1
|
Verma M, Fatima S, Syed A, Elgorban AM, Abid I, Wong LS, Khan MS, Ansari IA. 3-Acetyl-11-keto-β-boswellic acid (AKBA) induced antiproliferative effect by suppressing Notch signaling pathway and synergistic interaction with cisplatin against prostate cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03899-1. [PMID: 39985578 DOI: 10.1007/s00210-025-03899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Studies on the assessment of anticancer efficacy of plant-derived phytochemicals by targeting signaling pathways have drawn a lot of attention recently for human health. Multiple investigations have proposed an involvement of Notch pathway in the processes of cancer angiogenesis and metastasis, and drug resistance. Moreover, overexpression of Notch signaling is associated with increased prostate cancer (PrCa) cell growth and development. A number of chemotherapeutic agents are reported to become resistant over a period of time and have severe side effects. To increase efficacy and lessen drug-induced toxicity, a variety of bioactive compounds have been utilized alone or as adjuncts to traditional chemotherapy. Therefore, in the present study, the potential of AKBA in inhibiting the proliferation of PrCa cells by modulating Notch signaling components and its efficacy in combination with cisplatin was investigated. The results exhibited a substantial reduction in cell survival (IC50 = 25.28 µM at 24 h and 16.50 µM at 48 h) and cellular alterations in AKBA-treated PrCa cells. Additionally, AKBA caused nuclear condensation, increased reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, and caspase activation, ultimately leading to apoptosis in PrCa cells. Moreover, AKBA-elicited apoptosis was evidenced by an augmentation in the Bax to Bcl2 ratio. AKBA was also found to induce G0/G1 arrest which was substantiated by reduced cyclin D1 and CDK4 expression levels concomitantly with increased expression of p21 and p27 genes. Intriguingly, AKBA demonstrated significant downregulation of Notch signaling mediators. Furthermore, the isobolograms of the combination treatment indicated that AKBA has the potential to synergistically enhance the cytotoxic efficacy of cisplatin in DU145 cells, as evidenced by CI < 1 across all tested combinations. Overall, the results of this study suggest strong antiproliferative, apoptotic, and chemo-sensitizing potential of AKBA. Thus, AKBA holds a promising drug candidature warranting further investigation as a probable therapeutic option for both the prevention and treatment of PrCa and other solid tumors.
Collapse
Affiliation(s)
- Mahima Verma
- Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, 226026, India
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Shireen Fatima
- Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, 226026, India
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Centre of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia
| | - Islem Abid
- Centre of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Mohd Sajid Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Irfan Ahmad Ansari
- Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, 226026, India.
- Department of Biosciences, Integral University, Lucknow, 226026, India.
| |
Collapse
|
2
|
Li Z, Lin Y, Zou Y, Liang Y, Zeng L, Wang Y, Li Y, Zong Y, Zhang Y, Zheng Y, Cui Y, Huang L, Chen Z, Pan X, Zhu L. Zuogui pills ameliorate chemotherapy-induced ovarian aging by improving stemness, regulating cell cycle and reducing apoptosis of oogonial stem cells via the Notch1/Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119105. [PMID: 39580130 DOI: 10.1016/j.jep.2024.119105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuogui Pills (ZGP) is a classic traditional Chinese herbal formula originating from the Ming Dynasty. It has been widely used in the treatment of kidney deficiency-related diseases, including ovarian aging. AIM OF THE STUDY To investigate the effects and potential mechanisms of ZGP on ovarian aging induced by the chemotherapeutic agent cyclophosphamide (CTX), as well as its impact on the therapeutic target, oogonial stem cells (OSCs), involving the Notch1/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. MATERIALS AND METHODS This study utilized High-Performance Liquid Chromatography (HPLC) to analyze the active components of Zuogui Pills (ZGP). In vivo experiments involved the establishment of an ovarian aging model in female rats through intraperitoneal injection of CTX, followed by an 8-week treatment with ZGP and dehydroepiandrosterone (DHEA). The Notch pathway inhibitor DAPT was administered via intraperitoneal injection, followed by ZGP intervention to validate its therapeutic effects. Transcriptomic sequencing was used to analyze the differential genes before and after ZGP treatment of CTX-induced ovarian aging, and KEGG and GO analyses were applied to assess the changes in relevant signaling pathways and biological processes. In vitro experiments included the extraction, separation, and purification of ovarian germ stem cells, followed by transfection with a Notch1 overexpression plasmid. The CTX active component 4-Hydroxycyclophosphamide (4HC) was used for model intervention, and ZGP, DHEA-containing serum, and DAPT were applied to intervene with the oogonial stem cells. The effects of CTX modeling, the therapeutic efficacy of ZGP, and the general condition of the rats were observed. H&E staining was employed to assess ovarian morphology and follicle counting at various stages. Serum hormone levels were measured using ELISA, while qPCR, Western blot, flow cytometry, immunofluorescence, and IHC were utilized to analyze the expression of the Notch1/Nrf2 pathway, cell cycle proteins, and stemness-related indicators. Flow cytometry, TUNEL fluorescence, and CCK8 assays were conducted to evaluate changes in cell cycle composition, apoptosis, and proliferation. Finally, ChIP-qPCR was employed to validate the transcriptional regulation of the target gene NFE2L2 by Notch1. RESULTS ZGP improved serum sex hormones in ovarian aging rats, enhanced ovarian index, and optimized ovarian and uterine morphology, as well as follicle quantity composition. After transcriptome sequencing, KEGG analysis enriched the Notch signaling pathway and cell cycle, while GO analysis highlighted enrichment in the Notch pathway and stem cell population maintenance. Various experiments validated that ZGP significantly improved the expression of cell cycle-related proteins Cyclin D1 (CCND1), Cyclin E1 (CCNE1), cyclin-dependent kinase inhibitor 1a (CDKN1A), stemness markers Mouse Vasa Homolog (MVH), Octamer-binding Transcription Factor 4 (Oct4), Fragilis, 5-Bromo-2'-deoxyuridine (BrdU), as well as Notch1 and Nrf2 in aging ovarian tissues and OSCs. Additionally, ZGP promoted the proliferation of 4HC-damaged OSCs, optimized OSCs cell cycle composition, reduced G0/G1 phase arrest, and decreased early and late apoptosis. ZGP could reverse the detrimental effects on stemness and cell cycle of OSCs caused by blocking the Notch pathway. Furthermore, ZGP may activate the regulation of its target gene NFE2L2 by upregulating Notch1 expression in OSCs, thereby exerting therapeutic effects. CONCLUSION ZGP protects ovarian function in CTX-induced ovarian aging rats by regulating the Notch1/Nrf2 pathway. It restores serum sex hormone levels, maintains normal follicle development, promotes the proliferation of aged OSCs, optimizes the cell cycle, reduces apoptosis, and preserves stemness, thereby alleviating ovarian aging.
Collapse
Affiliation(s)
- Zuang Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuewei Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuxin Zou
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yunyi Liang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lihua Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yixuan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yucheng Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yun Zong
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yunling Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yixuan Cui
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Liuqian Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zhuoting Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xinyi Pan
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Speicher C, Bergmann M, Brehm K. Echinococcus multilocularis delta/notch signalling components are expressed in post-mitotic cells. Parasitol Res 2024; 123:418. [PMID: 39714630 DOI: 10.1007/s00436-024-08442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Pluripotent somatic stem cells are the drivers of unlimited growth of Echinococcus multilocularis metacestode tissue within the organs of the intermediate host. To understand the dynamics of parasite proliferation within the host, it is therefore important to delineate basic mechanisms of Echinococcus stem cell maintenance and differentiation. We herein undertake the first step towards characterizing the role of an evolutionarily old metazoan cell-cell communication system, delta/notch signalling, in Echinococcus cell fate decisions. Bioinformatic analyses revealed that all central components of this pathway are encoded by the Echinococcus genome and are expressed in parasite larval stages. By in situ hybridisation, we analyzed the expression patterns of clearly identified delta-like ligands, delta1 and delta2, as well as two notch receptors, notch1 and notch2, in metacestode tissue. Except for delta1, which is not expressed in the metacestode, all other components are expressed in distinct cells throughout the parasite's germinal layer. Combined in situ hybridisation and EdU incorporation experiments together with pulse-chase assays further indicate that delta2, notch1, and notch2 are exclusively expressed in post-mitotic cells. Echinococcus asymmetric stem cell division, leading to the progeny of different fates, therefore most probably not involves delta/notch signalling components. Our analyses are relevant for understanding the interplay of fate-determining signalling pathways in Echinococcus cell differentiation and form a basis for further experiments into the role of delta/notch signalling in parasite development.
Collapse
Affiliation(s)
- Chris Speicher
- Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Monika Bergmann
- Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany
| | - Klaus Brehm
- Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany.
| |
Collapse
|
4
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
5
|
Guo S, Zheng S, Liu M, Wang G. Novel Anti-Cancer Stem Cell Compounds: A Comprehensive Review. Pharmaceutics 2024; 16:1024. [PMID: 39204369 PMCID: PMC11360402 DOI: 10.3390/pharmaceutics16081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/β-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Shilong Zheng
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Mingli Liu
- Department of Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
6
|
Sachan N, Sharma V, Mutsuddi M, Mukherjee A. Notch signalling: multifaceted role in development and disease. FEBS J 2024; 291:3030-3059. [PMID: 37166442 DOI: 10.1111/febs.16815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. Notch signalling plays important roles in many developmental processes, making it difficult to name a tissue or a developing organ that does not depend on Notch function at one stage or another. Thus, dysregulation of Notch signalling is associated with many developmental defects and various pathological conditions, including cancer. Although many recent advances have been made to reveal different aspects of the Notch signalling mechanism and its intricate regulation, there are still many unanswered questions related to how the Notch signalling pathway functions in so many developmental events. The same pathway can be deployed in numerous cellular contexts to play varied and critical roles in an organism's development and this is only possible because of the complex regulatory mechanisms of the pathway. In this review, we provide an overview of the mechanism and regulation of the Notch signalling pathway along with its multifaceted functions in different aspects of development and disease.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Liu W, Zou M, Chen M, Zhang Z, Mao Y, Yang Y, Liu Y, Shi Q, Wang X, Zhang F. Hypoxic environment promotes angiogenesis and bone bridge formation by activating Notch/RBPJ signaling pathway in HUVECs. Genomics 2024; 116:110838. [PMID: 38537807 DOI: 10.1016/j.ygeno.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 03/24/2024] [Indexed: 05/27/2024]
Abstract
After epiphyseal fracture, the epiphyseal plate is prone to ischemia and hypoxia, leading to the formation of bone bridge and deformity. However, the exact mechanism controlling the bone bridge formation remains unclear. Notch/RBPJ signaling axis has been indicated to regulate angiogenesis and osteogenic differentiation. Our study aims to investigate the mechanism of bone bridge formation after epiphyseal plate injury, and to provide a theoretical basis for new therapeutic approaches to prevent the bone bridge formation. The expression of DLL4 and RBPJ was significantly up-regulated in HUVECs after ischemia and hypoxia treatment. Notch/RBPJ pathway positively regulated the osteogenic differentiation of BMSCs. HUVECs can induce osteogenic differentiation of BMSCs under ischemia and hypoxia. Notch/RBPJ pathway is involved in the regulation of the trans-epiphyseal bridge formation. Notch/RBPJ in HUVECs is associated with osteogenic differentiation of BMSCs and may participate in the regulation of the bone bridge formation across the epiphyseal plate.
Collapse
Affiliation(s)
- Wendong Liu
- Department of Orthopaedics, Children's Hospital of Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China; Clinical Pediatrics School, Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China
| | - Mincheng Zou
- Department of Orthopaedics, Children's Hospital of Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China; Clinical Pediatrics School, Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China
| | - Mimi Chen
- Department of Orthopaedics, Children's Hospital of Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China
| | - Zheng Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China
| | - Yunpeng Mao
- Department of Orthopaedics, Children's Hospital of Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China
| | - Yuhao Yang
- Department of Orthopaedics, Children's Hospital of Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China
| | - Ya Liu
- Department of Orthopaedics, Children's Hospital of Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China
| | - Qin Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St., Suzhou 215006, Jiangsu, China
| | - Xiaodong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China; Clinical Pediatrics School, Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China
| | - Fuyong Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, 92 Zhongnan St., Suzhou 215000, Jiangsu Province, China.
| |
Collapse
|
8
|
Ajmeera D, Ajumeera R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes Dis 2024; 11:148-175. [PMID: 37588226 PMCID: PMC10425757 DOI: 10.1016/j.gendis.2022.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy is an effortless and frequently used approach in cancer therapy. However, in most cases, it can only prolong life expectancy and does not guarantee a complete cure. Furthermore, chemotherapy is associated with severe adverse effects, one of the major complications of effective cancer therapy. In addition, newly published research outputs show that cancer stem cells are involved in cancer disease progression, drug resistance, metastasis, and recurrence and that they are functional in the trans-differentiation capacity of cancer stem cells to cancer cells in response to treatments. Novel strategies are therefore required for better management of cancer therapy. The prime approach would be to synthesize and develop novel drugs that need extensive resources, time, and endurance to be brought into therapeutic use. The subsequent approach would be to screen the anti-cancer activity of available non-cancerous drugs. This concept of repurposing non-cancer drugs as an alternative to current cancer therapy has become popular in recent years because using existing anticancer drugs has several adverse effects. Micronutrients have also been investigated for cancer therapy due to their significant anti-cancer effects with negligible or no side effects and availability in food sources. In this paper, we discuss an ideal hypothesis for screening available non-cancerous drugs with anticancer activity, with a focus on cancer stem cells and their clinical application for cancer treatment. Further, drug repurposing and the combination of micronutrients that can target both cancers and cancer stem cells may result in a better therapeutic approach leading to maximum tumor growth control.
Collapse
Affiliation(s)
- Divya Ajmeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| | - Rajanna Ajumeera
- Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India
| |
Collapse
|
9
|
Ayoub MD, Bakhsh AA, Vandriel SM, Keitel V, Kamath BM. Management of adults with Alagille syndrome. Hepatol Int 2023; 17:1098-1112. [PMID: 37584849 PMCID: PMC10522532 DOI: 10.1007/s12072-023-10578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023]
Abstract
Alagille syndrome (ALGS) is a complex rare genetic disorder that involves multiple organ systems and is historically regarded as a disease of childhood. Since it is inherited in an autosomal dominant manner in 40% of patients, it carries many implications for genetic counselling of patients and screening of family members. In addition, the considerable variable expression and absence of a clear genotype-phenotype correlation, results in a diverse range of clinical manifestations, even in affected individuals within the same family. With recent therapeutic advancements in cholestasis treatment and the improved survival rates with liver transplantation (LT), many patients with ALGS survive into adulthood. Although LT is curative for liver disease secondary to ALGS, complications secondary to extrahepatic involvement remain problematic lifelong. This review is aimed at providing a comprehensive review of ALGS to adult clinicians who will take over the medical care of these patients following transition, with particular focus on certain aspects of the condition that require lifelong surveillance. We also provide a diagnostic framework for adult patients with suspected ALGS and highlight key aspects to consider when determining eligibility for LT in patients with this syndrome.
Collapse
Affiliation(s)
- Mohammed D Ayoub
- Department of Pediatrics, Faculty of Medicine, Rabigh Branch, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Ahmad A Bakhsh
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Pediatrics, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Shannon M Vandriel
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
10
|
Feng D, Wang J, Shi X, Li D, Wei W, Han P. Membrane tension-mediated stiff and soft tumor subtypes closely associated with prognosis for prostate cancer patients. Eur J Med Res 2023; 28:172. [PMID: 37179366 PMCID: PMC10182623 DOI: 10.1186/s40001-023-01132-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is usually considered as cold tumor. Malignancy is associated with cell mechanic changes that contribute to extensive cell deformation required for metastatic dissemination. Thus, we established stiff and soft tumor subtypes for PCa patients from perspective of membrane tension. METHODS Nonnegative matrix factorization algorithm was used to identify molecular subtypes. We completed analyses using software R 3.6.3 and its suitable packages. RESULTS We constructed stiff and soft tumor subtypes using eight membrane tension-related genes through lasso regression and nonnegative matrix factorization analyses. We found that patients in stiff subtype were more prone to biochemical recurrence than those in soft subtype (HR 16.18; p < 0.001), which was externally validated in other three cohorts. The top ten mutation genes between stiff and soft subtypes were DNAH, NYNRIN, PTCHD4, WNK1, ARFGEF1, HRAS, ARHGEF2, MYOM1, ITGB6 and CPS1. E2F targets, base excision repair and notch signaling pathway were highly enriched in stiff subtype. Stiff subtype had significantly higher TMB and T cells follicular helper levels than soft subtype, as well as CTLA4, CD276, CD47 and TNFRSF25. CONCLUSIONS From the perspective of cell membrane tension, we found that stiff and soft tumor subtypes were closely associated with BCR-free survival for PCa patients, which might be important for the future research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
11
|
Xu K, Zhang L, Yu N, Ren Z, Wang T, Zhang Y, Zhao X, Yu T. Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: a systematic review. Stem Cell Res Ther 2023; 14:74. [PMID: 37038234 PMCID: PMC10088298 DOI: 10.1186/s13287-023-03324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The formation and accumulation of advanced glycation end products (AGEs) have been associated with aging and the development, or worsening, of many degenerative diseases, such as atherosclerosis, chronic kidney disease, and diabetes. AGEs can accumulate in a variety of cells and tissues, and organs in the body, which in turn induces oxidative stress and inflammatory responses and adversely affects human health. In addition, under abnormal pathological conditions, AGEs create conditions that are not conducive to stem cell differentiation. Moreover, an accumulation of AGEs can affect the differentiation of stem cells. This, in turn, leads to impaired tissue repair and further aggravation of diabetic complications. Therefore, this systematic review clearly outlines the effects of AGEs on cell differentiation of various types of primary isolated stem cells and summarizes the possible regulatory mechanisms and interventions. Our study is expected to reveal the mechanism of tissue damage caused by the diabetic microenvironment from a cellular and molecular point of view and provide new ideas for treating complications caused by diabetes.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liang Zhang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Ning Yu
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingze Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xia Zhao
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
12
|
Nahas GR, Sherman LS, Sinha G, El Far MH, Petryna A, Munoz SM, Silverio KA, Shaker M, Neopane P, Mariotti V, Rameshwar P. Increased expression of musashi 1 on breast cancer cells has implication to understand dormancy and survival in bone marrow. Aging (Albany NY) 2023; 15:3230-3248. [PMID: 36996499 PMCID: PMC10449290 DOI: 10.18632/aging.204620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Breast cancer (BC) stem cells (CSCs) resist treatment and can exist as dormant cells in tissues such as the bone marrow (BM). Years before clinical diagnosis, BC cells (BCCs) could migrate from the primary site where the BM niche cells facilitate dedifferentiation into CSCs. Additionally, dedifferentiation could occur by cell autonomous methods. Here we studied the role of Msi 1, a RNA-binding protein, Musashi I (Msi 1). We also analyzed its relationship with the T-cell inhibitory molecule programmed death-ligand 1 (PD-L1) in CSCs. PD-L1 is an immune checkpoint that is a target in immune therapy for cancers. Msi 1 can support BCC growth through stabilization of oncogenic transcripts and modulation of stem cell-related gene expression. We reported on a role for Msi 1 to maintain CSCs. This seemed to occur by the differentiation of CSCs to more matured BCCs. This correlated with increased transition from cycling quiescence and reduced expression of stem cell-linked genes. CSCs co-expressed Msi 1 and PD-L1. Msi 1 knockdown led to a significant decrease in CSCs with undetectable PD-L1. This study has implications for Msi 1 as a therapeutic target, in combination with immune checkpoint inhibitor. Such treatment could also prevent dedifferentiation of breast cancer to CSCs, and to reverse tumor dormancy. The proposed combined treatment might be appropriate for other solid tumors.
Collapse
Affiliation(s)
- George R. Nahas
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lauren S. Sherman
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ 07103, USA
| | - Garima Sinha
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ 07103, USA
| | - Markos H. El Far
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Andrew Petryna
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ 07103, USA
| | - Steven M. Munoz
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kimberly A. Silverio
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ 07103, USA
| | - Maran Shaker
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ 07103, USA
| | - Pujan Neopane
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Veronica Mariotti
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
13
|
Liu K, Ge H, Liu C, Jiang Y, Yu Y, Zhou Z. Notch-RBPJ Pathway for the Differentiation of Bone Marrow Mesenchymal Stem Cells in Femoral Head Necrosis. Int J Mol Sci 2023; 24:ijms24076295. [PMID: 37047268 PMCID: PMC10094204 DOI: 10.3390/ijms24076295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Femoral head necrosis (FHN) is a common leg disease in broilers, resulting in economic losses in the poultry industry. The occurrence of FHN is closely related to the decrease in the number of bone marrow mesenchymal stem cells (BMSCs) and the change in differentiation direction. This study aimed to investigate the function of differentiation of BMSCs in the development of FHN. We isolated and cultured BMSCs from spontaneous FHN-affected broilers and normal broilers, assessed the ability of BMSCs into three lineages by multiple staining methods, and found that BMSCs isolated from FHN-affected broilers demonstrated enhanced lipogenic differentiation, activated Notch-RBPJ signaling pathway, and diminished osteogenic and chondrogenic differentiation. The treatment of BMSCs with methylprednisolone (MP) revealed a significant decrease in the expressions of Runx2, BMP2, Col2a1 and Aggrecan, while the expressions of p-Notch1/Notch1, Notch2 and RBPJ were increased significantly. Jagged-1 (JAG-1, Notch activator)/DAPT (γ-secretase inhibitor) could promote/inhibit the osteogenic or chondrogenic ability of MP-treated BMSCs, respectively, whereas the differentiation ability of BMSCs was restored after transfection with si-RBPJ. The above results suggest that the Notch-RBPJ pathway plays important role in FHN progression by modulating the osteogenic and chondrogenic differentiation of BMSCs.
Collapse
|
14
|
Molecular Mechanisms Involved in the Regulation of Neurodevelopment by miR-124. Mol Neurobiol 2023; 60:3569-3583. [PMID: 36840845 DOI: 10.1007/s12035-023-03271-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
miR-124 is a miRNA predominantly expressed in the nervous system and accounts for more than a quarter of the total miRNAs in the brain. It regulates neurogenesis, neuronal differentiation, neuronal maturation, and synapse formation and is the most important miRNA in the brain. Furthermore, emerging evidence has suggested miR-124 may be associated with the pathogenesis of various neurodevelopmental and neuropsychiatric disorders. Here, we provide an overview of the role of miR-124 in neurodevelopment and the underling mechanisms, and finally, we prospect the significance of miR-124 research to the field of neuroscience.
Collapse
|
15
|
Albayrak E, Kocabaş F. Therapeutic targeting and HSC proliferation by small molecules and biologicals. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:425-496. [PMID: 37061339 DOI: 10.1016/bs.apcsb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hematopoietic stem cells (HSCs) have considerably therapeutic value on autologous and allogeneic transplantation for many malignant/non-malignant hematological diseases, especially with improvement of gene therapy. However, acquirement of limited cell dose from HSC sources is the main handicap for successful transplantation. Therefore, many strategies based on the utilization of various cytokines, interaction of stromal cells, modulation of several extrinsic and intrinsic factors have been developed to promote ex vivo functional HSC expansion with high reconstitution ability until today. Besides all these strategies, small molecules become prominent with their ease of use and various advantages when they are translated to the clinic. In the last two decades, several small molecule compounds have been investigated in pre-clinical studies and, some of them were evaluated in different stages of clinical trials for their safety and efficiencies. In this chapter, we will present an overview of HSC biology, function, regulation and also, pharmacological HSC modulation with small molecules from pre-clinical and clinical perspectives.
Collapse
|
16
|
Li X, Fei F, Yao G, Yang X, Geng L, Wang D, Gao Y, Hou Y, Sun L. Notch1 signalling controls the differentiation and function of myeloid-derived suppressor cells in systemic lupus erythematosus. Immunology 2023; 168:170-183. [PMID: 36038992 DOI: 10.1111/imm.13570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/25/2022] [Indexed: 12/27/2022] Open
Abstract
Emerging studies have reported the expansion of myeloid-derived suppressor cells (MDSCs) in some autoimmune disorders, such as systemic lupus erythematosus (SLE), but the detailed molecular mechanisms of the aberrant expansion in SLE are still unclear. In the present study, we confirmed that the increased MDSCs positively correlated with disease activity in SLE patients. The suppressive capacity of MDSCs from patients with high activity was lower than that of MDSCs from patients with low activity. Moreover, the potential precursors for MDSCs, common myeloid progenitors (CMPs) and granulocyte-monocyte progenitors (GMPs), were markedly increased in the bone marrow (BM) aspirates of SLE patients. As an important regulator of cell fate decisions, aberrant activation of Notch signalling was reported to participate in the pathogenesis of SLE. We found that the expression of Notch1 and its downstream target gene hairy and enhancer of split 1 (Hes-1) increased markedly in GMPs from SLE patients. Moreover, the Notch1 signalling inhibitor DAPT profoundly relieved disease progression and decreased the proportion of MDSCs in pristane-induced lupus mice. The frequency of GMPs was also decreased significantly in lupus mice after DAPT treatment. Furthermore, the inhibition of Notch1 signalling could limit the differentiation of MDSCs in vitro. The therapeutic effect of DAPT was also verified in Toll-like receptor 7 (TLR7) agonist-induced lupus mice. Taken together, our results demonstrated that Notch1 signalling played a crucial role in MDSC differentiation in SLE. These findings will provide a promising therapy for the treatment of SLE.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Fei Fei
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xixi Yang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yingying Gao
- Department of Rheumatology and Immunology, The First People's Hospital of Nantong, Nantong, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Wilkens AB, Fulton EC, Pont MJ, Cole GO, Leung I, Stull SM, Hart MR, Bernstein ID, Furlan SN, Riddell SR. NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood 2022; 140:2261-2275. [PMID: 35605191 PMCID: PMC9837446 DOI: 10.1182/blood.2021015144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/09/2022] [Indexed: 01/21/2023] Open
Abstract
Adoptive transfer of T cells expressing chimeric antigen receptors (CAR-T) effectively treats refractory hematologic malignancies in a subset of patients but can be limited by poor T-cell expansion and persistence in vivo. Less differentiated T-cell states correlate with the capacity of CAR-T to proliferate and mediate antitumor responses, and interventions that limit tumor-specific T-cell differentiation during ex vivo manufacturing enhance efficacy. NOTCH signaling is involved in fate decisions across diverse cell lineages and in memory CD8+ T cells was reported to upregulate the transcription factor FOXM1, attenuate differentiation, and enhance proliferation and antitumor efficacy in vivo. Here, we used a cell-free culture system to provide an agonistic NOTCH1 signal during naïve CD4+ T-cell activation and CAR-T production and studied the effects on differentiation, transcription factor expression, cytokine production, and responses to tumor. NOTCH1 agonism efficiently induced a stem cell memory phenotype in CAR-T derived from naïve but not memory CD4+ T cells and upregulated expression of AhR and c-MAF, driving heightened production of interleukin-22, interleukin-10, and granzyme B. NOTCH1-agonized CD4+ CAR-T demonstrated enhanced antigen responsiveness and proliferated to strikingly higher frequencies in mice bearing human lymphoma xenografts. NOTCH1-agonized CD4+ CAR-T also provided superior help to cotransferred CD8+ CAR-T, driving improved expansion and curative antitumor responses in vivo at low CAR-T doses. Our data expand the mechanisms by which NOTCH can shape CD4+ T-cell behavior and demonstrate that activating NOTCH1 signaling during genetic modification ex vivo is a potential strategy for enhancing the function of T cells engineered with tumor-targeting receptors.
Collapse
Affiliation(s)
- Alec B. Wilkens
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| | - Elena C. Fulton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Margot J. Pont
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gabriel O. Cole
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Isabel Leung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sylvia M. Stull
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Matthew R. Hart
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Irwin D. Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stanley R. Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| |
Collapse
|
18
|
Sonawala K, Ramalingam S, Sellamuthu I. Influence of Long Non-Coding RNA in the Regulation of Cancer Stem Cell Signaling Pathways. Cells 2022; 11:3492. [PMID: 36359888 PMCID: PMC9656902 DOI: 10.3390/cells11213492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Over the past two decades, cancer stem cells (CSCs) have emerged as an immensely studied and experimental topic, however a wide range of questions concerning the topic still remain unanswered; in particular, the mechanisms underlying the regulation of tumor stem cells and their characteristics. Understanding the cancer stem-cell signaling pathways may pave the way towards a better comprehension of these mechanisms. Signaling pathways such as WNT, STAT, Hedgehog, NOTCH, PI3K/AKT/mTOR, TGF-β, and NF-κB are responsible not only for modulating various features of CSCs but also their microenvironments. Recently, the prominent roles of various non-coding RNAs such as small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs) in developing and enhancing the tumor phenotypes have been unfolded. This review attempts to shed light on understanding the influence of long non- coding RNAs in the modulation of various CSC-signaling pathways and its impact on the CSCs and tumor properties; highlighting the protagonistic and antagonistic roles of lncRNAs.
Collapse
Affiliation(s)
| | | | - Iyappan Sellamuthu
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603202, India
| |
Collapse
|
19
|
Sharma V, Nehra S, Do LH, Ghosh A, Deshpande AJ, Singhal N. Biphasic cell cycle defect causes impaired neurogenesis in down syndrome. Front Genet 2022; 13:1007519. [PMID: 36313423 PMCID: PMC9596798 DOI: 10.3389/fgene.2022.1007519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Impaired neurogenesis in Down syndrome (DS) is characterized by reduced neurons, increased glial cells, and delayed cortical lamination. However, the underlying cause for impaired neurogenesis in DS is not clear. Using both human and mouse iPSCs, we demonstrate that DS impaired neurogenesis is due to biphasic cell cycle dysregulation during the generation of neural progenitors from iPSCs named the “neurogenic stage” of neurogenesis. Upon neural induction, DS cells showed reduced proliferation during the early phase followed by increased proliferation in the late phase of the neurogenic stage compared to control cells. While reduced proliferation in the early phase causes reduced neural progenitor pool, increased proliferation in the late phase leads to delayed post mitotic neuron generation in DS. RNAseq analysis of late-phase DS progenitor cells revealed upregulation of S phase-promoting regulators, Notch, Wnt, Interferon pathways, and REST, and downregulation of several genes of the BAF chromatin remodeling complex. NFIB and POU3F4, neurogenic genes activated by the interaction of PAX6 and the BAF complex, were downregulated in DS cells. ChIPseq analysis of late-phase neural progenitors revealed aberrant PAX6 binding with reduced promoter occupancy in DS cells. Together, these data indicate that impaired neurogenesis in DS is due to biphasic cell cycle dysregulation during the neurogenic stage of neurogenesis.
Collapse
Affiliation(s)
| | | | - Long H. Do
- Department of Neuroscience, University of California, San Diego, San Diego, CA, United States
| | - Anwesha Ghosh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | | | - Nishant Singhal
- National Centre for Cell Science, Pune, India
- *Correspondence: Nishant Singhal,
| |
Collapse
|
20
|
Zhang S, Chan RWS, Ng EHY, Yeung WSB. The role of Notch signaling in endometrial mesenchymal stromal/stem-like cells maintenance. Commun Biol 2022; 5:1064. [PMID: 36207605 PMCID: PMC9547015 DOI: 10.1038/s42003-022-04044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Human endometrium undergoes cycles of regeneration in women of reproductive age. The endometrial mesenchymal stromal/stem cells (eMSC) contribute to this process. Notch signaling is essential for homeostasis of somatic stem cells. However, its role in eMSC remains unclear. We show with gain- and loss-of-function experiments that activation of Notch signaling promotes eMSC maintenance, while inhibition induces opposite effect. The activation of Notch signaling better maintains eMSC in a quiescent state. However, these quiescent eMSC can re-enter the cell cycle depending on the Notch and Wnt activities in the microenvironment, suggesting a crosstalk between the two signaling pathways. We further show that the Notch signaling is involved in endometrial remodeling event in a mouse menstrual-like model. Suppression of Notch signaling reduces the proliferation of Notch1+ label-retaining stromal cells and delays endometrial repair. Our data demonstrate the importance of Notch signaling in regulating the endometrial stem/progenitor cells in vitro and in vivo. Notch signaling promotes the quiescent state of endometrial mesenchymal stromal/stem cells (eMSC), whose re-rentry into the cell cycle is in turn influenced by Notch and Wnt signaling from the microenvironment.
Collapse
Affiliation(s)
- Sisi Zhang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China. .,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China.
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China. .,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
21
|
Song Y, Pan S, Li K, Chen X, Wang ZP, Zhu X. Insight into the role of multiple signaling pathways in regulating cancer stem cells of gynecologic cancers. Semin Cancer Biol 2022; 85:219-233. [PMID: 34098106 DOI: 10.1016/j.semcancer.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Mounting evidence has demonstrated that a myriad of developmental signaling pathways, such as the Wnt, Notch, Hedgehog and Hippo, are frequently deregulated and play a critical role in regulating cancer stem cell (CSC) activity in human cancers, including gynecologic malignancies. In this review article, we describe an overview of various signaling pathways in human cancers. We further discuss the developmental roles how these pathways regulate CSCs from experimental evidences in gynecologic cancers. Moreover, we mention several compounds targeting CSCs in gynecologic cancers to enhance the treatment outcomes. Therefore, these signaling pathways might be the potential targets for developing targeted therapy in gynecologic cancers.
Collapse
Affiliation(s)
- Yizuo Song
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shuya Pan
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Kehan Li
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xin Chen
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Z Peter Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
22
|
Wang Y, Yuan H, Zhao M, Fang L. Identification of signature of gene expression in biliary atresia using weighted gene co-expression network analysis. Medicine (Baltimore) 2022; 101:e30232. [PMID: 36123893 PMCID: PMC9478247 DOI: 10.1097/md.0000000000030232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Biliary atresia (BA) is the most common cause of obstructive jaundice during the neonatal period. This study aimed to identify gene expression signature in BA. The datasets were obtained from the Gene Expression Omnibus database. Weighted gene co-expression network analysis identified a critical module associated with BA, whereas Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed the functions of the essential modules. The high-connectivity genes in the most relevant module constructed protein-protein interaction networks via the string website and Cytoscape software. Hub genes screened by lasso regression consisted of a disease classification model using the randomforest method. Receiver operating characteristic curves were used to assess models' sensitivity and specificity and the model was verified using the internal and external validation sets. Ten gene modules were constructed by WGCNA, of which the brown module had a strong positive correlation with BA, comprising 443 genes. Functional enrichment analysis revealed that module genes were mainly involved in biological processes, such as extracellular matrix organization, cell adhesion, inflammatory response, and the Notch pathway (P < .001), whereas these genes were involved in the metabolic pathways and cell adhesion molecules (P < .001). Thirty-nine high-connectivity genes in the brown module constructed protein-protein interaction networks. keratin 7 (KRT7) and C-X-C motif chemokine ligand 8 (CXCL8) were used to construct a diagnostic model that had an accuracy of 93.6% and the area under the receiver operating curves for the model was 0.93. The study provided insight into the signature of gene expression and possible pathogenesis of BA; furthermore, it identified that the combination of KRT7 and CXCL8 could be a potential diagnostic model for BA.
Collapse
Affiliation(s)
- Yongliang Wang
- Hepatological Surgery Department, The First People’s Hospital of Guiyang City, Guizhou Province, China
| | - Hongtao Yuan
- Hepatological Surgery Department, The First People’s Hospital of Guiyang City, Guizhou Province, China
- *Correspondence: Hongtao Yuan, Hepatological Surgery Department, The NO.1 People’s Hospital of Guiyang City, Guizhou Province, China (e-mail:
| | - Maojun Zhao
- Emergency Department, The First People’s Hospital of Guiyang City, Guizhou Province, China
| | - Li Fang
- Department of Critical Care Medicine, The First People’s Hospital of Guiyang City, Guizhou Province, China
| |
Collapse
|
23
|
Steens J, Klein D. HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation. Front Cell Dev Biol 2022; 10:1002909. [PMID: 36176275 PMCID: PMC9514042 DOI: 10.3389/fcell.2022.1002909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells display a unique cell type within the body that has the capacity to self-renew and differentiate into specialized cell types. Compared to pluripotent stem cells, adult stem cells (ASC) such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) exhibit restricted differentiation capabilities that are limited to cell types typically found in the tissue of origin, which implicates that there must be a certain code or priming determined by the tissue of origin. HOX genes, a subset of homeobox genes encoding transcription factors that are generally repressed in undifferentiated pluripotent stem cells, emerged here as master regulators of cell identity and cell fate during embryogenesis, and in maintaining this positional identity throughout life as well as specifying various regional properties of respective tissues. Concurrently, intricate molecular circuits regulated by diverse stem cell-typical signaling pathways, balance stem cell maintenance, proliferation and differentiation. However, it still needs to be unraveled how stem cell-related signaling pathways establish and regulate ASC-specific HOX expression pattern with different temporal-spatial topography, known as the HOX code. This comprehensive review therefore summarizes the current knowledge of specific ASC-related HOX expression patterns and how these were integrated into stem cell-related signaling pathways. Understanding the mechanism of HOX gene regulation in stem cells may provide new ways to manipulate stem cell fate and function leading to improved and new approaches in the field of regenerative medicine.
Collapse
|
24
|
Wang F, Huang C, Long J, Zhao ZB, Ma HQ, Yao XQ, Li L, Lian ZX. Notch signaling mutations increase intra-tumor chemokine expression and predict response to immunotherapy in colorectal cancer. BMC Cancer 2022; 22:933. [PMID: 36038820 PMCID: PMC9426242 DOI: 10.1186/s12885-022-10032-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Notch signaling mutation is associated with enhanced anti-tumor immune response in colorectal cancer (CRC). In this study, we aim to investigate the underlying mechanism and the predictive potential of Notch signaling mutation for responding to immunotherapy in CRC. Methods We analyzed the immune response associated genes in CRC with Notch signaling mutation concomitant with or without microsatellite instability (MSI) using TCGA dataset and investigated the mutation profiles of the Notch signaling pathway using cBioPortal. The Notch signaling scores and immune cell infiltration scores in different groups were calculated. We applied the Kaplan–Meier method for survival analysis in CRC patients who underwent immunotherapy, and the log-rank test to determine the statistically significant differences in survival. Notch1-knock-down cell line was constructed to detect the pathway and gene variations. Results We found that Notch signaling pathway mutation was associated with activated immune response, especially in those with MSI. Such association is useful for predicting a prolonged overall survival of CRC patients who underwent immune checkpoint inhibitor treatment. The mutation resulted in the functional loss of Notch signaling and may modulate the tumor immune microenvironment by increasing the expression of chemokines that are important for recruiting immune cells. Conclusions The Notch signaling mutation can modulate the chemotaxis of immune cells by upregulating the chemokine levels of the tumor immune microenvironment, and CRC patients with Notch signaling pathway mutation have better overall survival after immune checkpoint inhibitor treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10032-5.
Collapse
Affiliation(s)
- Fei Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.,Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Chuan Huang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jie Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Zhi-Bin Zhao
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Hai-Qing Ma
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China. .,Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Xue-Qing Yao
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial People's Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, 341000, China.
| | - Liang Li
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Zhe-Xiong Lian
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
25
|
Endometrial stem/progenitor cells: Properties, origins, and functions. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Ayoub MD, Kamath BM. Alagille Syndrome: Current Understanding of Pathogenesis, and Challenges in Diagnosis and Management. Clin Liver Dis 2022; 26:355-370. [PMID: 35868679 DOI: 10.1016/j.cld.2022.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alagille syndrome (ALGS) is a complex heterogenous disease with a wide array of clinical manifestations in association with cholestatic liver disease. Major clinical and genetic advancements have taken place since its first description in 1969. However, clinicians continue to face considerable challenges in the management of ALGS, particularly in the absence of targeted molecular therapies. In this article, we provide an overview of the broad ALGS phenotype, current approaches to diagnosis and with particular focus on key clinical challenges encountered in the management of these patients.
Collapse
Affiliation(s)
- Mohammed D Ayoub
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Pediatrics, Rabigh Branch, King Abdulaziz University, PO Box 80205, Jeddah 21589, Saudi Arabia
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
27
|
Lee SN, Yoon JH. The Role of Proprotein Convertases in Upper Airway Remodeling. Mol Cells 2022; 45:353-361. [PMID: 35611689 PMCID: PMC9200660 DOI: 10.14348/molcells.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifactorial, heterogeneous disease characterized by persistent inflammation of the sinonasal mucosa and tissue remodeling, which can include basal/progenitor cell hyperplasia, goblet cell hyperplasia, squamous cell metaplasia, loss or dysfunction of ciliated cells, and increased matrix deposition. Repeated injuries can stimulate airway epithelial cells to produce inflammatory mediators that activate epithelial cells, immune cells, or the epithelial-mesenchymal trophic unit. This persistent inflammation can consequently induce aberrant tissue remodeling. However, the molecular mechanisms driving disease within the different molecular CRS subtypes remain inadequately characterized. Numerous secreted and cell surface proteins relevant to airway inflammation and remodeling are initially synthesized as inactive precursor proteins, including growth/differentiation factors and their associated receptors, enzymes, adhesion molecules, neuropeptides, and peptide hormones. Therefore, these precursor proteins require post-translational cleavage by proprotein convertases (PCs) to become fully functional. In this review, we summarize the roles of PCs in CRS-associated tissue remodeling and discuss the therapeutic potential of targeting PCs for CRS treatment.
Collapse
Affiliation(s)
- Sang-Nam Lee
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joo-Heon Yoon
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
28
|
Yang R, Liu B, Yang M, Xu F, Wu S, Zhao S. Lumiflavin Reduces Cisplatin Resistance in Cancer Stem-Like Cells of OVCAR-3 Cell Line by Inducing Differentiation. Front Oncol 2022; 12:859275. [PMID: 35669418 PMCID: PMC9163659 DOI: 10.3389/fonc.2022.859275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer stem-like cells (CSCs) play a vital role in drug resistance and recurrence of ovarian cancer. Inducing phenotypic differentiation is an important strategy to enhance the effects of chemotherapy and reduce the drug resistance of CSCs. This study found that lumiflavin, a riboflavin decomposition product, reduced the development of CSC resistance and enhanced the chemotherapy effect of cisplatin (DDP) on CSCs in DDP-resistant ovarian cancer OVCAR-3 cell line (CSCs/DDP) and was related to the induction of CSC phenotypic differentiation. Results showed that the development of DDP-resistant OVCAR-3 cells was related to the increase in the proportion of CSCs/DDP, and the treatment with lumiflavin reduced the DDP-resistance levels of OVCAR-3 cells and proportion of CSCs/DDP. Further investigation found that lumiflavin synergistic with DDP increased apoptosis, decreased mitochondrial membrane potential, and inhibited the clonal formation of CSCs/DDP. Meanwhile, in vivo experiments showed that lumiflavin dose-dependently enhanced the chemotherapy effect of DDP on tumor-bearing nude mice inoculated by CSCs/DDP. Lumiflavin treatment also reduced the ratio of CD133+/CD177+ to CD44+/CD24 cells, which is the identification of CSCs, in CSCs/DDP. In addition, transcriptome sequencing results suggested that the role of lumiflavin was related to the notch and stem cell pathway, and Western blot analysis showed that lumiflavin inhibited the protein expression of notch signaling pathway in CSCs/DDP. In conclusion, lumiflavin reduces the development of the drug resistance of OVCAR-3 cell and increases the sensitivity of CSCs/DDP to DDP by inducing phenotypic differentiation, which may have a potential role in the chemotherapy treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, China
- Department of Pharmacology, Lishui University School of Medicine, Lishui, China
| | - Bingjin Liu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, China
| | - Mingyue Yang
- Clinical Department, China Medical University, Shenyang, China
| | - Feng Xu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, China
| | - Songquan Wu
- Department of Immunology, Lishui University School of Medicine, Lishui, China
| | - Shufang Zhao
- Molecular Biology Laboratory, Lishui University School of Medicine, Lishui, China
| |
Collapse
|
29
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
30
|
Danesh Pouya F, Rasmi Y, Nemati M. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer. Cancer Invest 2022; 40:516-543. [PMID: 35320055 DOI: 10.1080/07357907.2022.2055050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-metabolite drugs prevent the synthesis of essential cell growth compounds. 5-fluorouracil is used as an anti-metabolic drug in various cancers in the first stage of treatment. Unfortunately, in some cancers, 5-fluorouracil has low effectiveness because of its drug resistance. Studies have shown that drug resistance to 5-fluorouracil is due to the activation of specific signaling pathways and increased expressions of enzymes involved in drug metabolites. However, when 5-fluorouracil is used in combination with other drugs, the sensitivity of cancer cells to 5-fluorouracil increases, and the effect of drug resistance is reversed. This study discusses how the function of 5-fluorouracil in JAK/STAT, Wnt, Notch, NF-κB, and hedgehogs in some cancers.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
31
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Ge Y, Wang J, Zhang H, Li J, Ye M, Jin X. Fate of hematopoietic stem cells determined by Notch1 signaling (Review). Exp Ther Med 2022; 23:170. [PMID: 35069851 PMCID: PMC8764575 DOI: 10.3892/etm.2021.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/17/2021] [Indexed: 11/05/2022] Open
Abstract
Regulation of the fate of hematopoietic stem cells (HSCs), including silencing, self-renewal or differentiation into blood line cells, is crucial to maintain the homeostasis of the human blood system and prevent leukemia. Notch1, a key receptor in the Notch signaling pathway, plays an important regulatory role in these properties of HSCs, particularly in the maintenance of the stemness of HSCs. In recent decades, the ubiquitination modification of Notch1 has been gradually revealed, and also demonstrated to affect the proliferation and differentiation of HSCs. Therefore, a detailed elucidation of Notch1 and its ubiquitination modification may help to improve understanding of the maintenance of HSC properties and the pathogenesis of leukemia. In addition, it may aid in identifying potential therapeutic targets for specific leukemias and provide potential prognostic indicators for HSC transplantation (HSCT). In the present review, the association between Notch1 and HSCs and the link between the ubiquitination modification of Notch1 and HSCs were described. In addition, the association between abnormal HSCs mediated by Notch1 or ubiquitinated Notch1and T-cell acute lymphoblastic leukemia (T-ALL) was also examined, which provides a promising direction for clinical application.
Collapse
Affiliation(s)
- Yidong Ge
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hui Zhang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
33
|
Osathanon T, Egusa H. Notch signaling in induced pluripotent stem cells. MOLECULAR PLAYERS IN IPSC TECHNOLOGY 2022:249-284. [DOI: 10.1016/b978-0-323-90059-1.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
34
|
Palamaris K, Felekouras E, Sakellariou S. Epithelial to Mesenchymal Transition: Key Regulator of Pancreatic Ductal Adenocarcinoma Progression and Chemoresistance. Cancers (Basel) 2021; 13:cancers13215532. [PMID: 34771695 PMCID: PMC8582651 DOI: 10.3390/cancers13215532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma’s (PDAC) dismal prognosis is associated with its aggressive biological behavior and resistance to chemotherapy. Epithelial to mesenchymal transition (EMT) has been recognized as a key driver of PDAC progression and development of drug resistance. EMT is a transient and reversible process leading to transdifferentiation of epithelial cells into a more mesenchymal phenotype. It is regulated by multiple signaling pathways that control the activity of a transcription factors network. Activation of EMT in pre-invasive stages of PDAC has been accused for early dissemination. Furthermore, it contributes to the development of intratumoral heterogeneity and drug resistance. This review summarizes the available data regarding signaling networks regulating EMT and describes the integral role of EMT in different aspects of PDAC pathogenesis. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies, characterized by aggressive biological behavior and a lack of response to currently available chemotherapy. Emerging evidence has identified epithelial to mesenchymal transition (EMT) as a key driver of PDAC progression and a central regulator in the development of drug resistance. EMT is a reversible transdifferentiation process controlled by complex interactions between multiple signaling pathways such as TGFb, Wnt, and Notch, which converge to a network of specific transcription factors. Activation of EMT transcriptional reprogramming converts cancer cells of epithelial differentiation into a more mesenchymal phenotypic state. EMT occurrence in pre-invasive pancreatic lesions has been implicated in early PDAC dissemination. Moreover, cancer cell phenotypic plasticity driven by EMT contributes to intratumoral heterogeneity and drug tolerance and is mechanistically associated with the emergence of cells exhibiting cancer stem cells (CSCs) phenotype. In this review we summarize the available data on the signaling cascades regulating EMT and the molecular isnteractions between pancreatic cancer and stromal cells that activate them. In addition, we provide a link between EMT, tumor progression, and chemoresistance in PDAC.
Collapse
Affiliation(s)
- Kostas Palamaris
- 1ST Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelos Felekouras
- 1ST Department of Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stratigoula Sakellariou
- 1ST Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence:
| |
Collapse
|
35
|
Kang H, Sun Y, Hu X, Liu L. Gigantol inhibits proliferation and enhanced oxidative stress-mediated apoptosis through modulating of Wnt/β-catenin signaling pathway in HeLa cells. J Biochem Mol Toxicol 2021; 36:e22944. [PMID: 34729850 DOI: 10.1002/jbt.22944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Cervical cancer is one of the leading malignant cancers that is the fourth prominent cause of malignancy-related mortality in women globally. There is a predominant validation to a beneficial target in Wnt/β-catenin signaling in cervical carcinogenesis as they are very much deregulated in cancer. Previous studies reported Gigantol (GG) showed suppressive properties on the Wnt/β-catenin pathway in other tumor cells, but no evidence is available regarding GG suppressing Wnt/β-catenin signaling cervical tumor cells. Hence, the current research was planned to examine the suppressive effects of GG on HeLa cells and investigate the mechanism of action. HeLa cells were treated by GG in various doses and then appraising cell viability, oxidant/antioxidant levels, ∆ѰM status, reactive oxygen species (ROS) generation, apoptosis, and cell proliferation via Wnt/β-catenin signaling. We observed that GG noticeably inhibits cell proliferation, increased ROS generation, lipid peroxidation, mitochondrial membrane depolarization (∆ѰM), and increased apoptotic morphological changes of nuclear fragmentation and condensation. Moreover, GG effectively enhances proapoptotic, decreased ∆ѰM and antioxidant amounts, and mitigated Wnt/β-catenin signaling. Concisely, these findings proved that activating apoptosis and suppression of cell proliferation in GG treated HeLa cells was documented by the alleviation of Wnt/β-catenin signaling. Therefore, this study suggested that GG might develop a therapeutic effect against cervical carcinogenesis.
Collapse
Affiliation(s)
- Huanan Kang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yiming Sun
- Department of Andrology, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Harbin, China
| | - Xijiao Hu
- Second Department of Gynecology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Li Liu
- Department of Hysteroscopy, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
36
|
Zhang T, Joubert P, Ansari-Pour N, Zhao W, Hoang PH, Lokanga R, Moye AL, Rosenbaum J, Gonzalez-Perez A, Martínez-Jiménez F, Castro A, Muscarella LA, Hofman P, Consonni D, Pesatori AC, Kebede M, Li M, Gould Rothberg BE, Peneva I, Schabath MB, Poeta ML, Costantini M, Hirsch D, Heselmeyer-Haddad K, Hutchinson A, Olanich M, Lawrence SM, Lenz P, Duggan M, Bhawsar PMS, Sang J, Kim J, Mendoza L, Saini N, Klimczak LJ, Islam SMA, Otlu B, Khandekar A, Cole N, Stewart DR, Choi J, Brown KM, Caporaso NE, Wilson SH, Pommier Y, Lan Q, Rothman N, Almeida JS, Carter H, Ried T, Kim CF, Lopez-Bigas N, Garcia-Closas M, Shi J, Bossé Y, Zhu B, Gordenin DA, Alexandrov LB, Chanock SJ, Wedge DC, Landi MT. Genomic and evolutionary classification of lung cancer in never smokers. Nat Genet 2021; 53:1348-1359. [PMID: 34493867 PMCID: PMC8432745 DOI: 10.1038/s41588-021-00920-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/15/2021] [Indexed: 12/26/2022]
Abstract
Lung cancer in never smokers (LCINS) is a common cause of cancer mortality but its genomic landscape is poorly characterized. Here high-coverage whole-genome sequencing of 232 LCINS showed 3 subtypes defined by copy number aberrations. The dominant subtype (piano), which is rare in lung cancer in smokers, features somatic UBA1 mutations, germline AR variants and stem cell-like properties, including low mutational burden, high intratumor heterogeneity, long telomeres, frequent KRAS mutations and slow growth, as suggested by the occurrence of cancer drivers' progenitor cells many years before tumor diagnosis. The other subtypes are characterized by specific amplifications and EGFR mutations (mezzo-forte) and whole-genome doubling (forte). No strong tobacco smoking signatures were detected, even in cases with exposure to secondhand tobacco smoke. Genes within the receptor tyrosine kinase-Ras pathway had distinct impacts on survival; five genomic alterations independently doubled mortality. These findings create avenues for personalized treatment in LCINS.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Naser Ansari-Pour
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rachel Lokanga
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aaron L Moye
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francisco Martínez-Jiménez
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Castro
- Department of Medicine, Division of Medical Genetics, University of California San Diego, San Diego, CA, USA
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, University Hospital Federation OncoAge, Nice Hospital, University Côte d'Azur, Nice, France
| | - Dario Consonni
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela C Pesatori
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Michael Kebede
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mengying Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bonnie E Gould Rothberg
- Smilow Cancer Hospital, Yale-New Haven Health, New Haven, CT, USA
- Yale Comprehensive Cancer Center, New Haven, CT, USA
| | - Iliana Peneva
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Maria Luana Poeta
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Manuela Costantini
- Department of Urology, Istituto di Ricovero e Cura a Carattere Scientifico Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Hirsch
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Olanich
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Petra Lenz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maire Duggan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Praphulla M S Bhawsar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laura Mendoza
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - S M Ashiqul Islam
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Burcak Otlu
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jonas S Almeida
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, San Diego, CA, USA
| | - Thomas Ried
- Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
- Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
37
|
Aquaporins implicated in the cell proliferation and the signaling pathways of cell stemness. Biochimie 2021; 188:52-60. [PMID: 33894294 DOI: 10.1016/j.biochi.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating passive transport of water and other small molecules across biomembranes. Regulation of osmotic homeostasis via AQPs is accompanied by dynamic participation of various cellular signaling pathways. Recently emerging evidence reveals that functional roles of AQPs are further extended from the osmotic regulation via water permeation into the cell proliferation and differentiation. In particular, anomalous expression of AQPs has been demonstrated in various types of cancer cells and cancer stem-like cells and it has been proposed as markers for proliferation and progression of cancer cells. Thus, a more comprehensive view on AQPs could bring a great interest in the cell stemness accompanied by the expression of AQPs. AQPs are broadly expressed across tissues and cells in a cell type- and lineage-specific manner during development via spatiotemporal transcriptional regulation. Moreover, AQPs are expressed in various adult stem cells and cells associated with a stem cell niche as well as cancer stem-like cells. However, the expression and regulatory mechanisms of AQP expression in stem cells have not been well understood. This review highlighted the AQPs expression in stem cell niches/stem cells and the involvement of AQPs in the cell proliferation and signaling pathways associated with cell stemness.
Collapse
|
38
|
Guo Y, Wang G, Wang Z, Ding X, Qian L, Li Y, Ren Z, Liu P, Ma W, Li D, Li Y, Zhao Q, Lü J, Li Q, Wang Q, Yu Z. Reck-Notch1 Signaling Mediates miR-221/222 Regulation of Lung Cancer Stem Cells in NSCLC. Front Cell Dev Biol 2021; 9:663279. [PMID: 33959615 PMCID: PMC8093830 DOI: 10.3389/fcell.2021.663279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to the cancer initiation, metastasis and drug resistance in non-small cell lung cancer (NSCLC). Herein, we identified a miR-221/222 cluster as a novel regulator of CSCs in NSCLC. Targeted overexpression or knockdown of miR-221/222 in NSCLC cells revealed the essential roles of miR-221/222 in regulation of lung cancer cell proliferation, mammosphere formation, subpopulation of CD133+ CSCs and the expression of stemness genes including OCT4, NANOG and h-TERT. The in vivo animal study showed that overexpression of miR-221/222 significantly enhanced the capacity of lung cancer cells to develop tumor and grow faster, indicating the importance of miR-221/222 in tumorigenesis and tumor growth. Mechanistically, Reck was found to be a key direct target gene of miR-221/222 in NSCLC. Overexpression of miR-221/222 significantly suppressed Reck expression, activated Notch1 signaling and increased the level of NICD. As an activated form of Notch1, NICD leads to enhanced stemness in NSCLC cells. In addition, knockdown of Reck by siRNA not only mimicked miR-221/222 effects, but also demonstrated involvement of Reck in the miR-221/222-induced activation of Notch1 signaling, verifying the essential roles of the miR-221/222-Reck-Notch1 axis in regulating stemness of NSCLC cells. These findings uncover a novel mechanism by which lung CSCs are significantly manipulated by miR-221/222, and provide a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuefan Guo
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongrui Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Ding
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Qian
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Jinzhou Medical University, School of Basic Medical, Jinzhou, China
| | - Ya Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Dalian Medical University, School of Basic Medical, Dalian, China
| | - Zhen Ren
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Dalian Medical University, School of Basic Medical, Dalian, China
| | - Pengfei Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjing Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinchuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinhong Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Suzuki A, Ogata K, Iwata J. Cell signaling regulation in salivary gland development. Cell Mol Life Sci 2021; 78:3299-3315. [PMID: 33449148 PMCID: PMC11071883 DOI: 10.1007/s00018-020-03741-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
The mammalian salivary gland develops as a highly branched structure designed to produce and secrete saliva. This review focuses on research conducted on mammalian salivary gland development, particularly on the differentiation of acinar, ductal, and myoepithelial cells. We discuss recent studies that provide conceptual advances in the understanding of the molecular mechanisms of salivary gland development. In addition, we describe the organogenesis of submandibular glands (SMGs), model systems used for the study of SMG development, and the key signaling pathways as well as cellular processes involved in salivary gland development. The findings from the recent studies elucidating the identity of stem/progenitor cells in the SMGs, and the process by which they are directed along a series of cell fate decisions to form functional glands, are also discussed. Advances in genetic tools and tissue engineering strategies will significantly increase our knowledge about the mechanisms by which signaling pathways and cells establish tissue architecture and function during salivary gland development, which may also be conserved in the growth and development of other organ systems. An increased knowledge of organ development mechanisms will have profound implications in the design of therapies for the regrowth or repair of injured tissues. In addition, understanding how the processes of cell survival, expansion, specification, movement, and communication with neighboring cells are regulated under physiological and pathological conditions is critical to the development of future treatments.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBS 4208, Houston, TX, 77054, USA
- Center for Craniofacial Research, UTHealth, Houston, TX, 77054, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBS 4208, Houston, TX, 77054, USA
- Center for Craniofacial Research, UTHealth, Houston, TX, 77054, USA
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBS 4208, Houston, TX, 77054, USA.
- Center for Craniofacial Research, UTHealth, Houston, TX, 77054, USA.
| |
Collapse
|
40
|
Cai H, Liu B, Wang H, Sun G, Feng L, Chen Z, Zhou J, Zhang J, Zhang T, He M, Yang T, Guo Q, Teng Z, Xin Q, Zhou B, Zhang H, Xia G, Wang C. SP1 governs primordial folliculogenesis by regulating pregranulosa cell development in mice. J Mol Cell Biol 2021; 12:230-244. [PMID: 31282930 PMCID: PMC7181717 DOI: 10.1093/jmcb/mjz059] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/20/2019] [Accepted: 06/12/2019] [Indexed: 01/05/2023] Open
Abstract
Establishment of the primordial follicle (PF) pool is pivotal for the female reproductive lifespan; however, the mechanism of primordial folliculogenesis is poorly understood. Here, the transcription factor SP1 was shown to be essential for PF formation in mice. Our results showed that SP1 is present in both oocytes and somatic cells during PF formation in the ovary. Knockdown of Sp1 expression, especially in pregranulosa cells, significantly suppressed nest breakdown, oocyte apoptosis, and PF formation, suggesting that SP1 expressed by somatic cells functions in the process of primordial folliculogenesis. We further demonstrated that SP1 governs the recruitment and maintenance of Forkhead box L2-positive (FOXL2+) pregranulosa cells using an Lgr5-EGFP-IRES-CreERT2 (Lgr5-KI) reporter mouse model and a FOXL2+ cell-specific knockdown model. At the molecular level, SP1 functioned mainly through manipulation of NOTCH2 expression by binding directly to the promoter of the Notch2 gene. Finally, consistent with the critical role of granulosa cells in follicle survival in vitro, massive loss of oocytes in Sp1 knockdown ovaries was evidenced before puberty after the ovaries were transplanted under the renal capsules. Conclusively, our results reveal that SP1 controls the establishment of the ovarian reserve by regulating pregranulosa cell development in the mammalian ovary.
Collapse
Affiliation(s)
- Han Cai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bingying Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huarong Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Guanghong Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lizhao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiawei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meina He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tingting Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qirui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Teng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiliang Xin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
41
|
Yoshida S, Honjo T, Iino K, Ishibe R, Leo S, Shimada T, Watanabe T, Ishikawa M, Maeda K, Kusuhara H, Shiraki N, Kume S. Generation of Human-Induced Pluripotent Stem Cell-Derived Functional Enterocyte-Like Cells for Pharmacokinetic Studies. Stem Cell Reports 2021; 16:295-308. [PMID: 33513361 PMCID: PMC7878837 DOI: 10.1016/j.stemcr.2020.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
We aimed to establish an in vitro differentiation procedure to generate matured small intestinal cells mimicking human small intestine from human-induced pluripotent stem cells (iPSCs). We previously reported the efficient generation of CDX2-expressing intestinal progenitor cells from embryonic stem cells (ESCs) using 6-bromoindirubin-3'-oxime (BIO) and (3,5-difluorophenylacetyl)-L-alanyl-L-2-phenylglycine tert-butyl ester (DAPT) to treat definitive endodermal cells. Here, we demonstrate the generation of enterocyte-like cells by culturing human iPSC-derived intestinal progenitor cells on a collagen vitrigel membrane (CVM) and treating cells with a simple maturation medium containing BIO, DMSO, dexamethasone, and activated vitamin D3. Functional tests further confirmed that these iPSC-derived enterocyte-like cells exhibit P-gp- and BCRP-mediated efflux and cytochrome P450 3A4 (CYP3A4)-mediated metabolism. We concluded that hiPS cell-derived enterocyte-like cells can be used as a model for the evaluation of drug transport and metabolism studies in the human small intestine.
Collapse
Affiliation(s)
- Shinpei Yoshida
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 1-1, Futabacho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Takayuki Honjo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Keita Iino
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ryunosuke Ishibe
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Sylvia Leo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Tomoka Shimada
- Analytical Chemistry & Technology, Shionogi TechnoAdvance Research Co., Ltd., 1-1, Futabacho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Teruhiko Watanabe
- Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co. Inc., 21 Suzukawa, Isehara, Kanagawa 259-1146, Japan
| | - Masaya Ishikawa
- Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co. Inc., 21 Suzukawa, Isehara, Kanagawa 259-1146, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
42
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
43
|
Targeting Notch and EGFR signaling in human mucoepidermoid carcinoma. Signal Transduct Target Ther 2021; 6:27. [PMID: 33473104 PMCID: PMC7817832 DOI: 10.1038/s41392-020-00388-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most common type of salivary gland cancers and patients with advanced, metastatic, and recurrent MECs have limited therapeutic options and poor treatment outcomes. MEC is commonly associated with a chromosomal translocation t(11;19) (q14-21;p12-13) that encodes the CRTC1-MAML2 oncogenic fusion. The CRTC1-MAML2 fusion is required for MEC growth in part through inducing autocrine AREG-EGFR signaling. Growing evidence suggests that MEC malignancy is maintained by cancer stem-like cells. In this study, we aimed to determine critical signaling for maintaining MEC stem-like cells and the effect of combined targeting of stem cell signaling and CRTC1-MAML2-induced EGFR signaling on blocking MEC growth. First, we evaluated the significance of Notch signaling in regulating MEC stem-like cells. Aberrantly activated Notch signaling was detected in human fusion-positive MEC cells. The inhibition of Notch signaling with genetic or pharmacological inhibitors reduced oncosphere formation and ALDH-bright population in vitro and blocked the growth of MEC xenografts in vivo. Next, we investigated the effect of co-targeting Notch signaling and EGFR signaling, and observed enhanced inhibition on MEC growth in vivo. Collectively, this study identified a critical role of Notch signaling in maintaining MEC stem-like cells and tumor growth, and revealed a novel approach of co-targeting Notch and EGFR signaling as a potential effective anti-MEC treatment.
Collapse
|
44
|
Evaluation of PSEN1 subunit of the γ-secretase gene in patients with psoriasis vulgaris: a pilot study. Postepy Dermatol Alergol 2021; 37:915-920. [PMID: 33603609 PMCID: PMC7874871 DOI: 10.5114/ada.2020.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/27/2019] [Indexed: 12/03/2022] Open
Abstract
Introduction Psoriasis is a chronic autoimmune inflammatory disease, the prevalence of which is 1–3% in the Polish population. Genome testing using single nucleotide polymorphisms revealed more than 50 regions associated with the risk of psoriasis, and most of these genes are associated with the immune system. Aim To assess the presence of PSEN1 subunits of the γ-secretase gene polymorphisms in patients with psoriasis and comparison of results with a healthy control group. Material and methods We used polymerase chain reaction – restriction fragment length polymorphism (PCR RFLP) method to assess polymorphisms. The starting material for analysis was peripheral blood obtained from the patient. Results PSEN1a-positivity was found in 2/52 (2.78%) of patients with psoriasis and 1/36 (3.85%) of healthy controls. PSEN1b positivity was seen in 3/52 (5.77%) of patients with psoriasis and 1/36 (3.85%) of control individuals. Only 3 patients with psoriasis but none of healthy volunteers had a presence of PSEN1c. Four patients were excluded from further statistical analysis. Conclusions We have not shown a relationship between PSEN1 polymorphism and the clinical occurrence of psoriasis but now we start the assessment of other subunits of the γ-secretase gene – PSENEN and NCSTN.
Collapse
|
45
|
Wijaya DA, Louisa M, Wibowo H, Taslim A, Permata TBM, Handoko H, Nuryadi E, Kodrat H, Gondhowiardjo SA. The future potential of Annona muricata L. extract and its bioactive compounds as radiation sensitizing agent: proposed mechanisms based on a systematic review. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite technological advances in cancer treatment, especially in radiotherapy, many efforts are being made in improving cancer cell radio-sensitivity to increase therapeutic ratio and overcome cancer cell radio-resistance. In the present review, we evaluated the anticancer mechanism of Annona muricata L. (AM) leaves extract and its bioactive compounds such as annonaceous acetogenins, annomuricin, annonacin, or curcumin; and further correlated them with the potential of the mechanism to increase or to reduce cancer cells radio-sensitivity based on literature investigation. We see that AM has a promising future potential as a radio-sensitizer agent.
Collapse
Affiliation(s)
- David Andi Wijaya
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Heri Wibowo
- Laboratorium Terpadu, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Aslim Taslim
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Handoko Handoko
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Endang Nuryadi
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Henry Kodrat
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Soehartati Argadikoesoema Gondhowiardjo
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| |
Collapse
|
46
|
Ayoub MD, Kamath BM. Alagille Syndrome: Diagnostic Challenges and Advances in Management. Diagnostics (Basel) 2020; 10:E907. [PMID: 33172025 PMCID: PMC7694636 DOI: 10.3390/diagnostics10110907] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Alagille syndrome (ALGS) is a multisystem disease characterized by cholestasis and bile duct paucity on liver biopsy in addition to variable involvement of the heart, eyes, skeleton, face, kidneys, and vasculature. The identification of JAG1 and NOTCH2 as disease-causing genes has deepened our understanding of the molecular mechanisms underlying ALGS. However, the variable expressivity of the clinical phenotype and the lack of genotype-phenotype relationships creates significant diagnostic and therapeutic challenges. In this review, we provide a comprehensive overview of the clinical characteristics and management of ALGS, and the molecular basis of ALGS pathobiology. We further describe unique diagnostic considerations that pose challenges to clinicians and outline therapeutic concepts and treatment targets that may be available in the near future.
Collapse
Affiliation(s)
- Mohammed D. Ayoub
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, Faculty of Medicine, Rabigh Branch, King Abdulaziz University, P.O. Box 80205, Jeddah 21589, Saudi Arabia
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada;
| |
Collapse
|
47
|
BeLow M, Osipo C. Notch Signaling in Breast Cancer: A Role in Drug Resistance. Cells 2020; 9:cells9102204. [PMID: 33003540 PMCID: PMC7601482 DOI: 10.3390/cells9102204] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a heterogeneous disease that can be subdivided into unique molecular subtypes based on protein expression of the Estrogen Receptor, Progesterone Receptor, and/or the Human Epidermal Growth Factor Receptor 2. Therapeutic approaches are designed to inhibit these overexpressed receptors either by endocrine therapy, targeted therapies, or combinations with cytotoxic chemotherapy. However, a significant percentage of breast cancers are inherently resistant or acquire resistance to therapies, and mechanisms that promote resistance remain poorly understood. Notch signaling is an evolutionarily conserved signaling pathway that regulates cell fate, including survival and self-renewal of stem cells, proliferation, or differentiation. Deregulation of Notch signaling promotes resistance to targeted or cytotoxic therapies by enriching of a small population of resistant cells, referred to as breast cancer stem cells, within the bulk tumor; enhancing stem-like features during the process of de-differentiation of tumor cells; or promoting epithelial to mesenchymal transition. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance through reduction or elimination of breast cancer stem cells. However, Notch inhibitors have yet to be clinically approved for the treatment of breast cancer, mainly due to dose-limiting gastrointestinal toxicity. In this review, we discuss potential mechanisms of Notch-mediated resistance in breast cancer cells and breast cancer stem cells, and various methods of targeting Notch through γ-secretase inhibitors, Notch signaling biologics, or transcriptional inhibitors. We also discuss future plans for identification of novel Notch-targeted therapies, in order to reduce toxicity and improve outcomes for women with resistant breast cancer.
Collapse
Affiliation(s)
- McKenna BeLow
- Integrated Cell Biology Program, Loyola University Chicago, Maywood, IL 60513, USA;
| | - Clodia Osipo
- Integrated Cell Biology Program, Loyola University Chicago, Maywood, IL 60513, USA;
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60513, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60513, USA
- Correspondence: ; Tel.: +1-708-327-2372
| |
Collapse
|
48
|
Alemohammad H, Asadzadeh Z, Motafakker Azad R, Hemmat N, Najafzadeh B, Vasefifar P, Najafi S, Baradaran B. Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction. Life Sci 2020; 260:118337. [PMID: 32841661 DOI: 10.1016/j.lfs.2020.118337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a small part of cancer cells inside the tumor that have similar characteristics to normal stem cells. CSCs stimulate tumor initiation and progression in a variety of cancers. Several transcription factors such as NANOG, SOX2, and OCT4 maintain the characteristics of CSCs and their upregulation is seen in many malignancies resulting in increased metastasis, invasion, and recurrence. Among these factors, NANOG plays an important role in regulating the self-renewal and pluripotency of CSCs and the clinical significance of NANOG has been suggested as a marker of CSCs in many cancers. The up and down-regulation of NANOG is associated with several important signaling pathways, including JAK/STAT, Wnt/β-catenin, Notch, TGF-β, Hedgehog, and several microRNAs (miRNAs). In this review, we will investigate the function of NANOG in CSCs and the molecular mechanism of its regulation by signaling pathways and miRNAs. We will also investigate targeting NANOG with different techniques, which is a promising treatment strategy for cancer treatment.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Fang L, Li B, Yu D, Wang B, Zhao T. Analysis of changes in the expression of Notch1 and HES1 and the prognosis of osteosarcoma patients following surgery. Oncol Lett 2020; 20:29. [PMID: 32774502 DOI: 10.3892/ol.2020.11890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 01/27/2023] Open
Abstract
The present study aimed to analyze the changes in the expression of Notch1 and hairy and enhancer of split-1 (HES1) and the prognosis of patients with osteosarcoma following surgery. Samples from 62 patients with osteosarcoma treated at Shandong Cancer hospital from April, 2011 to June, 2013 were collected as the research group, and those from 52 healthy individuals undergoing physical examination were collected as the control group. The expression levels of Notch1 and HES1 in the serum of patients with osteosarcoma were measured by ELISA before and after surgery. Pearson's correlation analysis was used to analyze the correlation between Notch1 expression and HES1 expression in the osteosarcoma patients. According to the expression levels of Notch1 and HES1, the patients were divided into the high expression group and the low expression group, and the 5-year survival rate of the patients was observed. The expression levels of Notch1 and HES1 in the osteosarcoma patients before surgery were higher than those after surgery (P<0.05). The sensitivity, specificity and AUC of Notch1 for osteosarcoma were 93.55%, 58.06% and 0.732 respectively, and those of HES1 were 82.26%, 61.29% and 0.766, respectively. The expression level of Notch1 positively correlated with the expression level of HES1 in the osteosarcoma patients (r=0.795, P<0.001). According to the expression levels of Notch1 and HES1, the patients were divided into the high and low expression groups. The survival rate of the low expression group was significantly higher than that of the high expression groups (P=0.045). Finally, multiple factors were analyzed by logistic regression, and it was found that tumor location, chemotherapy response, tumor size, Notch1 and HES1 were independent risk factors for prognosis. Notch1 and HES1 exhibited a low expression in patients following surgery. ROC curve analysis revealed that the two indicators had good diagnostic efficacy and were expected to become markers for diagnosis and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Long Fang
- Department of Orthopaedics, Shangdong Provincial Third Hospital, Cheeloo College of Medicine, Shangdong University, Jinan, Shandong 250000, P.R. China
| | - Bei Li
- Department of Orthopaedics, Shangdong Provincial Third Hospital, Cheeloo College of Medicine, Shangdong University, Jinan, Shandong 250000, P.R. China.,Department of Orthopaedics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, P.R. China
| | - Dapeng Yu
- Department of Orthopaedics, Shangdong Provincial Western Hospital, Jinan, Shandong 250000, P.R. China
| | - Baolong Wang
- Department of Orthopaedics, Shangdong Provincial Third Hospital, Cheeloo College of Medicine, Shangdong University, Jinan, Shandong 250000, P.R. China
| | - Tingbao Zhao
- Department of Orthopaedics, Shangdong Provincial Third Hospital, Cheeloo College of Medicine, Shangdong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
50
|
Radulovic V, van der Garde M, Koide S, Sigurdsson V, Lang S, Kaneko S, Miharada K. Junctional Adhesion Molecule 2 Represents a Subset of Hematopoietic Stem Cells with Enhanced Potential for T Lymphopoiesis. Cell Rep 2020; 27:2826-2836.e5. [PMID: 31167130 DOI: 10.1016/j.celrep.2019.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/18/2019] [Accepted: 05/06/2019] [Indexed: 01/29/2023] Open
Abstract
The distinct lineage potential is a key feature of hematopoietic stem cell (HSC) heterogeneity, but a subset of HSCs specialized for a single lymphoid compartment has not been identified. Here we report that HSCs expressing junctional adhesion molecule 2 (Jam2) at a higher level (Jam2high HSCs) have a greater T cell reconstitution capacity. Jam2high HSCs are metabolically dormant but preferentially differentiate toward lymphocytes, especially T cell lineages. Jam2high HSCs uniquely express T cell-related genes, and the interaction with Jam1 facilitates the Notch/Delta signaling pathway. Frequency of Jam2high HSCs changes upon T cell depletion in vivo, potentially suggesting that Jam2 expression may reflect scarcity of T cells and requirement of T cell replenishment. Our findings highlight Jam2 as a potential marker for a subfraction of HSCs with an extensive lymphopoietic capacity, mainly in T lymphopoiesis.
Collapse
Affiliation(s)
- Visnja Radulovic
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Mark van der Garde
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Shuhei Koide
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Valgardur Sigurdsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Stefan Lang
- StemTherapy Bioinformatics Core Facility, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Shin Kaneko
- Center of iPS Cell Research and Application, Kyoto University, 606-8507 Kyoto, Japan
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden.
| |
Collapse
|