1
|
Lin S, Zhang Y, Yang J, Yang L, Li X, Bo H, Liu J, Tan M, Zhu W, Wang D, Shu Y. Cross-Species Transmission Potential of H4 Avian Influenza Viruses in China: Epidemiological and Evolutionary Study. Viruses 2024; 16:353. [PMID: 38543719 PMCID: PMC10974465 DOI: 10.3390/v16030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
H4 avian influenza viruses (AIVs) have been widely detected in live poultry markets in China. However, the potential public health impact of H4 AIVs remains largely uncertain. Here, we fully analyzed the distribution and phylogenetic relationship of H4 AIVs in China. We obtained 31 isolates of H4 viruses in China during 2009-2022 through surveillance in poultry-associated environments, such as live poultry markets and poultry farms. Genomic sequence analysis together with publicly available data revealed that frequent reassortment and introduction of H4 AIV from wild birds to poultry may have occurred. We identified 62 genotypes among 127 whole genome sequences of H4 viruses in China, indicating that H4 AIVs had great genetic diversity in China. We also investigated molecular markers and found that drug resistance mutations frequently occurred in the M2 protein and a few mutations related to receptor binding and the host signature in H4 AIVs. Our study demonstrates the cross-species transmission potential of H4 AIVs in China and provides some reference significance for its risk assessment.
Collapse
Affiliation(s)
- Shuxia Lin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (S.L.)
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Jiaying Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (S.L.)
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Min Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (S.L.)
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
2
|
Li T, Zhao C, Guo Y, Dong J, Du F, Zhou Y, Shu S, Liu Y, Cheng Y, Cao Z, Cao Q, Shi S, Huang Y, Pu J, Liu L. Genetic and Biological Characteristics of Duck-Origin H4N6 Avian Influenza Virus Isolated in China in 2022. Viruses 2024; 16:207. [PMID: 38399984 PMCID: PMC10892581 DOI: 10.3390/v16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The interaction between migratory birds and domestic waterfowl facilitates viral co-infections, leading to viral reassortment and the emergence of novel viruses. In 2022, samples were collected from duck farms around Poyang Lake in Jiangxi Province, China, which is located within the East Asia-Australasia flyway. Three strains of H4N6 avian influenza virus (AIV) were isolated. Genetic and phylogenetic analyses showed that the isolated H4N6 avian influenza viruses (AIVs) belonged to new genotypes, G23 and G24. All isolated strains demonstrated dual receptor binding properties. Additionally, the isolated strains were able to replicate efficiently not only in avian cells but also in mammalian cells. Furthermore, the H4N6 AIV isolates could infect chickens, with viral replication detected in the lungs and extrapulmonary organs, and could transmit within chicken flocks through contact, with viral shedding detected only in oropharyngeal swabs from chickens in the contact group. Notably, the H4N6 AIV could infect mice without prior adaptation and replicate in the lungs with high viral titers, suggesting that it is a potential threat to humans. In conclusion, this study provides valuable insight into the characteristics of H4N6 strains currently circulating in China.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (C.Z.); (Y.G.); (J.D.); (F.D.); (Y.Z.); (S.S.); (J.P.)
| | - Chuankuo Zhao
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (C.Z.); (Y.G.); (J.D.); (F.D.); (Y.Z.); (S.S.); (J.P.)
| | - Yuxin Guo
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (C.Z.); (Y.G.); (J.D.); (F.D.); (Y.Z.); (S.S.); (J.P.)
| | - Jinze Dong
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (C.Z.); (Y.G.); (J.D.); (F.D.); (Y.Z.); (S.S.); (J.P.)
| | - Fanshu Du
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (C.Z.); (Y.G.); (J.D.); (F.D.); (Y.Z.); (S.S.); (J.P.)
| | - Yong Zhou
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (C.Z.); (Y.G.); (J.D.); (F.D.); (Y.Z.); (S.S.); (J.P.)
| | - Sicheng Shu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (C.Z.); (Y.G.); (J.D.); (F.D.); (Y.Z.); (S.S.); (J.P.)
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou 510275, China; (Y.L.); (Y.C.)
| | - Yachang Cheng
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou 510275, China; (Y.L.); (Y.C.)
| | - Zhiyong Cao
- Duchang County Aquaculture and Animal Husbandry Industry Development Center, Jiujiang 332600, China;
| | - Qi Cao
- Duchang County Yangfeng Township Government, Jiujiang 332600, China;
| | - Shuiping Shi
- Duchang County Migratory Bird Nature Reserve Administration, Jiujiang 332600, China;
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, College of Biology Sciences, China Agricultural University, Beijing 100193, China;
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (C.Z.); (Y.G.); (J.D.); (F.D.); (Y.Z.); (S.S.); (J.P.)
| | - Litao Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (C.Z.); (Y.G.); (J.D.); (F.D.); (Y.Z.); (S.S.); (J.P.)
| |
Collapse
|
3
|
Yang F, Yan S, Zhu L, Yao H, Dong D, Wu D, Wu N, Ye C, Wu H. A multiplex TaqMan real-time RT-PCR assay for the simultaneous detection of H4, H6, and H10 avian influenza viruses. Heliyon 2023; 9:e15647. [PMID: 37153423 PMCID: PMC10160747 DOI: 10.1016/j.heliyon.2023.e15647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Avian influenza viruses (AIVs) have caused a large number of epidemics in domestic and wild birds, and even posed a health challenge to humans. Highly pathogenic AIVs have attracted the most public attention. However, low pathogenic AIVs, including H4, H6, and H10 subtype AIVs, have spread covertly in domestic poultry, without obvious clinical signs. The emergence of human infections with H6 and H10 AIVs and the evidence of seropositivity of H4 AIV in poultry-exposed individuals indicated that these AIVs sporadically infect humans and could cause a potential pandemic. Therefore, a rapid and sensitive diagnostic method to simultaneously detect Eurasian lineage H4, H6, and H10 subtype AIVs is urgently required. Four singleplex real-time RT-PCR (RRT-PCR) assays were established based on carefully designed primers and probes of the conserved regions of the matrix, H4, H6, and H10 genes and combined into a multiplex RRT-PCR method to simultaneously detect H4, H6, and H10 AIVs in one reaction. The detection limit of the multiplex RRT-PCR method was 1-10 copies per reaction when detecting standard plasmids, and showed no cross-reaction against other subtype AIVs and other common avian viruses. Additionally, this method was suitable to detect the AIVs in samples from different sources, the results of which showed high consistency with virus isolation and a commercial influenza detection kit. In summary, this rapid, convenient, and practical multiplex RRT-PCR method could be applied in laboratory testing and clinical screening to detect AIVs.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Sijing Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China
| | - Dalu Dong
- Hangzhou Biotest Biotech Co., Ltd., 27 Tuyi Road, Cangqian Street, Yuhang District, Hangzhou, 311121, China
| | - Danna Wu
- Hangzhou Biotest Biotech Co., Ltd., 27 Tuyi Road, Cangqian Street, Yuhang District, Hangzhou, 311121, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China
| | - Chunsheng Ye
- Hangzhou Biotest Biotech Co., Ltd., 27 Tuyi Road, Cangqian Street, Yuhang District, Hangzhou, 311121, China
- Corresponding author. Hangzhou Biotest Biotech Co., Ltd., 27 Tuyi Road, Cangqian Street, Yuhang District, Hangzhou 311121, Zhejiang, China.
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China
- Corresponding author. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
4
|
Protective Efficacy of Inactivated H9N2 Vaccine in Turkey Poults under Both Experimental and Field Conditions. Vaccines (Basel) 2022; 10:vaccines10122178. [PMID: 36560588 PMCID: PMC9783319 DOI: 10.3390/vaccines10122178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Low pathogenic avian influenza (LPAI) H9N2 virus is one of the major poultry pathogens associated with severe economic losses in the poultry industry (broiler, layers, breeders, and grandparents' flocks), especially in endemic regions including the Middle East, North Africa, and Asian countries. This work is an attempt to evaluate the efficacy of whole inactivated H9N2 vaccine (MEFLUVACTM H9) in turkey poults kept under laboratory and commercial farm conditions. Here, 10,000 white turkey poults (1-day old) free from maternally derived immunity against H9N2 virus were divided into four groups; G1 involved 10 vaccinated birds kept under biosafety level-3 (BLS-3) as a laboratory vaccinated and challenged group, while G2 had 9970 vaccinated turkeys raised on a commercial farm. Ten of those birds were moved to BLS-3 for daily cloacal and tracheal swabbing to check for the absence of any life-threating disease, before conducting analyses. G3 (10 birds) served as a non-vaccinated challenged control under BSL-3 conditions, while G4 (10 birds) was used as a non-vaccinated and non-challenged control under BSL-3 conditions. Sera were collected on days 7-, 14-, 21-, and 28-post-vaccinations to monitor the humoral immune response using a hemagglutination-inhibition (HI) test. At these same intervals, cloacal and tracheal swabs were also checked for any viral infection. The challenge was conducted 28 days post-vaccination (PV) using AI-H9N2 in BSL-3 by intranasal inoculation of 6-log10 embryo infective dose50 (EID50). At 3-, 6-, and 10-days post-challenge, oropharyngeal swabs were taken from challenged birds to quantify viral shedding by quantitative polymerase chain reaction (qRT-PCR). The results of this study showed that vaccinated groups (G1/2) developed HI titers of 1.38, 4.38, 5.88, and 7.25 log2 in G1 vs. 1.2, 3.8, 4.9 and 6.2 log2 in G2 when measured at 7-, 14-, 21- and 28-days PV, respectively, while undetectable levels were recorded in non-vaccinated groups (G3/4). Birds in G3 showed 90% clinical sickness vs. 10% and 20% in G1/2, respectively, over a 10-day monitoring period following challenge. Vaccinated birds showed a significant reduction in virus shedding in terms of the number of shedders, amount of shed virus and shedding interval over the non-vaccinated challenged birds. Regarding mortality, all groups did not show any mortality, which confirms that the circulating H9N2 virus still has low pathogenicity and cannot cause mortality. However, the virus may cause up to 90% clinical sickness in non-vaccinated birds vs. 10% and 20% in laboratory- and farm-vaccinated birds, respectively, highlighting the role of the vaccine in limiting clinical sickness cases. In conclusion, under the current trial circumstances, MEFLUVACTM-H9 provided protective seroconversion titers, significant clinical sickness protection and significant reduction in virus shedding either in laboratory- or farm-vaccinated groups after a single vaccine dose.
Collapse
|
5
|
Cui J, Cui P, Shi J, Fan W, Xing X, Gu W, Zhang Y, Zhang Y, Zeng X, Jiang Y, Chen P, Yang H, Chen Y, Liu J, Liu L, Tian G, Lu Y, Chen H, Li C, Deng G. Continued evolution of H6 avian influenza viruses isolated from farms in China between 2014 and 2018. Transbound Emerg Dis 2022; 69:2156-2172. [PMID: 34192815 DOI: 10.1111/tbed.14212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022]
Abstract
H6 avian influenza virus (AIV) is one of the most prevalent AIV subtypes in the world. Our previous studies have demonstrated that H6 AIVs isolated from live poultry markets pose a potential threat to human health. In recent years, increasing number of H6 AIVs has been constantly isolated from poultry farms. In order to understand the biological characteristics of H6 AIVs in the context of farms, here, we analyzed the phylogenetic relationships, antigenicity, replication in mice and receptor binding properties of H6 AIVs isolated from farms in China between 2014 and 2018. Phylogenetic analysis showed that 19 different genotypes were formed among 20 representative H6 viruses. Notably, the internal genes of these H6 viruses exhibited complicated relationships with different subtypes of AIVs worldwide, indicating that these viruses are the products of complex and frequent reassortment events. Antigenic analysis revealed that 13 viruses tested were divided into three antigenic groups. 10 viruses examined could all replicate in the respiratory organs of infected mice without prior adaptation. Receptor binding analysis demonstrated that some of the H6 AIVs bound to both α-2, 3-linked glycans (avian-type receptor) and α-2, 6-linked glycans (human-type receptor), thereby posing a potential threat to human health. Together, these findings revealed the prevalence, complicated genetic evolution, diverse antigenicity, and dual receptor binding specificity of H6 AIVs in the settings of poultry farms, which emphasize the importance to continuously monitor the evolution and biological properties of H6 AIVs in nature.
Collapse
Affiliation(s)
- Jiaqi Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Weifeng Fan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Xin Xing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yixin Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| |
Collapse
|
6
|
Low Pathogenicity H7N3 Avian Influenza Viruses Have Higher Within-Host Genetic Diversity Than a Closely Related High Pathogenicity H7N3 Virus in Infected Turkeys and Chickens. Viruses 2022; 14:v14030554. [PMID: 35336961 PMCID: PMC8951284 DOI: 10.3390/v14030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2–10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.
Collapse
|
7
|
Trovão NS, Talavera GA, Nelson MI, Perez de la Rosa JD. Evolution of highly pathogenic H7N3 avian influenza viruses in Mexico. Zoonoses Public Health 2020; 67:318-323. [PMID: 31912652 DOI: 10.1111/zph.12673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022]
Abstract
Highly pathogenic H7N3 influenza A viruses have persisted in poultry in Mexico since 2012, diversifying into multiple lineages that have spread to three Mexican states, as of 2016. The H7N3 viruses segregate into three distinct clades that are geographically structured. All 2016 viruses are resistant to adamantane antiviral drugs and have an extended 24-nucleotide insertion at the HA cleavage site that was acquired from host 28S ribosomal RNA.
Collapse
Affiliation(s)
| | | | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
8
|
A Global Perspective on H9N2 Avian Influenza Virus. Viruses 2019; 11:v11070620. [PMID: 31284485 PMCID: PMC6669617 DOI: 10.3390/v11070620] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in many new regions in recent years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well as their host range, tropism, transmission routes and the risk posed by these viruses to human health.
Collapse
|
9
|
Dong J, Fan J, Wang Y, Zhang Q, Yang Y, Jia Y, Ming F, Zhang X, Yao R, Li S, Zhang L, Li R, Xu G. Development and evaluation of a C-ELISA for rapid detection of antibody to AIV- H7. Anal Biochem 2019; 572:52-57. [DOI: 10.1016/j.ab.2019.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 02/25/2019] [Indexed: 11/29/2022]
|
10
|
Ramey AM, DeLiberto TJ, Berhane Y, Swayne DE, Stallknecht DE. Lessons learned from research and surveillance directed at highly pathogenic influenza A viruses in wild birds inhabiting North America. Virology 2018; 518:55-63. [PMID: 29453059 DOI: 10.1016/j.virol.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 11/19/2022]
Abstract
Following detections of highly pathogenic (HP) influenza A viruses (IAVs) in wild birds inhabiting East Asia after the turn of the millennium, the intensity of sampling of wild birds for IAVs increased throughout much of North America. The objectives for many research and surveillance efforts were directed towards detecting Eurasian origin HP IAVs and understanding the potential of such viruses to be maintained and dispersed by wild birds. In this review, we highlight five important lessons learned from research and surveillance directed at HP IAVs in wild birds inhabiting North America: (1) Wild birds may disperse IAVs between North America and adjacent regions via migration, (2) HP IAVs can be introduced to wild birds in North America, (3) HP IAVs may cross the wild bird-poultry interface in North America, (4) The probability of encountering and detecting a specific virus may be low, and (5) Population immunity of wild birds may influence HP IAV outbreaks in North America. We review empirical support derived from research and surveillance efforts for each lesson learned and, furthermore, identify implications for future surveillance efforts, biosecurity, and population health. We conclude our review by identifying five additional areas in which we think future mechanistic research relative to IAVs in wild birds in North America are likely to lead to other important lessons learned in the years ahead.
Collapse
Affiliation(s)
- Andrew M Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Thomas J DeLiberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO 80521, USA
| | - Yohannes Berhane
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada R3E 3M4; Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Evaluation of ELISA and haemagglutination inhibition as screening tests in serosurveillance for H5/H7 avian influenza in commercial chicken flocks. Epidemiol Infect 2018; 146:306-313. [PMID: 29325601 PMCID: PMC9134519 DOI: 10.1017/s0950268817002898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Avian influenza virus (AIV) subtypes H5 and H7 can infect poultry causing low pathogenicity (LP) AI, but these LPAIVs may mutate to highly pathogenic AIV in chickens or turkeys causing high mortality, hence H5/H7 subtypes demand statutory intervention. Serological surveillance in the European Union provides evidence of H5/H7 AIV exposure in apparently healthy poultry. To identify the most sensitive screening method as the first step in an algorithm to provide evidence of H5/H7 AIV infection, the standard approach of H5/H7 antibody testing by haemagglutination inhibition (HI) was compared with an ELISA, which detects antibodies to all subtypes. Sera (n = 1055) from 74 commercial chicken flocks were tested by both methods. A Bayesian approach served to estimate diagnostic test sensitivities and specificities, without assuming any ‘gold standard’. Sensitivity and specificity of the ELISA was 97% and 99.8%, and for H5/H7 HI 43% and 99.8%, respectively, although H5/H7 HI sensitivity varied considerably between infected flocks. ELISA therefore provides superior sensitivity for the screening of chicken flocks as part of an algorithm, which subsequently utilises H5/H7 HI to identify infection by these two subtypes. With the calculated sensitivity and specificity, testing nine sera per flock is sufficient to detect a flock seroprevalence of 30% with 95% probability.
Collapse
|
12
|
Sjurseth SK, Gjerset B, Bragstad K, Hungnes O, Wisløff H, Er C, Valheim M, Løtvedt SM, David B, Hanssen SA, Hauge SH, Hofshagen M. Human to animal transmission of influenza A(H1N1)pdm09 in a turkey breeder flock in Norway. Infect Ecol Epidemiol 2017; 7:1416249. [PMID: 29296243 PMCID: PMC5738641 DOI: 10.1080/20008686.2017.1416249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/07/2017] [Indexed: 11/09/2022] Open
Abstract
Introduction: Routine surveillance samples disclosed seropositivity to influenza A virus (IAV) in a Norwegian turkey breeder flock. Simultaneous reports of influenza-like symptoms in farm workers and a laboratory confirmed influenza A(H1N1)pdm09 (H1N1pdm09) infection in one person led to the suspicion of a H1N1pdm09 infection in the turkeys. Animals and methods: H1N1pdm09 infection was confirmed by a positive haemaggutinin inhibition test using H1N1pdm09 antigens, and detection of H1N1pdm09 nucleic acid in reproductive organs of turkey hens. The flock showed no clinical signs except for a temporary drop in egg production. Previous reports of H1N1pdm09 infection in turkeys suggested human-to-turkey transmission (anthroponosis) during artificial insemination. Results and discussion: The flock remained seropositive to IAV and the homologous H1N1pdm09 antigen throughout the following 106 days, with decreasing seroprevalence over time. IAV was not detected in fertilised eggs or in turkey poults from the farm, however, maternally derived antibodies against H1N1pdm09 were found in egg yolks and in day-old poults. Genetic analyses of haemagglutinin gene sequences from one of the infected farm workers and turkeys revealed a close phylogenetic relationship, and confirmed human-to-turkey virus transmission.
Collapse
Affiliation(s)
- Siri Kulberg Sjurseth
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Britt Gjerset
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| | - Karoline Bragstad
- Department of Influenza, Norwegian Institute of Public Health, Oslo, Norway
| | - Olav Hungnes
- Department of Influenza, Norwegian Institute of Public Health, Oslo, Norway
| | - Helene Wisløff
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| | - Chiek Er
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| | - Mette Valheim
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| | - Siri M Løtvedt
- Plant and Animal Department, Norwegian Food Safety Authority, Brumunddal, Norway
| | | | | | - Siri H Hauge
- Department of Influenza, Norwegian Institute of Public Health, Oslo, Norway
| | - Merete Hofshagen
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
13
|
In Vitro Neutralization Is Not Predictive of Prophylactic Efficacy of Broadly Neutralizing Monoclonal Antibodies CR6261 and CR9114 against Lethal H2 Influenza Virus Challenge in Mice. J Virol 2017; 91:JVI.01603-17. [PMID: 29046448 DOI: 10.1128/jvi.01603-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses of the H1N1, H2N2, and H3N2 subtypes have caused previous pandemics. H2 influenza viruses represent a pandemic threat due to continued circulation in wild birds and limited immunity in the human population. In the event of a pandemic, antiviral agents are the mainstay for treatment, but broadly neutralizing antibodies (bNAbs) may be a viable alternative for short-term prophylaxis or treatment. The hemagglutinin stem binding bNAbs CR6261 and CR9114 have been shown to protect mice from severe disease following challenge with H1N1 and H5N1 and with H1N1, H3N2, and influenza B viruses, respectively. Early studies with CR6261 and CR9114 showed weak in vitro activity against human H2 influenza viruses, but the in vivo efficacy against H2 viruses is unknown. Therefore, we evaluated these antibodies against human- and animal-origin H2 viruses A/Ann Arbor/6/1960 (H2N2) (AA60) and A/swine/MO/4296424/06 (H2N3) (Sw06). In vitro, CR6261 neutralized both H2 viruses, while CR9114 only neutralized Sw06. To evaluate prophylactic efficacy, mice were given CR6261 or CR9114 and intranasally challenged 24 h later with lethal doses of AA60 or Sw06. Both antibodies reduced mortality, weight loss, airway inflammation, and pulmonary viral load. Using engineered bNAb variants, antibody-mediated cell cytotoxicity reporter assays, and Fcγ receptor-deficient (Fcer1g-/-) mice, we show that the in vivo efficacy of CR9114 against AA60 is mediated by Fcγ receptor-dependent mechanisms. Collectively, these findings demonstrate the in vivo efficacy of CR6261 and CR9114 against H2 viruses and emphasize the need for in vivo evaluation of bNAbs.IMPORTANCE bNAbs represent a strategy to prevent or treat infection by a wide range of influenza viruses. The evaluation of these antibodies against H2 viruses is important because H2 viruses caused a pandemic in 1957 and could cross into humans again. We demonstrate that CR6261 and CR9114 are effective against infection with H2 viruses of both human and animal origin in mice, despite the finding that CR9114 did not display in vitro neutralizing activity against the human H2 virus. These findings emphasize the importance of in vivo evaluation and testing of bNAbs.
Collapse
|
14
|
Berhane Y, Ojkic D, Pople N, Lung O, Pasick J. Reoccurrence of Suspected Human-to-Turkey Transmission of H1N1 Pandemic 2009 Virus in Turkey Breeder Flocks in Ontario and Manitoba, 2016. Transbound Emerg Dis 2016; 63:590-594. [PMID: 27616070 DOI: 10.1111/tbed.12566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 11/30/2022]
Abstract
Soon after the emergence of 2009 pandemic H1N1, the first outbreaks in breeder turkey operations were reported that implicated human-to-turkey transmission. In the spring of 2016, the reoccurrence of 2009 pandemic H1N1 lineage viruses infecting breeder turkey flocks in Ontario and Manitoba, Canada, also implicated human-to-turkey transmission. In addition to raising concerns over biosecurity and vaccine failures, these cases once again raise the issue of whether turkeys have the potential to act as a bridge species to generate novel influenza A virus reassortants with public health implications.
Collapse
Affiliation(s)
- Y Berhane
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - D Ojkic
- Animal Health Laboratory, Laboratory Services, University of Guelph, Guelph, ON, Canada
| | - N Pople
- Manitoba Agriculture, Food & Rural Development, Veterinary Diagnostic Services, Winnipeg, MB, Canada
| | - O Lung
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - J Pasick
- Canadian Food Inspection Agency, Guelph, ON, Canada.
| |
Collapse
|
15
|
Guo X, Flores C, Munoz-Aguayo J, Halvorson DA, Lauer D, Cardona CJ. Historical and Recent Cases of H3 Influenza A Virus in Turkeys in Minnesota. Avian Dis 2016; 59:512-7. [PMID: 26629625 DOI: 10.1637/11166-051815-reg] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Subtype H3 influenza A viruses (IAVs) are abundant in wild waterfowl and also infect humans, pigs, horses, dogs, and seals. In Minnesota, turkeys are important and frequent hosts of IAV from wild waterfowl and from pigs. Over 48 yr of surveillance history, 11 hemagglutinin (HA) subtypes of IAV from waterfowl, as well as two HA subtypes from swine, H1 and H3, have infected turkeys in Minnesota. However, there have only been two cases of avian-origin H3 IAV infections in turkeys during this 48-yr period. The first avian-origin IAV infection was detected in seven breeder and commercial flocks in 1982 and was caused by a mixed H3H4/N2 infection. In 2013, an avian-origin H3H9/N2 outbreak occurred in five flocks of turkeys between 15 and 56 wk of age. Phylogenetic analysis of the HA gene segment from the 2013 isolate indicated that the virus was related to a wild bird lineage H3 IAV. A meta-analysis of historical H3 infections in domesticated poultry demonstrated that avian-origin H3 infections have occurred in chickens and ducks but were rare in turkeys. H9N2 virus was subsequently selected during the egg cultivation of the 2013 H3H9/N2 mixed virus. A growth curve analysis suggested that passage 3 of A/Turkey/Minnesota/13-20710-2/2013(mixed) had a slightly lower replication rate than a similar avian-origin H3N2. The challenge studies indicated that the infectious dose of avian-origin H3N2 for turkey poults was greater than 10(6) 50% egg infective dose. Considered together, these data suggest that avian-origin H3 introductions to turkeys are rare events.
Collapse
Affiliation(s)
- Xi Guo
- A College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108
| | - Cristian Flores
- B Mid-Central Research and Outreach Center, Willmar, MN 56201
| | | | - David A Halvorson
- A College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108
| | - Dale Lauer
- C Minnesota Poultry Testing Laboratory, Minnesota Board of Animal Health, Willmar, MN 56201
| | - Carol J Cardona
- A College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108
| |
Collapse
|
16
|
Muzyka D, Pantin-Jackwood M, Starick E, Fereidouni S. Evidence for genetic variation of Eurasian avian influenza viruses of subtype H15: the first report of an H15N7 virus. Arch Virol 2015; 161:605-12. [PMID: 26650037 DOI: 10.1007/s00705-015-2629-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
Since the first detection of H15 avian influenza viruses (AIVs) in Australia in 1979, only seven H15 strains have been reported. A new H15 AIV was detected in Ukraine in 2010, carrying the unique HA-NA subtype combination H15N7. This virus replicated efficiently in chicken eggs, and antisera against it reacted strongly with the homologous antigen, but with lower titers when using the reference Australian antigen. The amino acid motifs of the HA cleavage site and receptor-binding site were different from those in the Australian viruses. The new virus, together with an H15 virus from Siberia from 2008, constitutes a new clade of H15 AIV isolates.
Collapse
Affiliation(s)
- Denys Muzyka
- National Scientific Center, Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, GA, USA
| | - Elke Starick
- Friedrich Loeffler Institute, Greifswald, Insel Riems, Germany
| | - Sasan Fereidouni
- Friedrich Loeffler Institute, Greifswald, Insel Riems, Germany. .,WESCA Wildlife Network, Greifswald, Germany. .,University of Veterinary Medicine Vienna, Research Institute of Wildlife Ecology, Vienna, Austria.
| |
Collapse
|
17
|
Sun H, Kong W, Liu L, Qu Y, Li C, Shen Y, Zhou Y, Wang Y, Wu S, Pu J, Liu J, Sun Y. The infection of turkeys and chickens by reassortants derived from pandemic H1N1 2009 and avian H9N2 influenza viruses. Sci Rep 2015; 5:10130. [PMID: 26030097 PMCID: PMC4603695 DOI: 10.1038/srep10130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/25/2015] [Indexed: 11/30/2022] Open
Abstract
Outbreaks of pandemic H1N1 2009 (pH1N1) in turkeys have been reported in several countries. Co-infection of pH1N1 and avian H9N2 influenza viruses in turkeys provide the opportunity for their reassortment, and novel reassortant viruses might further be transmitted to other avian species. However, virulence and transmission of those reassortant viruses in poultry remain unclear. In the present study, we generated 16 single-gene reassortant influenza viruses including eight reassortants on the pH1N1 background by individual replacement with a corresponding gene segment from H9N2 and eight reassortants on the H9N2 background replaced individually with corresponding gene from pH1N1, and characterized reassortants viruses in turkeys and chickens. We found that the pH1N1 virus dramatically increased its infectivity and transmissibility in turkeys and chickens after introducing any gene (except for PB2) from H9N2 virus, and H9N2 virus acquired single gene (except for HA) of pH1N1 almost did not influence its replication and transmission in turkeys and chickens. Additionally, 13 reassortant viruses transmitted from turkeys to chickens. Our results indicate that turkeys and chickens are susceptible to pH1N1-H9N2 reassortant viruses, and mixing breeding of different avian species would facilitate the transmission of these reassortant viruses.
Collapse
Affiliation(s)
- Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Weili Kong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Litao Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yi Qu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Chong Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Ye Shen
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yu Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yu Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Sizhe Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Genetics, Receptor Binding, and Virulence in Mice of H10N8 Influenza Viruses Isolated from Ducks and Chickens in Live Poultry Markets in China. J Virol 2015; 89:6506-10. [PMID: 25855738 DOI: 10.1128/jvi.00017-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
We analyzed eight H10N8 viruses isolated from ducks and chickens in live poultry markets from 2009 to 2013 in China. These viruses showed distinct genetic diversity and formed five genotypes: the four duck isolates formed four different genotypes, whereas the four chicken viruses belong to a single genotype. The viruses bound to both human- and avian-type receptors, and four of the viruses caused 12.7% to 22.5% body weight loss in mice.
Collapse
|
19
|
Tan KX, Jacob SA, Chan KG, Lee LH. An overview of the characteristics of the novel avian influenza A H7N9 virus in humans. Front Microbiol 2015; 6:140. [PMID: 25798131 PMCID: PMC4350415 DOI: 10.3389/fmicb.2015.00140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/06/2015] [Indexed: 01/05/2023] Open
Abstract
The novel avian influenza A H7N9 virus which caused the first human infection in Shanghai, China; was reported on the 31st of March 2013 before spreading rapidly to other Chinese provinces and municipal cities. This is the first time the low pathogenic avian influenza A virus has caused human infections and deaths; with cases of severe respiratory disease with pneumonia being reported. There were 440 confirmed cases with 122 fatalities by 16 May 2014; with a fatality risk of ∼28%. The median age of patients was 61 years with a male-to-female ratio of 2.4:1. The main source of infection was identified as exposure to poultry and there is so far no definitive evidence of sustained person-to-person transmission. The neuraminidase inhibitors, namely oseltamivir, zanamivir, and peramivir; have shown good efficacy in the management of the novel H7N9 virus. Treatment is recommended for all hospitalized patients, and for confirmed and probable outpatient cases; and should ideally be initiated within 48 h of the onset of illness for the best outcome. Phylogenetic analysis found that the novel H7N9 virus is avian in origin and evolved from multiple reassortments of at least four origins. Indeed the novel H7N9 virus acquired human adaptation via mutations in its eight RNA gene segments. Enhanced surveillance and effective global control are essential to prevent pandemic outbreaks of the novel H7N9 virus.
Collapse
Affiliation(s)
- Kei-Xian Tan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Sabrina A. Jacob
- School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| |
Collapse
|
20
|
Spackman E, Pantin-Jackwood MJ. Practical aspects of vaccination of poultry against avian influenza virus. Vet J 2014; 202:408-15. [PMID: 25296849 DOI: 10.1016/j.tvjl.2014.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/13/2014] [Accepted: 09/16/2014] [Indexed: 12/27/2022]
Abstract
Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic AIV has become endemic in several regions of the world. Vaccination for low pathogenicity AIV is also becoming routine in regions where there is a high level of field challenge. In contrast, some countries will not use vaccination at all and some will only use it on an emergency basis during eradication efforts (i.e. stamping-out). There are pros and cons to each approach and, since every outbreak situation is different, no one method will work equally well in all situations. Numerous practical aspects must be considered when developing an AIV control program with vaccination as a component, such as: (1) the goals of vaccination must be defined; (2) the population to be vaccinated must be clearly identified; (3) there must be a plan to obtain and administer good quality vaccine in a timely manner and to achieve adequate coverage with the available resources; (4) risk factors for vaccine failure should be mitigated as much as possible; and, most importantly, (5) biosecurity must be maintained as much as possible, if not enhanced, during the vaccination period.
Collapse
Affiliation(s)
- Erica Spackman
- Southeast Poultry Research Laboratory, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), 934 College Station Road, Athens, Georgia 30605, USA.
| | - Mary J Pantin-Jackwood
- Southeast Poultry Research Laboratory, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), 934 College Station Road, Athens, Georgia 30605, USA
| |
Collapse
|
21
|
Fereidouni SR, Harder TC, Globig A, Starick E. Failure of productive infection of Mallards (Anas platyrhynchos) with H16 subtype of avian influenza viruses. Influenza Other Respir Viruses 2014; 8:613-6. [PMID: 25205059 PMCID: PMC4262275 DOI: 10.1111/irv.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/28/2022] Open
Abstract
Background Mallard ducks and other waterfowl represent the most important reservoirs of low pathogenic avian influenza viruses (LPAIV). In addition, mallards are the most abundant duck species in Eurasia that migrate over long distances. Despite extended wild bird monitoring studies over the past decade in many Eurasian countries and investigating hundreds of thousands of wild bird samples, no mallard duck was found to be positive for avian influenza virus of subtype H16 in faecal, cloacal or oropharyngeal samples. Just three cases of H16 infections in Anseriformes species were described worldwide. In contrast, H16 viruses have been repeatedly isolated from birds of the Laridae family. Objective Here, we tested the hypothesis that mallards are less permissive to infection with H16 viruses. Methods Groups of mallard ducks of different age were inoculated via the oculo-nasal-oral route with different infectious doses of an H16N3 AIV. Results The ducks did not show any clinical symptoms, and no virus shedding was evident from cloacal and respiratory routes after experimental infection as shown by negative RT-qPCR results. In addition, all serum samples taken on days 8, 21 and 24 post-inoculation were negative by competitive NP-ELISA. Conclusions This study provided evidence that mallards are resistant to infection with H16N3 LPAIV.
Collapse
|
22
|
Abdelwhab EM, Veits J, Mettenleiter TC. Prevalence and control of H7 avian influenza viruses in birds and humans. Epidemiol Infect 2014; 142:896-920. [PMID: 24423384 PMCID: PMC9151109 DOI: 10.1017/s0950268813003324] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/21/2013] [Accepted: 12/04/2013] [Indexed: 01/20/2023] Open
Abstract
The H7 subtype HA gene has been found in combination with all nine NA subtype genes. Most exhibit low pathogenicity and only rarely high pathogenicity in poultry (and humans). During the past few years infections of poultry and humans with H7 subtypes have increased markedly. This review summarizes the emergence of avian influenza virus H7 subtypes in birds and humans, and the possibilities of its control in poultry. All H7Nx combinations were reported from wild birds, the natural reservoir of the virus. Geographically, the most prevalent subtype is H7N7, which is endemic in wild birds in Europe and was frequently reported in domestic poultry, whereas subtype H7N3 is mostly isolated from the Americas. In humans, mild to fatal infections were caused by subtypes H7N2, H7N3, H7N7 and H7N9. While infections of humans have been associated mostly with exposure to domestic poultry, infections of poultry have been linked to wild birds or live-bird markets. Generally, depopulation of infected poultry was the main control tool; however, inactivated vaccines were also used. In contrast to recent cases caused by subtype H7N9, human infections were usually self-limiting and rarely required antiviral medication. Close genetic and antigenic relatedness of H7 viruses of different origins may be helpful in development of universal vaccines and diagnostics for both animals and humans. Due to the wide spread of H7 viruses and their zoonotic importance more research is required to better understand the epidemiology, pathobiology and virulence determinants of these viruses and to develop improved control tools.
Collapse
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| | - J Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| | - T C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| |
Collapse
|
23
|
Lopez-Martinez I, Balish A, Barrera-Badillo G, Jones J, Nuñez-García TE, Jang Y, Aparicio-Antonio R, Azziz-Baumgartner E, Belser JA, Ramirez-Gonzalez JE, Pedersen JC, Ortiz-Alcantara J, Gonzalez-Duran E, Shu B, Emery SL, Poh MK, Reyes-Teran G, Vazquez-Perez JA, Avila-Rios S, Uyeki T, Lindstrom S, Villanueva J, Tokars J, Ruiz-Matus C, Gonzalez-Roldan JF, Schmitt B, Klimov A, Cox N, Kuri-Morales P, Davis CT, Diaz-Quiñonez JA. Highly pathogenic avian influenza A(H7N3) virus in poultry workers, Mexico, 2012. Emerg Infect Dis 2014; 19:1531-4. [PMID: 23965808 PMCID: PMC3810917 DOI: 10.3201/eid1909.130087] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We identified 2 poultry workers with conjunctivitis caused by highly pathogenic avian influenza A(H7N3) viruses in Jalisco, Mexico. Genomic and antigenic analyses of 1 isolate indicated relatedness to poultry and wild bird subtype H7N3 viruses from North America. This isolate had a multibasic cleavage site that might have been derived from recombination with host rRNA.
Collapse
|
24
|
Wiwanitkit V. H7N9 influenza and its impact on pregnancy. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2014. [PMCID: PMC7149006 DOI: 10.1016/s2305-0500(14)60008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This short article specifically focuses on the new emerging H7N9 influenza which has just been observed since early 2013. As a new disease, it is lack for the knowledge on the new H7N9 influenza. Here, the author will discuss on the impact of emerging H7N9 influenza on pregnancy.
Collapse
|
25
|
Pinette MM, Rodriguez-Lecompte JC, Pasick J, Ojkic D, Leith M, Suderman M, Berhane Y. Development of a duplex Fluorescent Microsphere Immunoassay (FMIA) for the detection of antibody responses to influenza A and newcastle disease viruses. J Immunol Methods 2014; 405:167-77. [DOI: 10.1016/j.jim.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/26/2022]
|
26
|
Abstract
Reassortment is the process by which influenza viruses swap gene segments. This genetic exchange is possible due to the segmented nature of the viral genome and occurs when two differing influenza viruses co-infect a cell. The viral diversity generated through reassortment is vast and plays an important role in the evolution of influenza viruses. Herein we review recent insights into the contribution of reassortment to the natural history and epidemiology of influenza A viruses, gained through population scale phylogenic analyses. We describe methods currently used to study reassortment in the laboratory, and we summarize recent progress made using these experimental approaches to further our understanding of influenza virus reassortment and the contexts in which it occurs.
Collapse
Affiliation(s)
- John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
27
|
Belser JA, Tumpey TM. Mammalian models for the study of H7 virus pathogenesis and transmission. Curr Top Microbiol Immunol 2014; 385:275-305. [PMID: 24996862 DOI: 10.1007/82_2014_383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, MS G-16, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30333, USA
| | | |
Collapse
|
28
|
H7N9 influenza-the laboratory presentations: a letter to editor. Asian Pac J Trop Biomed 2013; 3:584-5. [PMID: 23835531 PMCID: PMC3695587 DOI: 10.1016/s2221-1691(13)60118-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022] Open
|
29
|
Abstract
Influenza virus infection is a common respiratory pathogen. Emerging of new atypical influenza is usually a big public health threat. H7N9 bird flu is the newest atypical influenza virus infection that has just been reported since early 2013. The emerging of this new disease occurred in China and becomes the present focus for possible worldwide pandemic. In this specific article, the author will discus and describe on epidemiology, symptomatology, pathology, diagnosis, treatment, and prevention of this new bird flu. The literature researching by PubMed and Google is used for data gathering in this collective review.
Collapse
|
30
|
Chen E, Wang F, Lv H, Zhang Y, Ding H, Liu S, Cai J, Xie L, Xu X, Chai C, Mao H, Sun J, Lin J, Yu Z, Li L, Chen Z, Xia S. The first avian influenza A (H7N9) viral infection in humans in Zhejiang Province, China: a death report. Front Med 2013; 7:333-44. [PMID: 23757033 PMCID: PMC7089029 DOI: 10.1007/s11684-013-0275-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/20/2013] [Indexed: 11/12/2022]
Abstract
This study reports the first death caused by a novel avian influenza A (H7N9) virus in Zhejiang Province, China. The patient had chronic hepatitis B and history of exposure to poultry. The patient initially complained of diarrhea and influenza-like symptoms on March 7 and 14 respectively. The disease progressed to severe pneumonia, sustained hypoxia, and coagulation abnormalities. The patient died on March 27 because of respiratory failure, multiple organ failure, and disseminated intravascular coagulation without oseltamivir treatment. This H7N9 virus from Zhejiang is highly similar to isolates obtained from Shanghai, Jiangsu, Anhui, etc. Analysis of hemagglutinin, neuramidinase, and matrix genes indicated that the isolates share the same avian origin, have low virulence, and are sensitive to oseltamivir, but are resistant to adamantine. Only the isolate that caused the fatality exhibited substitution of Q226I in the HA gene, which indicates a potentially enhanced human affinity. The secondary transmission rate was 1.6% (2/125). Only two health workers presented with influenza-like symptoms, and they subsequently tested negative for H7N9 RNA. In conclusion, underlying disease, late diagnosis, and untimely antiviral treatment are possible high-risk factors for infections and death caused by the lowpathogenicity avian influenza A (H7N9). Person-to-person transmission of the H7N9 virus was not detected among close contacts, but such transmission should be investigated in the future. Expanding and enhancing surveillance will help in the early discovery and diagnosis of suspected cases, which will reduce the number of severe cases and deaths.
Collapse
Affiliation(s)
- Enfu Chen
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Fenjuan Wang
- Department of Infectious Diseases, Xiaoshan District Center for Disease Control and Prevention, Hangzhou, 311201 China
| | - Huakun Lv
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Yanjun Zhang
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Hua Ding
- Department of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021 China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Jian Cai
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Li Xie
- Department of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021 China
| | - Xiaoping Xu
- Department of Infectious Diseases, Jiande Center for Disease Control and Prevention, Hangzhou, 311600 China
| | - Chengliang Chai
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Haiyan Mao
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Jimin Sun
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Junfen Lin
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Zhao Yu
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Lianhong Li
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Zhiping Chen
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| | - Shichang Xia
- Department of Infectious Diseases, Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051 China
| |
Collapse
|
31
|
Wang Q, Zhang Z, Shi Y, Jiang Y. Emerging H7N9 Influenza A (Novel Reassortant Avian-Origin) Pneumonia: Radiologic Findings. Radiology 2013; 268:882-9. [DOI: 10.1148/radiol.13130988] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
To KKW, Chan JFW, Chen H, Li L, Yuen KY. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities. THE LANCET. INFECTIOUS DISEASES 2013; 13:809-21. [PMID: 23969217 PMCID: PMC7158959 DOI: 10.1016/s1473-3099(13)70167-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear.
Collapse
Affiliation(s)
- Kelvin KW To
- State Key Laboratory for Emerging Infectious Diseases, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper FW Chan
- State Key Laboratory for Emerging Infectious Diseases, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
33
|
Epidemiological, clinical and viral characteristics of fatal cases of human avian influenza A (H7N9) virus in Zhejiang Province, China. J Infect 2013; 67:595-605. [PMID: 23958687 DOI: 10.1016/j.jinf.2013.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/25/2013] [Accepted: 08/11/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND The high mortality of avian influenza H7N9 in humans is a cause of great concern in China. METHODS We compared epidemiological, clinical and viral features of H7N9 influenza of 10 fatal cases and 30 survivors. RESULTS Increasing age (p = 0.021), smoking (p = 0.04), underlying medical background (p = 0.05) and chronic drug use (p = 0.042) had a strong relationship with death due to H7N9 infection. Serological inflammatory markers were higher in fatal cases compared to survivors. Acute respiratory distress syndrome (100%), respiratory failure (100%), co-infection with bacteria (60%), shock (50%) and congestive heart failure (50%) were the most common complications observed in fatal cases. The median time from onset of symptoms to antiviral therapy was 4.6 and 7.4 days in those who survived and those who died, respectively (p = 0.04). Viral HA, NA and MP nucleotide sequences of isolates from both study groups exhibited high molecular genetic homology. CONCLUSIONS Age along with a history of smoking, chronic lung disease, immuno-suppressive disorders, chronic drug use and delayed Oseltamivir treatment are risk factors which might contribute to fatal outcome in human H7N9 infection.
Collapse
|
34
|
Pathogenesis, transmissibility, and ocular tropism of a highly pathogenic avian influenza A (H7N3) virus associated with human conjunctivitis. J Virol 2013; 87:5746-54. [PMID: 23487452 DOI: 10.1128/jvi.00154-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
H7 subtype influenza A viruses, responsible for numerous outbreaks in land-based poultry in Europe and the Americas, have caused over 100 cases of confirmed or presumed human infection over the last decade. The emergence of a highly pathogenic avian influenza H7N3 virus in poultry throughout the state of Jalisco, Mexico, resulting in two cases of human infection, prompted us to examine the virulence of this virus (A/Mexico/InDRE7218/2012 [MX/7218]) and related avian H7 subtype viruses in mouse and ferret models. Several high- and low-pathogenicity H7N3 and H7N9 viruses replicated efficiently in the respiratory tract of mice without prior adaptation following intranasal inoculation, but only MX/7218 virus caused lethal disease in this species. H7N3 and H7N9 viruses were also detected in the mouse eye following ocular inoculation. Virus from both H7N3 and H7N9 subtypes replicated efficiently in the upper and lower respiratory tracts of ferrets; however, only MX/7218 virus infection caused clinical signs and symptoms and was capable of transmission to naive ferrets in a direct-contact model. Similar to other highly pathogenic H7 viruses, MX/7218 replicated to high titers in human bronchial epithelial cells, yet it downregulated numerous genes related to NF-κB-mediated signaling transduction. These findings indicate that the recently isolated North American lineage H7 subtype virus associated with human conjunctivitis is capable of causing severe disease in mice and spreading to naive-contact ferrets, while concurrently retaining the ability to replicate within ocular tissue and allowing the eye to serve as a portal of entry.
Collapse
|