1
|
Lu J, Zhou Y, Song YX, Wang JY, Xian JX. Natural alkaloids modulating macrophage polarization: Innovative therapeutic strategies for inflammatory, cardiovascular, and cancerous diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156709. [PMID: 40250001 DOI: 10.1016/j.phymed.2025.156709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Macrophage polarization, switching between pro-inflammatory M1 and anti-inflammatory M2 states, is crucial for disease dynamics in inflammatory, metabolic, and cancer contexts. Modulating this polarization is a clinical challenge, but natural alkaloids, with their potent anti-inflammatory and immunomodulatory effects, show promise in reprogramming macrophage phenotypes. PURPOSE This review explores the applications of natural alkaloids-such as matrine, berberine, koumine, sophoridine, and curcumin-in modulating macrophage polarization. It aims to highlight their potential in reprogramming macrophage phenotypes and improving therapeutic outcomes across various diseases. METHODS A comprehensive literature review was conducted using databases like PubMed, Web of Science, Science Direct and Google Scholar, employing targeted keywords related to natural alkaloids, macrophage polarization, and disease treatment. The analysis primarily focused on articles published between 2020 and 2024. RESULTS This review summarizes how natural alkaloids regulate macrophage polarization, promoting the M2 phenotype to reduce inflammation, thereby playing a therapeutic role in anti-inflammatory, cardiovascular, and metabolic diseases. At the same time, they also promote M1 polarization to inhibit tumor development. CONCLUSION Accumulating evidence demonstrates that macrophage polarization regulation by natural alkaloids holds notable clinical value for disease intervention. They alleviate inflammation, enhance antitumor immunity, and improve treatment outcomes, demonstrating their importance in innovative therapeutic strategies. Moreover, combining alkaloids with immunotherapy enhances treatment efficacy, further highlighting their versatility in a variety of therapeutic applications.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi-Xuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie-Ying Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia-Xun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
2
|
Kuzucuoğlu M, Balta C, Altun E, Yekdeş AC, Acar A. Effects of Different Treatment Modalities on Lung Injury in Experimental Pulmonary Contusion Model. J Surg Res 2025; 307:100-106. [PMID: 40009897 DOI: 10.1016/j.jss.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 12/30/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION The study experimentally evaluated the efficacies of different agents in treating pulmonary contusion. METHODS In our study, 42 Wistar albino rats were divided into six groups of seven animals each. A model of lung contusion with blunt chest trauma was performed in five groups, except for the control group. One group with pulmonary contusion was considered an untreated group, and saline was administered. For other groups, prednisolone, tranexamic acid, N-acetylcysteine, and vitamin E were applied to determine their efficacy in treatment. The rats were sacrificed 24 h after trauma, and their injured lungs were collected for histopathological examination and blood samples for blood gas analysis. Histopathologically, bronchial damage, alveolar hemorrhage, emphysema, and leukocyte infiltration were assessed using the scoring system. RESULTS In our study, statistically significant differences were detected between the rat groups in terms of intraalveolar hemorrhage, leukocyte infiltration, and bronchial damage. In post hoc analysis, intraalveolar hemorrhage was significantly higher in the untreated group compared to the control group (P = 0.012). A near-significant difference was observed between the untreated group and the N-acetylcysteine group (P = 0.061). Regarding leukocyte infiltration, the tranexamic acid group showed significantly higher values compared to both the prednisolone and control groups (P = 0.007; P = 0.016, respectively). For bronchial damage, the levels observed in the vitamin E and tranexamic acid groups were significantly higher than those in the control group (P = 0.08 and P = 0.037, respectively). CONCLUSIONS Many agents are used to treat pulmonary contusion, but no gold standard treatment exists. Prednisolone and N-acetylcysteine play significant roles in treatment. These two drugs contributed to the regression of the findings in pulmonary contusion treatment.
Collapse
Affiliation(s)
- Mustafa Kuzucuoğlu
- Department of Thoracic Surgery, İzmir Katip Çelebi University, İzmir, Turkey.
| | - Cenk Balta
- Department of Thoracic Surgery, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Eren Altun
- Department of Pathology, Bağcılar Education and Research Hospital, İstanbul, Turkey
| | - Ali Cem Yekdeş
- Department of Public Health, Trakya University, Edirne, Turkey
| | - Arkın Acar
- Department of Thoracic Surgery, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
3
|
Li M, Hu L, Ke Q, Li Z, Ruan C, Lu H, Liu X. Arginine methyltransferase PRMT1 promotes ferroptosis through EGR1/GLS2 axis in sepsis-related acute lung injury. Commun Biol 2025; 8:159. [PMID: 39901028 PMCID: PMC11790878 DOI: 10.1038/s42003-025-07531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
Acute lung injury (ALI), a frequent and severe complication of sepsis, is associated with significant mortality rates. Previous studies indicated that GLS2 plays a key role in promoting ferroptosis. However, its underlying mechanisms remain unclear. Here we show, there were elevated ferroptosis and increased expression levels of protein arginine methyltransferase 1 (PRMT1), early growth response 1 (EGR1), and glutaminase 2 (GLS2) in both in vitro and in vivo ALI models. Additionally, EGR1 was found to induce the transcription of GLS2, thereby promoting ferroptosis. We also discovered that the protein level of EGR1 was increased through enhanced stability, facilitated by PRMT1-mediated arginine methylation, and reduced ubiquitination degradation regulated by neural precursor cell expressed developmentally down-regulated protein 4 like (NEDD4L). The in vivo results confirmed that the knockdown of PRMT1 suppressed ferroptosis via the EGR1/GLS2 axis. Our findings suggest that PRMT1-mediated stabilization of EGR1 promoted sepsis induced ALI via GLS2, highlighting the therapeutic potential of targeting PRMT1 or EGR1 in the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Min Li
- Emergency trauma College of Hainan Medical University, Haikou, China
- Emergency Department, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Longhui Hu
- Emergency Department, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Qiao Ke
- Emergency Department, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Zhao Li
- Emergency trauma College of Hainan Medical University, Haikou, China
| | - Chujun Ruan
- Emergency Department, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Hanjing Lu
- Emergency trauma College of Hainan Medical University, Haikou, China
| | - Xiaoran Liu
- Emergency trauma College of Hainan Medical University, Haikou, China.
- The First Affiliated Hospital of Hainan Medical University, Haikou, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Haikou, China.
| |
Collapse
|
4
|
Zheng B, Li M, Lan E, Ding W, Gao L, Tang Y, Wu X, Zhang B, Zhang Y, Zhu X, Zhang H. GSK3179106 ameliorates lipopolysaccharide-induced inflammation and acute lung injury by targeting P38 MAPK. Respir Res 2024; 25:388. [PMID: 39468539 PMCID: PMC11520791 DOI: 10.1186/s12931-024-03012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Acute lung injury (ALI) is a serious acute respiratory disease that can cause alveolar-capillary barrier disruption and pulmonary edema, respiratory failure and multiple organ dysfunction syndrome. However, there is no effective drugs in clinic until now. GSK3179106 has been reported can alleviate intestinal stress syndrome, but the protective effect of GSK3179106 on ALI has not been elucidated. The present study will evaluate the pharmacological activity of GSK3179106 on lipopolysaccharide (LPS)-induced inflammation and lung injury and clarify its underlying mechanism. We found that GSK3179106 significantly attenuated LPS-induced lung injury in vivo, accompanied by inhibited infiltration of inflammatory cells and reduced expression of inflammatory cytokines. Meanwhile, GSK3179106 dose-dependently reduced the LPS-induced IL-6 expression both in protein and gene levels in macrophages. Mechanistically, GSK3179106 could inhibited the phosphorylation of P38 MAPK induced by LPS. Importantly, results showed that there is a direct combination between GSK3179106 and P38 MAPK. Together, our findings not only clarified the anti-inflammatory activity of GSK3179106 but also discovered its new clinical indications. Therefore, compound GSK3179106 may be a potential candidate for the treatment of acute inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengying Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Enhong Lan
- The Second People's Hospital of Pingyang County, Pingyang, Zhejiang, China
| | - Wenting Ding
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiao Gao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yali Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaona Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hui Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Tao W, Min S, Chen G, He X, Meng Y, Li L, Chen J, Li Y. Tetramethylpyrazine ameliorates LPS-induced acute lung injury via the miR-369-3p/DSTN axis. Sci Rep 2024; 14:20006. [PMID: 39198493 PMCID: PMC11358269 DOI: 10.1038/s41598-024-70131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Acute lung injury (ALI) is a severe clinical respiratory condition characterized by high rates of mortality and morbidity, for which effective treatments are currently lacking. In this study, lipopolysaccharide (LPS) was used to induce ALI mice, demonstrating the efficacy of tetramethylpyrazine (TMP) in ameliorating ALI. Subsequent we perfored high-throughput sequencing analysis and used Targetscan 8.0 and miRWalk 3.0 databases to predict the interaction between microRNAs and destrin (DSTN), ultimately identifying miR-369-3p as the focus of the investigation. The adenovirus carrying miR-369-3p was administered one week prior to LPS-induced in order to assess its potential efficacy in ameliorating ALI in mice. The findings indicated that the overexpression of miR-369-3p resulted in enhanced lung function, reduced pulmonary edema, inflammation, and permeability in LPS-induced ALI mice, while the suppression of miR-369-3p exacerbated the damage in these mice. Furthermore, the beneficial effects of TMP on LPS-induced ALI were negated by the downregulation of miR-369-3p. The results of our study demonstrate that TMP mitigates LPS-induced ALI through upregulation of miR-369-3p. Consequently, the findings of this study advocate for the clinical utilization of TMP in ALI treatment, with miR-369-3p emerging as a promising target for future ALI interventions.
Collapse
Affiliation(s)
- Weiting Tao
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Simin Min
- Suzhou Hospital Affiliated to Anhui Medical University, Suzhou, Anhui, China
| | - Guofeng Chen
- School of Medicine and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Xu He
- School of Medicine and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Yuhang Meng
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Li Li
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Jie Chen
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Yan Li
- School of Medicine and Health Engineering, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
6
|
Bhat AA, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Dureja H, Singh SK, Dua K, Gupta G. Exploring ncRNA-mediated pathways in sepsis-induced pyroptosis. Pathol Res Pract 2024; 256:155224. [PMID: 38452584 DOI: 10.1016/j.prp.2024.155224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 3467, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 3469, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hairsh Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 3469, United Arab Emirates; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| |
Collapse
|
7
|
Holloman BL, Wilson K, Cannon A, Nagarkatti M, Nagarkatti PS. Indole-3-carbinol attenuates lipopolysaccharide-induced acute respiratory distress syndrome through activation of AhR: role of CCR2+ monocyte activation and recruitment in the regulation of CXCR2+ neutrophils in the lungs. Front Immunol 2024; 15:1330373. [PMID: 38596679 PMCID: PMC11002125 DOI: 10.3389/fimmu.2024.1330373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Indole-3-carbinol (I3C) is found in cruciferous vegetables and used as a dietary supplement. It is known to act as a ligand for aryl hydrocarbon receptor (AhR). In the current study, we investigated the role of AhR and the ability of I3C to attenuate LPS-induced Acute Respiratory Distress Syndrome (ARDS). Methods To that end, we induced ARDS in wild-type C57BL/6 mice, Ccr2gfp/gfp KI/KO mice (mice deficient in the CCR2 receptor), and LyZcreAhRfl/fl mice (mice deficient in the AhR on myeloid linage cells). Additionally, mice were treated with I3C (65 mg/kg) or vehicle to investigate its efficacy to treat ARDS. Results I3C decreased the neutrophils expressing CXCR2, a receptor associated with neutrophil recruitment in the lungs. In addition, LPS-exposed mice treated with I3C revealed downregulation of CCR2+ monocytes in the lungs and lowered CCL2 (MCP-1) protein levels in serum and bronchoalveolar lavage fluid. Loss of CCR2 on monocytes blocked the recruitment of CXCR2+ neutrophils and decreased the total number of immune cells in the lungs during ARDS. In addition, loss of the AhR on myeloid linage cells ablated I3C-mediated attenuation of CXCR2+ neutrophils and CCR2+ monocytes in the lungs from ARDS animals. Interestingly, scRNASeq showed that in macrophage/monocyte cell clusters of LPS-exposed mice, I3C reduced the expression of CXCL2 and CXCL3, which bind to CXCR2 and are involved in neutrophil recruitment to the disease site. Discussion These findings suggest that CCR2+ monocytes are involved in the migration and recruitment of CXCR2+ neutrophils during ARDS, and the AhR ligand, I3C, can suppress ARDS through the regulation of immune cell trafficking.
Collapse
Affiliation(s)
| | | | | | | | - Prakash S. Nagarkatti
- Nagarkatti Laboratory, University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC, United States
| |
Collapse
|
8
|
Radi MH, El-Shiekh RA, Hegab AM, Henry SR, Avula B, Katragunta K, Khan IA, El-Halawany AM, Abdel-Sattar E. LC-QToF chemical profiling of Euphorbia grantii Oliv. and its potential to inhibit LPS-induced lung inflammation in rats via the NF-κB, CY450P2E1, and P38 MAPK14 pathways. Inflammopharmacology 2024; 32:461-494. [PMID: 37572137 PMCID: PMC10907465 DOI: 10.1007/s10787-023-01298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. The aerial parts of Euphorbia grantii Oliv. were extracted with methanol to give a total methanolic extract (TME), which was further fractionated into dichloromethane (DCMF) and the remaining mother liquor (MLF) fractions. Biological guided anti-inflammatory assays in vitro revealed that the DCMF showed the highest activity (IC50 6.9 ± 0.2 μg/mL and 0.29 ± 0.01 μg/mL) compared to. celecoxib (IC50 of 88.0 ± 1 μg/mL and 0.30 ± 0.01 μg/mL) on COX-1 and COX-2, respectively. Additionally, anti-LOX activity was IC50 = 24.0 ± 2.5 μg/mL vs. zileuton with IC50 of 40.0 ± 0.5 μg/mL. LC-DAD-QToF analysis of TME and the active DCMF resulted in the tentative identification and characterization of 56 phytochemical compounds, where the diterpenes were the dominated metabolites. An LPS-induced inflammatory model of ALI (10 mg/kg i.p) was used to assess the anti-inflammatory potential of DCMF in vivo at dose of 200 mg/kg and 300 mg/kg compared to dexamethasone (5 mg/kg i.p). Our treatments significantly reduced the pro-inflammatory cytokines (TNF-α, IL-1, IL-6, and MPO), increased the activity of antioxidant enzymes (SOD, CAT, and GSH), decreased the activity of oxidative stress enzyme (MDA), and reduced the expression of inflammatory genes (p38.MAPK14 and CY450P2E1). The western blotting of NF-κB p65 in lung tissues was inhibited after orally administration of the DCMF. Histopathological study of the lung tissues, scoring, and immunohistochemistry of transforming growth factor-beta 1 (TGF-β1) were also assessed. In both dose regimens, DCMF of E. grantii prevented further lung damage and reduced the side effects of LPS on acute lung tissue injury.
Collapse
Affiliation(s)
- Mai Hussin Radi
- Herbal Department, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amany Mohammed Hegab
- Developmental Pharmacology Department, Egyptian Drug Authority (EDA), Giza, Egypt
| | | | - Bharathi Avula
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Kumar Katragunta
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Ali M El-Halawany
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
9
|
Wang Y, Wei H, Song Z, Jiang L, Zhang M, Lu X, Li W, Zhao Y, Wu L, Li S, Shen H, Shu Q, Xie Y. Inhalation of panaxadiol alleviates lung inflammation via inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. J Ginseng Res 2024; 48:77-88. [PMID: 38223829 PMCID: PMC10785239 DOI: 10.1016/j.jgr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 01/16/2024] Open
Abstract
Background Lung inflammation occurs in many lung diseases, but has limited effective therapeutics. Ginseng and its derivatives have anti-inflammatory effects, but their unstable physicochemical and metabolic properties hinder their application in the treatment. Panaxadiol (PD) is a stable saponin among ginsenosides. Inhalation administration may solve these issues, and the specific mechanism of action needs to be studied. Methods A mouse model of lung inflammation induced by lipopolysaccharide (LPS), an in vitro macrophage inflammation model, and a coculture model of epithelial cells and macrophages were used to study the effects and mechanisms of inhalation delivery of PD. Pathology and molecular assessments were used to evaluate efficacy. Transcriptome sequencing was used to screen the mechanism and target. Finally, the efficacy and mechanism were verified in a human BALF cell model. Results Inhaled PD reduced LPS-induced lung inflammation in mice in a dose-dependent manner, including inflammatory cell infiltration, lung tissue pathology, and inflammatory factor expression. Meanwhile, the dose of inhalation was much lower than that of intragastric administration under the same therapeutic effect, which may be related to its higher bioavailability and superior pharmacokinetic parameters. Using transcriptome analysis and verification by a coculture model of macrophage and epithelial cells, we found that PD may act by inhibiting TNFA/TNFAR and IL7/IL7R signaling to reduce macrophage inflammatory factor-induced epithelial apoptosis and promote proliferation. Conclusion PD inhalation alleviates lung inflammation and pathology by inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. PD may be a novel drug for the clinical treatment of lung inflammation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hao Wei
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhen Song
- Department of Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Liqun Jiang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Mi Zhang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Lu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Li
- Shenyang Pharmaceutical University, Shenyang, China
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang, China
| | - Lei Wu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shuxian Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Huijuan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yicheng Xie
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
10
|
Lan B, Dong X, Yang Q, Luo Y, Wen H, Chen Z, Chen H. Exosomal MicroRNAs: An Emerging Important Regulator in Acute Lung Injury. ACS OMEGA 2023; 8:35523-35537. [PMID: 37810708 PMCID: PMC10551937 DOI: 10.1021/acsomega.3c04955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Acute lung injury (ALI) is a clinically life-threatening form of respiratory failure with a mortality of 30%-40%. Acute respiratory distress syndrome is the aggravated form of ALI. Exosomes are extracellular lipid vesicles ubiquitous in human biofluids with a diameter of 30-150 nm. They can serve as carriers to convey their internal cargo, particularly microRNA (miRNA), to the target cells involved in cellular communication. In disease states, the quantities of exosomes and the cargo generated by cells are altered. These exosomes subsequently function as autocrine or paracrine signals to nearby or distant cells, regulating various pathogenic processes. Moreover, exosomal miRNAs from multiple stem cells can provide therapeutic value for ALI by regulating different signaling pathways. In addition, changes in exosomal miRNAs of biofluids can serve as biomarkers for the early diagnosis of ALI. This study aimed to review the role of exosomal miRNAs produced by different sources participating in various pathological processes of ALI and explore their potential significance in the treatment and diagnosis.
Collapse
Affiliation(s)
- Bowen Lan
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Xuanchi Dong
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Qi Yang
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Department
of Traditional Chinese Medicine, The Second
Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Haiyun Wen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Zhe Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Hailong Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| |
Collapse
|
11
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Yimam M, Horm T, O'Neal A, Jiao P, Hong M, Jia Q. UP360, a Standardized Composition from Extracts of Aloe barbadense, Poria cocos, and Rosemary officinalis Protected Against Sepsis and Mitigated Acute Lung Injury in Murine Models. J Med Food 2023; 26:489-499. [PMID: 37192488 DOI: 10.1089/jmf.2022.0136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated and unbalanced immune response to microbial infection. Restoring immune homeostasis and infection control are considered the primary strategies to manage sepsis. Natural bioactives such as polysaccharide and polyphenols from botanicals are known for their immune modulation activity. In this study, we evaluated a standardized aloe-based composition, UP360 (constitute of polysaccharides from Aloe barbadense and Poria cocos and polyphenols from Rosemary officinalis) in lipopolysaccharide (LPS)-induced sepsis and acute inflammatory lung injury murine models. Prophylactic oral administration of UP360 for 7 days at an oral dose of 500 mg/kg improved the survival rate of mice by 62.5%, whereas all mice in the vehicle control group were deceased 82 h after LPS injection. The merit of combining these traditional herbs to yield the standardized composition UP360 was also demonstrated in this model with a mortality rate of only 30.8%, whereas 76.9%, 53.9%, and 61.5% were recorded for each individual constituents A. barbadense, P. cocos, and R. officinalis, respectively. Dose-correlated statistically significant reductions in proinflammatory cytokines and chemokine tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-3 were observed for UP360 when administered at 250 and 500 mg/kg orally for 7 days before induction of acute lung injury (ALI) model in rats. The histopathology data from lung showed statistically significant 37.9% and 37% reductions in the overall lung damage severity and pulmonary edema, respectively, for UP360-treated rats. The aloe-based composition UP360 effectively improved the survival rate of septic animals and mitigated the severity of LPS-induced ALI in vivo. These data warrant further investigation of the composition for a potential application in human as an adjunct supplement in respiratory distress and sepsis.
Collapse
Affiliation(s)
| | | | | | - Ping Jiao
- Unigen, Inc., Tacoma, Washington, USA
| | - Mei Hong
- Unigen, Inc., Tacoma, Washington, USA
| | - Qi Jia
- Unigen, Inc., Tacoma, Washington, USA
| |
Collapse
|
13
|
Holloman BL, Cannon A, Wilson K, Singh N, Nagarkatti M, Nagarkatti P. Characterization of Chemotaxis-Associated Gene Dysregulation in Myeloid Cell Populations in the Lungs during Lipopolysaccharide-Mediated Acute Lung Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:2016-2028. [PMID: 37163318 PMCID: PMC10615667 DOI: 10.4049/jimmunol.2200822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
During endotoxin-induced acute lung injury (ALI), immune cell recruitment resulting from chemotaxis is mediated by CXC and CC chemokines and their receptors. In this study, we investigated the role of chemokines and their receptors in the regulation of myeloid cell populations in the circulation and the lungs of C57BL/6J mice exhibiting LPS-mediated ALI using single-cell RNA sequencing. During ALI, there was an increase in the myeloid cells, M1 macrophages, monocytes, neutrophils, and other granulocytes, whereas there was a decrease in the residential alveolar macrophages and M2 macrophages. Interestingly, LPS triggered the upregulation of CCL3, CCL4, CXCL2/3, and CXCL10 genes associated with cellular migration of various subsets of macrophages, neutrophils, and granulocytes. Furthermore, there was an increase in the frequency of myeloid cells expressing CCR1, CCR3, CCR5, and CXCR2 receptors during ALI. MicroRNA sequencing studies of vehicle versus LPS groups identified several dysregulated microRNAs targeting the upregulated chemokine genes. This study suggests that chemokine ligand-receptors interactions are responsible for myeloid cell heterogenicity and cellular recruitment to the lungs during ALI. The single-cell transcriptomics allowed for an in-depth assessment and characterization of myeloid cells involved in immune cell trafficking during ALI.
Collapse
Affiliation(s)
- Bryan Latrell Holloman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Alkeiver Cannon
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Kiesha Wilson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Narendra Singh
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208
| |
Collapse
|
14
|
Zhou H, Yang T, Lu Z, He X, Quan J, Liu S, Chen Y, Wu K, Cao H, Liu J, Yu L. Liquiritin exhibits anti-acute lung injury activities through suppressing the JNK/Nur77/c-Jun pathway. Chin Med 2023; 18:35. [PMID: 37013552 PMCID: PMC10068703 DOI: 10.1186/s13020-023-00739-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Licorice (Glycyrrhiza uralensis Fisch.), a well-known traditional medicine, is traditionally used for the treatment of respiratory disorders, such as cough, sore throat, asthma and bronchitis. We aim to investigate the effects of liquiritin (LQ), the main bioactive compound in licorice against acute lung injury (ALI) and explore the potential mechanism. METHODS Lipopolysaccharide (LPS) was used to induce inflammation in RAW264.7 cells and zebrafish. Intratracheal instillation of 3 mg/kg of LPS was used for induction an ALI mice model. The concentrations of IL-6 and TNF-α were tested using the enzyme linked immunosorbent assay. Western blot analysis was used to detect the expression of JNK/Nur77/c-Jun related proteins. Protein levels in bronchoalveolar lavage fluid (BALF) was measured by BCA protein assay. The effect of JNK on Nur77 transcriptional activity was determined by luciferase reporter assay, while electrophoretic mobility shift assay was used to examine the c-Jun DNA binding activity. RESULTS LQ has significant anti-inflammatory effects in zebrafish and RAW264.7 cells. LQ inhibited the expression levels of p-JNK (Thr183/Tyr185), p-Nur77 (Ser351) and p-c-Jun (Ser63), while elevated the Nur77 expression level. Inhibition of JNK by a specific inhibitor or small interfering RNA enhanced the regulatory effect of LQ on Nur77/c-Jun, while JNK agonist abrogated LQ-mediated effects. Moreover, Nur77-luciferase reporter activity was suppressed after JNK overexpression. The effects of LQ on the expression level of c-Jun and the binding activity of c-Jun with DNA were attenuated after Nur77 siRNA treatment. LQ significantly ameliorated LPS-induced ALI with the reduction of lung water content and BALF protein content, the downregulation of TNF-α and IL-6 levels in lung BALF and the suppression of JNK/Nur77/c-Jun signaling, which can be reversed by a specific JNK agonist. CONCLUSION Our results indicated that LQ exerts significant protective effects against LPS-induced inflammation both in vivo and in vitro via suppressing the activation of JNK, and consequently inhibiting the Nur77/c-Jun signaling pathway. Our study suggests that LQ may be a potential therapeutic candidate for ALI and inflammatory disorders.
Collapse
Affiliation(s)
- Hongling Zhou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Tangjia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jingyu Quan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shanhong Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yuyao Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Kangtai Wu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
15
|
Li X, Yin L, Liao J, Yang J, Cai B, Yu Y, Su S, Du Z, Li X, Zhou Y, Chen P, Cho WJ, Chattipakorn N, Samorodov AV, Pavlov VN, Zhang F, Liang G, Tang Q. Novel O-benzylcinnamic acid derivative L26 treats acute lung injury in mice by MD-2. Eur J Med Chem 2023; 252:115289. [PMID: 36963290 DOI: 10.1016/j.ejmech.2023.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Acute lung injury (ALI) is an inflammation-mediated respiratory disease that is associated with a high mortality rate. In this study, a series of novel O-benzylcinnamic acid derivatives were designed and synthesized using cinnamic acid as the lead compound. We tested the preliminary anti-inflammatory activity of the compounds by evaluating their effect on inhibiting the activity of alkaline phosphatase (ALP) in Hek-Blue-TLR4 cells, in which compound L26 showed the best activity and 7-fold more active than CIN. ELISA, immunoprecipitation, and molecular docking indicated that L26 targeted MD-2 protein and competed with LPS to bind to MD-2, which resulted in the inhibition of inflammation. In the LPS-induced mouse model of ALI, L26 was found to decrease ALP activity and inflammatory cytokine TNF-α release to reduce lung injury by inhibiting the NF-κB signaling pathway. Acute toxicity experiments showed that high doses of L26 did not cause adverse reactions in mice, and it was safe in vivo. Also, the preliminary pharmacokinetic parameters of L26 were investigated in SD rats (T1/2 = 4.246 h). In summary, L26 exhibited optimal pharmacodynamic and pharmacokinetic characteristics, which suggested that L26 could serve as a potential agent for the development of ALI treatment.
Collapse
Affiliation(s)
- Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China
| | - Lina Yin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yiming Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Sijia Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhiteng Du
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City, 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City, 450005, Russia
| | - Fengzhi Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China; School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China.
| |
Collapse
|
16
|
Significance of Pulmonary Endothelial Injury and the Role of Cyclooxygenase-2 and Prostanoid Signaling. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010117. [PMID: 36671689 PMCID: PMC9855370 DOI: 10.3390/bioengineering10010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The endothelium plays a key role in the dynamic balance of hemodynamic, humoral and inflammatory processes in the human body. Its central importance and the resulting therapeutic concepts are the subject of ongoing research efforts and form the basis for the treatment of numerous diseases. The pulmonary endothelium is an essential component for the gas exchange in humans. Pulmonary endothelial dysfunction has serious consequences for the oxygenation and the gas exchange in humans with the potential of consecutive multiple organ failure. Therefore, in this review, the dysfunction of the pulmonary endothel due to viral, bacterial, and fungal infections, ventilator-related injury, and aspiration is presented in a medical context. Selected aspects of the interaction of endothelial cells with primarily alveolar macrophages are reviewed in more detail. Elucidation of underlying causes and mechanisms of damage and repair may lead to new therapeutic approaches. Specific emphasis is placed on the processes leading to the induction of cyclooxygenase-2 and downstream prostanoid-based signaling pathways associated with this enzyme.
Collapse
|
17
|
Seya M, Aokage T, Nojima T, Nakao A, Naito H. Bile pigments in emergency and critical care medicine. Eur J Med Res 2022; 27:224. [PMID: 36309733 PMCID: PMC9618204 DOI: 10.1186/s40001-022-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/20/2022] [Indexed: 12/04/2022] Open
Abstract
Bile pigments, such as bilirubin and biliverdin, are end products of the heme degradation pathway in mammals and are widely known for their cytotoxic effects. However, recent studies have revealed that they exert cytoprotective effects through antioxidative, anti-inflammatory, and immunosuppressive properties. All these mechanisms are indispensable in the treatment of diseases in the field of emergency and critical care medicine, such as coronary ischemia, stroke, encephalomyelitis, acute lung injury/acute respiratory distress syndrome, mesenteric ischemia, and sepsis. While further research is required before the safe application of bile pigments in the clinical setting, their underlying mechanisms shed light on their utilization as therapeutic agents in the field of emergency and critical care medicine. This article aims to summarize the current understanding of bile pigments and re-evaluate their therapeutic potential in the diseases listed above.
Collapse
|
18
|
Gao H, Zhang X, Tang F, Chen L, Tian Z, Xiao D, Li X. Knockdown of lncRNA MEG3 protects against sepsis-induced acute lung injury in mice through miR-93-5p-dependent inhibition of NF‑κB signaling pathway. Pathol Res Pract 2022; 239:154142. [DOI: 10.1016/j.prp.2022.154142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
|
19
|
Zheng L, Zhang Z, Song K, Xu X, Tong Y, Wei J, Jiang L. Potential biomarkers for inflammatory response in acute lung injury. Open Med (Wars) 2022; 17:1066-1076. [PMID: 35795000 PMCID: PMC9186513 DOI: 10.1515/med-2022-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Acute lung injury (ALI) is a severe respiratory disorder occurring in critical care medicine, with high rates of mortality and morbidity. This study aims to screen the potential biomarkers for ALI. Microarray data of lung tissues from lung-specific geranylgeranyl pyrophosphate synthase large subunit 1 knockout and wild-type mice treated with lipopolysaccharide were downloaded. Differentially expressed genes (DEGs) between ALI and wild-type mice were screened. Functional analysis and the protein-protein interaction (PPI) modules were analyzed. Finally, a miRNA-transcription factor (TF)-target regulation network was constructed. Totally, 421 DEGs between ALI and wild-type mice were identified. The upregulated DEGs were mainly enriched in the peroxisome proliferator-activated receptor signaling pathway, and fatty acid metabolic process, while downregulated DEGs were related to cytokine-cytokine receptor interaction and regulation of cytokine production. Cxcl5, Cxcl9, Ccr5, and Cxcr4 were key nodes in the PPI network. In addition, three miRNAs (miR505, miR23A, and miR23B) and three TFs (PU1, CEBPA, and CEBPB) were key molecules in the miRNA-TF-target network. Nine genes including ADRA2A, P2RY12, ADORA1, CXCR1, and CXCR4 were predicted as potential druggable genes. As a conclusion, ADRA2A, P2RY12, ADORA1, CXCL5, CXCL9, CXCR1, and CXCR4 might be novel markers and potential druggable genes in ALI by regulating inflammatory response.
Collapse
Affiliation(s)
- Lanzhi Zheng
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Zhuoyi Zhang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Youdian Road 54#, Shangcheng District, Hangzhou City, 310006 Zhejiang Province, China
| | - Kang Song
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Xiaoyang Xu
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Yixin Tong
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Jinling Wei
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Lu Jiang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| |
Collapse
|
20
|
Wang X, Wang Y, Pan H, Yan C. Dimethyl fumarate prevents acute lung injury related cognitive impairment potentially via reducing inflammation. J Cardiothorac Surg 2021; 16:331. [PMID: 34772431 PMCID: PMC8588675 DOI: 10.1186/s13019-021-01705-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Dimethyl fumarate (DMF) has been reported to exert a protective role against diverse lung diseases and cognitive impairment-related diseases. Thus this study aimed to investigate its role on acute lung injury (ALI) and related cognitive impairment in animal model. METHODS C57BL/6 mice were divided into four groups: control group, DMF group, ALI group, and ALI + DMF group. For ALI group, the ALI mice model was created by airway injection of LPS (50 μL, 1 μg/μL); for ALI + DMF group, DMF (dissolved in 0.08% methylcellulose) was treated twice a day for 2 days, and on the third day, mice were injected with LPS for ALI modeling. Mice pre-administered with methylcellulose or DMF without LPS injection (PBS instead) were used as the control group and DMF group, respectively. Morris water maze test was performed before any treatment (0 h) and 6 h after LPS-induction (54 h) to evaluate the cognitive impairment of mice. Next, the brain edema and blood brain barrier (BBB) permeability of ALI mice were assessed by brain water content, Evans blue extravasation and FITC-Dextran uptake assays. In addition, the effect of DMF on the numbers of total cells and neutrophils, protein content in BALF were quantified; the inflammatory factors in BALF, serum, and brain tissues were examined by ELISA, qRT-PCR, and Western blot assays. The effect of DMF on the cognitive impairment-related factor HIF-1α level in lung and brain tissues was also examined by Western blot. RESULTS DMF reduced the numbers of total cells, neutrophils and protein content in BALF of ALI mice, inhibited the levels of IL-6, TNF-α and IL-1β in BALF, serum and brain tissues of ALI mice. The protein expressions of p-NF-κB/NF-κB and p-IKBα/IKBα was also suppressed by DMF in ALI mice. Morris water maze test showed that DMF alleviated the cognitive impairment in ALI mice by reducing the escape latency and path length. Moreover, DMF lessened the BBB permeability by decreasing cerebral water content, Evans blue extravasation and FITC-Dextran uptake in ALI mice. The HIF-1α levels in lung and brain tissues of ALI mice were also lessened by DMF. CONCLUSION In conclusion, DME had the ability to alleviate the lung injury and cerebral cognitive impairment in ALI model mice. This protective effect partly associated with the suppression of inflammation by DMF.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Respiratory, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou City, 310000, Zhejiang Province, China
| | - Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou City, 310000, Zhejiang Province, China
| | - Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310000, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, No. 305 Tianmu Shan Road, Hangzhou City, 310000, Zhejiang Province, China.
| |
Collapse
|
21
|
Aboushanab SA, El-Far AH, Narala VR, Ragab RF, Kovaleva EG. Potential therapeutic interventions of plant-derived isoflavones against acute lung injury. Int Immunopharmacol 2021; 101:108204. [PMID: 34619497 DOI: 10.1016/j.intimp.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that possibly leads to high morbidity and mortality as no therapy exists. Several natural ingredients with negligible adverse effects have recently been investigated to possibly inhibit the inflammatory pathways associated with ALI at the molecular level. Isoflavones, as phytoestrogenic compounds, are naturally occurring bioactive compounds that represent the most abundant category of plant polyphenols (Leguminosae family). A broad range of therapeutic activities of isoflavones, including antioxidants, chemopreventive, anti-inflammatory, antiallergic and antibacterial potentials, have been extensively documented in the literature. Our review exclusively focuses on the possible anti-inflammatory, antioxidant role of botanicals'-derived isoflavones against ALI and their immunomodulatory effect in experimentally induced ALI. Despite the limited scope covering their molecular mechanisms, isoflavones substantially contributed to protecting from ALI via inhibiting toll-like receptor 4 (TLR4)/Myd88/NF-κB pathway and subsequent cytokines, chemokines, and adherent proteins. Nonetheless, future research is suggested to fill the gap in elucidating the protective roles of isoflavones to alleviate ALI concerning antioxidant potentials, inhibition of the inflammatory pathways, and associated molecular mechanisms.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Rokia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| |
Collapse
|
22
|
He N, Wang Y, Huang Y, Chen L, Wang X, Lv C, Yue S. Detection of hypochlorous acid fluctuation via a selective fluorescent probe in acute lung injury cells and mouse models. J Mater Chem B 2021; 8:9899-9905. [PMID: 33043939 DOI: 10.1039/d0tb01969k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) is a diffuse inflammatory pulmonary damage caused by excessive ROS that break the coordination of normal physiological structures and functions. Hypochlorous acid (HOCl), one kind of ROS, is a hopeful biological marker for inflammation-related diseases. Therefore, the excessive generation of HOCl might be a significant reason for oxidative injury in ALI. Herein, we developed a fluorescent probe, namely BCy-HOCl, for quantitatively monitoring and visualizing HOCl in living cells and in vivo. The probe BCy-HOCl displayed a significant fluorescence signal enhancement towards HOCl with excellent selectivity and sensitivity. The variation of HOCl in the ALI cell model and ALI mouse model was evaluated with BCy-HOCl to clarify the relationship between ALI and HOCl. Our results verified that the HOCl levels conspicuously increased with the severity of the ALI. Thus, HOCl is likely to play a crucial part in the process of ALI, which will probably provide a new strategy for its treatment.
Collapse
Affiliation(s)
- Na He
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan 250100, China.
| | - Yude Wang
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China.
| | - Yan Huang
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China. and CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xiaoyan Wang
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China. and CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Changjun Lv
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China.
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan 250100, China.
| |
Collapse
|
23
|
Liao Q, Chen W, Tong Z, Xue M, Gu T, Yuan Y, Song Z, Tao Z. Shufeng Jiedu capsules protect rats against LPS-induced acute lung injury via activating NRF2-associated antioxidant pathway. Histol Histopathol 2021; 36:317-324. [PMID: 33346364 DOI: 10.14670/hh-18-293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shufeng Jiedu capsule (SFJDC) is a traditional Chinese medicine, which has been used for the treatment of respiratory infections for more than thirty years in Hunan (China). SFJDC protected rats against LPS-induced acute lung injury (ALI); however, the molecular mechanisms underlying the therapeutic effects of SFJDC remain unclear. Therefore, this study aimed at analyzing the major anti-inflammatory compounds of SFJDC and exploring the underlying molecular mechanisms. SFJDC dissolved in water was fingerprinted by UPLC/Q-TOF. Inflammation response was assessed by histopathological examination and ELISA assay. Arterial blood gases were also analyzed to evaluate the function of rat lungs. The expression levels of Kelch-like ECH-associating protein 1 (Keap1), Nrf2, heme oxygenase-1 (HO1), Cullin 3 (CUL3) and NQO1 were analyzed by Western blotting. Results indicated that SFJDC alleviated inflammation response by reducing the level of inflammatory cytokines, and upregulation of glutathione-S-transferase (GST) and superoxide dismutase (SOD) in lung tissues. Furthermore, SFJDC suppressed LPS-induced upregulation of Keap 1 and CUL3 in rat lungs. The expression of NRF2 HO1 and NQO1 were further upregulated by SFJDC in the presence of LPS, indicating that SFJDC might activate the NRF2-associated antioxidant pathway. In conclusion, SFJDC treatment may protect the rat lungs from LPS by alleviating the inflammation response via NRF2-associated antioxidant pathway.
Collapse
Affiliation(s)
- Qingwu Liao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenan Chen
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhufeng Tong
- Department of General Practice, Yijishan Hospital of Wannan Medical College, Anhui, China
| | - Mingming Xue
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianwen Gu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yuan
- Geriatrics Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenju Song
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengang Tao
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
25
|
Fei L, Sun G, You Q. miR-642a-5p partially mediates the effects of lipopolysaccharide on human pulmonary microvascular endothelial cells via eEF2. FEBS Open Bio 2020; 10:2294-2304. [PMID: 32881411 PMCID: PMC7609801 DOI: 10.1002/2211-5463.12969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/08/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Inhalation or systemic administration of lipopolysaccharide (LPS) can induce acute pulmonary inflammation and lung injury. The pulmonary vasculature is composed of pulmonary microvascular endothelial cells (PMVECs), which form a semiselective membrane for gas exchange. The miRNA miR‐642a‐5p has previously been reported to be up‐regulated in patients with acute respiratory distress syndrome; thus, here, we examined whether this miRNA is involved in the effects of LPS on PMVECs. The levels of miR‐642a‐5p and mRNA encoding eukaryotic elongation factor 2 (eEF2) were detected by quantitative RT‐PCR. Moesin and eEF2 protein levels were tested by western blot assay. Dual‐luciferase reporter assay was used to examine the relationship between miR‐642a‐5p and eEF2. Cell viability was assessed using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, and cell permeability was analyzed using the transendothelial electrical resistance assay. We report that miR‐642a‐5p levels are significantly up‐regulated in LPS‐stimulated PMVECs, and miR‐642a‐5p contributes to LPS‐induced hyperpermeability and apoptosis of PMVECs. LPS treatment results in down‐regulation of eEF2 in PMVECs. Overexpression of eEF2, a direct target of miR‐642a‐5p, inhibited the effect of LPS on PMVECs. miR‐642a‐5p promoted LPS‐induced hyperpermeability and apoptosis by targeting eEF2. Thus, miR‐642a‐5p and eEF2 may serve as potential targets for acute lung injury/acute respiratory distress syndrome diagnosis or treatment.
Collapse
Affiliation(s)
- Liming Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qinghai You
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Brave H, MacLoughlin R. State of the Art Review of Cell Therapy in the Treatment of Lung Disease, and the Potential for Aerosol Delivery. Int J Mol Sci 2020; 21:E6435. [PMID: 32899381 PMCID: PMC7503246 DOI: 10.3390/ijms21176435] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory and pulmonary diseases are among the leading causes of death globally. Despite tremendous advancements, there are no effective pharmacological therapies capable of curing diseases such as COPD (chronic obstructive pulmonary disease), ARDS (acute respiratory distress syndrome), and COVID-19. Novel and innovative therapies such as advanced therapy medicinal products (ATMPs) are still in early development. However, they have exhibited significant potential preclinically and clinically. There are several longitudinal studies published, primarily focusing on the use of cell therapies for respiratory diseases due to their anti-inflammatory and reparative properties, thereby hinting that they have the capability of reducing mortality and improving the quality of life for patients. The primary objective of this paper is to set out a state of the art review on the use of aerosolized MSCs and their potential to treat these incurable diseases. This review will examine selected respiratory and pulmonary diseases, present an overview of the therapeutic potential of cell therapy and finally provide insight into potential routes of administration, with a focus on aerosol-mediated ATMP delivery.
Collapse
Affiliation(s)
- Hosanna Brave
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Ronan MacLoughlin
- Department of Chemistry, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- Aerogen Ltd. Galway Business Park, H91 HE94 Galway, Ireland
| |
Collapse
|
27
|
Pata RK, Ahmady A, Kiani R. Human Immunodeficiency Virus: A Dark Cloud With Silver Lining During the COVID-19 Pandemic. Cureus 2020; 12:e9302. [PMID: 32832299 PMCID: PMC7437135 DOI: 10.7759/cureus.9302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In December 2019, China reported a cluster of pneumonia patients infected by a new virus from the coronavirus family called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus quickly spread around the world and infected millions of people, and the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) a pandemic on March 11, 2020. Although some patients show only mild or even asymptomatic response to this infection, severe disease with rapid progression to acute respiratory distress and multiorgan failure is also commonly seen. In this report, we discuss three cases of HIV patients who survived COVID-19.
Collapse
|
28
|
Pharmacological inhibition of poly (ADP-ribose) polymerase by olaparib, prevents acute lung injury associated cognitive deficits potentially through suppression of inflammatory response. Eur J Pharmacol 2020; 877:173091. [PMID: 32234526 DOI: 10.1016/j.ejphar.2020.173091] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) has been reported to be associated with high mortality rate. Moreover, ALI survivors, frequently present chronic cognitive deterioration. We have previously shown that 'two hit' (hydrochloric acid + lipopolysaccharide) induced ALI resulted in cognitive dysfunction through the induction of systemic inflammation. The present study was designed to explore the potential anti-inflammatory effects of olaparib (Poly ADP-ribose polymerase-1 inhibitor), on ALI mediated cognitive impairment. Olaparib was administered at dose of 5 mg/kg body weight (i.p.) 30 min before each hit. Data show that olaparib pre-treatment markedly reduced the neutrophil infiltration, alveolar capillary damage, inflammatory cytokines level (TNF-α/IL-1β/IL-6) and oxidative stress in the lungs at 24 h after ALI induction. Also, olaparib pre-treatment ameliorated the ALI associated cognitive impairment as assessed by Morris water maze test on weekly basis for 2 consecutive weeks. Further, restoration of cognitive function was associated with normalization of serum levels of TNF-α/IL-1β and improved the blood brain barrier (BBB) function, as reflected by data on expression of occludin/claudin-5 and extravasation of Evans-blue/FITC dextran in hippocampus at 1 week post injury. Finally, increased mRNA expression of VCAM-1, TNF-α and IL-1β and NF-κB activation in hippocampus indicate induction of neuro-inflammation, which was downregulated upon olaparib administration. Further, olaparib treatment 1 week after ALI induction blunted the systemic inflammation which was associated with improved BBB and cognitive function. Altogether, our results showed that olaparib protects against ALI and associated cognitive deficits in mice, and thus may offer a new treatment avenue in the area.
Collapse
|
29
|
Wan B, Xu WJ, Chen MZ, Sun SS, Jin JJ, Lv YL, Zhan P, Zhu SH, Wang XX, Lv TF, Song Y. Geranylgeranyl diphosphate synthase 1 knockout ameliorates ventilator-induced lung injury via regulation of TLR2/4-AP-1 signaling. Free Radic Biol Med 2020; 147:159-166. [PMID: 31874250 DOI: 10.1016/j.freeradbiomed.2019.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the role of geranylgeranyl diphosphate synthase 1 (GGPPS1) in ventilator-induced lung injury along with the underlying mechanism. METHODS A murine VILI model was induced by high-tidal volume ventilation in both wild-type and GGPPS1 knockout mice. GGPPS1 expression was detected in the bronchoalveolar lavage fluid (BALF) supernatants of acute respiratory distress syndrome (ARDS) patients and healthy volunteers, as well as in lung tissues and BALF supernatants of the VILI mice using enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR), western bolt and immunohistochemical (IHC). The wet/dry ratio, total BALF proteins, and lung injury score were analyzed. The percentage of neutrophils was detected by flow cytometry and IHC. Inflammatory cytokine levels were measured by ELISA and qRT-PCR. The related expression of Toll-like receptor (TLR)2/4 and its downstream proteins was evaluated by western blot. RESULTS GGPPS1 in BALF supernatants was upregulated in ARDS patients and the VILI mice. Depletion of GGPPS1 significantly alleviated the severity of ventilator induced lung injury in mice. Total cell count, neutrophils and inflammatory cytokines (interleukin [IL]-6, IL-1β, IL-18 and tumor necrosis factor-α) levels in BALF were reduced after GGPPS1 depletion. Moreover, addition of exogenous GGPP in GGPPS-deficient mice significantly exacerbated the severity of ventilator induced lung injury as compared to the PBS treated controls. Mechanistically, the expression of TLR2/4, as well as downstream proteins including activator protein-1 (AP-1) was suppressed in lung tissues of GGPPS1-deficient mice. CONCLUSION GGPPS1 promoted the pathogenesis of VILI by modulating the TLR2/4-AP-1 signaling pathway, and GGPPS1 knockout significantly alleviated the lung injury and inflammation in the VILI mice.
Collapse
Affiliation(s)
- Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Wu-Jian Xu
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, 210002, China
| | - Mei-Zi Chen
- Department of General Internal Medicine, The First People's Hospital of Chenzhou, Chenzhou, 423000, China
| | - Shuang-Shuang Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Jia-Jia Jin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Yan-Ling Lv
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, 210002, China
| | - Ping Zhan
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, 210002, China
| | - Su-Hua Zhu
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, 210002, China
| | - Xiao-Xia Wang
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, 210002, China
| | - Tang-Feng Lv
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, 210002, China.
| | - Yong Song
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, 210002, China.
| |
Collapse
|
30
|
Does Intramedullary Nail Fixation of the Tibia Pose the Same Risk of Pulmonary Complications as Intramedullary Nail Fixation of the Femur? A Propensity Score-Matched Analysis. J Orthop Trauma 2020; 34:e45-e50. [PMID: 31634272 DOI: 10.1097/bot.0000000000001654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To compare duration of mechanical ventilation and pulmonary outcomes in patients treated with intramedullary nail (IMN) fixation of the tibia versus the femur. DESIGN Retrospective cohort study. SETTING Level I trauma center. PATIENTS One thousand thirty patients were categorized based on treatment: those treated with IMN of the tibia (n = 515) and those treated with IMN of the femur (n = 515). INTERVENTION IMN fixation of tibial and femoral fractures. OUTCOME MEASUREMENTS The primary outcome was duration of mechanical ventilation. Secondary outcomes included length of intensive care unit (ICU) stay and risk of tracheostomy, pulmonary embolism (PE), acute respiratory distress syndrome (ARDS), and mortality. RESULTS In an unadjusted analysis, femoral fractures were associated with increase in ventilator days (mean difference, 1.4; P < 0.001), ICU days (mean difference, 1.8; P < 0.001), and odds of tracheostomy (odds ratio, 1.7; P < 0.01). No difference was shown in likelihood of PE, ARDS, or mortality (P > 0.2). Propensity score-matched estimates showed no differences in any measured outcomes (P > 0.40). In patients with Injury Severity Scores >17, we found no difference in length of ventilator or ICU days or likelihood of tracheostomy, PE, ARDS, or mortality in the unadjusted (P > 0.2) or propensity score-matched estimates (P > 0.3). CONCLUSIONS These findings suggest that IMN fixation of the tibia is associated with duration of mechanical ventilation and risk of poor pulmonary outcomes similar to those of femoral nailing, after adjustment for baseline characteristics. LEVEL OF EVIDENCE Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
|
31
|
Wang X, He P, Yi S, Wang C. Thearubigin regulates the production of Nrf2 and alleviates LPS-induced acute lung injury in neonatal rats. 3 Biotech 2019; 9:451. [PMID: 31832298 DOI: 10.1007/s13205-019-1986-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
This study was undertaken to investigate the effect of natural bioactive compound thearubigin on neonatal acute lung injury (ALI) using LPS-induced ALI as a model. We also attempted to understand the possible underlying mechanism. The effect of thearubigin on lung wet-to-dry weight ratio, the activity of LDH, lung histopathology, BALF protein levels, the activity of MPO, production and extravasation of cytokines and oxidative stress were studied. The results showed that thearubigin caused a significant reduction in lung inflammation as evident from lung wet-to-dry weight ratio, BALF protein levels and MPO activity and histopathological analysis. It was further observed that the attenuation in inflammation happened due to a significant reduction in cytokine levels in alveolar cavities. Thearubigin also showed strong antioxidant properties as evidenced by reduced levels of oxygen species such as H2O2, MDA and OH ion. Additionally, the antioxidant response element nuclear factor erythroid-2-related factor 2 (Nrf2) pathway was found to be activated in thearubigin-treated group. These results provided a possible mechanism of antioxidant activity of thearubigin in neonatal ALI. Overall, this study showed that thearubigin can be a natural alternative for the treatment of neonatal ALI. However, further studies are required to understand its mechanism antioxidant and anti-inflammatory action.
Collapse
Affiliation(s)
- Xiang Wang
- 1Department of Emergency, Hainan Provincial People's Hospital, No.8 of Longhua Road, Haikou, 570100 Hainan Province China
| | - Ping He
- 1Department of Emergency, Hainan Provincial People's Hospital, No.8 of Longhua Road, Haikou, 570100 Hainan Province China
| | - Shengyang Yi
- 1Department of Emergency, Hainan Provincial People's Hospital, No.8 of Longhua Road, Haikou, 570100 Hainan Province China
| | - Chundie Wang
- 2Health Center, Hainan Provincial People's Hospital, Haikou, 570100 Hainan Province China
| |
Collapse
|
32
|
Essential Role of Visfatin in Lipopolysaccharide and Colon Ascendens Stent Peritonitis-Induced Acute Lung Injury. Int J Mol Sci 2019; 20:ijms20071678. [PMID: 30987270 PMCID: PMC6480124 DOI: 10.3390/ijms20071678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury (ALI) is a life-threatening syndrome characterized by acute and severe hypoxemic respiratory failure. Visfatin, which is known as an obesity-related cytokine with pro-inflammatory activities, plays a role in regulation of inflammatory cytokines. The mechanisms of ALI remain unclear in critically ill patients. Survival in ALI patients appear to be influenced by the stress generated by mechanical ventilation and by ALI-associated factors that initiate the inflammatory response. The objective for this study was to understand the mechanisms of how visfatin regulates inflammatory cytokines and promotes ALI. The expression of visfatin was evaluated in ALI patients and mouse sepsis models. Moreover, the underlying mechanisms were investigated using human bronchial epithelial cell lines, BEAS-2B and NL-20. An increase of serum visfatin was discovered in ALI patients compared to normal controls. Results from hematoxylin and eosin (H&E) and immunohistochemistry staining also showed that visfatin protein was upregulated in mouse sepsis models. Moreover, lipopolysaccharide (LPS) induced visfatin expression, activated the STAT3/NFκB pathway, and increased the expression of pro-inflammatory cytokines, including IL1-β, IL-6, and TNF-α in human bronchial epithelial cell lines NL-20 and BEAS-2B. Co-treatment of visfatin inhibitor FK866 reversed the activation of the STAT3/NFκB pathway and the increase of pro-inflammatory cytokines induced by LPS. Our study provides new evidence for the involvement of visfatin and down-stream events in acute lung injury. Further studies are required to confirm whether the anti-visfatin approaches can improve ALI patient survival by alleviating the pro-inflammatory process.
Collapse
|
33
|
Effect of nitric oxide synthase inhibitors in acute lung injury due to blunt lung trauma in rats. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2019; 27:63-72. [PMID: 32082829 DOI: 10.5606/tgkdc.dergisi.2019.15936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Background This study aims to investigate the effects of blunt lung trauma performed in experimental rat model on lung tissue and blood as well as proinflammatory cytokines, oxidant-antioxidant enzymes and histopathological parameters after Ngamma-nitro-L-arginine methyl ester and N-iminoethyl-L-ornithine administration. Methods The study included 50 adult male Wistar albino rats (weighing 350 to 400 g). Rats were randomly allocated into four groups. Except in the control, moderate-level pulmonary contusion was created in all other groups. Intraperitoneal saline solution was performed in groups 1 and 2, 25 mg.kg-1 Ngamma-nitro-L-arginine methyl ester in group 3, and 20 mg.kg-1 N-iminoethyl-L-ornithine in group 4. Blood and lung tissues were studied biochemically and histopathologically. Results Best outcomes were recorded statistically significantly in groups with administration of Ngamma-nitro-L-arginine methyl ester and N-iminoethyl-L-ornithine when malondialdehyde response, mucous and histopathological values were examined. Significant improvement was detected in superoxide dismutase values in the group with administration of competitive nitric oxide synthase inhibitor Ngamma-nitro-L-arginine methyl ester. Nitric oxide values were substantially decreased in N-iminoethyl-L-ornithine group, while no significance was detected. Conclusion Free oxygen radicals and lipid peroxidation played a role in pulmonary contusion after blunt lung trauma. According to biochemical and histopathological outcomes, effects of inflammation were decreased and protective effects were formed with administration of both Ngammanitro- L-arginine methyl ester and N-iminoethyl-L-ornithine.
Collapse
|
34
|
Two hit induced acute lung injury impairs cognitive function in mice: A potential model to study cross talk between lung and brain. Brain Behav Immun 2018; 73:633-642. [PMID: 30026058 DOI: 10.1016/j.bbi.2018.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/06/2018] [Accepted: 07/14/2018] [Indexed: 01/12/2023] Open
Abstract
Acute lung injury (ALI), a pulmonary inflammatory disorder, is associated with high morbidity and mortality rates. Interestingly, ALI survivors have been reported for some neurocognitive deterioration at/after discharge. However, the molecular factors behind such extra pulmonary manifestation are not clearly known. The present work was designed to investigate lung-brain cross talk in experimental mice for deciphering primary molecular factors that may be involved in ALI-mediated cognitive impairment. ALI was induced in Balb/c mice by intra-tracheal administration of either 0.1 N HCl (2 ml/kg) or LPS (1 mg/kg) as single hits or both agents were administered successively to mimic the 'two hit' model. Interestingly two hit-mediated ALI resulted in exaggerated inflammatory response as reflected by increased pulmonary neutrophils and inflammatory factors (TNF-α/IL-1β/IL-6). Additionally, two hits resulted in delayed resolution of lung inflammation and was coupled with persistent decline in memory, as assessed by Morris water maze test. Further, two hits elevate serum levels of TNF-α/IL-1β which was associated with compromised blood brain barrier (BBB), as evident by decreased expression of occludin/claudin-5 and consequent Evans-blue extravasation in hippocampus 1 week post injury. Finally, dexamethasone protects against the two hit mediated cognitive impairment by lowering the pro-inflammatory factors (TNF-α/IL-1β) both in lungs and blood. Overall, we report for the first time that 'two hit' mediated ALI cause persistent cognitive impairment in mice partly via up-regulating systemic expression of TNF-α/IL-1β that may disrupt BBB and hence the model may be a useful tool to examine the lung-brain cross-talk at the molecular level for exploring newer therapeutics.
Collapse
|
35
|
Inflammation and Monocyte Recruitment due to Aging and Mechanical Stretch in Alveolar Epithelium are Inhibited by the Molecular Chaperone 4-phenylbutyrate. Cell Mol Bioeng 2018; 11:495-508. [PMID: 30581495 DOI: 10.1007/s12195-018-0537-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction Ventilator-Induced lung injury (VILI) is a form of acute lung injury that is initiated or exacerbated by mechanical ventilation. The aging lung is also more susceptible to injury. Harmful mechanical stretch of the alveolar epithelium is a recognized mechanism of VILI, yet little is known about how mechanical stretch affects aged epithelial cells. Disruption to Endoplasmic Reticulum (ER) homeostasis results in a condition known as ER stress that leads to disruption of cellular homeostasis, apoptosis, and inflammation. ER stress is increased with aging and other pathological stimuli. We hypothesized that age and mechanical stretch increase alveolar epithelial cells' proinflammatory responses that are mediated by ER stress. Furthermore, we believed that inhibition of this upstream mechanism with 4PBA, an ER stress reducer, alleviates subsequent inflammation and monocyte recruitment. Methods Type II alveolar epithelial cells (ATII) were harvested from C57Bl6/J mice 2 months (young) and 20 months (old) of age. The cells were cyclically stretched at 15% change in surface area for up to 24 hours. Prior to stretch, groups were administered 4PBA or vehicle as a control. Results Mechanical stretch and age upregulated ER stress and proinflammatory MCP-1/CCL2 and MIP-1β/CCL4 chemokine expression in ATIIs. Age-matched and mismatched monocyte recruitment by ATII conditioned media was also quantified. Conclusions Age increases susceptibility to stretch-induced ER stress and downstream inflammatory gene expression in a primary ATII epithelial cell model. Administration of 4PBA attenuated the increased ER stress and proinflammatory responses from stretch and/or age and significantly reduced monocyte migration to ATII conditioned media.
Collapse
|
36
|
Kerr NA, de Rivero Vaccari JP, Abbassi S, Kaur H, Zambrano R, Wu S, Dietrich WD, Keane RW. Traumatic Brain Injury-Induced Acute Lung Injury: Evidence for Activation and Inhibition of a Neural-Respiratory-Inflammasome Axis. J Neurotrauma 2018; 35:2067-2076. [PMID: 29648974 DOI: 10.1089/neu.2017.5430] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Approximately 20-25% of traumatic brain injury (TBI) subjects develop acute lung injury (ALI), but the pathomechanisms of TBI-induced ALI remain poorly defined. Our previous work has shown that the inflammasome plays a critical role in TBI-induced secondary pathophysiology and that inflammasome proteins are released in extracellular vesicles (EV) after TBI. Here we investigated whether EV-mediated inflammasome signaling contributed to the etiology of TBI-induced ALI. C57/BL6 male mice were subjected to controlled cortical impact (CCI), and the brains and lungs were examined for inflammasome activation and ALI at 4 and 24 h after TBI. We show that TBI releases EV containing inflammasome proteins into serum that target the lung to cause ALI, supporting activation of a neural-respiratory-inflammasome axis. Administration of a low-molecular-weight heparin (enoxaparin, a blocker of EV uptake) or treatment with a monoclonal antibody against apoptosis speck-like staining protein containing a caspase recruitment domain (anti-ASC) after adoptive transfer of EV isolated from TBI-injured mice significantly inhibited inflammasome activation in the lungs of recipient mice resulting in improved ALI scores.This axis constitutes an important arm of the innate inflammatory response in lung pathology after TBI and targeting this axis represents a novel therapeutic treatment for TBI-induced ALI.
Collapse
Affiliation(s)
- Nadine A Kerr
- 1 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| | - Juan Pablo de Rivero Vaccari
- 1 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| | - Sam Abbassi
- 2 Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| | - Harmanpreet Kaur
- 1 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| | - Ronald Zambrano
- 3 Department of Pediatrics, University of Miami Miller School of Medicine , Miami, Florida
| | - Shu Wu
- 3 Department of Pediatrics, University of Miami Miller School of Medicine , Miami, Florida
| | - W Dalton Dietrich
- 1 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| | - Robert W Keane
- 1 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
37
|
Zhang F, Fan D, Mo XN. Prohibitin and the extracellular matrix are upregulated in murine alveolar epithelial cells with LPS‑induced acute injury. Mol Med Rep 2018; 17:7769-7773. [PMID: 29620269 DOI: 10.3892/mmr.2018.8808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/23/2017] [Indexed: 11/05/2022] Open
Abstract
Inflammation of epithelial and endothelial cells accelerates the progress of acute lung injury (ALI), and pulmonary fibrosis is the leading cause of mortality in patients with acute respiratory distress syndrome. Interleukin‑6 (IL‑6) is a pleiotropic cytokine implicated in the pathogenesis of a number of immune‑mediated disorders, and is involved in pulmonary fibrosis. Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions, including proliferation, apoptosis, tumor suppression, transcription and mitochondrial protein folding. PHB was identified to be associated with a variety of pulmonary diseases, including pulmonary fibrosis. Based on the lipopolysaccharide (LPS)‑induced cell model of ALI, the present study examined the expression of PHB and the extracellular matrix (ECM) in the process of pulmonary inflammation. MLE‑12 cells were divided into 2 groups: The control group was administered sterile PBS; the treatment group was administered 500 ng/ml LPS for 12 h. The mRNA expression of IL‑6 in the treatment group was significantly upregulated compared with the control group (P<0.05). The protein expression of IL‑6 in the treatment group was markedly increased compared with the control group (P<0.05). ECM components, including collagen‑IV and fibronectin, in the treatment group were markedly increased when compared with the control group (P<0.05). The mRNA and protein expression levels of PHB1 and PHB2 were significantly upregulated following treatment with LPS (both P<0.05). The present study identified that PHB and ECM component levels increased in the LPS‑induced ALI cell model, and further investigations may be performed to verify the detailed mechanism.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Respiratory Medicine, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Dejun Fan
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Neng Mo
- Department of Respiratory Medicine, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
38
|
Maknitikul S, Luplertlop N, Chaisri U, Maneerat Y, Ampawong S. Featured Article: Immunomodulatory effect of hemozoin on pneumocyte apoptosis via CARD9 pathway, a possibly retarding pulmonary resolution. Exp Biol Med (Maywood) 2018; 243:395-407. [PMID: 29402133 DOI: 10.1177/1535370218757458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum, the most virulent malaria parasite species, causes severe symptoms especially acute lung injury (ALI), of which characterized by alveolar epithelium and endothelium destruction and accelerated to blood-gas-barrier breakdown. Parasitized erythrocytes, endothelial cells, monocytes, and cytokines are all involved in this mechanism, but hemozoin (HZ), the parasitic waste from heme detoxification, also mainly contributes. In addition, it is not clear why type II pneumocyte proliferation, alveolar restorative stage, is rare in malaria-associated ALI. To address this, in vitro culture of A549 cells with Plasmodium HZ or with interleukin (IL)-1β triggered by HZ and monocytes (HZ-IL-1β) was conducted to determine their alveolar apoptotic effect using ethidium bromide/acridine orange staining, annexin-V-FITC/propidium iodide staining, and electron mircroscopic study. Caspase recruitment domain-containing protein 9 ( CARD9), the apoptotic regulator gene, and IL-1β were quantified by reverse-transcriptase PCR. Junctional cellular defects were characterized by immunohistochemical staining of E-cadherin. The results revealed that cellular apoptosis and CARD9 expression levels were extremely high 24 h after induction by HZ-IL-1β when compared to the HZ- and non-treated groups. E-cadherin was markedly down-regulated by HZ-IL-1β and HZ treatments. CARD9 expression was positively correlated with IL-1β expression and the number of apoptotic cells. Interestingly, the localization of HZ in the vesicular surfactant of apoptotic pneumocyte was also identified and submitted to be a cause of alveolar resolution abnormality. Thus, HZ triggers monocytes to produce IL-1β and induces pneumocyte type II apoptosis through CARD9 pathway in association with down-regulated E-cadherin, which probably impairs alveolar resolution in malaria-associated ALI. Impact statement The present work shows the physical and immunomodulatory properties of hemozoin on the induction of pneumocyte apoptosis in relation to IL-1β production through the CARD9 pathway. This occurrence may be a possible pathway for the retardation of lung resolution leading to blood-gas-barrier breakdown. Our findings lead to the understanding of the host-parasite relationship focusing on the dysfunction in ALI induced by HZ, a possible pathway of the recovering lung epithelial retardation in malaria-associated ARDS.
Collapse
Affiliation(s)
- Sitang Maknitikul
- 1 Department of Tropical Pathology, 115374 Faculty of Tropical Medicine, Mahidol University , Ratchathewi, Bangkok 10400, Thailand
| | - Natthanej Luplertlop
- 2 Department of Microbiology and Immunology, 115374 Faculty of Tropical Medicine, Mahidol University , Ratchathewi, Bangkok 10400, Thailand
| | - Urai Chaisri
- 1 Department of Tropical Pathology, 115374 Faculty of Tropical Medicine, Mahidol University , Ratchathewi, Bangkok 10400, Thailand
| | - Yaowapa Maneerat
- 1 Department of Tropical Pathology, 115374 Faculty of Tropical Medicine, Mahidol University , Ratchathewi, Bangkok 10400, Thailand
| | - Sumate Ampawong
- 1 Department of Tropical Pathology, 115374 Faculty of Tropical Medicine, Mahidol University , Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
39
|
Ghrelin ameliorates acute lung injury induced by oleic acid via inhibition of endoplasmic reticulum stress. Life Sci 2017; 196:1-8. [PMID: 28751159 DOI: 10.1016/j.lfs.2017.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
AIMS Acute lung injury (ALI) is associated with excessive mortality and lacks appropriate therapy. Ghrelin is a novel peptide that protects the lung against ALI. This study aimed to investigate whether endoplasmic reticulum stress (ERS) mediates the protective effect of ghrelin on ALI. MAIN METHODS We used a rat oleic acid (OA)-induced ALI model. Pulmonary impairment was detected by hematoxylin and eosin (HE) staining, lung mechanics, wet/dry weight ratio, and arterial blood gas analysis. Plasma and lung content of ghrelin was examined by ELISA, and mRNA expression was measured by quantitative real-time PCR. Protein levels were detected by western blot. KEY FINDINGS Rats with OA treatment showed significant pulmonary injury, edema, inflammatory cellular infiltration, cytokine release, hypoxia and CO2 retention as compared with controls. Plasma and pulmonary content of ghrelin was reduced in rats with ALI, and mRNA expression was downregulated. Ghrelin (10nmol/kg) treatment ameliorated the above symptoms, but treatment with the ghrelin antagonists D-Lys3 GHRP-6 (1μmol/kg) and JMV 2959 (6mg/kg) exacerbated the symptoms. ERS induced by OA was prevented by ghrelin and augmented by ghrelin antagonist treatment. The ERS inducer, tunicamycin (Tm) prevented the ameliorative effect of ghrelin on ALI. The decreased ratio of p-Akt and Akt induced by OA was improved by ghrelin treatment, and was further exacerbated by ghrelin antagonists. SIGNIFICANCE Ghrelin protects against ALI by inhibiting ERS. These results provide a new target for prevention and therapy of ALI.
Collapse
|
40
|
Wu DQ, Wu HB, Zhang M, Wang JA. Effects of Zinc Finger Protein A20 on Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation/Anti-Inflammatory Mediators in an Acute Lung Injury/Acute Respiratory Distress Syndrome Rat Model. Med Sci Monit 2017; 23:3536-3545. [PMID: 28724884 PMCID: PMC5533196 DOI: 10.12659/msm.901700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The aim of this study was to investigate the effects of zinc finger protein A20 on lipopolysaccharide (LPS)-induced pulmonary inflammation/anti-inflammatory mediators in an acute lung injury/acute respiratory distress syndrome (ALI/ARDS) rat model. Material/Methods Forty-eight ALI/ARDS rats were selected and assigned into normal saline (NS) (injected with NS), LPS (injected with LPS), LPS-C1 (injected with pEGFP-C1, NS and LPS), and A20 groups (injected with pEGFP-C1-A20, NS, and LPS). The wet/dry (W/D) ratio of rat lung tissues and total protein concentration and the number of neutrophils in bronchoalveolar lavage fluid (BALF) were detected. Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR were applied to detect the protein and mRNA expressions of A20, IL-10, and TNF-α, respectively. Western blotting was employed to detect the protein expressions of A20, nuclear factor-kappa B (NF-κB) p65 and NF-κB p-P65 in rat lung tissues. Results Compared with the NS group, the W/D ratio of rat lung tissues and total protein concentration and the number of neutrophils in BALF in the other 3 groups increased significantly. The protein and mRNA expressions of A20, IL-10, and TNF-α were significantly higher in the LPS group than in the NS group. The protein and mRNA expressions of A20 and IL-10 were significantly up-regulated and the expression of TNF-α, NF-κB p65, and NF-κB p-P65 was significantly down-regulated in rats injected with A20 compared to those in the LPS group. Conclusions The study provided evidence that zinc finger protein A20 can alleviate pulmonary inflammation by inhibiting TNF-α, NF-κB p65, and NF-κB p-P65 expressions and promoting IL-10 expression.
Collapse
Affiliation(s)
- Ding-Qian Wu
- Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Hong-Bo Wu
- Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Mao Zhang
- Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Jian-An Wang
- Department of Internal Medicine-Cardiovascular, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
41
|
Zhao M, Li C, Shen F, Wang M, Jia N, Wang C. Naringenin ameliorates LPS-induced acute lung injury through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3K/AKT pathway. Exp Ther Med 2017; 14:2228-2234. [PMID: 28962147 DOI: 10.3892/etm.2017.4772] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/24/2017] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to explore the effect of naringenin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in a mouse model, as well as the underlying mechanism. The animals were randomly assigned to four groups: PBS-treated healthy control (Control), LPS-induced ALI (LPS), vehicle-treated ALI (LPS + Vehicle), and naringenin-treated ALI (LPS + Nar) group. Naringenin (100 mg/kg) was administered orally for 4 consecutive days, starting 3 days prior to induction of ALI. The survival rates of mice, lung wet/dry weight ratios, lung injury score, protein levels of bronchoalveolar lavage fluid (BALF), lactate dehydrogenase (LDH) activity in the BALF, lung myeloperoxidase (MPO) activity, the number of infiltrated neutrophils and reactive oxygen species (ROS) levels (H2O2 and malondialdehyde) were assessed. In addition, the serum and BALF levels of inflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and macrophage inflammatory protein 2] were determined, along with the total and the phosphorylated protein levels of phosphatidylinositol 3-hydroxy kinase (PI3K) and AKT in lung tissues. The results showed that naringenin pre-treatment significantly increased the survival rate, improved histopathologic changes, alleviated pulmonary edema and lung vascular leak, downregulated the levels of ROS and reduced neutrophil infiltration as well as the levels of inflammatory cytokines in the serum and BALF. Moreover, naringenin pre-treatment reduced the total and the phosphorylated protein levels of PI3K and AKT. The present study suggested that naringenin pre-treatment ameliorated LPS-induced ALI through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3K/AKT pathway in mice.
Collapse
Affiliation(s)
- Minghong Zhao
- Department of Oncology, Jianhu People's Hospital, Yancheng, Jiangsu 224700, P.R. China
| | - Chao Li
- Department of Oncology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Fujun Shen
- Department of Oncology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Meijuan Wang
- Department of Oncology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Ning Jia
- Research and Development Department, Solomon Brothers Medical Institute, Wilmington, DE 19803, USA
| | - Chunbin Wang
- Department of Oncology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| |
Collapse
|
42
|
Wu G, Dai X, Li X, Jiang H. ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECTS OF RHAMNAZIN ON LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY AND INFLAMMATION IN RATS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638883 PMCID: PMC5471467 DOI: 10.21010/ajtcam.v14i4.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Acute Lung Injury (ALI) results into severe inflammation and oxidative stress to the pulmonary tissue. Rhamnazin is a natural flavonoid and known for its antioxidant and anti-inflammatory properties. Materials and methods: The antioxidative and anti-inflammatory properties rhamnazin were tested for protection against the acute lung injury. We investigated whether rhamnazin improves the lipopolysaccharide (LPS)-induced ALI in an animal model (rat). We also studied the probable molecular mechanism of action of rhamnazin. Rhamnazin was injected intraperitoneally (i.p.) (5, 10 and 20 mg/kg) two days before intratracheal LPS challenge (5mg/kg). The changes in lung wet-to-dry weight ratio, LDH activity, pulmonary histopathology, BALF protein concentration, MPO activity, oxidative stress, cytokine production were estimated. Results: The results showed a significant attenuation of all the inflammatory parameters and a marked improvement in the pulmonary histopathology in the animal groups pretreated with rhamnazin. The rhamnazin pretreated group also showed activation of Nrf2 pathway and attenuation of ROS such as H2O2, MDA and hydroxyl ion. These results indicated that rhamnazin could attenuate the symptoms of ALI in rats due to its strong antioxidant and anti-inflammatory properties. Conclusion: The results strongly demonstrated that rhamnazin provides protection against LPS-induced ALI. The underlying mechanisms of its anti-inflammatory action may include inhibition of Nrf2 mediated antioxidative pathway.
Collapse
Affiliation(s)
- GuoRong Wu
- Department of respiratory medicine, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu 213200, China
| | - XiaoPing Dai
- Department of respiratory medicine, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu 213200, China
| | - XiangRong Li
- Department of respiratory medicine, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu 213200, China
| | - HePing Jiang
- Department of respiratory medicine, Changzhou Jintan District People's Hospital, Changzhou, Jiangsu 213200, China
| |
Collapse
|
43
|
Ge L, Hu Q, Shi M, Yang H, Zhu G. Design and discovery of novel thiazole derivatives as potential MMP inhibitors to protect against acute lung injury in sepsis rats via attenuation of inflammation and apoptotic oxidative stress. RSC Adv 2017. [DOI: 10.1039/c7ra03511j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Effect of compound26on the expression of ICAM-1 and THP-1 cell adherence to activated A549 cells.
Collapse
Affiliation(s)
- Lingqing Ge
- Neonate Department
- Soochow University Affiliated Children's Hospital
- Suzhou
- P. R. China
| | - Qiaozhen Hu
- Obstetrical Department
- Suzhou Hospital of Traditional Chinese Medicine
- Suzhou
- P. R. China
| | - Mengrao Shi
- Neonate Department
- Soochow University Affiliated Children's Hospital
- Suzhou
- P. R. China
| | - Huiyun Yang
- Neonate Department
- Soochow University Affiliated Children's Hospital
- Suzhou
- P. R. China
| | - Guoji Zhu
- Department of Internal Medicine
- Soochow University Affiliated Children's Hospital
- Suzhou
- P. R. China
| |
Collapse
|
44
|
Liu Z, Yu T, Yang H, Tian X, Feng L. WITHDRAWN: Decreased level of endogenous ghrelin is involved in the progression of lung injury induced by oleic acid. Life Sci 2016:S0024-3205(16)30675-0. [PMID: 27894854 DOI: 10.1016/j.lfs.2016.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Zhijun Liu
- Department of Respiration, Liaocheng People's Hospital, Liaocheng 252000, China.
| | - Ting Yu
- Department of Ultrasound, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Haitao Yang
- Department of Respiration, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Linlin Feng
- Department of Respiration, Liaocheng People's Hospital, Liaocheng 252000, China
| |
Collapse
|
45
|
Wang NA, Su Y, Che XM, Zheng H, Shi ZG. Penehyclidine ameliorates acute lung injury by inhibiting Toll-like receptor 2/4 expression and nuclear factor-κB activation. Exp Ther Med 2016; 11:1827-1832. [PMID: 27168812 DOI: 10.3892/etm.2016.3154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 11/30/2015] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effect of penehyclidine (PHC) on endotoxin-induced acute lung injury (ALI), as well as to examine the mechanism underlying this effect. A total of 60 rats were randomly divided into five groups, including the control (saline), LPS and three LPS + PHC groups. ALI was induced in the rats by injection of 8 mg lipopolysaccharide (LPS)/kg body weight. The rats were then treated with or without PHC at 0.3, 1 or 3 mg/kg body weight 1 min following LPS injection. After 6 h, serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were determined by ELISA. In addition, the mRNA expression levels of toll-like receptor (TLR)2 and TLR4 were examined by reverse transcription-quantitative polymerase chain reaction in the lung tissue samples, and nuclear factor (NF)-κB p65 protein expression levels were examined by western blot analysis. The results demonstrated that lung injury was ameliorated by treatment with PHC (1 and 3 mg/kg body weight) as compared with treatment with LPS alone. Injection of LPS significantly increased the mRNA expression levels of TLR2 and TLR4, as well as the protein expression levels of NF-κB p65 in the lung tissue samples. Serum levels of TNF-α and IL-6 were also upregulated by LPS injection. Treatment of the rats with PHC following LPS injection suppressed the LPS-induced increase in TLR2/4 mRNA and NF-κB p65 protein expression levels. PHC also inhibited the increase in TNF-α and IL-6 serum levels. In addition, PHC reduced LPS-induced ALI and decreased the serum levels of TNF-α and IL-6, possibly by downregulating TLR2/4 mRNA expression and inhibiting NF-κB activity, and consequently alleviating the inflammatory response.
Collapse
Affiliation(s)
- N A Wang
- Department of Anesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Yue Su
- Department of Anesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Xiang-Ming Che
- Department of Anesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Hui Zheng
- Department of Anesthesiology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Zhi-Guo Shi
- Department of Anesthesiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| |
Collapse
|
46
|
Zhu GF, Guo HJ, Huang Y, Wu CT, Zhang XF. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity. Exp Ther Med 2015; 10:2259-2266. [PMID: 26668626 DOI: 10.3892/etm.2015.2827] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/15/2015] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury (ALI) is characterized by excessive inflammatory responses and oxidative injury in the lung tissue. It has been suggested that anti-inflammatory or antioxidative agents could have therapeutic effects in ALI, and eriodictyol has been reported to exhibit antioxidative and anti-inflammatory activity in vitro. The aim of the present study was to investigate the effect of eriodictyol on lipopolysaccharide (LPS)-induced ALI in a mouse model. The mice were divided into four groups: Phosphate-buffered saline-treated healthy control, LPS-induced ALI, vehicle-treated ALI (LPS + vehicle) and eriodictyol-treated ALI (LPS + eriodictyol). Eriodictyol (30 mg/kg) was administered orally once, 2 days before the induction of ALI. The data showed that eriodictyol pretreatment attenuated LPS-induced ALI through its antioxidative and anti-inflammatory activity. Furthermore, the eriodictyol pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in the ALI mouse model, which attenuated the oxidative injury and inhibited the inflammatory cytokine expression in macrophages. In combination, the results of the present study demonstrated that eriodictyol could alleviate the LPS-induced lung injury in mice by regulating the Nrf2 pathway and inhibiting the expression of inflammatory cytokines in macrophages, suggesting that eriodictyol could be used as a potential drug for the treatment of LPS-induced lung injury.
Collapse
Affiliation(s)
- Guang-Fa Zhu
- Department of Infectious Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Hong-Juan Guo
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yan Huang
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Chun-Ting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Xiang-Feng Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| |
Collapse
|
47
|
Ligustrazine effect on lipopolysaccharide-induced pulmonary damage in rats. Burns 2015; 41:1235-41. [DOI: 10.1016/j.burns.2015.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/24/2014] [Accepted: 02/03/2015] [Indexed: 01/05/2023]
|
48
|
Castillo RL, Carrasco Loza R, Romero-Dapueto C. Pathophysiological Approaches of Acute Respiratory Distress syndrome: Novel Bases for Study of Lung Injury. Open Respir Med J 2015; 9:83-91. [PMID: 26312099 PMCID: PMC4541465 DOI: 10.2174/1874306401509010083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022] Open
Abstract
Experimental approaches have been implemented to research the lung damage related-mechanism. These models show in animals pathophysiological events for acute respiratory distress syndrome (ARDS), such as neutrophil activation, reactive oxygen species burst, pulmonary vascular hypertension, exudative edema, and other events associated with organ dysfunction. Moreover, these approaches have not reproduced the clinical features of lung damage. Lung inflammation is a relevant event in the develop of ARDS as component of the host immune response to various stimuli, such as cytokines, antigens and endotoxins. In patients surviving at the local inflammatory states, transition from injury to resolution is an active mechanism regulated by the immuno-inflammatory signaling pathways. Indeed, inflammatory process is regulated by the dynamics of cell populations that migrate to the lung, such as neutrophils and on the other hand, the role of the modulation of transcription factors and reactive oxygen species (ROS) sources, such as nuclear factor kappaB and NADPH oxidase. These experimental animal models reproduce key components of the injury and resolution phases of human ALI/ARDS and provide a methodology to explore mechanisms and potential new therapies.
Collapse
Affiliation(s)
- R L Castillo
- Programa de Fisiopatología, Facultad de Medicina, Universidad de Chile, Chile
| | - R Carrasco Loza
- Departamento de Medicina, Hospital del Salvador, Santiago, Chile; Laboratorio de Investigación Biomédica, Hospital del Salvador, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Romero-Dapueto
- Servicio de Medicina Física y Rehabilitación, Clínica Alemana de Santiago, Santiago, Chile
| |
Collapse
|
49
|
Zeng G, Liu J, Wu N, Jia CW, Guo SB. Lipopolysaccharide challenge induces long pentraxin 3 expression in mice independently from acute lung injury. ACTA ACUST UNITED AC 2015; 30:7-17. [PMID: 25837354 DOI: 10.1016/s1001-9294(15)30002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether the onset of acute lung injury (ALI) induces the up-regulation of pentraxin 3 (PTX3) expression in mice and whether PTX3 concentration in the biofluid can help recognizing sepsis-induced ALI. METHODS Wild-type C57BL/6 mice (12-14 weeks old) were randomly divided into 3 groups. Mice in the group 1 (n=12) and group 2 (n=12) were instilled with lipopolysaccharide via intratracheal or intraperitoneal routes, respectively. Mice in the group 3 (n=8) were taken as blank controls. Pulmonary morphological and functional alterations were measured to determine the presence of experimental ALI. PTX3 expression in the lung was quantified at both protein and mRNA levels. PTX3 protein concentration in blood and bronchoalveolar lavage fluid was measured to evaluate its ability to diagnose sepsis-induced ALI by computing area under receiver operator characteristic curve (AUROCC). RESULTS ALI was commonly confirmed in the group 1 but never in the other groups. PTX3 expression was up-regulated indiscriminately among lipopolysaccharide-challenged mice. PTX3 protein concentration in the biofluid was unable to diagnose sepsis-induced ALI evidenced by its small AUROCC. PTX3 concentration in bronchoalveolar lavage fluid did not correlate with that in serum. CONCLUSIONS Lipopolysaccharide challenges induced PTX3 expression in mice regardless of the presence of ALI. PTX3 may act as an indicator of inflammatory response instead of organ injury per se.
Collapse
Affiliation(s)
- Gao Zeng
- Department of Emergency Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jie Liu
- Department of Emergency Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ning Wu
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Cong-wei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shu-bin Guo
- Department of Emergency Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
50
|
Endogeous sulfur dioxide protects against oleic acid-induced acute lung injury in association with inhibition of oxidative stress in rats. J Transl Med 2015; 95:142-56. [PMID: 25581610 DOI: 10.1038/labinvest.2014.147] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/04/2014] [Accepted: 10/21/2014] [Indexed: 01/03/2023] Open
Abstract
The role of endogenous sulfur dioxide (SO2), an efficient gasotransmitter maintaining homeostasis, in the development of acute lung injury (ALI) remains unidentified. We aimed to investigate the role of endogenous SO2 in the pathogenesis of ALI. An oleic acid (OA)-induced ALI rat model was established. Endogenous SO2 levels, lung injury, oxidative stress markers and apoptosis were examined. OA-induced ALI rats showed a markedly downregulated endogenous SO2/aspartate aminotransferase 1 (AAT1)/AAT2 pathway and severe lung injury. Chemical colorimetry assays demonstrated upregulated reactive oxygen species generation and downregulated antioxidant capacity in OA-induced ALI rats. However, SO2 increased endogenous SO2 levels, protected against oxidative stress and alleviated ALI. Moreover, compared with OA-treated cells, in human alveolar epithelial cells SO2 downregulated O2(-) and OH(-) generation. In contrast, L-aspartic acid-β-hydroxamate (HDX, Sigma-Aldrich Corporation), an inhibitor of endogenous SO2 generating enzyme, promoted free radical generation, upregulated poly (ADP-ribose) polymerase expression, activated caspase-3, as well as promoted cell apoptosis. Importantly, apoptosis could be inhibited by the free radical scavengers glutathione (GSH) and N-acetyl-L-cysteine (NAC). The results suggest that SO2/AAT1/AAT2 pathway might protect against the development of OA-induced ALI by inhibiting oxidative stress.
Collapse
|