosy cases to undergo T1R are not known. However, studies have shown an important contribution of host genetics for susceptibility to T1R. We have previously identified variants encompassing the TNFSF15/TNFSF8 genes as T1R risk factors in a Vietnamese sample and replicated this association in a Brazilian sample. However, we failed to validate in Brazilian patients the strong association of TNFSF15/TNFSF8 markers rs6478108 and rs7863183 with T1R that we had observed in Vietnamese patients. Here, we investigated if the lack of validation of these variants was due to age-dependent effects on association using four independent population samples, two from Brazil and two from Vietnam. In the combined analysis across the four samples, we observed a strong association of the TNFSF15/TNFSF8 variants rs6478108, rs7863183, and rs3181348 with T1R (pcombined = 1.5E−05, pcombined = 1.8E−05, and pcombined = 6.5E−06, respectively). However, the association of rs6478108 with T1R was more pronounced in leprosy cases under 30 years of age compared to the global sample [odds ratio (OR) = 1.95, 95% confidence interval (CI) = 1.54–2.46, pcombined = 2.5E−08 versus OR = 1.46, 95% CI = 1.23–1.73, pcombined = 1.5E−05]. A multivariable analysis indicated that the association of rs6478108 with T1R was independent of either rs7863183 or rs3181348. These three variants are known regulators of the TNFSF8 gene transcription level in multiple tissues. The age dependency of association of rs6478108 and T1R suggests that the genetic control of gene expression varies across the human life span.
Collapse
Affiliation(s)
- Vinicius M Fava
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; The McGill International TB Centre, Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France; Imagine Institute, University Paris Descartes, Paris, France; Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Milton O Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; The McGill International TB Centre, Department of Human Genetics, McGill University, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Fava VM, Manry J, Cobat A, Orlova M, Van Thuc N, Ba NN, Thai VH, Abel L, Alcaïs A, Schurr E. A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy. PLoS Negl Trop Dis 2016; 10:e0004412. [PMID: 26844546 PMCID: PMC4742274 DOI: 10.1371/journal.pntd.0004412] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Background Depending on the epidemiological setting, a variable proportion of leprosy patients will suffer from excessive pro-inflammatory responses, termed type-1 reactions (T1R). The LRRK2 gene encodes a multi-functional protein that has been shown to modulate pro-inflammatory responses. Variants near the LRRK2 gene have been associated with leprosy in some but not in other studies. We hypothesized that LRRK2 was a T1R susceptibility gene and that inconsistent association results might reflect different proportions of patients with T1R in the different sample settings. Hence, we evaluated the association of LRRK2 variants with T1R susceptibility. Methodology An association scan of the LRRK2 locus was performed using 156 single-nucleotide polymorphisms (SNPs). Evidence of association was evaluated in two family-based samples: A set of T1R-affected and a second set of T1R-free families. Only SNPs significant for T1R-affected families with significant evidence of heterogeneity relative to T1R-free families were considered T1R-specific. An expression quantitative trait locus (eQTL) analysis was applied to evaluate the impact of T1R-specific SNPs on LRRK2 gene transcriptional levels. Principal Findings A total of 18 T1R-specific variants organized in four bins were detected. The core SNP capturing the T1R association was the LRRK2 missense variant M2397T (rs3761863) that affects LRRK2 protein turnover. Additionally, a bin of nine SNPs associated with T1R were eQTLs for LRRK2 in unstimulated whole blood cells but not after exposure to Mycobacterium leprae antigen. Significance The results support a preferential association of LRRK2 variants with T1R. LRRK2 involvement in T1R is likely due to a pathological pro-inflammatory loop modulated by LRRK2 availability. Interestingly, the M2397T variant was reported in association with Crohn’s disease with the same risk allele as in T1R suggesting common inflammatory mechanism in these two distinct diseases. A major challenge of current leprosy control is the management of host pathological immune responses coined Type-1 Reactions (T1R). T1R are characterized by acute inflammatory episodes whereby cellular immune responses are directed against host peripheral nerve cells. T1R affects up half of all leprosy patients and are a major cause of leprosy-associated disabilities. Since there is evidence that host genetic factors predispose leprosy patients to T1R, we have conducted a candidate gene study to test if LRRK2 gene variants are T1R risk factors. The choice of LRRK2 was motivated by the fact that LRRK2 was associated with leprosy per se in some but not in other studies. We reasoned that this may reflect different proportions of leprosy patients with T1R in the different samples and that LRRK2 may in truth be a T1R susceptibility gene. Here, we show that variants overlapping the LRRK2 gene, reported as suggestive leprosy per se susceptibility factors in a previous genome-wide association study, are preferentially associated with T1R. The main SNP carrying most of the association signal is the amino-acid change M2397T (rs3761863) which is known to impact LRRK2 turnover. Interestingly, eQTL SNPs counterbalanced the effect of the M2397T variant but this compensatory mechanism was abrogated by Mycobacterium leprae antigen stimulation.
Collapse
Affiliation(s)
- Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
| | - Jérémy Manry
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
| | | | - Nguyen Ngoc Ba
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Vu Hong Thai
- Hospital for Dermato-Venerology, Ho Chi Minh City, Vietnam
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, United States of America
- Centre d’Investigation Clinique, Unité de Recherche Clinique, Necker and Cochin Hospitals, Paris, France
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Canada
- The McGill International TB Centre, Departments of Human Genetics and Medicine, McGill University, Montreal, Canada
- * E-mail:
| | | |
Collapse
|
30
|
Sauer MED, Salomão H, Ramos GB, D'Espindula HRS, Rodrigues RSA, Macedo WC, Sindeaux RHM, Mira MT. Genetics of leprosy: Expected-and unexpected-developments and perspectives. Clin Dermatol 2015; 34:96-104. [PMID: 26773629 DOI: 10.1016/j.clindermatol.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A solid body of evidence produced over decades of intense research supports the hypothesis that leprosy phenotypes are largely dependent on the genetic characteristics of the host. The early evidence of a major gene effect controlling susceptibility to leprosy came from studies of familial aggregation, twins, and complex segregation analysis. Later, linkage and association analysis, first applied to the investigation of candidate genes and chromosomal regions and more recently, to genome-wide scans, have revealed several HLA and non-HLA gene variants as risk factors for leprosy phenotypes such as disease per se, its clinical forms, and leprosy reactions. In addition, powerful, hypothesis-free strategies such as genome-wide association studies have led to an exciting, unexpected development: Leprosy susceptibility genes seem to be shared with Crohn's and Parkinson's disease. Today, a major challenge is to find the exact variants causing the biological effect underlying the genetic associations. New technologies, such as Next Generation Sequencing-that allows, for the first time, the cost- and time-effective sequencing of a complete human genome-hold the promise to reveal such variants; thus, strategies can be developed to study the functional impact of these variants in the context of infection, hopefully leading to the development of new targets for leprosy treatment and prevention.
Collapse
Affiliation(s)
- Monica E D Sauer
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Heloisa Salomão
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Geovana B Ramos
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Helena R S D'Espindula
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Rafael S A Rodrigues
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Wilian C Macedo
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Renata H M Sindeaux
- School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Marcelo T Mira
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil; School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
31
|
Sauer MED, Salomão H, Ramos GB, D'Espindula HRS, Rodrigues RSA, Macedo WC, Sindeaux RHM, Mira MT. Genetics of leprosy: expected and unexpected developments and perspectives. Clin Dermatol 2015; 33:99-107. [PMID: 25432815 DOI: 10.1016/j.clindermatol.2014.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A solid body of evidence produced over decades of intense research supports the hypothesis that leprosy phenotypes are largely dependent on the genetic characteristics of the host. The early evidence of a major gene effect controlling susceptibility to leprosy came from studies of familial aggregation, twins, and Complex Segregation Analysis. Later, linkage and association analysis, first applied to the investigation of candidate genes and chromosomal regions and more recently, to genome-wide scans, have revealed several leukocyte antigen complex and nonleukocyte antigen complex gene variants as risk factors for leprosy phenotypes such as disease per se, its clinical forms and leprosy reactions. In addition, powerful, hypothesis-free strategies such as Genome-Wide Association Studies have led to an exciting, unexpected development: Leprosy susceptibility genes seem to be shared with Crohn's and Parkinson's diseases. Today, a major challenge is to find the exact variants causing the biological effect underlying the genetic associations. New technologies, such as Next Generation Sequencing that allows, for the first time, the cost and time-effective sequencing of a complete human genome, hold the promise to reveal such variants. Strategies can be developed to study the functional effect of these variants in the context of infection, hopefully leading to the development of new targets for leprosy treatment and prevention.
Collapse
Affiliation(s)
- Monica E D Sauer
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Heloisa Salomão
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Geovana B Ramos
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Helena R S D'Espindula
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Rafael S A Rodrigues
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Wilian C Macedo
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Renata H M Sindeaux
- School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Marcelo T Mira
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil; School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
32
|
Inflammatory Mediators of Leprosy Reactional Episodes and Dental Infections: A Systematic Review. Mediators Inflamm 2015; 2015:548540. [PMID: 26339136 PMCID: PMC4539113 DOI: 10.1155/2015/548540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/19/2015] [Indexed: 11/17/2022] Open
Abstract
Reactional episodes in leprosy are a result of complex interactions between the immune system, Mycobacterium leprae, and predisposing factors, including dental infections. To determine the main inflammatory mediators in the immunopathological process of dental infections and leprosy reactions, we conducted a systematic review of primary literature published between 1996 and 2013. A three-stage literature search was performed (Stage I, "leprosy reactions" and "inflammatory mediators"; Stage II, "dental infections" and "inflammatory mediators"; and Stage III, "leprosy reactions," "dental infections," and "inflammatory mediators"). Of the 911 eligible publications, 10 were selected in Stage I, 68 in Stage II, and 1 in Stage III. Of the 27 studied inflammatory mediators, the main proinflammatory mediators were IL-6, IFN-γ, TNF-α, IL-1β, and IL-17; the main anti-inflammatory mediators were IL-10 and IL-4. Serum IL-6 and TNF-α concentrations were significant during periodontal and reactional lesion evolution; IFN-γ and IL-1β were associated with types 1 and 2 reactions and chronic periodontal disease. The proinflammatory mediators in dental infections and leprosy reactions, especially IL-6 and TNF-α, were similar across studies, regardless of the laboratory technique and sample type. IFN-γ and IL-1β were significant for leprosy reactions and periodontal diseases. This pattern was maintained in serum.
Collapse
|
33
|
Andrade PR, Pinheiro RO, Sales AM, Illarramendi X, de Mattos Barbosa MG, Moraes MO, Jardim MR, da Costa Nery JA, Sampaio EP, Sarno EN. Type 1 reaction in leprosy: a model for a better understanding of tissue immunity under an immunopathological condition. Expert Rev Clin Immunol 2015; 11:391-407. [DOI: 10.1586/1744666x.2015.1012501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Jurado F, Rodriguez O, Novales J, Navarrete G, Rodriguez M. Lucio’s leprosy: A clinical and therapeutic challenge. Clin Dermatol 2015; 33:66-78. [DOI: 10.1016/j.clindermatol.2014.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Yamasaki PR, do Nascimento DC, Chelucci RC, de Faria Fernandes Belone A, Rosa PS, Diório SM, de Melo TRF, Barbieri KP, Placeres MCP, Carlos IZ, Chung MC, dos Santos JL. Synthesis and evaluation of novel dapsone–thalidomide hybrids for the treatment of type 2 leprosy reactions. Bioorg Med Chem Lett 2014; 24:3084-7. [DOI: 10.1016/j.bmcl.2014.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
|
36
|
Orlova M, Cobat A, Huong NT, Ba NN, Van Thuc N, Spencer J, Nédélec Y, Barreiro L, Thai VH, Abel L, Alcaïs A, Schurr E. Gene set signature of reversal reaction type I in leprosy patients. PLoS Genet 2013; 9:e1003624. [PMID: 23874223 PMCID: PMC3708838 DOI: 10.1371/journal.pgen.1003624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/24/2013] [Indexed: 11/26/2022] Open
Abstract
Leprosy reversal reactions type 1 (T1R) are acute immune episodes that affect a subset of leprosy patients and remain a major cause of nerve damage. Little is known about the relative importance of innate versus environmental factors in the pathogenesis of T1R. In a retrospective design, we evaluated innate differences in response to Mycobacterium leprae between healthy individuals and former leprosy patients affected or free of T1R by analyzing the transcriptome response of whole blood to M. leprae sonicate. Validation of results was conducted in a subsequent prospective study. We observed the differential expression of 581 genes upon exposure of whole blood to M. leprae sonicate in the retrospective study. We defined a 44 T1R gene set signature of differentially regulated genes. The majority of the T1R set genes were represented by three functional groups: i) pro-inflammatory regulators; ii) arachidonic acid metabolism mediators; and iii) regulators of anti-inflammation. The validity of the T1R gene set signature was replicated in the prospective arm of the study. The T1R genetic signature encompasses genes encoding pro- and anti-inflammatory mediators of innate immunity. This suggests an innate defect in the regulation of the inflammatory response to M. leprae antigens. The identified T1R gene set represents a critical first step towards a genetic profile of leprosy patients who are at increased risk of T1R and concomitant nerve damage. Leprosy type 1 reversal reactions (T1R) are an important cause of nerve damage in leprosy patients and accurate prediction of patients at increased risk of T1R is a major challenge of current leprosy control. The incidence of T1R differs widely from 6% to 67% of leprosy patients in different leprosy endemic settings. Whether or not this reflects the impact of unknown environmental triggers or differences in the genetic background across ethnicities is not known. We performed a comparative transcriptome analysis between leprosy patients affected and free of T1R in response to M. leprae antigens. As the discovery sample we enrolled cured leprosy patients who had been diagnosed with T1R at the time of leprosy diagnosis and leprosy patients who had never undergone T1R (retrospective arm). Whole genome transcriptome analysis after stimulation of blood with M. leprae antigen resulted in the definition of a T1R signature gene set. We validated the T1R gene set in RNA samples obtained from T1R-free patients at the time of leprosy diagnosis and followed for 3 years for development of T1R (prospective arm). These results confirm the role of innate factors in T1R and are a first step towards a predictive genetic T1R signature.
Collapse
Affiliation(s)
- Marianna Orlova
- McGill International TB Centre, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Aurélie Cobat
- McGill International TB Centre, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Nguyen Ngoc Ba
- Hospital for Dermato-Venereology, Ho Chi Minh City, Vietnam
| | | | - John Spencer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Yohann Nédélec
- Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Luis Barreiro
- Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Vu Hong Thai
- Hospital for Dermato-Venereology, Ho Chi Minh City, Vietnam
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- URC-CIC, Hopital Tarnier, Paris, France
| | - Erwin Schurr
- McGill International TB Centre, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
37
|
|