1
|
Thakral F, Prasad B, Sehgal R, Gupta S, Sharma U, Singh BJ, Sharma B, Tuli HS, Haque S, Ahmad F. Role of emodin to prevent gastrointestinal cancers: recent trends and future prospective. Discov Oncol 2025; 16:468. [PMID: 40186678 PMCID: PMC11972247 DOI: 10.1007/s12672-025-02240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Gastrointestinal malignancies are responsible for approximately 35% of all cancer-related deaths, underscoring the critical need to explore pharmacologically active molecules for chemoprevention. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a natural compound derived from traditional Chinese and Japanese medicine, has recently garnered significant attention for its potential anticancer properties. Emodin exerts its chemoprotective effects through a combination of antioxidative, anti-inflammatory, and anti-proliferative mechanisms. Research indicates that emodin inhibits cancer metastasis, disrupts cell cycle progression, and impairs cancer cell survival. These effects are mediated through the activation of the p38 MAPK/JNK1/2 signaling pathway, the upregulation of pro-apoptotic factors such as Bax/Bcl-2 and caspases, and the enhancement of reactive oxygen species (ROS) levels (Supplementary Fig. 1). To optimize emodin's therapeutic potential, it is crucial to further investigate its underlying mechanisms of action and develop advanced nano-targeted delivery systems to enhance its bioavailability. This review highlights emodin's promise as a chemopreventive agent for gastrointestinal cancers and emphasizes its potential for development into a novel clinical formulation.
Collapse
Affiliation(s)
- Falak Thakral
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Bhairav Prasad
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Rippin Sehgal
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali, Ambala, Haryana, 133101, India
| | | | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Bikram Jit Singh
- Mechanical Engineering Department, MM Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Bunty Sharma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
- School of Medicine, Universidad Espiritu Santo, Samborondon, 091952, Ecuador
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Chen KY, Lin YH, Cheng CJ, Huang YH, Lin SY, Chen CL, Chiu CH. Identifying the function of novel cross-species microRNAs from the excretory-secretory products of Angiostrongylus cantonensis fifth-stage larvae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:128-137. [PMID: 39551634 DOI: 10.1016/j.jmii.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Angiostrongylus cantonensis is a significant foodborne zoonotic parasite that causes severe neuropathological damage and symptoms in humans. Excretory-secretory products (ESPs) play a pivotal role in elucidating host-parasite interactions and can aid in penetrating host defensive barriers in helminths. Recently, secreted microRNAs have become important research targets for parasite-host communication. In this study, we determined the expression and function of novel microRNAs from A. cantonensis L5 ESPs and evaluated the effect of target microRNAs on the molecular mechanisms of mouse astrocytes. METHODS Here, we employed next-generation sequencing (NGS) to establish the secreted microRNAs dataset. Next, we evaluated the effects of AcESPs-microRNAs in A. cantonensis ESPs treated astrocytes. RESULTS First, we established the secreted microRNA dataset, and then comprehensively verified the characteristics. Novel microRNAs were initially detected, and their expression was found. Moreover, the prediction results showed that these secreted microRNAs may regulate Wnt and mTOR signaling. Next, the data showed that the AcNOVEL55 microRNA reduced cell apoptosis generation via regulating the RhoA-Rock signaling pathway in A. cantonensis L5 ESPs treated mouse astrocytes. Moreover, we also demonstrated that the AcNOVEL31 microRNA can affect the inflammation activation via regulating the presenilin-1/GSK3B/β-catenin/NF-κB pathway. Finally, the concentrations of secreted IL-6 and IL-12 proteins were downregulated by AcNOVEL31 microRNA by influencing presenilin-1 expression. CONCLUSION This is the first study to verify the molecular functions of novel microRNAs secreted by A. cantonensis. The discovery of the microRNA mechanisms by which cross-species parasitic nematodes influence hosts has advanced research on host-parasitic nematode interactions.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Yi-Hsuan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yi-Hao Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Sheng-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
3
|
Malhotra K, Malik A, Almalki WH, Sahebkar A, Kesharwani P. Reactive Oxygen Species and its Manipulation Strategies in Cancer Treatment. Curr Med Chem 2025; 32:55-73. [PMID: 37303173 DOI: 10.2174/0929867330666230609110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
Cancer is one of the serious diseases of modern times, occurring in all parts of the world and shows a wide range of effects on the human body. Reactive Oxygen Species (ROS) such as oxide and superoxide ions have both advantages and disadvantages during the progression of cancer, dependent on their concentration. It is a necessary part of the normal cellular mechanisms. Changes in its normal level can cause oncogenesis and other relatable problems. Metastasis can also be controlled by ROS levels in the tumor cells, which can be prevented by the use of antioxidants. However, ROS is also used for the initiation of apoptosis in cells by different mediators. There exists a cycle between the production of oxygen reactive species, their effect on the genes, role of mitochondria and the progression of tumors. ROS levels cause DNA damage by the oxidation process, gene damage, altered expression of the genes and signalling mechanisms. They finally lead to mitochondrial disability and mutations, resulting in cancer. This review summarizes the important role and activity of ROS in developing different types of cancers like cervical, gastric, bladder, liver, colorectal and ovarian cancers.
Collapse
Affiliation(s)
- Kabil Malhotra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arzoo Malik
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Kaur C, Sahu SK, Bansal K, DeLiberto LK, Zhang J, Tewari D, Bishayee A. Targeting Peroxisome Proliferator-Activated Receptor-β/δ, Reactive Oxygen Species and Redox Signaling with Phytocompounds for Cancer Therapy. Antioxid Redox Signal 2024; 41:342-395. [PMID: 38299535 DOI: 10.1089/ars.2023.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Peroxisome proliferator-activated receptors (PPARs) have a moderately preserved amino-terminal domain, an extremely preserved DNA-binding domain, an integral hinge region, and a distinct ligand-binding domain that are frequently encountered with the other nuclear receptors. PPAR-β/δ is among the three nuclear receptor superfamily members in the PPAR group. Recent Advances: Emerging studies provide an insight on natural compounds that have gained increasing attention as potential anticancer agents due to their ability to target multiple pathways involved in cancer development and progression. Critical Issues: Modulation of PPAR-β/δ activity has been suggested as a potential therapeutic strategy for cancer management. This review focuses on the ability of bioactive phytocompounds to impact reactive oxygen species (ROS) and redox signaling by targeting PPAR-β/δ for cancer therapy. The rise of ROS in cancer cells may play an important part in the initiation and progression of cancer. However, excessive levels of ROS stress can also be toxic to the cells and cancer cells with increased oxidative stress are likely to be more vulnerable to damage by further ROS insults induced by exogenous agents, such as phytocompounds and therapeutic agents. Therefore, redox modulation is a way to selectively kill cancer cells without causing significant toxicity to normal cells. However, use of antioxidants together with cancer drugs may risk the effect of treatment as both act through opposite mechanisms. Future Directions: It is advisable to employ more thorough and detailed methodologies to undertake mechanistic explorations of numerous phytocompounds. Moreover, conducting additional clinical studies is recommended to establish optimal dosages, efficacy, and the impact of different phytochemicals on PPAR-β/δ.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sanjeev Kumar Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Keshav Bansal
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
5
|
Wang Y, Li J, Liu X, Zhang Y, Wang C, Guo Q, Wang Y, Jiang B, Jin X, Liu Y. Elucidation of the anti-gastric cancer mechanism of Guiqi Baizhu Formula by integrative approach of chemical bioinformatics. Int Immunopharmacol 2024; 134:112245. [PMID: 38749334 DOI: 10.1016/j.intimp.2024.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Gastric cancer (GC) has posed a great threat to the lives of people around the world. To date, safer and more cost-effective therapy for GC is lacking. Traditional Chinese medicine (TCM) may provide some new options for this. Guiqi Baizhu Formula (GQBZF), a classic TCM formula, has been extensively used to treat GC, while its bioactive components and therapeutic mechanisms remain unclear. In this study, we evaluated the underlying mechanisms of GQBZF in treating GC by integrative approach of chemical bioinformatics. GQBZF lyophilized powder (0.0625 mg/mL, 0.125 mg/mL) significantly attenuated the expression of p-IGF1R, PI3K, p-PDK1, p-VEGFR2 to inhibit the proliferation, migration and induce apoptosis of gastric cancer cells, which was consistent with the network pharmacology. Additionally, atractylenolide Ⅰ, quercetin, glycyrol, physcione and aloe-emodin, emodin, kaempferol, licoflavone A were found to be the key compounds of GQBZF regulating IGF1R and VEGFR2, respectively. And among which, glycyrol and emodin were determined as key active compounds against GC by farther vitro experiments and LC/MS. Meanwhile, we also found that glycyrol inhibited MKN-45 cells proliferation and enhanced apoptosis, which might be related to the inhibition of IGF1R/PI3K/PDK1, and emodin could significantly attenuate the MKN-45 cells migration, which might be related to the inhibition of VEGFR2-related signaling pathway. These results were verified again by molecular dynamics simulation and binding interaction pattern. In summary, this study suggested that GQBZF and its key active components (glycyrol and emodin) can suppress IGF1R/PI3K/PDK1 and VEGFR2-related signaling pathway, thereby inhibiting tumor cell proliferation and migration and inducing apoptosis. These findings provided an important strategy for developing new agents and facilitated clinical use of GQBZF against GC.
Collapse
Affiliation(s)
- Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jiawei Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiuzhu Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yixi Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Chao Wang
- College of Medical, Shanxi Datong University, Datong 037000, China
| | - Qingyang Guo
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yan Wang
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Lanzhou 730000, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medical and Transformation, Ministry of Education of The People's Republic of China, Lanzhou 730000, China.
| |
Collapse
|
6
|
Kumar S, Shenoy S, Swamy RS, Ravichandiran V, Kumar N. Fluoride-Induced Mitochondrial Dysfunction and Approaches for Its Intervention. Biol Trace Elem Res 2024; 202:835-849. [PMID: 37300595 DOI: 10.1007/s12011-023-03720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Fluoride is present everywhere in nature. The primary way that individuals are exposed to fluoride is by drinking water. It's interesting to note that while low fluoride levels are good for bone and tooth growth, prolonged fluoride exposure is bad for human health. Additionally, preclinical studies link oxidative stress, inflammation, and programmed cell death to fluoride toxicity. Moreover, mitochondria play a crucial role in the production of reactive oxygen species (ROS). On the other hand, little is known about fluoride's impact on mitophagy, biogenesis, and mitochondrial dynamics. These actions control the growth, composition, and organisation of mitochondria, and the purification of mitochondrial DNA helps to inhibit the production of reactive oxygen species and the release of cytochrome c, which enables cells to survive the effects of fluoride poisoning. In this review, we discuss the different pathways involved in mitochondrial toxicity and dysfunction induced by fluoride. For therapeutic approaches, we discussed different phytochemical and pharmacological agents which reduce the toxicity of fluoride via maintained by imbalanced cellular processes, mitochondrial dynamics, and scavenging the ROS.
Collapse
Affiliation(s)
- Sachindra Kumar
- National Institute of Pharmaceutical Education and Research, Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Nitesh Kumar
- National Institute of Pharmaceutical Education and Research, Hajipur, Industrial Area Hajipur, Vaishali, 844102, India.
| |
Collapse
|
7
|
He Z, Gu Y, Yang H, Fu Q, Zhao M, Xie Y, Liu Y, Du W. Identification and verification of a novel anoikis-related gene signature with prognostic significance in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:11661-11678. [PMID: 37402968 DOI: 10.1007/s00432-023-05012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
PURPOSE Clear cell renal cell carcinomas (ccRCCs) are the most common form of renal cancer in the world. The loss of extracellular matrix (ECM) stimulates cell apoptosis, known as anoikis. A resistance to anoikis in cancer cells is believed to contribute to tumor malignancy, particularly metastasis; however, the potential influence of anoikis on the prognosis of ccRCC patients is not fully understood. METHODS In this study, anoikis-related genes (ARGs) with discrepant expression were selected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The anoikis-related gene signature (ARS) was built using a combination of the univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. ARS was also evaluated for their prognostic value. We explored the tumor microenvironment and enrichment pathways between different clusters of ccRCC. We also examined differences in clinical characteristics, immune cell infiltration and drug sensitivity between the high- and low-risk sets. In addition, we utilized three external databases and quantitative real-time polymerase chain reaction (qRT-PCR) to validate the expression and prognosis of ARGs. RESULTS Eight ARGs (PLAUR, HMCN1, CDKN2A, BID, GLI2, PLG, PRKCQ and IRF6) were identified as anoikis-related prognostic factors. According to Kaplan-Meier (KM) analysis, ccRCC patients with high-risk ARGs have a worse prognosis. The risk score was found to be a significant independent prognostic indicator. According to tumor microenvironment (TME) scores, stromal score, immune score, and estimated score of the high-risk group were superior to those of the low-risk group. There were significant differences between the two groups regarding the amount of infiltrated immune cells, immune checkpoint expression as well as drug sensitivity. A nomogram was constructed using ccRCC clinical features and risk scores. The signature and the nomogram both performed well in predicting overall survival (OS) for ccRCC patients. According to a decision curve analysis (DCA), clinical treatment options for patients with ccRCC could be improved using this model. CONCLUSION The results of validation from external databases and qRT-PCR were basically agreement with findings in TCGA and GEO databases. The ARS serving as biomarkers may provide an important reference for individual therapy of ccRCC patients.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yufan Gu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huan Yang
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qian Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Maofang Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yuhan Xie
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yi Liu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Wenlong Du
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
8
|
Chiu HW, Hung SW, Chiu CF, Hong JR. A Mitochondrion-Targeting Protein (B2) Primes ROS/Nrf2-Mediated Stress Signals, Triggering Apoptosis and Necroptosis in Lung Cancer. Biomedicines 2023; 11:biomedicines11010186. [PMID: 36672696 PMCID: PMC9855812 DOI: 10.3390/biomedicines11010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The betanodavirus B2 protein targets mitochondria and triggers mitochondrion-mediated cell death signaling in lung cancer cells; however, its molecular mechanism remains unknown. In this study, we observed that B2 triggers hydrogen peroxide/Nrf2-involved stress signals in the dynamic regulation of non-small lung cancer cell (NSCLC)-programmed cell death. Here, the B2 protein works as a necrotic inducer that triggers lung cancer death via p53 upregulation and RIP3 expression, suggesting a new perspective on lung cancer therapy. We employed the B2 protein to target A549 lung cancer cells and solid tumors in NOD/SCID mice. Tumors were collected and processed for the hematoxylin and eosin staining of tissue and cell sections, and their sera were used for blood biochemistry analysis. We observed that B2 killed an A549 cell-induced solid tumor in NOD/SCID mice; however, the mutant ΔB2 did not. In NOD/SCID mice, B2 (but not ΔB2) induced both p53/Bax-mediated apoptosis and RIPK3-mediated necroptosis. Finally, immunochemistry analysis showed hydrogen peroxide /p38/Nrf2 stress strongly inhibited the production of tumor markers CD133, Thy1, and napsin, which correlate with migration and invasion in cancer cells. This B2-triggered, ROS/Nrf2-mediated stress signal triggered multiple signals via pathways that killed A549 lung cancer tumor cells in vivo. Our results provide novel insight into lung cancer management and drug therapy.
Collapse
Affiliation(s)
- Hsuan-Wen Chiu
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shao-Wen Hung
- Division of Animal Industry, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 300, Taiwan
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-2003082; Fax: +886-6-2766505
| |
Collapse
|
9
|
Yamaguchi K, Yoshihiro T, Ariyama H, Ito M, Nakano M, Semba Y, Nogami J, Tsuchihashi K, Yamauchi T, Ueno S, Isobe T, Shindo K, Moriyama T, Ohuchida K, Nakamura M, Nagao Y, Ikeda T, Hashizume M, Konomi H, Torisu T, Kitazono T, Kanayama T, Tomita H, Oda Y, Kusaba H, Maeda T, Akashi K, Baba E. Potential therapeutic targets discovery by transcriptome analysis of an in vitro human gastric signet ring carcinoma model. Gastric Cancer 2022; 25:862-878. [PMID: 35661943 DOI: 10.1007/s10120-022-01307-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Loss of E-cadherin expression is frequently observed in signet ring carcinoma (SRCC). People with germline mutations in CDH1, which encodes E-cadherin, develop diffuse gastric cancer at a higher rate. Loss of E-cadherin expression is thus assumed to trigger oncogenic development. METHODS To investigate novel therapeutic targets for gastric SRCC, we engineered an E-cadherin-deficient SRCC model in vitro using a human gastric organoid (hGO) with CDH1 knockout (KO). RESULTS CDH1 KO hGO cells demonstrated distinctive morphological changes similar to SRCC and high cell motility. RNA-sequencing revealed up-regulation of matrix metalloproteinase (MMP) genes in CDH1 KO hGO cells compared to wild type. MMP inhibitors suppressed cell motility of CDH1 KO hGO cells and SRCC cell lines in vitro. Immunofluorescent analysis with 95 clinical gastric cancer tissues revealed that MMP-3 was specifically abundant in E-cadherin-aberrant SRCC. In addition, CXCR4 molecules translocated onto the cell membrane after CDH1 KO. Addition of CXCL12, a ligand of CXCR4, to the culture medium prolonged cell survival of CDH1 KO hGO cells and was abolished by the inhibitor, AMD3100. In clinical SRCC samples, CXCL12-secreting fibroblasts showed marked infiltration into the cancer area. CONCLUSIONS E-cadherin deficient SRCCs might gain cell motility through upregulation of MMPs. CXCL12-positive cancer-associated fibroblasts could serve to maintain cancer-cell survival as a niche. MMPs and the CXCL12/CXCR4 axis represent promising candidates as novel therapeutic targets for E-cadherin-deficient SRCC.
Collapse
Affiliation(s)
- Kyoko Yamaguchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoyasu Yoshihiro
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Ariyama
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Mamoru Ito
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Michitaka Nakano
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jumpei Nogami
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenji Tsuchihashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shohei Ueno
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Taichi Isobe
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nagao
- Department of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuo Ikeda
- Department of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Makoto Hashizume
- Department of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
| | | | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Kusaba
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takahiro Maeda
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biol Int 2022; 46:1717-1728. [DOI: 10.1002/cbin.11896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Negar Aghaei
- Department of Psycology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Imam Sajjad Hospital Tabriz Azad University Tabriz Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
11
|
Aggarwal N, Yadav J, Chhakara S, Janjua D, Tripathi T, Chaudhary A, Chhokar A, Thakur K, Singh T, Bharti AC. Phytochemicals as Potential Chemopreventive and Chemotherapeutic Agents for Emerging Human Papillomavirus-Driven Head and Neck Cancer: Current Evidence and Future Prospects. Front Pharmacol 2021; 12:699044. [PMID: 34354591 PMCID: PMC8329252 DOI: 10.3389/fphar.2021.699044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC) usually arises from squamous cells of the upper aerodigestive tract that line the mucosal surface in the head and neck region. In India, HNC is common in males, and it is the sixth most common cancer globally. Conventionally, HNC attributes to the use of alcohol or chewing tobacco. Over the past four decades, portions of human papillomavirus (HPV)-positive HNC are increasing at an alarming rate. Identification based on the etiological factors and molecular signatures demonstrates that these neoplastic lesions belong to a distinct category that differs in pathological characteristics and therapeutic response. Slow development in HNC therapeutics has resulted in a low 5-year survival rate in the last two decades. Interestingly, HPV-positive HNC has shown better outcomes following conservative treatments and immunotherapies. This raises demand to have a pre-therapy assessment of HPV status to decide the treatment strategy. Moreover, there is no HPV-specific treatment for HPV-positive HNC patients. Accumulating evidence suggests that phytochemicals are promising leads against HNC and show potential as adjuvants to chemoradiotherapy in HNC. However, only a few of these phytochemicals target HPV. The aim of the present article was to collate data on various leading phytochemicals that have shown promising results in the prevention and treatment of HNC in general and HPV-driven HNC. The review explores the possibility of using these leads against HPV-positive tumors as some of the signaling pathways are common. The review also addresses various challenges in the field that prevent their use in clinical settings.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Suhail Chhakara
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| |
Collapse
|
12
|
Zhang N, Wang J, Sheng A, Huang S, Tang Y, Ma S, Hong G. Emodin Inhibits the Proliferation of MCF-7 Human Breast Cancer Cells Through Activation of Aryl Hydrocarbon Receptor (AhR). Front Pharmacol 2021; 11:622046. [PMID: 33542691 PMCID: PMC7850984 DOI: 10.3389/fphar.2020.622046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Natural products have proved to be a promising source for the development of potential anticancer drugs. Emodin, a natural compound from Rheum palmatum, is used to treat several types of cancers, including lung, liver, and pancreatic. However, there are few reports regarding its use in the treatment of breast cancer. Thus, the therapeutic effect and mechanism of emodin on MCF-7 human breast cancer cells were investigated in this study. Morphological observations and cell viability were evaluated to determine the anti-proliferation activity of emodin. Network pharmacology and molecular docking were performed to screen the potential targets. Western blot analysis was used to explore a potential antitumor mechanism. The results showed that emodin (50–100 μmol/L) could significantly inhibit the proliferation of MCF-7 cells in a time and dose-dependent manner. Furthermore, virtual screening studies indicated that emodin was a potent aryl hydrocarbon receptor (AhR) agonist in chemotherapy for breast cancer. Finally, when MCF-7 cells were treated with emodin (100 μmol/L) for 24 h, the AhR and cytochrome P450 1A1 (CYP1A1) protein expression levels were significantly upregulated compared with the control group. Our study indicated that emodin exhibited promising antitumor activity in MCF-7 cells, likely through activation of the AhR-CYP1A1 signaling pathway. These findings lay a foundation for the application of emodin in breast cancer treatment.
Collapse
Affiliation(s)
- Ning Zhang
- Life and Health College, Anhui Science and Technology University, Fengyang, China.,School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China.,Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jiawen Wang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Aimin Sheng
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Shuo Huang
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin Hospital, Tianjin, China
| | - Yanyan Tang
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin Hospital, Tianjin, China
| | - Shitang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
13
|
Gaikwad S, Srivastava SK. Role of Phytochemicals in Perturbation of Redox Homeostasis in Cancer. Antioxidants (Basel) 2021; 10:83. [PMID: 33435480 PMCID: PMC7827008 DOI: 10.3390/antiox10010083] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, research on reactive oxygen species (ROS) has revealed their critical role in the initiation and progression of cancer by virtue of various transcription factors. At certain threshold values, ROS act as signaling molecules leading to activation of oncogenic pathways. However, if perturbated beyond the threshold values, ROS act in an anti-tumor manner leading to cellular death. ROS mediate cellular death through various programmed cell death (PCD) approaches such as apoptosis, autophagy, ferroptosis, etc. Thus, external stimulation of ROS beyond a threshold is considered a promising therapeutic strategy. Phytochemicals have been widely regarded as favorable therapeutic options in many diseased conditions. Over the past few decades, mechanistic studies on phytochemicals have revealed their effect on ROS homeostasis in cancer. Considering their favorable side effect profile, phytochemicals remain attractive treatment options in cancer. Herein, we review some of the most recent studies performed using phytochemicals and, we further delve into the mechanism of action enacted by individual phytochemicals for PCD in cancer.
Collapse
Affiliation(s)
| | - Sanjay K. Srivastava
- Department of Immunotherapeutics and Biotechnology, Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA;
| |
Collapse
|
14
|
Wahi D, Soni D, Grover A. A Double-Edged Sword: The Anti-Cancer Effects of Emodin by Inhibiting the Redox-Protective Protein MTH1 and Augmenting ROS in NSCLC. J Cancer 2021; 12:652-681. [PMID: 33403025 PMCID: PMC7778552 DOI: 10.7150/jca.41160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Reactive oxygen species (ROS), playing a two-fold role in tumorigenesis, are responsible for tumor formation and progression through the induction of genome instability and pro-oncogenic signaling. The same ROS is toxic to cancer cells at higher levels, oxidizing free nucleotide precursors (dNTPs) as well as damaging DNA leading to cell senescence. Research has highlighted the tumor cell-specific expression of a redox-protective phosphatase, MutT homolog 1 (MTH1), that performs the enzymatic conversion of oxidized nucleotides (like 8-oxo-dGTP) to their corresponding monophosphates, up-regulated in numerous cancers, circumventing their misincorporation into the genomic DNA and preventing damage and cell death. Methods: To identify novel natural small molecular inhibitors of MTH1 to be used as cancer therapeutic agents, molecular screening for MTH1 active site binders was performed from natural small molecular libraries. Emodin was identified as a lead compound for MTH1 active site functional inhibition and its action on MTH1 inhibition was validated on non-small cell lung cancer cellular models (NSCLC). Results: Our study provides strong evidence that emodin mediated MTH1 inhibition impaired NSCLC cell growth, inducing senescence. Emodin treatment enhanced the cellular ROS burdens, on one hand, damaged dNTP pools and inhibited MTH1 function on the other. Our work on emodin indicates that ROS is the key driver of cancer cell-specific increased DNA damage and apoptosis upon MTH1 inhibition. Consequently, we observed a time-dependent increase in NSCL cancer cell susceptibility to oxidative stress with emodin treatment. Conclusions: Based on our data, the anti-cancer effects of emodin as an MTH1 inhibitor have clinical potential as a single agent capable of functioning as a ROS inducer and simultaneous blocker of dNTP pool sanitation in the treatment of NSCL cancers. Collectively, our results have identified for the first time that the potential molecular mechanism of emodin function, increasing DNA damage and apoptosis in cancer cells, is via MTH1 inhibition.
Collapse
Affiliation(s)
- Divya Wahi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India - 110067
| | - Deepika Soni
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India - 110067
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India - 110067
| |
Collapse
|
15
|
Abbasi A, Pakravan N, Hassan ZM. Hyaluronic Acid Improves Hydrogen Peroxide Modulatory Effects on Calcium Channel and Sodium-Potassium Pump in 4T1 Breast Cancer Cell Line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8681349. [PMID: 33456676 PMCID: PMC7787766 DOI: 10.1155/2020/8681349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022]
Abstract
Maintaining homeostasis of ion concentrations is critical in cancer cells. Under hypoxia, the levels of channels and pumps in cancer cells are more active than normal cells suggesting ion channels as a suitable therapeutic target. One of the contemporary ways for cancer therapy is oxidative stress. However, the effective concentration of oxidative stress on tumor cells has been reported to be toxic for normal cells as well. In this study, we benefited from the modifying effects of hyaluronic acid (HA) on H2O2, as a free radical source, to make a gradual release of oxidative stress on cancer cells while preventing/decreasing damage to normal cells under normoxia and hypoxic conditions. To do so, we initially investigated the optimal concentration of HA antioxidant capacity by the DPPH test. In the next step, we found optimum H2O2 dose by treating the 4T1 breast cancer cell line with increasing concentrations (0, 10, 20, 50,100, 200, 500, and 1000 μM) of H2O2 alone or H2O2 + HA (83%) for 24 hrs. The calcium channel and the sodium-potassium pumps were then evaluated by measuring the levels of calcium, sodium, and potassium ions using an atomic absorption flame spectrophotometer. The results revealed that treatment with H2O2 or H2O2+ HA led to an intracellular increase of calcium, sodium, and potassium in the normoxic and hypoxic circumstances in a dose-dependent manner. It is noteworthy that H2O2 + HA treatment had more favorable and controllable effects compared with H2O2 alone. Moreover, HA optimizes the antitumor effect of oxidative stress exerted by H2O2 making H2O2 + HA suitable for clinical use in cancer treatment along with chemotherapy.
Collapse
Affiliation(s)
- Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Pakravan
- Department of Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Kozak J, Forma A, Czeczelewski M, Kozyra P, Sitarz E, Radzikowska-Büchner E, Sitarz M, Baj J. Inhibition or Reversal of the Epithelial-Mesenchymal Transition in Gastric Cancer: Pharmacological Approaches. Int J Mol Sci 2020; 22:ijms22010277. [PMID: 33383973 PMCID: PMC7795012 DOI: 10.3390/ijms22010277] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) constitutes one of the hallmarks of carcinogenesis consisting in the re-differentiation of the epithelial cells into mesenchymal ones changing the cellular phenotype into a malignant one. EMT has been shown to play a role in the malignant transformation and while occurring in the tumor microenvironment, it significantly affects the aggressiveness of gastric cancer, among others. Importantly, after EMT occurs, gastric cancer patients are more susceptible to the induction of resistance to various therapeutic agents, worsening the clinical outcome of patients. Therefore, there is an urgent need to search for the newest pharmacological agents targeting EMT to prevent further progression of gastric carcinogenesis and potential metastases. Therapies targeted at EMT might be combined with other currently available treatment modalities, which seems to be an effective strategy to treat gastric cancer patients. In this review, we have summarized recent advances in gastric cancer treatment in terms of targeting EMT specifically, such as the administration of polyphenols, resveratrol, tangeretin, luteolin, genistein, proton pump inhibitors, terpenes, other plant extracts, or inorganic compounds.
Collapse
Affiliation(s)
- Joanna Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Paweł Kozyra
- Student Research Group, Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland;
| | - Elżbieta Sitarz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic Surgery, Central Clinical Hospital of the Ministry of the Interior in Warsaw, 01-211 Warsaw, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence:
| |
Collapse
|
17
|
Wang S, Zhu W, Qiu J, Chen F. lncRNA SNHG4 promotes cell proliferation, migration, invasion and the epithelial-mesenchymal transition process via sponging miR-204-5p in gastric cancer. Mol Med Rep 2020; 23:85. [PMID: 33236157 PMCID: PMC7716413 DOI: 10.3892/mmr.2020.11724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding (lnc)RNAs and microRNAs (miRNAs/miRs) have physiological and pathological functions in various diseases, including gastric cancer (GC). The current study explored the association between lncRNA small nucleolar RNA host gene 4 (SNHG4) and miR-148a-3p, and their functions in GC cells. SNHG4 expression and overall survival data were analyzed using bioinformatics, and the interaction of SNHG4 and miR-148a-3p was predicted using starBase and confirmed via a dual-luciferase reporter assay. Cell viability, colony formation ability and apoptosis rate were detected using Cell Counting Kit-8, colony formation and flow cytometry assays, respectively. Cell migration and invasion were determined via wound-healing and Transwell assays. mRNA and protein expression levels were determined via reverse transcription-quantitative PCR and western blotting. The results demonstrated that in GC tissues and cell lines, SNHG4 was highly expressed, while miR-204-5p expression was decreased, and that the expression levels of SNHG4 and miR-204-5p were negatively correlated. The downregulated expression of SNHG4 decreased the effects of miR-204-5p inhibitor on promoting cell proliferation, migration, invasion and epithelial-mesenchymal transition, but enhanced the inhibitory effect of miR-204-5p on GC cell apoptosis. The findings of the current study revealed the potential mechanism of the SNHG4-miR-204-5p pathway in GC, which may be conducive to the development of novel drugs against GC growth.
Collapse
Affiliation(s)
- Shimei Wang
- Department of Gastroenterology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, Zhejiang 311800, P.R. China
| | - Wei Zhu
- Department of General Surgery, Zhuji Central Hospital, Shaoxing, Zhejiang 311800, P.R. China
| | - Ji Qiu
- Department of Gastroenterology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, Zhejiang 311800, P.R. China
| | - Fei Chen
- Department of Gastroenterology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, Zhejiang 311800, P.R. China
| |
Collapse
|
18
|
Physcion Enhances Sensitivity of Pancreatic Adenocarcinoma and Lung Carcinoma Cell Lines to Cisplatin. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Abbasi A, Pakravan N, Hassan ZM. Hyaluronic acid optimises therapeutic effects of hydrogen peroxide-induced oxidative stress on breast cancer. J Cell Physiol 2020; 236:1494-1514. [PMID: 32740942 DOI: 10.1002/jcp.29957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Distinguishing the multiple effects of reactive oxygen species (ROS) on cancer cells is important to understand their role in tumour biology. On one side, ROS can be oncogenic by promoting hypoxic conditions, genomic instability and tumorigenesis. Conversely, elevated levels of ROS-induced oxidative stress can induce cancer cell death. This is evidenced by the conflicting results of research using antioxidant therapy, which in some cases promoted tumour growth and metastasis. However, some antioxidative or ROS-mediated oxidative therapies have also yielded beneficial effects. To better define the effects of oxidative stress, in vitro experiments were conducted on 4T1 and splenic mononuclear cells (MNCs) under hypoxic and normoxic conditions. Furthermore, hydrogen peroxide (H2 O2 ; 10-1,000 μM) was used as an ROS source alone or in combination with hyaluronic acid (HA), which is frequently used as drug delivery vehicle. Our result indicated that the treatment of cancer cells with H2 O2 + HA was significantly more effective than H2 O2 alone. In addition, treatment with H2 O2 + HA led to increased apoptosis, decreased proliferation, and multiphase cell cycle arrest in 4T1 cells in a dose-dependent manner under normoxic or hypoxic conditions. As a result, migratory tendency and the messenger RNA levels of vascular endothelial growth factor, matrix metalloproteinase-2 (MMP-2), and MMP-9 were significantly decreased in 4T1 cells. Of note, HA treatment combined with 100-1,000 μM H2 O2 caused more damage to MNCs as compared to treatment with lower concentrations (10-50 μM). Based on these results, we propose to administer high-dose H2 O2 + HA (100-1000 μM) for intratumoural injection and low doses for systemic administration. Intratumoural route could have toxic and inhibitory effects not only on the tumour but also on residential myeloid cells defending it, whereas systemic treatment could stimulate peripheral immune responses against the tumour. More in vivo research is required to confirm this hypothesis.
Collapse
Affiliation(s)
- Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Pakravan
- Department of Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Tang W, Hong L, Dai W, Li J, Zhu H, Lin J, Yang Q, Wang Y, Lin Z, Liu M, Xiao Y, Zhang Y, Wu X, Wang J, Chen Y, Hu H, Liu S, Wang J, Xiang L. MicroRNA‑500a‑5p inhibits colorectal cancer cell invasion and epithelial‑mesenchymal transition. Int J Oncol 2020; 56:1499-1508. [PMID: 32236592 DOI: 10.3892/ijo.2020.5015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/30/2020] [Indexed: 11/06/2022] Open
Abstract
The development of malignant tumors is a series of complex processes, the majority of which have not been elucidated. The aim of the present study was to investigate the microRNAs (miRNAs/miR) that affect the migration and invasion abilities of CRC cells. Our previous reports have revealed that miR‑500a‑5p suppressed CRC cell growth and malignant transformation. The present study demonstrated that overexpression of miR‑500a‑5p reduced the expression of vimentin, while increasing the expression of E‑cadherin. Inhibition of miR‑500a‑5p resulted in spindle‑like morphological changes and reorganization of F‑actin in CRC cells. Furthermore, miR‑500a‑5p attenuated the transforming growth factor‑β signaling pathway in EMT. Additionally, emodin inhibited the miR‑500a‑5p inhibitor and suppressed the EMT process. In animal models of metastasis using nude mice, EMT and LoVo cell metastasis was modulated by miR‑500a‑5p. Therefore, the findings of the present study demonstrated that miR‑500a‑5p is associated with a positive therapeutic outcome in terms of invasion/migration of CRC cells and mesenchymal‑like cell changes.
Collapse
Affiliation(s)
- Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weiyu Dai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Huiqiong Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianjiao Lin
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, Guangdong 518172, P.R. China
| | - Qiong Yang
- Department of Gastroenterology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yusi Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mengwei Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yizhi Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yaying Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Hongsong Hu
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, Guangdong 518172, P.R. China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Xiang
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
21
|
Rational design of small molecule RHOA inhibitors for gastric cancer. THE PHARMACOGENOMICS JOURNAL 2020; 20:601-612. [PMID: 32015453 DOI: 10.1038/s41397-020-0153-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Previously, we identified Ras homologous A (RHOA) as a major signaling hub in gastric cancer (GC), the third most common cause of cancer death in the world, prompting us to rationally design an efficacious inhibitor of this oncogenic GTPase. Here, based on that previous work, we extend those computational analyses to further pharmacologically optimize anti-RHOA hydrazide derivatives for greater anti-GC potency. Two of these, JK-136 and JK-139, potently inhibited cell viability and migration/invasion of GC cell lines, and mouse xenografts, diversely expressing RHOA. Moreover, JK-136's binding affinity for RHOA was >140-fold greater than Rhosin, a nonclinical RHOA inhibitor. Network analysis of JK-136/-139 vs. Rhosin treatments indicated downregulation of the sphingosine-1-phosphate, as an emerging cancer metabolic pathway in cell migration and motility. We assert that identifying and targeting oncogenic signaling hubs, such as RHOA, represents an emerging strategy for the design, characterization, and translation of new antineoplastics, against gastric and other cancers.
Collapse
|
22
|
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019; 9:735. [PMID: 31766246 PMCID: PMC6920770 DOI: 10.3390/biom9110735] [Citation(s) in RCA: 730] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Punjab, Chandigarh 160012, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Ayşegül Varol
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir TR26470, Turkey;
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India;
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkey;
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India;
| | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
23
|
Li J, Zuo X, Cheng P, Ren X, Sun S, Xu J, Holmgren A, Lu J. The production of reactive oxygen species enhanced with the reduction of menadione by active thioredoxin reductase. Metallomics 2019; 11:1490-1497. [PMID: 31359011 DOI: 10.1039/c9mt00133f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cytosolic thioredoxin reductase (TXNRD1) is an important selenoprotein that participates in the reduction of thioredoxin and many other redox-related substrates. The enhancement of ROS production to cause cancer cell death is an effective anticancer strategy. Herein, we found that menadione substantially increased ROS generation via interaction with TXNRD1. To elucidate the mechanism behind this, various TXNRD1 mutant proteins were used to investigate the relationship between ROS production and the reaction between enzymes and menadione. A mutation at the C-terminal active site -GCUG of TXNRD1 to -GSSG or -GC, or the N-terminal active site C59S, C64S, or the deletion of the C-terminal 16 amino acid residues caused the loss of TXNRD1 activity needed for the reduction of menadione and therefore resulted in the loss of the ROS production ability of menadione. In contrast, the mutation of -GCUG to -GCCG resulted in an increase in the TXNRD1 activity towards the reduction of menadione, thus leading to an increase in ROS production. The co-treatment of the TXNRD1 inhibitor aurothioglucose and menadione could significantly alleviate the efficiency of ROS generation in vitro and increase the viability of A549 cells. Moreover, menadione could be reduced by the glutathione system and caused ROS production with less efficiency. These results demonstrate that TXNRD1 can serve as an effective source to generate ROS, which may provide a novel anticancer method based on the use of menadione.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Xin Zuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Ping Cheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Shibo Sun
- School of Life Science and Medicine & Panjin Institute of Industrial Technology Dalian University of Technology, Panjin 124221, China
| | - Jianqiang Xu
- School of Life Science and Medicine & Panjin Institute of Industrial Technology Dalian University of Technology, Panjin 124221, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Jun Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Mitra S, Nguyen LN, Akter M, Park G, Choi EH, Kaushik NK. Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation. Cancers (Basel) 2019; 11:E1030. [PMID: 31336648 PMCID: PMC6678366 DOI: 10.3390/cancers11071030] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
For the last few decades, while significant improvements have been achieved in cancer therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus, there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage malignant cells. Moreover, several important intracellular mechanisms occur during the production of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic tool for cancer treatment due to their unique biophysical behavior, including the ability to generate considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer inhibition capabilities of ROS.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Mahmuda Akter
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| |
Collapse
|
25
|
Nam S, Kim JH, Lee DH. RHOA in Gastric Cancer: Functional Roles and Therapeutic Potential. Front Genet 2019; 10:438. [PMID: 31156701 PMCID: PMC6529512 DOI: 10.3389/fgene.2019.00438] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/29/2019] [Indexed: 12/23/2022] Open
Abstract
The well-known signal mediator and small GTPase family member, RHOA, has now been associated with the progression of specific malignancies. In this review, we appraise the biomedical literature regarding the role of this enzyme in gastric cancer (GC) signaling, suggesting potential clinical significance. To that end, we examined RHOA activity, with regard to second-generation hallmarks of cancer, finding particular association with the hallmark "activation of invasion and metastasis." Moreover, an abundance of studies show RHOA association with Lauren classification diffuse subtype, in addition to poorly differentiated GC. With regard to therapeutic value, we found RHOA signaling to influence the activity of specific widely used chemotherapeutics, and its possible antagonism by various dietary constituents. We also review currently available targeted therapies for GC. The latter, however, showed a paucity of such agents, underscoring the urgent need for further investigation into treatments for this highly lethal malignancy.
Collapse
Affiliation(s)
- Seungyoon Nam
- Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon, South Korea.,Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, South Korea.,Gachon Advanced Institute of Health Sciences and Technology, Gachon University, Incheon, South Korea.,Department of Life Sciences, Gachon University, Seongnam, South Korea
| | - Jung Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, School of Medicine, Gachon University, Incheon, South Korea.,Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, South Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
26
|
Zhou J, Li G, Han G, Feng S, Liu Y, Chen J, Liu C, Zhao L, Jin F. Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway. Invest New Drugs 2019; 38:50-59. [PMID: 30924024 PMCID: PMC6985083 DOI: 10.1007/s10637-019-00764-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
Emodin, an anthraquinone compound extracted from rhubarb and other traditional Chinese medicines, has been proven to have a wide range of pharmacological effects, such as anti-inflammatory, antiviral, and antitumor activities. Previous studies have confirmed that emodin has inhibitory effects on various solid tumors, such as osteosarcoma, liver cancer, prostate cancer and glioma. This study aimed to investigate the effects and mechanisms of emodin-induced necroptosis in the glioma cell line U251 by targeting the TNF-α/RIP1/RIP3 signaling pathway. We found that emodin could significantly inhibit U251 cell proliferation, and the viability of U251 cells treated with emodin was reduced in a dose- and time-dependent manner. Flow cytometry assays and Hoechst-PI staining assays showed that emodin induced apoptosis and necroptosis. Real-time PCR and western blot analysis showed that emodin upregulated the levels of TNF-α, RIP1, RIP3 and MLKL. Furthermore, the RIP1 inhibitor Nec-1 and the RIP3 inhibitor GSK872 attenuated the killing effect of emodin on U251 cells. In addition, emodin could increase the levels of TNF-α, RIP1, RIP3 and MLKL in vivo. The results demonstrate that emodin could induce necroptosis in glioma possibly through the activation of the TNF-α/RIP1/RIP3 axis. These studies provide novel insight into the induction of necroptosis by emodin and indicate that emodin might be a potential candidate for treating glioma through the necroptosis pathway.
Collapse
Affiliation(s)
- Jiabin Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, & Shandong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 People’s Republic of China
| | - Genhua Li
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, & Shandong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 People’s Republic of China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, & Shandong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 People’s Republic of China
| | - Song Feng
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, & Shandong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 People’s Republic of China
| | - Yuhan Liu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 People’s Republic of China
| | - Jun Chen
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, & Shandong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 People’s Republic of China
- Clinical Medical College, Jining Medical University, Jining, Shandong 272029 People’s Republic of China
| | - Chen Liu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, & Shandong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 People’s Republic of China
- Clinical Medical College, Jining Medical University, Jining, Shandong 272029 People’s Republic of China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, & Shandong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 People’s Republic of China
| |
Collapse
|
27
|
Zhang J, Sun H, Salvi R, Ding D. Paraquat initially damages cochlear support cells leading to anoikis-like hair cell death. Hear Res 2018; 364:129-141. [PMID: 29563067 PMCID: PMC5984146 DOI: 10.1016/j.heares.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
Paraquat (PQ), one of the most widely used herbicides, is extremely dangerous because it generates the highly toxic superoxide radical. When paraquat was applied to cochlear organotypic cultures, it not only damaged the outer hair cells (OHCs) and inner hair cells (IHCs), but also caused dislocation of the hair cell rows. We hypothesized that the dislocation arose from damage to the support cells (SCs) that anchors hair cells within the epithelium. To test this hypothesis, rat postnatal cochlear cultures were treated with PQ. Shortly after PQ treatment, the rows of OHCs separated from one another and migrated radially away from IHCs suggesting loss of cell-cell adhesion that hold the hair cells in proper alignment. Hair cells dislocation was associated with extensive loss of SCs in the organ of Corti, loss of tympanic border cells (TBCs) beneath the basilar membrane, the early appearance of superoxide staining and caspase-8 labeling in SCs below the OHCs and disintegration of E-cadherin and β-catenin in the organ of Corti. Damage to the TBCs and SCs occurred prior to loss of OHC or IHC loss suggesting a form of detachment-induced apoptosis referred to as anoikis.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | - Hong Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan, ROC
| | - Dalian Ding
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, China; Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
28
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
29
|
Xu Y, Zhang Y, Liu X, Wang Z, Ma J, Wang J, Yue W. The Effects of Ultrasound and Arsenic Trioxide on Neurogliocytoma Cells and Secondary Activation of Macrophages. TUMORI JOURNAL 2018; 95:780-8. [DOI: 10.1177/030089160909500622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and Background As a new technique for clinical therapeutics, ultrasound has synergistic effects on traditional chemotherapy. Arsenic trioxide (AS2O3), an apoptosis-inducing drug, has successfully been used in the treatment of some tumor types in recent years. Macrophages have both positive and negative effects on the occurrence and development of tumors. The aim of this study was to observe the effects of ultrasound and AS2O3 on a glioma cell line and the secondary activation of macrophages by cell death, in order to provide a theoretical basis for the clinical application of AS2O3 and ultrasound in glioma treatment. Methods Different AS2O3 concentrations were used solely or combined with ultrasound in rat glioma C6 cells to induce cell death. The degree of C6 cell death was determined by AnnexinV-FITC and PI double staining. The intracellular arsenium concentration and the release of lactate dehydrogenase (LDH) from C6 cells were also measured. The supernatant of C6 cells was then used to stimulate macrophages. Finally the activation of NF-κB and the secretion of TNF-α and TGF-β1 by macrophages were determined. Results The cell death increase in the group where ultrasound was used together with AS2O3 was significantly higher than that obtained by either ultrasound or AS2O3. The increase was also significantly higher than the sum of the increases in the ultrasound and the AS2O3 only groups. At the same AS2O3 concentration, additional treatment with ultrasound can significantly increase the intracellular arsenium concentration. The release of LDH from C6 cells showed a close, direct correlation with late apoptosis and necrosis, but did not exhibit an obvious correlation with early apoptosis. The activation of NF-κB and the secretion of TNF-α and TGF-β1 in macrophages also showed a close direct correlation with late apoptosis and necrosis. Conclusions This in vitro study demonstrates that ultrasound may synergistically enhance the cell-killing effect by promoting AS2O3 to enter the C6 cells. Macrophages may be activated by killed C6 cells, especially by necrotic C6 cells.
Collapse
Affiliation(s)
- Yonggang Xu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yafang Zhang
- Department of Anatomy Harbin Medical University, Harbin, China
| | - Xiaoqian Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Ma
- Department of Anatomy Harbin Medical University, Harbin, China
| | - Jie Wang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wu Yue
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Hu B, Zhang T, An HM, Zheng JL, Yan X, Huang XW. Herbal formula YGJDSJ inhibits anchorage-independent growth and induces anoikis in hepatocellular carcinoma Bel-7402 cells. Altern Ther Health Med 2018; 18:17. [PMID: 29338725 PMCID: PMC5771203 DOI: 10.1186/s12906-018-2083-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
Background Based on clinical medications and related studies, we established a Yang-Gan Jie-Du Sang-Jie (YGJDSJ) herbal formula for hepatocarcinoma treatment. In present study, we evaluated the anti-cancer potential of YGJDSJ on suspension-grown human hepatocellular carcinoma Bel-7402 cells. Methods Bel-7402 cells were cultured in poly(2-hydroxyethyl methacrylate) (poly-HEMA) coated plates and treated with YGJDSJ. Anchorage-independent cell growth was detected by cell Counting Kit-8 (CCK-8) assay and soft agar colony formation assay. Anoikis was detected by ethdium homodimer-1 (EthD-1) staining and flow cytometry analysis. Caspases activities were detected by the cleavage of chromogenic substrate. Reactive oxygen species (ROS) was detected by 2′,7′-dichlorofluorescin diacetate (DCFH-DA) staining. Protein expression and phosphorylation was identified by western blot. Protein expression was knocked-down by siRNA. Results YGJDSJ inhibited the proliferation of Bel-7402 cells in poly-HEMA coated plates and anchorage-independent growth of Bel-7402 cells in soft agar. YGJDSJ also induced anoikis in Bel-7402 cells as indicated by EthD-1 staining and flow cytometry analysis. YGJDSJ activated caspase-3, − 8, and − 9 in suspension-grown Bel-7402 cells. The pan-caspase inhibitor Z-VAD-FMK significantly abrogated the effects of YGJDSJ on anoikis in suspension-grown Bel-7402 cells. In addition, YGJDSJ increased ROS in suspension-grown Bel-7402 cells. The ROS scavenger N-acetyl-L-cysteine (NAC) partially attenuated YGJDSJ-induced activation of caspase-3, − 8 and − 9 and anoikis in suspension-grown Bel-7402 cells. Furthermore, YGJDSJ inhibited expression and phosphorylation of protein tyrosine kinase 2 (PTK2) in suspension-grown Bel-7402 cells. Over-expression of PTK2 significantly abrogated YGJDSJ induced anoikis. Conclusions YGJDSJ inhibits anchorage-independent growth and induce caspase-mediated anoikis in Bel-7402 cells, and may relate to ROS generation and PTK2 downregulation.
Collapse
|
31
|
Lu Q, Gottlieb E, Rounds S. Effects of cigarette smoke on pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2018; 314:L743-L756. [PMID: 29351435 DOI: 10.1152/ajplung.00373.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoking is the leading cause of preventable disease and death in the United States. Cardiovascular comorbidities associated with both active and secondhand cigarette smoking indicate the vascular toxicity of smoke exposure. Growing evidence supports the injurious effect of cigarette smoke on pulmonary endothelial cells and the roles of endothelial cell injury in development of acute respiratory distress syndrome (ARDS), emphysema, and pulmonary hypertension. This review summarizes results from studies of humans, preclinical animal models, and cultured endothelial cells that document toxicities of cigarette smoke exposure on pulmonary endothelial cell functions, including barrier dysfunction, endothelial activation and inflammation, apoptosis, and vasoactive mediator production. The discussion is focused on effects of cigarette smoke-induced endothelial injury in the development of ARDS, emphysema, and vascular remodeling in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center , Providence, Rhode Island.,Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Eric Gottlieb
- Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center , Providence, Rhode Island.,Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| |
Collapse
|
32
|
Raza MH, Siraj S, Arshad A, Waheed U, Aldakheel F, Alduraywish S, Arshad M. ROS-modulated therapeutic approaches in cancer treatment. J Cancer Res Clin Oncol 2017; 143:1789-1809. [PMID: 28647857 DOI: 10.1007/s00432-017-2464-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/16/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE Reactive oxygen species (ROS) are produced in cancer cells as a result of increased metabolic rate, dysfunction of mitochondria, elevated cell signaling, expression of oncogenes and increased peroxisome activities. Certain level of ROS is required by cancer cells, above or below which lead to cytotoxicity in cancer cells. This biochemical aspect can be exploited to develop novel therapeutic agents to preferentially and selectively target cancer cells. METHODS We searched various electronic databases including PubMed, Web of Science, and Google Scholar for peer-reviewed english-language articles. Selected articles ranging from research papers, clinical studies, and review articles on the ROS production in living systems, its role in cancer development and cancer treatment, and the role of microbiota in ROS-dependent cancer therapy were analyzed. RESULTS This review highlights oxidative stress in tumors, underlying mechanisms of different relationships of ROS and cancer cells, different ROS-mediated therapeutic strategies and the emerging role of microbiota in cancer therapy. CONCLUSION Cancer cells exhibit increased ROS stress and disturbed redox homeostasis which lead to ROS adaptations. ROS-dependent anticancer therapies including ROS scavenging anticancer therapy and ROS boosting anticancer therapy have shown promising results in vitro as well as in vivo. In addition, response to cancer therapy is modulated by the human microbiota which plays a critical role in systemic body functions.
Collapse
Affiliation(s)
- Muhammad Hassan Raza
- Department of Bioinformatics and Biotechnology, International Islamic University, Sector H-10, Islamabad, 44000, Pakistan.
| | - Sami Siraj
- Institute of Basic Medical Sciences, Khyber Medical University (KMU), Peshawar, 25000, Pakistan
| | - Abida Arshad
- Department of Biology, PMAS-Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Usman Waheed
- Department of Pathology and Blood Bank, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, 44000, Pakistan
| | - Fahad Aldakheel
- Department of Clinical Laboratory Medicine, College of Applied Medical Sciences, King Saud University, Riyadh, 11564, Saudi Arabia
| | - Shatha Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, 11564, Saudi Arabia
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Sector H-10, Islamabad, 44000, Pakistan
| |
Collapse
|
33
|
Bu X, Wu D, Lu X, Yang L, Xu X, Wang J, Tang J. Role of SIRT1/PGC-1α in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr Dis Treat 2017; 13:1633-1645. [PMID: 28694700 PMCID: PMC5491272 DOI: 10.2147/ndt.s129081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autistic spectrum disorder (ASD) is a neurodevelopmental disorder and has a high prevalence in children. Recently, mitochondrial oxidative stress has been proposed to be associated with ASD. Besides, SIRT1/PGC-1α signaling plays an important role in combating oxidative stress. In this study, we sought to determine the role of SIRT1/PGC-1α signaling in the ASD lymphoblastoid cell lines (LCLs). In this study, the mRNA and protein expressions of SIRT1/PGC-1α axis genes were assessed in 35 children with ASD and 35 healthy controls (matched for age, gender, and IQ). An immortalized LCL was established by transforming lymphocytes with Epstein-Barr virus. Next, we used ASD LCLs and control LCLs to detect SIRT1/PGC-1α axis genes expression and oxidative damage. Finally, the effect of overexpression of PGC-1α on oxidative injury in the ASD LCLs was determined. SIRT1/PGC-1α axis genes expression was downregulated at RNA and protein levels in ASD patients and LCLs. Besides, the translocation of cytochrome c and DIABLO from mitochondria to the cytosol was found in the ASD LCLs. Moreover, the intracellular reactive oxygen species (ROS) and mitochondrial ROS and cell apoptosis were increased in the ASD LCLs. However, overexpression of PGC-1α upregulated the SIRT1/PGC-1α axis genes expression and reduced cytochrome c and DIABLO release in the ASD LCLs. Also, overexpression of PGC-1α reduced the ROS generation and cell apoptosis in the ASD LCLs. Overexpression of PGC-1α could reduce the oxidative injury in the ASD LCLs, and PGC-1α may act as a target for treatment.
Collapse
Affiliation(s)
- Xiaosong Bu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - De Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaomei Lu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Li Yang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoyan Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Juan Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jiulai Tang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
34
|
|
35
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Li X, Wang H, Wang J, Chen Y, Yin X, Shi G, Li H, Hu Z, Liang X. Emodin enhances cisplatin-induced cytotoxicity in human bladder cancer cells through ROS elevation and MRP1 downregulation. BMC Cancer 2016; 16:578. [PMID: 27485374 PMCID: PMC4971704 DOI: 10.1186/s12885-016-2640-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background Chemoresistance is one of the most leading causes for tumor progression and recurrence of bladder cancer. Reactive oxygen species (ROS) plays a key role in the chemosensitivity of cancer cells. In the present study, emodin (1,3,8-trihydroxy-6-methylanthraquinone) was applied as a ROS generator in combination with cisplatin in T24 and J82 human bladder cancer cells. Methods Cell viability and apoptosis rate of different treatment groups were detected by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry (FCM). The expression of transporters was measured at both the transcription and translation levels using PCR and western blotting. In vitro findings were confirmed by in vivo experiments using tumor-bearing mice. The expression of multidrug resistance-associated protein 1 (MRP1) in tumour tissue was measured using immunohistochemistry and side effects of the emodin/cisplatin co-treatment were investigated by histological examination. Results Emodin increased the cellular ROS level and effectively enhanced the cisplatin-induced cytotoxicity of T24 and J82 human bladder cancer cells through decreasing glutathione-cisplatin (GSH-cisplatin) conjugates. It blocked the chemoresistance of T24 and J82 cells to cisplatin through suppressing the expression of MRP1. This effect was specific in T24 and J82 cells but not in HCV-29 normal bladder epithelial cells. Consistent with in vitro experiments, emodin/cisplatin co-treatment increased the cell apoptosis and repressed the MRP1 expression in xenograft tumors, and without obvious systemic toxicity. Conclusions This study revealed that emodin could increase the cisplatin-induced cytotoxicity against T24 and J82 cells via elevating the cellular ROS level and downregulating MRP1 expression. We suggest that emodin could serve as an effective adjuvant agent for the cisplatin-based chemotherapy of bladder cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2640-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinxing Li
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, 145 S. Fengyang Road, Shanghai, 200003, China.
| | - Haolu Wang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Brisbane, QLD, 4012, Australia
| | - Juan Wang
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, 145 S. Fengyang Road, Shanghai, 200003, China
| | - Yuying Chen
- Department of Cell Biology, Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, China
| | - Xiaobin Yin
- Division of Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 S. Dongfang Road, Shanghai, 200127, China
| | - Guiying Shi
- Department of Cell Biology, Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, China
| | - Hui Li
- Department of Cell Biology, Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, China
| | - Zhiqian Hu
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, 145 S. Fengyang Road, Shanghai, 200003, China.
| | - Xiaowen Liang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Brisbane, QLD, 4012, Australia
| |
Collapse
|
37
|
Ku HJ, Kwon OS, Kang BS, Lee DS, Lee HS, Park JW. IDH2 knockdown sensitizes tumor cells to emodin cytotoxicity in vitro and in vivo. Free Radic Res 2016; 50:1089-1097. [PMID: 27087448 DOI: 10.1080/10715762.2016.1178739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although reactive oxygen species (ROS) work as second messengers at sublethal concentrations, higher levels of ROS can kill cancer cells. Since cellular ROS levels are determined by a balance between ROS generation and removal, the combination of ROS generators, and the depletion of reducing substances greatly enhance ROS levels. Emodin (1,3,8-trihydroxy-6-methyl anthraquinone), a natural anthraquinone derivative from the root and rhizome of numerous plants, is a ROS generator that induces apoptosis in cancer cells. The major enzyme to generate mitochondrial NADPH is the mitochondrial isoenzyme of NADP+-dependent isocitrate dehydrogenase (IDH2). In this report, we demonstrate that IDH2 knockdown effectively enhances emodin-induced apoptosis of mouse melanoma B16F10 cells through the regulation of ROS generation. Our findings suggest that suppression of IDH2 activity results in perturbation of the cellular redox balance and, ultimately, exacerbate emodin-induced apoptotic cell death in B16F10 cells. Our results strongly support a therapeutic strategy in the management of cancer that alters the intracellular redox status by the combination of a ROS generator and the suppression of antioxidant enzyme activity.
Collapse
Affiliation(s)
- Hyeong Jun Ku
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | - Oh-Shin Kwon
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | - Boem Sik Kang
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | - Dong-Seok Lee
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | - Hyun-Shik Lee
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| | - Jeen-Woo Park
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , College of Natural Sciences, Kyungpook National University , Taegu , Republic of Korea
| |
Collapse
|
38
|
Lipchick BC, Fink EE, Nikiforov MA. Oxidative stress and proteasome inhibitors in multiple myeloma. Pharmacol Res 2016; 105:210-5. [PMID: 26827824 PMCID: PMC5044866 DOI: 10.1016/j.phrs.2016.01.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 11/23/2022]
Abstract
Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents.
Collapse
Affiliation(s)
- Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
39
|
Wang M, Sang J, Ren Y, Liu K, Liu X, Zhang J, Wang H, Wang J, Orian A, Yang J, Yi J. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/3-targeted ubiquitination and degradation. Protein Cell 2016; 7:63-77. [PMID: 26511642 PMCID: PMC4707158 DOI: 10.1007/s13238-015-0216-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 09/08/2015] [Indexed: 12/19/2022] Open
Abstract
SUMOylation is recently found to function as a targeting signal for the degradation of substrates through the ubiquitin-proteasome system. RNF4 is the most studied human SUMO-targeted ubiquitin E3 ligase. However, the relationship between SUMO proteases, SENPs, and RNF4 remains obscure. There are limited examples of the SENP regulation of SUMO2/3-targeted proteolysis mediated by RNF4. The present study investigated the role of SENP3 in the global protein turnover related to SUMO2/3-targeted ubiquitination and focused in particular on the SENP3 regulation of the stability of Sp1. Our data demonstrated that SENP3 impaired the global ubiquitination profile and promoted the accumulation of many proteins. Sp1, a cancer-associated transcription factor, was among these proteins. SENP3 increased the level of Sp1 protein via antagonizing the SUMO2/3-targeted ubiquitination and the consequent proteasome-dependent degradation that was mediated by RNF4. De-conjugation of SUMO2/3 by SENP3 attenuated the interaction of Sp1 with RNF4. In gastric cancer cell lines and specimens derived from patients and nude mice, the level of Sp1 was generally increased in parallel to the level of SENP3. These results provided a new explanation for the enrichment of the Sp1 protein in various cancers, and revealed a regulation of SUMO2/3 conjugated proteins whose levels may be tightly controlled by SENP3 and RNF4.
Collapse
Affiliation(s)
- Ming Wang
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sang
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhua Ren
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kejia Liu
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyi Liu
- Department of Pathophysiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haolu Wang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Amir Orian
- Faculty of Medicine, Cancer and Vascular Biology Research Center, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Jie Yang
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jing Yi
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
40
|
Antitumor Effects and Mechanism of Novel Emodin Rhamnoside Derivatives against Human Cancer Cells In Vitro. PLoS One 2015; 10:e0144781. [PMID: 26682731 PMCID: PMC4684281 DOI: 10.1371/journal.pone.0144781] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/22/2015] [Indexed: 12/31/2022] Open
Abstract
A series of novel anthracene L-rhamnopyranosides compounds were designed and synthesized and their anti-proliferative activities on cancer cell lines were investigated. We found that one derivative S-8 (EM-d-Rha) strongly inhibited cell proliferation of a panel of different human cancer cell lines including A549, HepG2, OVCAR-3, HeLa and K562 and SGC-790 cell lines, and displayed IC50 values in low micro-molar ranges, which are ten folds more effective than emodin. In addition, we found EM-d-Rha (3-(2”,3”-Di-O-acetyl-α-L-rhamnopyranosyl-(1→4)-2’,3’-di-O-acetyl-α-L-rhamnopyranosyl)-emodin) substantially induced cellular apoptosis of HepG2 and OVCAR-3 cells in the early growth stage. Furthermore, EM-d-Rha led to the decrease of mitochondrial transmembrane potential, and up-regulated the express of cells apoptosis factors in a concentration- and time-dependent manner. The results indicated the EM-d-Rha may inhibit the growth and proliferation of HepG2 cells through the pathway of apoptosis induction, and the possible molecular mechanism may due to the activation of intrinsic apoptotic signal pathway.
Collapse
|
41
|
Hayakawa Y, Ariyama H, Stancikova J, Sakitani K, Asfaha S, Renz BW, Dubeykovskaya ZA, Shibata W, Wang H, Westphalen CB, Chen X, Takemoto Y, Kim W, Khurana SS, Tailor Y, Nagar K, Tomita H, Hara A, Sepulveda AR, Setlik W, Gershon MD, Saha S, Ding L, Shen Z, Fox JG, Friedman RA, Konieczny SF, Worthley DL, Korinek V, Wang TC. Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche. Cancer Cell 2015; 28:800-814. [PMID: 26585400 PMCID: PMC4684751 DOI: 10.1016/j.ccell.2015.10.003] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/26/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
Abstract
The regulation and stem cell origin of normal and neoplastic gastric glands are uncertain. Here, we show that Mist1 expression marks quiescent stem cells in the gastric corpus isthmus. Mist1(+) stem cells serve as a cell-of-origin for intestinal-type cancer with the combination of Kras and Apc mutation and for diffuse-type cancer with the loss of E-cadherin. Diffuse-type cancer development is dependent on inflammation mediated by Cxcl12(+) endothelial cells and Cxcr4(+) gastric innate lymphoid cells (ILCs). These cells form the perivascular gastric stem cell niche, and Wnt5a produced from ILCs activates RhoA to inhibit anoikis in the E-cadherin-depleted cells. Targeting Cxcr4, ILCs, or Wnt5a inhibits diffuse-type gastric carcinogenesis, providing targets within the neoplastic gastric stem cell niche.
Collapse
Affiliation(s)
- Yoku Hayakawa
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hiroshi Ariyama
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jitka Stancikova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Kosuke Sakitani
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Samuel Asfaha
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Bernhard W Renz
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Department of General, Visceral, Transplantation, Vascular, and Thoracic Surgery, Hospital of the University of Munich, Munich 81377, Germany
| | - Zinaida A Dubeykovskaya
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Wataru Shibata
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hongshan Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christoph B Westphalen
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Xiaowei Chen
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yoshihiro Takemoto
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Woosook Kim
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Shradha S Khurana
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yagnesh Tailor
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Karan Nagar
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Antonia R Sepulveda
- Division of Clinical Pathology and Cell Biology, Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Wanda Setlik
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Subhrajit Saha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lei Ding
- Departments of Rehabilitation and Regenerative Medicine and Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard A Friedman
- Herbert Irving Comprehensive Cancer Center Biomedical Informatics Shared Resource and Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Stephen F Konieczny
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel L Worthley
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
42
|
Shi Y, Li J, Ren Y, Wang H, Cong Z, Wu G, Du L, Li H, Zhang X. Pharmacokinetics and tissue distribution of emodin loaded nanoemulsion in rats. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Duan JT, Wang XM, Zhang SQ, Zhao GJ. Effect of RhoA gene silencing on proliferation and migration of gastric MGC-803 cells. Int J Clin Exp Med 2015; 8:14410-14415. [PMID: 26550428 PMCID: PMC4613113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/12/2015] [Indexed: 06/05/2023]
Abstract
In this study, the expression of silencing RhoA gene in gastric MGC-803 Cells was investigated, in order to discuss the effect of RhoA gene on cell proliferation, cell cycles and tumor migration. SiRNA sequence of RhoA gene was designed and synthesized; MGC-803 cells were transfected by Lipofectamine(TM2000). The expression of RhoA gene in mRNA and protein after interference was detected by RT-PCR and Western blot; flow cytometry was used to detect the cell cycle; cell proliferation was detected by CCK-8 assay and cell migration was detected by scratch healing assay. RhoA expression in mRNA and protein of the experimental group was significantly lower than that of the control group and blank group, and the difference was statistically significant (P < 0.05). The growth rate significantly slowed down in experimental group; the cell cycle was arrested in the G0/G1 phase and the number of cells in S-phase reduced; there was a statistically significant difference (P < 0.05). Scratch healing assay showed that cell migration of the experimental group was significantly decreased, with a statistically significant difference (P < 0.05). Specific interference on RhoA gene expression could inhibit the proliferation and migration of MGC-803 cells; therefore, siRNA sequences of RhoA gene may be an effective target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ju-Tao Duan
- Emergency Surgery, Tianjin Nankai HospitalThree Weft Road No. 122, Tianjin 300000, China
| | - Xi-Mo Wang
- Emergency Surgery, Tianjin Nankai HospitalThree Weft Road No. 122, Tianjin 300000, China
| | - Shu-Quan Zhang
- Emergency Surgery, Tianjin Nankai HospitalThree Weft Road No. 122, Tianjin 300000, China
| | - Guan-Jie Zhao
- Department of Nephrology, China-Japan Union Hospital of Jilin UniversitySendai Street Economic Development Zone No. 126, Changchun 130000, China
| |
Collapse
|
44
|
Corominas-Faja B, Cuyàs E, Gumuzio J, Bosch-Barrera J, Leis O, Martin ÁG, Menendez JA. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 2015; 5:8306-16. [PMID: 25246709 PMCID: PMC4226684 DOI: 10.18632/oncotarget.2059] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSC) may take advantage of the Warburg effect-induced siphoning of metabolic intermediates into de novo fatty acid biosynthesis to increase self-renewal growth. We examined the anti-CSC effects of the antifungal polyketide soraphen A, a specific inhibitor of the first committed step of lipid biosynthesis catalyzed by acetyl-CoA carboxylase (ACACA). The mammosphere formation capability of MCF-7 cells was reduced following treatment with soraphen A in a dose-dependent manner. MCF-7 cells engineered to overexpress the oncogene HER2 (MCF-7/HER2 cells) were 5-fold more sensitive than MCF-7 parental cells to soraphen A-induced reductions in mammosphere-forming efficiency. Soraphen A treatment notably decreased aldehyde dehydrogenase (ALDH)-positive CSC-like cells and impeded the HER2's ability to increase the ALDH+-stem cell population. The following results confirmed that soraphen A-induced suppression of CSC populations occurred through ACACA-driven lipogenesis: a.) exogenous supplementation with supraphysiological concentrations of oleic acid fully rescued mammosphere formation in the presence of soraphen A and b.) mammosphere cultures of MCF-7 cells with stably silenced expression of the cytosolic isoform ACACA1, which specifically participates in de novo lipogenesis, were mostly refractory to soraphen A treatment. Our findings reveal for the first time that ACACA may constitute a previously unrecognized target for novel anti-breast CSC therapies.
Collapse
Affiliation(s)
- Bruna Corominas-Faja
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| | - Elisabet Cuyàs
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| | - Juan Gumuzio
- Fundación Inbiomed, San Sebastián, Gipuzkoa Spain
| | | | - Olatz Leis
- StemTek Therapeutics, Bilbao, Biscay Spain
| | | | - Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia Spain. Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia Spain
| |
Collapse
|
45
|
Zhu H, Zheng Z, Zhang J, Liu X, Liu Y, Yang W, Liu Y, Zhang T, Zhao Y, Liu Y, Su X, Gu X. Anticancer effect of 2,7-dihydroxy-3-methylanthraquinone on human gastric cancer SGC-7901 cells in vitro and in vivo. PHARMACEUTICAL BIOLOGY 2015; 54:285-292. [PMID: 25853970 DOI: 10.3109/13880209.2015.1033563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT 2,7-Dihydroxy-3-methylanthraquinone (DDMN) is reported to have a remarkable anticancer activity against gastric cancer SGC-7901 cells. OBJECTIVE The objective of this study is to study the anticancer effect and mechanism of DDMN on SGC-7901 cells. MATERIALS AND METHODS The MTT assay was used to determine the effect of DDMN on cell viability of SGC-7901 cells, and the cytotoxic effect was evaluated by the IC50 value. After treatment with different doses of DDMN (10, 20, and 40 μM) for 48 h, flow cytometry was used to investigate the apoptosis of SGC-7901 cells induced by DDMN. Further, western blotting was performed to study anticancer mechanism by assaying apoptosis-related proteins containing Mcl-1, Bcl-xl, Bcl-2, Bax, Bak, Bad, cytochrome c, caspase-3, and caspase-9. Finally, xenograft assay was used to further evaluate the effect of DDMN on SGC-7901 cells by determining body weight of nude mice, tumor volumes, and apoptosis-related proteins. RESULTS These results suggest that DDMN can significantly inhibit (IC50 value = 20.92 μM) the proliferation of SGC-7901 cells and induce apoptosis of SGC-7901 cells demonstrated by flow cytometry analysis. Additionally, the results of western blotting indicated that DDMN can suppress the expression of anti-apoptotic proteins Bcl-xl and Bcl-2, increase the expression of pro-apoptotic proteins Bax, Bad (40 μM), caspase-3 and caspase-9, and evidently promote the release of cytochrome c from the mitochondria to the cytoplasm. The xenograft assay further confirmed that DDMN had significant anticancer effects on SGC-7901 cells. CONCLUSION DDMN had significant anticancer effect on SGC-7901 cells in vitro and in vivo related to mitochondria-mediated apoptosis.
Collapse
MESH Headings
- Animals
- Anthraquinones/chemistry
- Anthraquinones/isolation & purification
- Anthraquinones/pharmacology
- Anthraquinones/therapeutic use
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Culture Techniques
- Cell Line, Tumor
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Flow Cytometry
- Gene Expression Regulation, Neoplastic/drug effects
- Hedyotis/chemistry
- Humans
- Mice, Nude
- Mitochondria/drug effects
- Mitochondria/metabolism
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Haitao Zhu
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Zhichao Zheng
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Jianjun Zhang
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Xiaoping Liu
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Yang Liu
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Wei Yang
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Yong Liu
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Tao Zhang
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Yan Zhao
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Yanqing Liu
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Xiaohui Su
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| | - Xiaohu Gu
- a Department of Gastric Surgery , Liaoning Cancer Hospital & Institute , Shenyang , PR China
| |
Collapse
|
46
|
Chilakapati J, Wallace K, Hernandez-Zavala A, Moore T, Ren H, Kitchin KT. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure. Dose Response 2015; 13:1559325815592392. [PMID: 26674514 PMCID: PMC4674186 DOI: 10.1177/1559325815592392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers.
Collapse
Affiliation(s)
| | - Kathleen Wallace
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| | - Araceli Hernandez-Zavala
- Sección de Investigación y Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Tanya Moore
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| | - Hongzu Ren
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| | - Kirk T. Kitchin
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
| |
Collapse
|
47
|
Emodin augments cisplatin cytotoxicity in platinum-resistant ovarian cancer cells via ROS-dependent MRP1 downregulation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:107671. [PMID: 25580427 PMCID: PMC4279181 DOI: 10.1155/2014/107671] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 01/15/2023]
Abstract
The intracellular level of reactive oxygen species (ROS) is closely associated with chemosensitivity of cancer cells. Overexpression of ATP binding cassette transporter MRP1 is correlated with resistance to platinum drugs. In this study, we tested the hypothesis that emodin, a potent ROS generator, may increase sensitivity of cisplatin-(cDDP-) resistant ovarian carcinoma cells to cDDP cytotoxicity via ROS-mediated suppression of MRP1 expression. Using the isogenic pair of the human ovarian carcinoma cell line COC1 and its cDDP resistant variant COC1/DDP, we found that ROS level in the cDDP-sensitive ovarian cancer cells was significantly higher than that in the cDDP-resistant cells. Emodin enhanced ROS production in COC1/DDP cells and consequently sensitized them to cDDP-induced apoptosis. These effects were reversed by addition of the antioxidant N-acetyl-L-cysteine (NAC). Cotreatment with emodin and cDDP inhibited the tumor growth in vivo by increasing tumor cell apoptosis. The emodin-enhanced cDDP cytotoxicity was attributable to downregulation of multidrug resistance-related protein 1 (MRP1) expression. Together, these results suggest that emodin could act as an adjunct to enhance the anticancer effect of cDDP likely through ROS-related downregulation of MRP1 expression, and may be of therapeutic potential in cDDP-refractory ovarian carcinomas.
Collapse
|
48
|
Guo H, Shen X, Xu Y, Yuan J, Zhao D, Hu W. Emodin prevents hypoxic-ischemic neuronal injury: Involvement of the activin A pathway. Neural Regen Res 2014; 8:1360-7. [PMID: 25206430 PMCID: PMC4107762 DOI: 10.3969/j.issn.1673-5374.2013.15.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 03/18/2013] [Indexed: 01/04/2023] Open
Abstract
Emodin, an extract of dried rhizomes and the root of the Rhizoma Polygoni Cuspidati, can protect neurons from hypoxic-ischemic brain damage. This study aimed to verify the underlying mechanism. After PC12 cells had differentiated into neuron-like cells under the induction of mouse nerve growth factor, cells were subjected to oxygen-glucose deprivation and treated with emodin. Results showed that the viability of neuron-like cells cultured under an ischemia-hypoxia environment decreased, while the expression of activin A and caspase-3 in cells increased. Emodin raised the survival rate of oxygen-glucose deprived neuron-like cells, increased activin A expression, and decreased caspase-3 expression. Experimental findings indicate that emodin can inhibit neuronal apoptosis and alleviate the injury of nerve cells after oxygen-glucose deprivation through the activin A pathway.
Collapse
Affiliation(s)
- Hongliang Guo
- Department of Neurology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China ; Beihua University, Jilin 132001, Jilin Province, China
| | - Xiaoran Shen
- Jilin Municipal Central Hospital, Jilin 132001, Jilin Province, China
| | - Ye Xu
- Jilin Medical College, Jilin 132001, Jilin Province, China
| | - Junliang Yuan
- Department of Neurology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China
| | - Dongming Zhao
- Beihua University, Jilin 132001, Jilin Province, China
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China
| |
Collapse
|
49
|
Pooja T, Karunagaran D. Emodin suppresses Wnt signaling in human colorectal cancer cells SW480 and SW620. Eur J Pharmacol 2014; 742:55-64. [PMID: 25205133 DOI: 10.1016/j.ejphar.2014.08.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/16/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022]
Abstract
Wnt signaling is involved in the regulation of cell proliferation, differentiation and apoptosis. Its aberrant activation is a key event in the pathogenesis and progression of human colorectal cancers. Dietary phytochemicals are gaining importance as chemotherapeutic agents owing to their potential to prevent, delay or reverse oncogenesis. Here we demonstrate that emodin (1,3,8-trihydroxy-6-methylanthraquinone), an anthraquinone present in the roots and bark of several medicinal plants, down regulates Wnt signaling pathway in human colorectal cancer cells (SW480 and SW620) by down regulating TCF/LEF transcriptional activity. Emodin significantly down regulated the expression of key players of Wnt signaling (β-catenin and TCF7L2) and also that of its various downstream targets (cyclin D1, c-Myc, snail, vimentin, MMP-2 and MMP-9). Two novel targets of emodin׳s action were discovered namely Wnt co-activator p300 (down regulated) and repressor HBP1 (up regulated). Morphological changes induced by emodin suggest mesenchymal to epithelial transition accompanied by the increase in E-cadherin expression in human colorectal cancer cells but a differentiation marker (alkaline phosphatase) was activated only in SW620 cells (metastatic origin) and not in SW480 cells (primary tumor-derived). Moreover, our data indicate that reactive oxygen species plays a key role in emodin-mediated down regulation of Wnt signaling as emodin-mediated inhibition of migration and induction of growth arrest were partially rescued by the reactive oxygen species scavenger ascorbic acid. Effects of emodin shown in this study may provide important insights for the use of this anthraquinone as a potential complementary and integrated medicine for the treatment of human colorectal cancer.
Collapse
Affiliation(s)
- Thacker Pooja
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
50
|
Buchheit CL, Weigel KJ, Schafer ZT. Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer 2014; 14:632-41. [PMID: 25098270 DOI: 10.1038/nrc3789] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epithelial cells require attachment to the extracellular matrix (ECM) for survival. However, during tumour progression and metastasis, cancerous epithelial cells must adapt to and survive in the absence of ECM. During the past 20 years, several cellular changes, including anoikis, have been shown to regulate cell viability when cells become detached from the ECM. In this Opinion article, we review in detail how cancer cells can overcome or take advantage of these specific processes. Gaining a better understanding of how cancer cells survive during detachment from the ECM will be instrumental in designing chemotherapeutic strategies that aim to eliminate ECM-detached metastatic cells.
Collapse
Affiliation(s)
- Cassandra L Buchheit
- 1] Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA. [2]
| | - Kelsey J Weigel
- 1] Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA. [2]
| | - Zachary T Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|