1
|
Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016; 96:1093-126. [PMID: 27335446 PMCID: PMC6345246 DOI: 10.1152/physrev.00036.2015] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the field of human disease modeling, with an enormous potential to serve as paradigm shifting platforms for preclinical trials, personalized clinical diagnosis, and drug treatment. In this review, we describe how hiPSCs could transition cardiac healthcare away from simple disease diagnosis to prediction and prevention, bridging the gap between basic and clinical research to bring the best science to every patient.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - John H Ahrens
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
2
|
Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Sci Rep 2015; 5:8081. [PMID: 25628230 PMCID: PMC4308704 DOI: 10.1038/srep08081] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/05/2015] [Indexed: 11/08/2022] Open
Abstract
The development of human induced pluripotent stem cell (iPSC) technology has revolutionized the regenerative medicine field. This technology provides a powerful tool for disease modeling and drug screening approaches. To circumvent the risk of random integration into the host genome caused by retroviruses, non-integrating reprogramming methods have been developed. However, these techniques are relatively inefficient or expensive. The mini-intronic plasmid (MIP) is an alternative, robust transgene expression vector for reprogramming. Here we developed a single plasmid reprogramming system which carries codon-optimized (Co) sequences of the canonical reprogramming factors (Oct4, Klf4, Sox2, and c-Myc) and short hairpin RNA against p53 ("4-in-1 CoMiP"). We have derived human and mouse iPSC lines from fibroblasts by performing a single transfection. Either independently or together with an additional vector encoding for LIN28, NANOG, and GFP, we were also able to reprogram blood-derived peripheral blood mononuclear cells (PBMCs) into iPSCs. Taken together, the CoMiP system offers a new highly efficient, integration-free, easy to use, and inexpensive methodology for reprogramming. Furthermore, the CoMIP construct is color-labeled, free of any antibiotic selection cassettes, and independent of the requirement for expression of the Epstein-Barr Virus nuclear antigen (EBNA), making it particularly beneficial for future applications in regenerative medicine.
Collapse
|
3
|
Courtot AM, Magniez A, Oudrhiri N, Féraud O, Bacci J, Gobbo E, Proust S, Turhan AG, Bennaceur-Griscelli A. Morphological analysis of human induced pluripotent stem cells during induced differentiation and reverse programming. Biores Open Access 2014; 3:206-16. [PMID: 25371857 PMCID: PMC4215385 DOI: 10.1089/biores.2014.0028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The fine analysis of cell components during the generation of pluripotent cells and their comparison to bone fide human embryonic stem cells (hESCs) are valuable tools to understand their biological behavior. In this report, human mesenchymal cells (hMSCs) generated from the human ES cell line H9, were reprogrammed back to induced pluripotent state using Oct-4, Sox2, Nanog, and Lin28 transgenes. Human induced pluripotent stem cells (hIPSCs) were analyzed using electron microscopy and compared with regard to the original hESCs and the hMSCs from which they were derived. This analysis shows that hIPSCs and the original hESCs are morphologically undistinguishable but differ from the hMSCs with respect to the presence of several morphological features of undifferentiated cells at both the cytoplasmic (ribosomes, lipid droplets, glycogen, scarce reticulum) and nuclear levels (features of nuclear plasticity, presence of euchromatin, reticulated nucleoli). We show that hIPSC colonies generated this way presented epithelial aspects with specialized junctions highlighting morphological criteria of the mesenchymal–epithelial transition in cells engaged in a successful reprogramming process. Electron microscopic analysis revealed also specific morphological aspects of partially reprogrammed cells. These results highlight the valuable use of electron microscopy for a better knowledge of the morphological aspects of IPSC and cellular reprogramming.
Collapse
Affiliation(s)
- Anne-Marie Courtot
- Inserm U935, ES-TEAM Paris Sud, Ingestem , Villejuif, France . ; Université Paris Sud , Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Aurélie Magniez
- Inserm U935, ES-TEAM Paris Sud, Ingestem , Villejuif, France
| | - Noufissa Oudrhiri
- Inserm U935, ES-TEAM Paris Sud, Ingestem , Villejuif, France . ; Service d'Hématologie Biologique APHP, Hôpital Paul Brousse , GHU Paris Sud Villejuif, France
| | - Olivier Féraud
- Inserm U935, ES-TEAM Paris Sud, Ingestem , Villejuif, France
| | - Josette Bacci
- Service de Neurologie, Hôpital Bicêtre APHP , Le Kremlin Bicêtre, France
| | - Emilie Gobbo
- Inserm U935, ES-TEAM Paris Sud, Ingestem , Villejuif, France
| | - Stéphanie Proust
- Service de Virologie, Hôpital Bicêtre APHP , Le Kremlin Bicêtre, France
| | - Ali G Turhan
- Inserm U935, ES-TEAM Paris Sud, Ingestem , Villejuif, France . ; Université Paris Sud , Faculté de Médecine, Le Kremlin Bicêtre, France . ; Service d'Hématologie Biologique APHP, Hôpital Bicêtre , GHU Paris Sud, Le Kremlin Bicêtre, France
| | - Annelise Bennaceur-Griscelli
- Inserm U935, ES-TEAM Paris Sud, Ingestem , Villejuif, France . ; Université Paris Sud , Faculté de Médecine, Le Kremlin Bicêtre, France . ; Service d'Hématologie Biologique APHP, Hôpital Paul Brousse , GHU Paris Sud Villejuif, France
| |
Collapse
|
4
|
Diecke S, Jung SM, Lee J, Ju JH. Recent technological updates and clinical applications of induced pluripotent stem cells. Korean J Intern Med 2014; 29:547-57. [PMID: 25228828 PMCID: PMC4164716 DOI: 10.3904/kjim.2014.29.5.547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) were first described in 2006 and have since emerged as a promising cell source for clinical applications. The rapid progression in iPSC technology is still ongoing and directed toward increasing the efficacy of iPSC production and reducing the immunogenic and tumorigenic potential of these cells. Enormous efforts have been made to apply iPSC-based technology in the clinic, for drug screening approaches and cell replacement therapy. Moreover, disease modeling using patient-specific iPSCs continues to expand our knowledge regarding the pathophysiology and prospective treatment of rare disorders. Furthermore, autologous stem cell therapy with patient-specific iPSCs shows great propensity for the minimization of immune reactions and the provision of a limitless supply of cells for transplantation. In this review, we discuss the recent updates in iPSC technology and the use of iPSCs in disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Sebastian Diecke
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaecheol Lee
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Zaninovic N, Zhan Q, Rosenwaks Z. Derivation of human embryonic stem cells (hESC). Methods Mol Biol 2014; 1154:121-44. [PMID: 24782008 DOI: 10.1007/978-1-4939-0659-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Stem cells are characterized by their absolute or relative lack of specialization their ability for self-renewal, as well as their ability to generate differentiated progeny through cellular lineages with one or more branches. The increased availability of embryonic tissue and greatly improved derivation methods have led to a large increase in the number of hESC lines.
Collapse
Affiliation(s)
- Nikica Zaninovic
- Center for Reproductive Medicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY, 10021, USA,
| | | | | |
Collapse
|
6
|
Kakisi OK, Robinson MJ, Tettmar KI, Tedder RS. The rise and fall of XMRV. Transfus Med 2013; 23:142-51. [PMID: 23692013 DOI: 10.1111/tme.12049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/23/2013] [Accepted: 05/01/2013] [Indexed: 12/25/2022]
Abstract
Due to the relatively recent emergence of the human T-lymphotropic and the human immunodeficiency viruses, enthusiasm for the identification of novel viruses, especially retroviruses, with pathogenic potential in humans, remains high. Novel technologies are now available with the ability to search for unknown viruses, such as gene arrays and new generation sequencing of tissue and other samples. In 2006, chip technology identified a novel retrovirus in human prostate cancer (PCa) tissue samples. Due to close homology to a mouse retrovirus, the virus was named xenotropic murine leukaemia virus-related virus (XMRV). Ever since the initial disease association with PCa, XMRV has stirred a lot of attention and concern worldwide for the medical community, public health officials and in particular global transfusion services. Public response, in this new era of electronic communication and advocacy was rapid, wide and unprecedented. In this review, we outline the course of biomedical research efforts that were put forward internationally in the process of determining the risk to the human population, the response of the blood banking community and review the current state of knowledge of xenotropic murine retroviruses. Although XMRV is no longer regarded as an infection of humans, a lesson was learnt in modern virology that holds deeper implications for biomedical research, particularly stem cell generation and transplantation practices.
Collapse
Affiliation(s)
- O K Kakisi
- Transfusion Microbiology Research and Development, National Transfusion Microbiology Laboratories, NHS Blood and Transplant, Colindale, London, UK.
| | | | | | | |
Collapse
|
7
|
Novak A, Amit M, Ziv T, Segev H, Fishman B, Admon A, Itskovitz-Eldor J. Proteomics profiling of human embryonic stem cells in the early differentiation stage. Stem Cell Rev Rep 2012; 8:137-49. [PMID: 21732092 DOI: 10.1007/s12015-011-9286-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The regulatory pathways responsible for maintaining human embryonic stem cells (hESCs) in an undifferentiated state have yet to be elucidated. Since these pathways are thought to be governed by complex protein cues, deciphering the changes that occur in the proteomes of the ESCs during differentiation is important for understanding the expansion and differentiation processes involved. In this study, we present the first quantitative comparison of the hESC protein profile in the undifferentiated and early differentiated states. We used iTRAQ (isobaric tags for relative and absolute quantification) labeling combined with two dimensional capillary chromatography coupled with tandem mass spectrometry (μLC-MS/MS) to achieve comparative proteomics of hESCs at the undifferentiated stage, and at 6, 48, and 72 h after initiation of differentiation. In addition, two dimensional electrophoresis (2-DE) was performed on differentiating hESCs at eleven points of time during the first 72 h of differentiation. The results indicate that during the first 48 h of hESC differentiation, many processes are initiated and are later reversed, including chromatin remodeling, heterochromatin spreading, a decrease in transcription and translation, a decrease in glycolytic proteins and cytoskeleton remodeling, and a decrease in focal and cell adhesion. Only 72 h after differentiation induction did the expression of the homeobox prox1 protein increase, indicating the beginning of developmental processes.
Collapse
Affiliation(s)
- Atara Novak
- Sohnis and Forman Families Center for Stem Cell and Tissue Regeneration Research, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
8
|
Yoo JK, Kim J, Choi SJ, Noh HM, Kwon YD, Yoo H, Yi HS, Chung HM, Kim JK. Discovery and characterization of novel microRNAs during endothelial differentiation of human embryonic stem cells. Stem Cells Dev 2012; 21:2049-57. [PMID: 22142236 DOI: 10.1089/scd.2011.0500] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that participate in the regulation of genes associated with the differentiation and proliferation. In this study, 5 novel miRNAs were identified from human mesenchymal stem cells and characterized using various analyses. To investigate the potential functions associated with the regulation of cell differentiation, the differences in miRNA expression were examined in undifferentiated and differentiated human embryonic stem (ES) cells using reverse transcription (RT)-PCR analysis. Specifically, 3 miRNAs exhibited decreased expression levels in human umbilical vein endothelial cells (HUVECs) and endothelial cells derived from human ES cells. Putative target genes related to differentiation or maturation of endothelial cells were predicted by seed sequences of 2 novel miRNAs and analyzed for their expression via miRNA-mediated regulation using a luciferase assay. In HUVECs, CDH5 gene expression was directly repressed by hsa-miR-6086. Similarly, hsa-miR-6087 significantly downregulated endoglin expression. Therefore, the roles of these 2 miRNAs may be to directly suppress their target genes, popularly known as endothelial cell markers. Taken together, our results demonstrate that several novel miRNAs perform critical roles in human endothelial cell development.
Collapse
Affiliation(s)
- Jung Ki Yoo
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
van der Kuyl AC, Cornelissen M, Berkhout B. Of Mice and Men: On the Origin of XMRV. Front Microbiol 2011; 1:147. [PMID: 21687768 PMCID: PMC3109487 DOI: 10.3389/fmicb.2010.00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/26/2010] [Indexed: 12/20/2022] Open
Abstract
The novel human retrovirus xenotropic murine leukemia virus-related virus (XMRV) is arguably the most controversial virus of this moment. After its original discovery in prostate cancer tissue from North American patients, it was subsequently detected in individuals with chronic fatigue syndrome from the same continent. However, most other research groups, mainly from Europe, reported negative results. The positive results could possibly be attributed to contamination with mouse products in a number of cases, as XMRV is nearly identical in nucleotide sequence to endogenous retroviruses in the mouse genome. But the detection of integrated XMRV proviruses in prostate cancer tissue proves it to be a genuine virus that replicates in human cells, leaving the question: how did XMRV enter the human population? We will discuss two possible routes: either via direct virus transmission from mouse to human, as repeatedly seen for, e.g., Hantaviruses, or via the use of mouse-related products by humans, including vaccines. We hypothesize that mouse cells or human cell lines used for vaccine production could have been contaminated with a replicating variant of the XMRV precursors encoded by the mouse genome.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | | | |
Collapse
|
10
|
Kubikova I, Konecna H, Sedo O, Zdrahal Z, Rehulka P, Hribkova H, Rehulkova H, Hampl A, Chmelik J, Dvorak P. Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin. Cytotherapy 2009; 11:330-40, 1 p following 340. [PMID: 19401887 DOI: 10.1080/14653240802595531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AIMS Microvesicles (MV) shed from the plasma membrane of eukaryotic cells, including human embryonic stem cells (hESC), contain proteins, lipids and RNA and serve as mediators of cell-to-cell communication. However, they may also contain immunogenic membrane domains and infectious particles acquired from xenogenic components of the culture milieu. Therefore, MV represent a potential risk for clinical application of cell therapy. METHODS We tested the ability of hESC and their most commonly used feeder cells, mouse embryonic fibroblasts (MEF), to produce MV. We found that hESC are potent producers of MV, whereas mitotically inactivated MEF do not produce any detectable MV. We therefore employed a combined proteomic approach to identify the molecules that constitute the major components of MV from hESC maintained in a standard culture setting with xenogenic feeder cells. RESULTS In purified MV fractions, we identified a total of 22 proteins, including five unique protein species that are known to be highly expressed in invasive cancers and participate in cellular activation, metastasis and inhibition of apoptosis. Moreover, we found that hESC-derived MV contained the immunogenic agents apolipoprotein and transferrin, a source of Neu5Gc, as well as mouse retroviral Gag protein. CONCLUSIONS These findings indicate that MV represent a mechanism by which hESC communicate; however, they also serve as potential carriers of immunogenic and pathogenic compounds acquired from environment. Our results highlight a potential danger regarding the use of hESC that have previously been exposed to animal proteins and cells.
Collapse
Affiliation(s)
- I Kubikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Saxena S, Hanwate M, Deb K, Sharma V, Totey S. FGF2 secreting human fibroblast feeder cells: a novel culture system for human embryonic stem cells. Mol Reprod Dev 2008; 75:1523-32. [PMID: 18318041 DOI: 10.1002/mrd.20895] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human embryonic stem cell (hESC) lines are traditionally derived and maintained on mouse embryonic fibroblasts (MEF) which are xenogeneic and enter senescence rapidly. In view of the clinical implications of hESCs, the use of human fibroblast as feeders has been suggested as a plausible alternative. However, use of fibroblast cells from varying sources leads to culture variations along with the need to add FGF2 in cultures to sustain ES cell pluripotency. In this study we report the derivation of FGF2 expressing germ layer derived fibroblast cells (GLDF) from hESC lines. These feeders could support the pluripotency, karyotypes and proliferation of hESCs with or without FGF2 in prolonged cultures as efficiently as that on MEF. GLDF cells were derived from embryoid bodies and characterized for expression of fibroblast markers by RT-PCR, Immunofluorescence and by flow cytometry for CD marker expression. The expression and secretion of FGF2 was confirmed by RT-PCR, Western blot, and ELISA. The hESC lines cultured on MEF and GLDF were analyzed for various stemness markers. These feeder cells with fibroblast cells like properties maintained the properties of hESCs in prolonged culture over 30 passages. Proliferation and pluripotency of hESCs on GLDF was comparable to that on mouse feeders. Further we discovered that these GLDF cells could secrete FGF2 and maintained pluripotency of hESC cultures even in the absence of supplemental FGF2. To our knowledge, this is the first study reporting a novel hESC culture system which does not warrant FGF2 supplementation, thereby reducing the cost of hESC cultures.
Collapse
Affiliation(s)
- Shobhit Saxena
- Manipal Institute of Regenerative Medicine, Bangalore, India
| | | | | | | | | |
Collapse
|
12
|
Suter DM, Krause KH. Neural commitment of embryonic stem cells: molecules, pathways and potential for cell therapy. J Pathol 2008; 215:355-68. [PMID: 18566959 DOI: 10.1002/path.2380] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study of neuronal differentiation of embryonic stem cells has raised major interest over recent years. It allows a better understanding of fundamental aspects of neurogenesis and, at the same time, the generation of neurons as tools for various applications ranging from drug testing to cell therapy and regenerative medicine. Since the first report of human embryonic stem (ES) cells derivation, many studies have shown the possibility of directing their differentiation towards neurons. However, there are still many challenges ahead, including gaining a better understanding of the mechanisms involved and developing techniques to allow the generation of homogeneous neuronal and glial subtypes. We review the current state of knowledge of embryonic neurogenesis which has been acquired from animal models and discuss its translation into in vitro strategies of neuronal differentiation of ES cells. We also highlight several aspects of current protocols which need to be optimized to generate high-quality embryonic stem cell-derived neuronal precursors suitable for clinical applications. Finally, we discuss the potential of embryonic stem cell-derived neurons for cell replacement therapy in several central nervous system diseases.
Collapse
Affiliation(s)
- D M Suter
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | | |
Collapse
|
13
|
Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 2008; 17:R48-53. [PMID: 18632697 DOI: 10.1093/hmg/ddn079] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human embryonic stem cell (hESC) lines, after directed differentiation, hold the greatest potential for cell transplantation treatment in many severe diseases. Good manufacturing practice (GMP) quality, defined by both the European Medicines Agency and the Food and Drug Administration, is a requirement for clinical-grade cells, offering optimal defined quality and safety in cell transplantation. Using animal substance-free culture media, feeder cells or feeder-free matrix in derivation, passaging, expansion and cryopreservation procedures, immune reactions against animal proteins in the cells, and infection risk caused by animal microbes can be avoided. It is also possible to apply GMP to animal components if no better options are available. In recent production of GMP-quality hESC lines, feeder cells had been cultured in fetal bovine serum, and the medium supplemented with an animal protein containing a serum replacement component. Using embryos cultured in a GMP laboratory, isolating the inner cell mass mechanically, deriving lines on human feeder cells originally cultured in xeno-free medium in a GMP laboratory, and using xeno-free media for derivation and culture of hESC lines themselves, GMP-quality xeno-free hESC lines could be established today. Human serum is a xeno-free component available today, but many chemically defined media are under development.
Collapse
Affiliation(s)
- Christian Unger
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
14
|
Meng G, Liu S, Krawetz R, Chan M, Chernos J, Rancourt DE. A Novel Method for Generating Xeno-Free Human Feeder Cells for Human Embryonic Stem Cell Culture. Stem Cells Dev 2008; 17:413-22. [DOI: 10.1089/scd.2007.0236] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guoliang Meng
- Institute of Maternal & Child Health, University of Calgary Medical School, Calgary, AB, Canada, T2N 4N1
| | - Shiying Liu
- Institute of Maternal & Child Health, University of Calgary Medical School, Calgary, AB, Canada, T2N 4N1
| | - Roman Krawetz
- Institute of Maternal & Child Health, University of Calgary Medical School, Calgary, AB, Canada, T2N 4N1
| | - Michael Chan
- Alberta Children's Hospital, Calgary, Canada T2N 4N1
| | - Judy Chernos
- Alberta Children's Hospital, Calgary, Canada T2N 4N1
| | - Derrick E. Rancourt
- Institute of Maternal & Child Health, University of Calgary Medical School, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
15
|
Newman MB, Bakay RAE. Therapeutic potentials of human embryonic stem cells in Parkinson's disease. Neurotherapeutics 2008; 5:237-51. [PMID: 18394566 PMCID: PMC5084166 DOI: 10.1016/j.nurt.2008.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The loss of dopaminergic neurons of the substantia nigra is the pathological hallmark characteristic of Parkinson's disease (PD). The strategy of replacing these degenerating neurons with other cells that produce dopamine has been the main approach in the cell transplantation field for PD research. The isolation, differentiation, and long-term cultivation of human embryonic stem cells and the therapeutic research discovery made in relation to the beneficial properties of neurotrophic and neural growth factors has advanced the transplantation field beyond dopamine-producing cells. The present review addresses recent advances in human embryonic stem cell experimentation in relation to treating PD, as well as cell transplantation techniques in conjunction with alternative therapeutics.
Collapse
Affiliation(s)
- Mary B Newman
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
16
|
Deb KD, Sarda K. Human embryonic stem cells: preclinical perspectives. J Transl Med 2008; 6:7. [PMID: 18230169 PMCID: PMC2268665 DOI: 10.1186/1479-5876-6-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 01/29/2008] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells (hESCs) have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic.
Collapse
Affiliation(s)
- Kaushik Dilip Deb
- Embryonic Stem Cell Program, Manipal Institute of Regenerative Medicine, #10 Service Road, Domlur, Bangalore 560071, India.
| | | |
Collapse
|
17
|
Pal R, Mandal A, Rao HS, Rao MS, Khanna A. A panel of tests to standardize the characterization of human embryonic stem cells. Regen Med 2007; 2:179-92. [PMID: 17465750 DOI: 10.2217/17460751.2.2.179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human embryonic stem cells offer a renewable source of a wide range of cell types for use in research and cell-based therapies. Characterizing these cells provides important information about their current state and affords relevant details for subsequent downstream manipulation. Prior to considering therapeutic applications, it is crucial that the cells are surveyed at a genetic and proteomic level during the extensive propagation, expansion and differentiation. Hence, a set of characterization tests to measure stem cell stability and identity--genomic, epigenomic and mitochondrial markers, as well as functional measures of utility, need to be developed. Thus, we outline a plan of standard assays that can be afforded by multiple laboratories to unambiguously test the quality of human embryonic stem cells. In this manuscript, we describe a comprehensive characterization of ReliCell hES1, the only human embryonic stem cell line reported from the Indian subcontinent. Our study employs gene expression analysis using quantitative reverse transcription-polymerase chain reaction and microarray, mitochondrial DNA sequencing, microRNA analysis, immunophenotyping and teratoma formation, in addition to demonstrating its capacity to propagate under feeder-free conditions.
Collapse
Affiliation(s)
- Rajarshi Pal
- Embryonic Stem Cell Group, Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Center, Rabale, Navi Mumbai, India
| | | | | | | | | |
Collapse
|
18
|
Oh SKW, Choo ABH. Human embryonic stem cells: technological challenges towards therapy. Clin Exp Pharmacol Physiol 2007; 33:489-95. [PMID: 16700884 DOI: 10.1111/j.1440-1681.2006.04397.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Human embryonic stem cells (hESC) hold promise for overcoming many diseases because they provide a potential source for many of the slow-growing cell types needed for effective tissue repair, such as the dopaminergic neural cells for Parkinson's disease or the pancreatic islet cells needed to relieve diabetic patients of their daily insulin injections. 2. Human embryonic stem cells can be characterized by several surface antigen markers, transcription factors and enzymes, as well as their ability to differentiate into cells representative of the three germ layers, both in vivo and in vitro. 3. Significant progress has been made in defining the feeder-free and serum-free conditions needed for the culture of hESC. The fibroblast growth factor-2 and transforming growth factor-b signalling pathways appear to be important in maintaining self-renewal and preventing differentiation, respectively. 4. Several important quality controls, including karyotyping, immunogenicity and murine viral assays, will have to be established to monitor the production of hESC for therapeutic purposes. 5. Methods of expansion and differentiation of hESC are still in their infancy and the efficiency of these processes needs to be significantly enhanced.
Collapse
Affiliation(s)
- Steve K W Oh
- Stem Cell Group, Bioprocessing Technology Institute, Singapore.
| | | |
Collapse
|
19
|
Lei T, Jacob S, Ajil-Zaraa I, Dubuisson JB, Irion O, Jaconi M, Feki A. Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res 2007; 17:682-8. [PMID: 17667917 DOI: 10.1038/cr.2007.61] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells (hESC) not only hold great promise for the treatment of degenerative diseases but also provide a valuable tool for developmental studies. However, the clinical applications of hESC are at present limited by xeno-contamination during the in vitro derivation and propagation of these cells. In this review, we summarize the current methodologies for the derivation and the propagation of hESC in conditions that will eventually enable the generation of clinical-grade cells for future therapeutic applications.
Collapse
Affiliation(s)
- Ting Lei
- Laboratory of Stem Cell Research, Department of Obstetrics and Gynecology, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
As early as their derivation, embryonic stem (ES) cells have attracted a great attention to clinicians. Derived from early embryos, these cells remain pluripotent in culture while they can be expanded in principle without limit. They give rise to most progenies and differentiate to all major somatic lineages of potential use in regenerative medicine. The great therapeutic promises put forward almost 10 years ago to cure or relieve degenerative diseases are still up to date. However, cell therapy is a complex process that significantly differs from drug-based medicine. Although a clinical trial has been announced by GERON for next year to cure spinal cord injury, many issues remain to be addressed at the bench before these cells can be used in clinics.
Collapse
Affiliation(s)
- M Pucéat
- INSERM/Evry University UMR861, Evry, France.
| | | |
Collapse
|
21
|
Hosseinkhani M, Hosseinkhani H, Khademhosseini A, Bolland F, Kobayashi H, Gonzalez SP. Bone morphogenetic protein-4 enhances cardiomyocyte differentiation of cynomolgus monkey ESCs in knockout serum replacement medium. Stem Cells 2006; 25:571-80. [PMID: 17138962 DOI: 10.1634/stemcells.2006-0225] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite extensive research in the differentiation of rodent ESCs into cardiomyocytes, there have been few studies of this process in primates. In this study, we examined the role of bone morphogenic protein-4 (BMP-4) to induce cardiomyocyte differentiation of cynomolgus monkey ESCs. To study the role of BMP-4, EBs were formed and cultured in Knockout Serum Replacement (KSR) medium containing BMP-4 for 8 days and subsequently seeded in gelatin-coated dishes for 20 days. It was found that ESCs differentiated into cardiomyocytes upon stimulation with BMP-4 in KSR medium, which resulted in a large fraction of beating EBs ( approximately 16%) and the upregulation of cardiac-specific proteins in a dose and time-dependent manner. In contrast, the addition of BMP-4 in FBS-containing medium resulted in a lower fraction of beating EBs ( approximately 6%). BMP-4 acted principally between mesendodermal and mesoderm progenitors and subsequently enhanced their expression. Ultrastructural observation revealed that beating EBs contained mature cardiomyocytes with sarcomeric structures. In addition, immunostaining, reverse transcription-polymerase chain reaction, and Western blotting for cardiac markers confirmed the increased differentiation of cardiomyocytes in these cultures. Moreover, electrophysiological studies demonstrated that the differentiated cardiomyocytes were electrically activated. These findings may be useful in developing effective culture conditions to differentiate cynomolgus monkey ESCs into cardiomyocytes for studying developmental biology and for regenerative medicine.
Collapse
Affiliation(s)
- Mohsen Hosseinkhani
- International Center for Young Scientists, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Stacey GN, Cobo F, Nieto A, Talavera P, Healy L, Concha A. The development of ‘feeder’ cells for the preparation of clinical grade hES cell lines: Challenges and solutions. J Biotechnol 2006; 125:583-8. [PMID: 16690155 DOI: 10.1016/j.jbiotec.2006.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 02/05/2006] [Accepted: 03/03/2006] [Indexed: 12/20/2022]
Abstract
The development of human embryonic stem cell (hESC) lines for research and therapy is hampered by the need to improve the basic methodologies for cell culture expansion. In most current methods hESC lines are cultured on a mouse or human feeder cell layer which appears to be the most reliable way to maintain cells stably in the undifferentiated state. However, co-culture introduces complications for studying stem cell biology and the delivery of safe therapies for the future. This article reviews the specific risks associated with any proposed clinical use of feeder cells of mouse origin and compares these with the benefits and risks of using human feeder cells. The further work required to establish clinical grade feeder cell lines for hESC line culture is significant and costly. Much work is being done to find feeder-free culture systems but these are at an early stage of development and there may be consequences that affect the value of the hESCs for research and development. These challenges should be viewed in the context of the huge amount of work that will be required over many years to develop robust differentiation protocols and establish fully defined procedures and adequate safety data for embryonic stem cell products.
Collapse
Affiliation(s)
- Glyn N Stacey
- Division of Cell Biology and Imaging and UK Stem Cell Bank, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
23
|
Koch P, Siemen H, Biegler A, Itskovitz-Eldor J, Brüstle O. Transduction of human embryonic stem cells by ecotropic retroviral vectors. Nucleic Acids Res 2006; 34:e120. [PMID: 16998181 PMCID: PMC1636442 DOI: 10.1093/nar/gkl674] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The steadily increasing availability of human embryonic stem (hES) cell lines has created strong interest in applying available tools for gene transfer in murine cells to human systems. Here we present a method for the transduction of hES cells with ecotropic retroviral vectors. hES cells were transiently transfected with a construct carrying the murine retrovirus receptor mCAT1. Subsequently, the cells were exposed to replication-deficient Moloney murine leukemia virus (MoMuLV) derivatives or pseudotyped lentiviral vectors. With oncoretroviral vectors, this procedure yields overall transduction efficiencies of up to 20% and permits selection of permanently transduced clones with high frequency. Selected clones maintained expression of pluripotency-associated markers and exhibited multi-germ layer differentiation both in vitro and in vivo. HES cell-derived somatic cells including neural progeny maintained high levels of transgene expression. Lentiviral vectors pseudotyped with the MoMuLV envelope could be introduced in the same manner with efficiencies of up to 33%. Transgene expression of lentivirally transduced hES cells remained permanent after differentiation even without selection pressure. Bypassing the regulatory issues associated with the use of amphotropic retroviral systems and exploiting the large pool of existing murine vectors, this method provides a safe and versatile tool for gene transfer and lineage analysis in hES cells and their progeny.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Brüstle
- To whom correspondence should be addressed at Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn, Germany. Tel: +49 228 6885 500; Fax: +49 228 6885 501;
| |
Collapse
|
24
|
Oh SKW, Choo ABH. Human embryonic stem cell technology: large scale cell amplification and differentiation. Cytotechnology 2006; 50:181-90. [PMID: 19003078 PMCID: PMC2798940 DOI: 10.1007/s10616-005-3862-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 10/07/2005] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells (ESC) hold the promise of overcoming many diseases as potential sources of, for example, dopaminergic neural cells for Parkinson’s Disease to pancreatic islets to relieve diabetic patients of their daily insulin injections. While an embryo has the innate capacity to develop fully functional differentiated tissues; biologists are finding that it is much more complex to derive singular, pure populations of primary cells from the highly versatile ESC from this embryonic parent. Thus, a substantial investment in developing the technologies to expand and differentiate these cells is required in the next decade to move this promise into reality. In this review we document the current standard assays for characterising human ESC (hESC), the status of ‘defined’ feeder-free culture conditions for undifferentiated hESC growth, examine the quality controls that will be required to be established for monitoring their growth, review current methods for expansion and differentiation, and speculate on the possible routes of scaling up the differentiation of hESC to therapeutic quantities.
Collapse
Affiliation(s)
- Steve K W Oh
- Stem Cell Group, Bioprocessing Technology Institute, 20 Biopolis Way, #06 - 01 Centros, 138668, Singapore, Singapore,
| | | |
Collapse
|
25
|
Gruen L, Grabel L. Concise review: scientific and ethical roadblocks to human embryonic stem cell therapy. Stem Cells 2006; 24:2162-9. [PMID: 16794263 DOI: 10.1634/stemcells.2006-0105] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite the identified therapeutic potential of embryonic stem cells for treating human disease and injury, a number of roadblocks, scientific and ethical, stand in the way of progress toward this goal. We identify six areas of particular interest: tumorigenicity, animal product contamination, genetic compatibility, funding, cell type for transplantation, "embryo-friendly" derivation methods and discuss avenues for moving beyond the difficulties.
Collapse
Affiliation(s)
- Lori Gruen
- Department of Philosophy, Wesleyan University, Middletown, Connecticut 06459-0170, USA
| | | |
Collapse
|
26
|
Abstract
Human embryonic stem cells originate from the human preimplantation embryo. The derivation of the first human embryonic stem cells was reported in 1998. Since then we have learnt a great deal about how to isolate and culture these cells. Additionally, their stem cell phenotype and differentiation competence have been determined. Although it is expected that many basic biological properties, such as self-renewal and cell specification, are evolutionary conserved, at least from the mouse, we lack significant knowledge about the molecular events that regulate the unique stem cell features of human embryonic stem cells. The pluripotent nature of human embryonic stem cells has attracted great interest in using them as a source of cells and tissues in cell therapy. Recent progress in human somatic cell nuclear transfer suggests that there may be a solution to the immunotolerance problems associated with the use of human embryonic stem cells in cell-replacement therapy. Thus, human embryonic stem cells supply the research community with unique research tools to study basic biological processes in human cells, model human genetic diseases and develop new cell-replacement therapies.
Collapse
Affiliation(s)
- Henrik Semb
- Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
27
|
Schwanke K, Wunderlich S, Reppel M, Winkler ME, Matzkies M, Groos S, Itskovitz-Eldor J, Simon AR, Hescheler J, Haverich A, Martin U. Generation and Characterization of Functional Cardiomyocytes from Rhesus Monkey Embryonic Stem Cells. Stem Cells 2006; 24:1423-32. [PMID: 16543489 DOI: 10.1634/stemcells.2005-0380] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ESCs) from mice and humans (hESCs) have been shown to be able to efficiently differentiate toward cardiomyocytes (CMs). Because murine ESCs and hESCs do not allow for establishment of pre-clinical allogeneic transplantation models, the aim of our study was to generate functional CMs from rhesus monkey ESCs (rESCs). Although formation of ectodermal and neuronal/glial cells appears to be the default pathway of the rESC line R366.4, we were able to change this commitment and to direct generation of endodermal/mesodermal cells and further differentiation toward CMs. Differentiation of rESCs resulted in an average of 18% of spontaneously contracting embryoid bodies (EBs) from rESCs. Semiquantitative reverse transcription-polymerase chain reaction analyses demonstrated expression of marker genes typical for endoderm, mesoderm, cardiac mesoderm, and CMs, including brachyury, goosecoid, Tbx-5, Tbx-20, Mesp1, Nkx2.5, GATA-4, FOG-2, Mlc2a, MLC2v, ANF, and alpha-MHC in rESC-derived CMs. Immunohistological and ultrastructural studies showed expression of CM-typical proteins, including sarcomeric actinin, troponin T, titin, connexin 43, and cross-striated muscle fibrils. Electrophysiological studies by means of multielectrode arrays revealed evidence of functionality, electrical coupling, and beta-adrenergic signaling of the generated CMs. This is the first study demonstrating generation of functional CMs derived from rESCs. In contrast to hESCs, rESCs allow for establishment of pre-clinical allogeneic transplantation models. Moreover, rESC-derived CMs represent a cell source for the development of high-throughput assays for cardiac safety pharmacology.
Collapse
Affiliation(s)
- Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mallon BS, Park KY, Chen KG, Hamilton RS, McKay RD. Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol 2006; 38:1063-75. [PMID: 16469522 PMCID: PMC3449300 DOI: 10.1016/j.biocel.2005.12.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/15/2005] [Accepted: 12/17/2005] [Indexed: 10/25/2022]
Abstract
The culture of human embryonic stem cells (hESCs) is limited, both technically and with respect to clinical potential, by the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. The concern over xenogeneic contaminants from the mouse feeder cells may restrict transplantation to humans and the variability in MEFs from batch-to-batch and laboratory-to-laboratory may contribute to some of the variability in experimental results. Finally, use of any feeder layer increases the work load and subsequently limits the large-scale culture of human ES cells. Thus, the development of feeder-free cultures will allow more reproducible culture conditions, facilitate scale-up and potentiate the clinical use of cells differentiated from hESC cultures. In this review, we describe various methods tested to culture cells in the absence of MEF feeder layers and other advances in eliminating xenogeneic products from the culture system.
Collapse
|
29
|
Rodríguez CI, Galán A, Valbuena D, Simón C. Derivation of clinical-grade human embryonic stem cells. Reprod Biomed Online 2006; 12:112-8. [PMID: 16454945 DOI: 10.1016/s1472-6483(10)60989-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Embryonic stem cells proliferate in vitro while maintaining an undifferentiated state, and are capable of differentiating into most cell types under appropriate conditions. These properties imply great potential in the treatment of various diseases and disabilities. In fact, the first clinical trials with hESC for treating spinal cord injuries will begin next year. However, therapeutic application of human embryonic stem cell derivatives is compromised by the exposure of existing lines to animal and human components, with the subsequent risk of contamination with retroviruses and other pathogens, which can be transmitted to patients. The scientific community is striving to avoid the use of xenogeneic or allogeneic components in the process of derivation new hESC lines. This review summarizes attempts that have been made to avoid these contaminants and the breakthroughs achieved in the derivation of clinical-grade hESC that could be used for therapeutic purposes.
Collapse
Affiliation(s)
- Clara I Rodríguez
- Stem Cell Bank, Prince Felipe Research Centre (CIPF), Valencia, Spain
| | | | | | | |
Collapse
|