1
|
Zong X, Zhu L, Wang Y, Wang J, Gu Y, Liu Q. Cohort Studies and Multi-omics Approaches to Low-Dose Ionizing Radiation-Induced Cardiovascular Disease: A Comprehensive Review. Cardiovasc Toxicol 2025; 25:148-165. [PMID: 39538046 DOI: 10.1007/s12012-024-09943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The effect of low-dose ionizing radiation exposure on the risk of cardiovascular disease (CVD) represents a significant concern in the field of radiation protection. The prevailing approach to mitigating the adverse effects of low-dose or low-dose-rate radiation does not currently incorporate the potential risk of CVD, despite the possibility that such risk may be a substantial contributor to overall health hazards. Current evidence suggests a potential association between radiation exposure and CVD; however, the overall findings remain inconclusive. This is particularly due to the uncertainty surrounding the influence of significant non-radiation risk factors on the associations reported in epidemiological studies. It is difficult to discern the underlying connection in observational epidemiology when there is substantial variation in baseline risk factors. The paucity of epidemiological research in this domain is being partially offset by the advancement of multi-omics approaches. These methods assist in identifying radiosensitive targets, comprehending underlying biological processes, and pinpointing biomarkers. This, in turn, fortifies the evidence gleaned from epidemiological studies. In this review, we delve into the body of epidemiological research pertaining to CVD induced by low-dose ionizing radiation and the application of multi-omics techniques. The integration of these two methodologies holds the promise of identifying specific molecules or biological pathways that can be employed to validate endpoints related to radiation risk assessment.
Collapse
Affiliation(s)
- Xumin Zong
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Lin Zhu
- School of Basic Medical Sciences, Weifang Medical University, Shandong, 261000, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
2
|
Jahng JWS, Little MP, No HJ, Loo BW, Wu JC. Consequences of ionizing radiation exposure to the cardiovascular system. Nat Rev Cardiol 2024; 21:880-898. [PMID: 38987578 PMCID: PMC12037960 DOI: 10.1038/s41569-024-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Ionizing radiation is widely used in various industrial and medical applications, resulting in increased exposure for certain populations. Lessons from radiation accidents and occupational exposure have highlighted the cardiovascular and cerebrovascular risks associated with radiation exposure. In addition, radiation therapy for cancer has been linked to numerous cardiovascular complications, depending on the distribution of the dose by volume in the heart and other relevant target tissues in the circulatory system. The manifestation of symptoms is influenced by numerous factors, and distinct cardiac complications have previously been observed in different groups of patients with cancer undergoing radiation therapy. However, in contemporary radiation therapy, advances in treatment planning with conformal radiation delivery have markedly reduced the mean heart dose and volume of exposure, and these variables are therefore no longer sole surrogates for predicting the risk of specific types of heart disease. Nevertheless, certain cardiac substructures remain vulnerable to radiation exposure, necessitating close monitoring. In this Review, we provide a comprehensive overview of the consequences of radiation exposure on the cardiovascular system, drawing insights from various cohorts exposed to uniform, whole-body radiation or to partial-body irradiation, and identify potential risk modifiers in the development of radiation-associated cardiovascular disease.
Collapse
Affiliation(s)
- James W S Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, UK
| | - Hyunsoo J No
- Department of Radiation Oncology, Southern California Permanente Medical Group, Los Angeles, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
- Greenstone Biosciences, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Little MP, Boerma M, Bernier MO, Azizova TV, Zablotska LB, Einstein AJ, Hamada N. Effects of confounding and effect-modifying lifestyle, environmental and medical factors on risk of radiation-associated cardiovascular disease. BMC Public Health 2024; 24:1601. [PMID: 38879521 PMCID: PMC11179258 DOI: 10.1186/s12889-024-18701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/23/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide. It has been known for some considerable time that radiation is associated with excess risk of CVD. A recent systematic review of radiation and CVD highlighted substantial inter-study heterogeneity in effect, possibly a result of confounding or modifications of radiation effect by non-radiation factors, in particular by the major lifestyle/environmental/medical risk factors and latent period. METHODS We assessed effects of confounding by lifestyle/environmental/medical risk factors on radiation-associated CVD and investigated evidence for modifying effects of these variables on CVD radiation dose-response, using data assembled for a recent systematic review. RESULTS There are 43 epidemiologic studies which are informative on effects of adjustment for confounding or risk modifying factors on radiation-associated CVD. Of these 22 were studies of groups exposed to substantial doses of medical radiation for therapy or diagnosis. The remaining 21 studies were of groups exposed at much lower levels of dose and/or dose rate. Only four studies suggest substantial effects of adjustment for lifestyle/environmental/medical risk factors on radiation risk of CVD; however, there were also substantial uncertainties in the estimates in all of these studies. There are fewer suggestions of effects that modify the radiation dose response; only two studies, both at lower levels of dose, report the most serious level of modifying effect. CONCLUSIONS There are still large uncertainties about confounding factors or lifestyle/environmental/medical variables that may influence radiation-associated CVD, although indications are that there are not many studies in which there are substantial confounding effects of these risk factors.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Room 7E546, 9609 Medical Center Drive MSC 9778, Bethesda, MD, 20892-9778, USA.
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK.
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marie-Odile Bernier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay Aux Roses, France
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Chelyabinsk Region, Ozyorskoe Shosse 19, Ozyorsk, 456780, Russia
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, 550 16th St 2nd floor, San Francisco, CA, 94143, USA
| | - Andrew J Einstein
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| |
Collapse
|
5
|
Lee SH, Son Y, Choi KJ, Lee CG, Lee HJ. Distinguish response of low-dose radiation with different dose-rate on gene expression of human coronary artery endothelial cells: a bioinformatic study based on transcriptomic sequencing. Int J Radiat Biol 2024; 100:756-766. [PMID: 38489594 DOI: 10.1080/09553002.2024.2324470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE People are exposed to low-dose radiation in medical diagnosis, occupational, or life circumstances, but the effect of low-dose radiation on human health is still controversial. The biological effects of radiation below 100 mGy are still unproven. In this study, we observed the effects of low-dose radiation (100 mGy) on gene expression in human coronary artery endothelial cells (HCAECs) and its effect on molecular signaling. MATERIALS AND METHODS HCAECs were exposed to 100 mGy ionizing radiation at 6 mGy/h (low-dose-rate) or 288 mGy/h (high-dose-rate). After 72 h, total RNA was extracted from sham or irradiated cells for Quant-Seq 3'mRNA-Seq, and bioinformatic analyses were performed using Metascape. Gene profiling was validated using qPCR. RESULTS Compared to the non-irradiated control group, 100 mGy of ionizing radiation at 6 mGy/h altered the expression of 194 genes involved in signaling pathways related to heart contraction, blood circulation, and cardiac myofibril assembly differentially. However, 100 mGy at 288 mGy/h altered expression of 450 genes involved in cell cycle-related signaling pathways, including cell division, nuclear division, and mitosis differentially. Additionally, gene signatures responding to low-dose radiation, including radiation dose-specific gene profiles (HIST1H2AI, RAVER1, and POTEI) and dose-rate-specific gene profiles (MYL2 for the low-dose-rate and DHRS9 and CA14 for the high-dose-rate) were also identified. CONCLUSIONS We demonstrated that 100 mGy low-dose radiation could alter gene expression and molecular signaling pathways at the low-dose-rate and the high-dose-rate differently. Our findings provide evidence for further research on the potential impact of low-dose radiation on cardiovascular function.
Collapse
Affiliation(s)
- Soo-Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Yeonghoon Son
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Kyu Jin Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul, Republic of Korea
| |
Collapse
|
6
|
Martin CJ, Barnard M, de Vocht F. Evaluation of risks of cardiovascular disease from radiation exposure linked to computed tomography scans in the UK. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:011513. [PMID: 38422514 DOI: 10.1088/1361-6498/ad2ebd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Epidemiological studies of patient populations have shown that high doses of radiation increase risks of cardiovascular disease (CVD). Results from a recent meta-analysis of 93 epidemiological studies covering a wide range of doses provided evidence of a causal association between radiation exposure and CVD, and indicated excess relative risk per Gy for maximum dose below 500 mGy or delivered at low dose rates. These doses cover the range of organ doses expected from multiple diagnostic computed tomography (CT) scans. Dose-effect factors for the excess absolute risk of mortality from CVD following radiation exposure were derived from the meta-analysis. The present study uses these factors to estimate excess risks of mortality for various types of CVD, including cerebrovascular disease (CeVD), from CT scans of the body and head, assuming that the meta-analytic factors were accurate and represented a causal relationship. Estimates are based on cumulative doses to the heart and brain from CT scans performed on 105 574 patients on 12 CT scanners over a period of 5½ years. The results suggest that the excess number of deaths from CeVD could be 7 or 26 per 100 000 patients depending whether threshold brain doses of 200 mGy or 50 mGy, respectively are assumed. These results could have implications for head CT scans. However, the results rely on the validity of risk factors derived in the meta-analysis informing this assessment and which include significant uncertainties. Further incidence studies should provide better information on risk factors and dose thresholds, particularly for CeVD following head CT scans.
Collapse
Affiliation(s)
- Colin J Martin
- Department of Clinical Physics and Bioengineering, University of Glasgow, Glasgow, United Kingdom
| | - Michael Barnard
- Department of Radiation Physics and Protection, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Frank de Vocht
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- NIHR Applied Research Collaboration West (ARC West), Bristol, United Kingdom
| |
Collapse
|
7
|
Peters CE, Quinn EK, Rodriguez-Villamizar LA, MacDonald H, Villeneuve PJ. Exposure to low-dose radiation in occupational settings and ischaemic heart disease: a systematic review and meta-analysis. Occup Environ Med 2023; 80:706-714. [PMID: 37857488 DOI: 10.1136/oemed-2023-108865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Ionising radiation is a human carcinogen, but the evidence is less clear that exposure to low-dose ionising radiation (LDIR) increases the risk of adverse cardiovascular outcomes. We synthesised the literature of chronic occupational exposure to LDIR and cardiovascular disease, particularly for ischaemic heart disease (IHD).The literature search was conducted using three databases including studies published between 1990 and 2022. A quality assessment of the studies was completed using the Office of Health and Assessment and Translation Risk of Bias Rating Tool. We conducted meta-analyses for IHD mortality using random effects models using measures of excess relative risk per sievert (ERR/Sv) obtained from internal cohort comparisons, as well as with standardised mortality ratios (SMRs) from external cohort comparisons.We identified 2189 articles, and of these, 26 provided data on IHD and were retained. Most studies were classified as having a 'moderate' level of risk of bias. Fourteen and 10 studies reporting external radiation doses were included in meta-analyses using SMR and ERR/Sv, respectively. The meta-summary SMR was 0.81 (95% CI 0.74 to 0.89) with evidence of reduced risk but high heterogeneity across studies. For internal cohort measures, the summary ERR/Sv for a lagged exposure of 10 years was 0.10 (95% CI 0.01 to 0.20) with low heterogeneity. The subgroup analysis by lagged exposure time showed the strongest association were for the 15 and 20 years lag.Our findings suggest that occupational exposure to LDIR increases the risk IHD mortality and highlight the relevance of internal cohort comparisons.
Collapse
Affiliation(s)
- Cheryl E Peters
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Population and Public Health, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- Prevention, Screening and Hereditary Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Emma Kathleen Quinn
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Andrea Rodriguez-Villamizar
- Department of Public Health, School of Medicine, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
- Deparment of Neurosciences, Carleton University, Ottawa, Ontario, Canada
| | | | - Paul J Villeneuve
- Deparment of Neurosciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Little MP, Azizova TV, Richardson DB, Tapio S, Bernier MO, Kreuzer M, Cucinotta FA, Bazyka D, Chumak V, Ivanov VK, Veiga LHS, Livinski A, Abalo K, Zablotska LB, Einstein AJ, Hamada N. Ionising radiation and cardiovascular disease: systematic review and meta-analysis. BMJ 2023; 380:e072924. [PMID: 36889791 PMCID: PMC10535030 DOI: 10.1136/bmj-2022-072924] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE To systematically review and perform a meta-analysis of radiation associated risks of cardiovascular disease in all groups exposed to radiation with individual radiation dose estimates. DESIGN Systematic review and meta-analysis. MAIN OUTCOME MEASURES Excess relative risk per unit dose (Gy), estimated by restricted maximum likelihood methods. DATA SOURCES PubMed and Medline, Embase, Scopus, Web of Science Core collection databases. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Databases were searched on 6 October 2022, with no limits on date of publication or language. Animal studies and studies without an abstract were excluded. RESULTS The meta-analysis yielded 93 relevant studies. Relative risk per Gy increased for all cardiovascular disease (excess relative risk per Gy of 0.11 (95% confidence interval 0.08 to 0.14)) and for the four major subtypes of cardiovascular disease (ischaemic heart disease, other heart disease, cerebrovascular disease, all other cardiovascular disease). However, interstudy heterogeneity was noted (P<0.05 for all endpoints except for other heart disease), possibly resulting from interstudy variation in unmeasured confounders or effect modifiers, which is markedly reduced if attention is restricted to higher quality studies or those at moderate doses (<0.5 Gy) or low dose rates (<5 mGy/h). For ischaemic heart disease and all cardiovascular disease, risks were larger per unit dose for lower dose (inverse dose effect) and for fractionated exposures (inverse dose fractionation effect). Population based excess absolute risks are estimated for a number of national populations (Canada, England and Wales, France, Germany, Japan, USA) and range from 2.33% per Gy (95% confidence interval 1.69% to 2.98%) for England and Wales to 3.66% per Gy (2.65% to 4.68%) for Germany, largely reflecting the underlying rates of cardiovascular disease mortality in these populations. Estimated risk of mortality from cardiovascular disease are generally dominated by cerebrovascular disease (around 0.94-1.26% per Gy), with the next largest contribution from ischaemic heart disease (around 0.30-1.20% per Gy). CONCLUSIONS Results provide evidence supporting a causal association between radiation exposure and cardiovascular disease at high dose, and to a lesser extent at low dose, with some indications of differences in risk between acute and chronic exposures, which require further investigation. The observed heterogeneity complicates a causal interpretation of these findings, although this heterogeneity is much reduced if only higher quality studies or those at moderate doses or low dose rates are considered. Studies are needed to assess in more detail modifications of radiation effect by lifestyle and medical risk factors. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020202036.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - David B Richardson
- Department of Environmental and Occupational Health, Irvine Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Soile Tapio
- Technische Universität München, Munich, Germany
| | - Marie-Odile Bernier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | | | - Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Vadim Chumak
- National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Victor K Ivanov
- Medical Radiological Research Center of Russian Academy of Medical Sciences, Obninsk, Russia
| | - Lene H S Veiga
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Alicia Livinski
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - Kossi Abalo
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Einstein
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
9
|
Schöllnberger H, Dauer LT, Wakeford R, Constanzo J, Golden A. Summary of Radiation Research Society Online 67th Annual Meeting, Symposium on "Radiation and Circulatory Effects". Int J Radiat Biol 2023; 99:702-711. [PMID: 35930470 DOI: 10.1080/09553002.2022.2110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE This article summarizes a number of presentations from a session on "Radiation and Circulatory Effects" held during the Radiation Research Society Online 67th Annual Meeting, October 3-6 2021. MATERIALS AND METHODS Different epidemiological cohorts were analyzed with various statistical means common in epidemiology. The cohorts included the one from the U.S. Million Person Study and the Canadian Fluoroscopy Cohort Study. In addition, one of the contributions in our article relies on results from analyses of the Japanese atomic bomb survivors, Russian emergency and recovery workers and cohorts of nuclear workers. The Canadian Fluoroscopy Cohort Study data were analyzed with a larger series of linear and nonlinear dose-response models in addition to the linear no-threshold (LNT) model. RESULTS AND CONCLUSIONS The talks in this symposium showed that low/moderate acute doses at low/moderate dose rates can be associated with an increased risk of CVD, although some of the epidemiological results for occupational cohorts are equivocal. The usually only limited availability of information on well-known risk factors for circulatory disease (e.g. smoking, obesity, hypertension, diabetes, physical activity) is an important limiting factor that may bias any observed association between radiation exposure and detrimental health outcome, especially at low doses. Additional follow-up and careful dosimetric and outcome assessment are necessary and more epidemiological and experimental research is required. Obtaining reliable information on other risk factors is especially important.
Collapse
Affiliation(s)
| | - Lawrence T Dauer
- Departments of Medical Physics and Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Ashley Golden
- ORISE Health Studies, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| |
Collapse
|
10
|
Miller KB, Mi KL, Nelson GA, Norman RB, Patel ZS, Huff JL. Ionizing radiation, cerebrovascular disease, and consequent dementia: A review and proposed framework relevant to space radiation exposure. Front Physiol 2022; 13:1008640. [PMID: 36388106 PMCID: PMC9640983 DOI: 10.3389/fphys.2022.1008640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 09/05/2023] Open
Abstract
Space exploration requires the characterization and management or mitigation of a variety of human health risks. Exposure to space radiation is one of the main health concerns because it has the potential to increase the risk of cancer, cardiovascular disease, and both acute and late neurodegeneration. Space radiation-induced decrements to the vascular system may impact the risk for cerebrovascular disease and consequent dementia. These risks may be independent or synergistic with direct damage to central nervous system tissues. The purpose of this work is to review epidemiological and experimental data regarding the impact of low-to-moderate dose ionizing radiation on the central nervous system and the cerebrovascular system. A proposed framework outlines how space radiation-induced effects on the vasculature may increase risk for both cerebrovascular dysfunction and neural and cognitive adverse outcomes. The results of this work suggest that there are multiple processes by which ionizing radiation exposure may impact cerebrovascular function including increases in oxidative stress, neuroinflammation, endothelial cell dysfunction, arterial stiffening, atherosclerosis, and cerebral amyloid angiopathy. Cerebrovascular adverse outcomes may also promote neural and cognitive adverse outcomes. However, there are many gaps in both the human and preclinical evidence base regarding the long-term impact of ionizing radiation exposure on brain health due to heterogeneity in both exposures and outcomes. The unique composition of the space radiation environment makes the translation of the evidence base from terrestrial exposures to space exposures difficult. Additional investigation and understanding of the impact of low-to-moderate doses of ionizing radiation including high (H) atomic number (Z) and energy (E) (HZE) ions on the cerebrovascular system is needed. Furthermore, investigation of how decrements in vascular systems may contribute to development of neurodegenerative diseases in independent or synergistic pathways is important for protecting the long-term health of astronauts.
Collapse
Affiliation(s)
| | | | - Gregory A. Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Ryan B. Norman
- NASA Langley Research Center, Hampton, VA, United States
| | - Zarana S. Patel
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Janice L. Huff
- NASA Langley Research Center, Hampton, VA, United States
| |
Collapse
|
11
|
Risk of Developing Non-Cancerous Central Nervous System Diseases Due to Ionizing Radiation Exposure during Adulthood: Systematic Review and Meta-Analyses. Brain Sci 2022; 12:brainsci12080984. [PMID: 35892428 PMCID: PMC9331299 DOI: 10.3390/brainsci12080984] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Background: High-dose ionizing radiation (IR) (>0.5 Gy) is an established risk factor for cognitive impairments, but this cannot be concluded for low-to-moderate IR exposure (<0.5 Gy) in adulthood as study results are inconsistent. The objectives are to summarize relevant epidemiological studies of low-to-moderate IR exposure in adulthood and to assess the risk of non-cancerous CNS diseases. Methods: A systematic literature search of four electronic databases was performed to retrieve relevant epidemiological studies published from 2000 to 2022. Pooled standardized mortality ratios, relative risks, and excess relative risks (ERR) were estimated with a random effect model. Results: Forty-five publications were included in the systematic review, including thirty-three in the quantitative meta-analysis. The following sources of IR-exposure were considered: atomic bomb, occupational, environmental, and medical exposure. Increased dose-risk relationships were found for cerebrovascular diseases incidence and mortality (ERRpooled per 100 mGy = 0.04; 95% CI: 0.03−0.05; ERRpooled at 100 mGy = 0.01; 95% CI: −0.00−0.02, respectively) and for Parkinson’s disease (ERRpooled at 100 mGy = 0.11; 95% CI: 0.06−0.16); Conclusions: Our findings suggest that adult low-to-moderate IR exposure may have effects on non-cancerous CNS diseases. Further research addressing inherent variation issues is encouraged.
Collapse
|
12
|
Jargin S. Exaggerated Risk Perception of Low-Dose Radiation: Motives and Mechanisms. Dose Response 2022; 20:15593258221103378. [PMID: 35602581 PMCID: PMC9121466 DOI: 10.1177/15593258221103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sergei Jargin
- Peoples’ Friendship University of Russia, Moskva, Russia
| |
Collapse
|
13
|
Wakeford R. Risk of diseases of the circulatory system after low-level radiation exposure-an assessment of evidence from occupational exposures. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:020201. [PMID: 35575612 DOI: 10.1088/1361-6498/ac6275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
14
|
Azizova TV, Bannikova MV, Grigoryeva ES, Briks KV, Hamada N. Mortality from various diseases of the circulatory system in the Russian Mayak nuclear worker cohort: 1948-2018. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021511. [PMID: 35023506 DOI: 10.1088/1361-6498/ac4ae3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
This paper reports on the findings from the study of mortality from diseases of the circulatory system (DCS) in Russian nuclear workers of the Mayak Production Association (22 377 individuals, 25.4% female) who were hired at the facility between 1948 and 1982 and followed up until the end of 2018. Using the AMFIT module of the EPICURE software, relative risks (RRs) and excess RRs per unit absorbed dose (ERR/Gy) for the entire Mayak cohort, the subcohort of workers who were residents of the dormitory town of Ozyorsk and the subcohort of migrants from Ozyorsk were calculated based on maximum likelihood. The mean cumulative liver absorbed gamma-ray dose from external exposure was 0.45 (0.65) Gy (mean (standard deviation)) for men and 0.37 (0.56) Gy for women. The mean cumulative liver absorbed alpha dose from internal exposure to incorporated plutonium was 0.18 (0.65) Gy for men and 0.40 (1.92) Gy for women. By the end of the follow-up, 6019 deaths with DCS as the main cause of death were registered among Mayak Production Association workers (including 3828 deaths in the subcohort of residents and 2191 deaths in the subcohort of migrants) over 890 132 (622 199/267 933) person-years of follow-up. The linear model that took into account non-radiation factors (sex, attained age, calendar period, smoking status and alcohol drinking status) and alpha radiation dose (via adjusting) did not demonstrate significant associations of mortality from DCS, ischaemic heart disease (IHD) and cerebrovascular disease with gamma-ray exposure dose in the entire cohort, the resident subcohort or the migrant subcohort (either in men or women). For the subcohort of residents, a significant association with gamma dose was observed for mortality from ischaemic stroke in men with ERR/Gy = 0.43 (95% CI 0.08; 0.99); there were no significant associations with liver absorbed gamma dose for any other considered outcomes. As for internal exposure, for men no significant associations of mortality from any DCS with liver absorbed alpha dose were observed, but for women positive associations were found for mortality from DCS (the entire cohort and the resident subcohort) and IHD (the entire cohort). No significant associations of mortality from various types of DCS with neutron dose were observed either in men or women, although neutron absorbed doses were recorded in only 18% of the workers.
Collapse
Affiliation(s)
- Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk Chelyabinsk Region, Russia
| | - Maria V Bannikova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk Chelyabinsk Region, Russia
| | - Evgeniya S Grigoryeva
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk Chelyabinsk Region, Russia
| | - Ksenia V Briks
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
15
|
Azizova TV, Moseeva MB, Grigoryeva ES, Hamada N. Incidence risks for cerebrovascular diseases and types of stroke in a cohort of Mayak PA workers. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:5-16. [PMID: 35182179 DOI: 10.1007/s00411-022-00966-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Incidence risks for cerebrovascular diseases (CeVD) and some types of stroke in a cohort of 22,377 Russian Mayak nuclear workers chronically exposed to ionising radiation and followed up until the end of 2018 are reported. Among total 9469 cases of CeVD, 2078 cases were strokes that included 262 hemorrhagic strokes (HS) and 1611 ischemic strokes (IS). Data evaluation was performed with categorical and dose-response analyses estimating the relative risk (RR) and excess relative risk (ERR) per unit cumulative liver absorbed dose of external gamma-ray or internal alpha-particle exposure based on a linear model utilizing the AMFIT module of the EPICURE software. CeVD incidence was found to be significantly associated with cumulative radiation dose: ERR/Gy was 0.37 (95% confidence interval (CI) 0.27, 0.47) in males and 0.47 (95% CI 0.31, 0.66) in females for external exposure, and 0.31 (95% CI 0.11, 0.59) in males and 0.32 (95% CI 0.11, 0.61) in females for internal exposure. When the model for the analysis of external radiation effect did not include an adjustment for alpha radiation dose (and vice versa), the radiogenic risk estimate increased notably both for males and for females. In contrast, exclusion from or inclusion in the model of additional adjustments for non-radiation factors did not notably change the risk estimates. ERR/Gy of external gamma dose for CeVD incidence significantly decreased with increasing attained age (males and females) and duration of employment (females). No significant associations of either stroke or its types with cumulative gamma-ray dose of external exposure or alpha-particle dose of internal exposure were found.
Collapse
Affiliation(s)
- Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, Ozyorsk, 456780, Russia.
| | - Maria B Moseeva
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, Ozyorsk, 456780, Russia
| | - Evgeniya S Grigoryeva
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, Ozyorsk, 456780, Russia
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
16
|
Ayuso-Álvarez A, Nuñez O, Martín-Méndez I, Bel-Lán A, Tellez-Plaza M, Pérez-Gómez B, Galán I, Fernández-Navarro P. Metal and metalloid levels in topsoil and municipal cardiovascular mortality in Spain. ENVIRONMENTAL RESEARCH 2022; 204:112395. [PMID: 34800529 DOI: 10.1016/j.envres.2021.112395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The role of metals and metalloids beyond arsenic, copper, lead and cadmium in cardiovascular disease is not entirely clear. The aim of this study was to assess the association between 18 metal or metalloid levels in topsoil (upper soil horizon) with all-cause and specific cardiovascular mortality endpoints in Spain. We designed an ecological spatial study, to assess cardiovascular mortality in 7941 Spanish mainland towns from 2010 to 2014. The estimation of metals and metalloids concentration in topsoil came from the Geochemical Atlas of Spain from 13,317 soil samples. We also summarized the joint variability of the metals using principal components analysis (PCA). These components (PCs) were included in a Besag, York, and Mollié model to assess their association with cardiovascular mortality from all causes, coronary heart disease, cerebrovascular, hypertension, and conduction disorders. Our results showed, both in men and women, that at the lowest component scores range, PC2 (mainly reflecting Al, Be, Tl and U) was positively associated with coronary heart disease and cerebrovascular mortality. At medium/highest scores range, PC4 (mainly reflecting Hg) was positively associated with cerebrovascular mortality. For PC3 (reflecting Se), the association with coronary heart disease mortality was positive only in men at the highest PC scores range. For PC1 (partly reflecting metals such as Pb, As, Cu or Cd), we observed a strongly suggestive positive association with all-cause cardiovascular diseases mortality. Our ecological results are consistent with the available evidence supporting a cardiovascular role of excessive exposure to Se, Hg, Pb, As, Cu and Cd, but also identify Al, Be, Tl and U as potentially novel cardiovascular factors. Additional research is needed to confirm the biological relevance of our findings.
Collapse
Affiliation(s)
- Ana Ayuso-Álvarez
- National Centre for Epidemiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Faculty of Economics and Business, Autonomous University of Madrid, Spain
| | - Olivier Nuñez
- National Centre for Epidemiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Iván Martín-Méndez
- Geological Survey of Spain (Instituto Geológico y Minero de España, IGME-CSIC), Spain
| | - Alejandro Bel-Lán
- Geological Survey of Spain (Instituto Geológico y Minero de España, IGME-CSIC), Spain
| | - Maria Tellez-Plaza
- National Centre for Epidemiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Autonomous University of Madrid/IdiPAZ, Madrid, Spain
| | - Beatriz Pérez-Gómez
- National Centre for Epidemiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Iñaki Galán
- National Centre for Epidemiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Autonomous University of Madrid/IdiPAZ, Madrid, Spain
| | - Pablo Fernández-Navarro
- National Centre for Epidemiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
17
|
Martin CJ, Barnard M. Potential risks of cardiovascular and cerebrovascular disease and cancer due to cumulative doses received from diagnostic CT scans? JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:1243-1257. [PMID: 34525460 DOI: 10.1088/1361-6498/ac270f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Potential risks from radiation exposure on the development of cardiovascular and cerebrovascular disease are indicated by epidemiological studies. Medical exposures give the largest dose to the population from artificial sources, with cumulative doses from multiple CT scans being significant. Data on doses from scans performed on 12 CT scanners in three hospitals over a period of 5½ years, derived using RadimetricsTMsoftware, have been reviewed for 105 757 patients. Data have been downloaded for heart, brain, thyroid, and effective doses, and cumulative doses analysed using ExcelTMspreadsheets. 2.4% of patients having body CT scans received cumulative doses to the heart over 100 mSv, 9% of whom were under 50 years. 9.6% of patients having head CT scans received cumulative doses to the brain over 100 mSv with 0.08% over 500 mSv from whom 41% were under 50 years, but only 1.3% of patients scanned had thyroid/carotid artery doses over 100 mSv. An approximate evaluation of potential risks from exposures of the heart above 100 mSv and brain over 500 mSv for patients under 60 years would suggest that at most only one patient would demonstrate any excess risk from vascular disease resulting from the exposures. 0.67% of patients scanned received effective doses over 100 mSv, in line with results from European studies, with 8.4% being under 50 years. The application of age and sex specific risk coefficients relating to excess cancer incidence suggests that two or three patients with effective doses over 100 mSv and five patients with effective doses between 50 and 100 mSv, from those examined, might develop cancer as a result of exposure. However, this will be an overestimate, since it does not take patients' health into account. Exposure management software can aid in evaluating cumulative doses and identifying individual patients receiving substantial doses from repetitive imaging.
Collapse
Affiliation(s)
- Colin J Martin
- Department of Clinical Physics and Bioengineering, University of Glasgow, Glasgow, United Kingdom
| | - Michael Barnard
- Department of Radiation Physics and Protection, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
18
|
Loganovsky K, Marazziti D. Mental Health and Neuropsychiatric Aftermath 35 Years After the Chernobyl Catastrophe: Current State and Future Perspectives. CLINICAL NEUROPSYCHIATRY 2021; 18:101-106. [PMID: 34909025 PMCID: PMC8629042 DOI: 10.36131/cnfioritieditore20210204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The Chernobyl nuclear power plant (ChNPP) disaster that happened in Ukraine on the 26th of April 1986 still represents the most severe nuclear accident in human history. Its consequences, especially those involving mental health are increasingly emerging as long-term detrimental effects. Therefore, the aim of the present paper was to review the results of some of authors' studies and their personal reflections on this topic. METHOD The authors selected and commented on the findings mainly derived from their contributions on the prevalence of long-term psychopathological symptoms and neuropsychiatric disorders in diferent groups of exposed and non exposed individuals, including the workers at the NPP the so-called liquidators (CUWs), the most exposed group, evacuees and people living in more or less contaminated areas. RESULTS The main findings derived from a series of studies carried out by the authors throughout the following decades after the disaster indicate the high prevalence of cerebrovascular diseases, organic mental and depressive disorders, cognitive impairment and even dementia that increase with the irradiation dose mainly amongst the liquidators. The organic disorders are probably related to a peculiar effect of radiation on left, dominant brain hemisphere. Interestingly, recent studies revealed abnormalities of the serotonin transporter and other genes disorders possibly at the basis of depression of exposed individuals. CONCLUSIONS The high prevalence of neuropsychiatric disorders amongst irradiated subjects following the ChNPP disaster highlights the impact of radiation exposure on the lifelong onset of neuropsychiatric disorders, for too long neglected by international agencies. Such findings require to be deepened in the future possibly within the frame of the so-called "ecological psychiatry".
Collapse
Affiliation(s)
- Konstantin Loganovsky
- Department of Radiation Psychoneurology, Institute for Clinical Radiology, State Institution “National Research Centre for Radiation Medicine, National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, University of Pisa, Unicamillus Saint Camillus International University of Medical Sciences, Rome
| |
Collapse
|
19
|
Little MP, Azizova TV, Hamada N. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int J Radiat Biol 2021; 97:782-803. [PMID: 33471563 PMCID: PMC10656152 DOI: 10.1080/09553002.2021.1876955] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE There are well-known correlations between high and moderate doses (>0.5 Gy) of ionizing radiation exposure and circulatory system damage, also between radiation and posterior subcapsular cataract. At lower dose correlations with circulatory disease are emerging in the Japanese atomic bomb survivors and in some occupationally exposed groups, and are still to some extent controversial. Heterogeneity in excess relative risks per unit dose in epidemiological studies at low (<0.1 Gy) and at low-moderate (>0.1 Gy, <0.5 Gy) doses may result from confounding and other types of bias, and effect modification by established risk factors. There is also accumulating evidence of excess cataract risks at lower dose and low dose rate in various cohorts. Other ocular endpoints, specifically glaucoma and macular degeneration have been little studied. In this paper, we review recent epidemiological findings, and also discuss some of the underlying radiobiology of these conditions. We briefly review some other types of mainly neurological nonmalignant disease in relation to radiation exposure. CONCLUSIONS We document statistically significant excess risk of the major types of circulatory disease, specifically ischemic heart disease and stroke, in moderate- or low-dose exposed groups, with some not altogether consistent evidence suggesting dose-response non-linearity, particularly for stroke. However, the patterns of risk reported are not straightforward. We also document evidence of excess risks at lower doses/dose-rates of posterior subcapsular and cortical cataract in the Chernobyl liquidators, US Radiologic Technologists and Russian Mayak nuclear workers, with fundamentally linear dose-response. Nuclear cataracts are less radiogenic. For other ocular endpoints, specifically glaucoma and macular degeneration there is very little evidence of effects at low doses; radiation-associated glaucoma has been documented only for doses >5 Gy, and so has the characteristics of a tissue reaction. There is some evidence of neurological detriment following low-moderate dose (∼0.1-0.2 Gy) radiation exposure in utero or in early childhood.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
20
|
Azizova T, Grigoryeva E, Zhuntova G, Kirillova E, Loffredo C. Database of Families of Workers Chronically Exposed to Radiation: Data and Biospecimen Resources. HEALTH PHYSICS 2021; 120:201-211. [PMID: 32826523 DOI: 10.1097/hp.0000000000001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
ABSTRACT Animal experiment findings suggest that high doses of ionizing radiation exposure (>1.0 Gy) may cause genetic and epigenetic effects in offspring. However, epidemiological studies of offspring of radiation-exposed parents did not find increased risks of any health effects. Findings of cellular/experimental investigations and studies of human health effects are contradicting, and further investigations are needed to help resolve ambiguities using updated and/or improved data. This paper provides a detailed description of a database of families of workers of the first Russian nuclear facility, Mayak Production Association, located in the Southern Urals in the Chelyabinsk region close to Ozyorsk city, which started its operation in 1948 and today consists of reactors, radiochemical and plutonium production plants, and auxiliary facilities. The Mayak worker cohort includes 22,377 individuals (25% females) who were hired at one of the main Mayak PA facilities between 1948 and 1982 and were externally or internally exposed to ionizing radiation over prolonged periods. Advantages of the cohort include its large size, extensive follow-up period (70 y), individually measured doses from external and internal exposure and the wide range of these doses, heterogeneity by gender/age/ethnicity/initial health status, complete data on vital status and causes of death, available medical information on morbidity and reproduction, available data on non-radiation factors, and stored biological specimens donated by more than one-third of the cohort members. Based on medical and dosimetry database "Clinics" containing raw data on workers of the study cohort, the Mayak workers' family and offspring database was created. To date, it comprises 12,195 family couples (a husband and a wife) and 16,585 offspring. Biological specimens are available for more than 1,000 family triads (a husband, a wife, and their child). Stages of assembling the database and its descriptive characteristics are presented in this paper. Examples of potential applications of the database for investigations of non-targeted and transgenerational radiation effects in offspring of exposed parents are discussed.
Collapse
Affiliation(s)
- Tamara Azizova
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation
| | - Evgeniya Grigoryeva
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation
| | - Galina Zhuntova
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation
| | - Evgeniya Kirillova
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation
| | - Christopher Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
21
|
Sadetzki S, Chetrit A, Boursi B, Luxenburg O, Novikov I, Cohen A. Childhood Exposure to Low to Moderate Doses of Ionizing Radiation and the Risk of Vascular Diseases. Am J Epidemiol 2021; 190:423-430. [PMID: 32997139 DOI: 10.1093/aje/kwaa177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 11/14/2022] Open
Abstract
In the Tinea Capitis Study (Israel, 1966-2011), we assessed the association between childhood exposure to low to moderate doses of ionizing radiation (IR) to the head and neck and the development of vascular diseases (ischemic heart disease, carotid artery stenosis, and stroke) in adulthood. The study included 17,734 individuals from the Tinea Capitis cohort (7,408 irradiated in childhood and 10,326 nonirradiated), insured by Israel's largest health provider. Individual dosimetry was estimated based on measurements made on a head phantom and original treatment records. The mean doses were 1.5, 0.09, 0.78, and 0.017 Gy to brain, thyroid, salivary gland, and breast, respectively. Data on vascular diseases was abstracted from computerized medical records. Using Poisson regressions, we examined the association of radiation with morbidity. Any vascular disease was reported for 2,221 individuals. Adjusted for age, sex, socioeconomic status, smoking, hypertension, and diabetes, exposure to IR increased the risk of developing any vascular diseases (relative risk (RR) = 1.19, 95% confidence interval (CI): 1.09, 1.29), stroke (RR = 1.35, 1.20, 1.53), carotid artery stenosis (RR = 1.32, 1.06, 1.64), and ischemic heart disease (RR = 1.12, 1.01, 1.26). The risk of developing vascular diseases was positively associated with dose and inversely associated with age at exposure. In conclusion, the results indicate that early exposure to low to moderate doses of IR increases the risk of cerebro- and cardiovascular impairments.
Collapse
|
22
|
Moseeva MB, Grigoryeva ES, Azizova TV. Analysis of Incidence Risk for Different Types of Stroke among the Mayak Worker Cohort. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020110102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Tapio S, Little MP, Kaiser JC, Impens N, Hamada N, Georgakilas AG, Simar D, Salomaa S. Ionizing radiation-induced circulatory and metabolic diseases. ENVIRONMENT INTERNATIONAL 2021; 146:106235. [PMID: 33157375 PMCID: PMC10686049 DOI: 10.1016/j.envint.2020.106235] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
Risks to health are the prime consideration in all human situations of ionizing radiation exposure and therefore of relevance to radiation protection in all occupational, medical, and public exposure situations. Over the past few decades, advances in therapeutic strategies have led to significant improvements in cancer survival rates. However, a wide range of long-term complications have been reported in cancer survivors, in particular circulatory diseases and their major risk factors, metabolic diseases. However, at lower levels of exposure, the evidence is less clear. Under real-life exposure scenarios, including radiotherapy, radiation effects in the whole organism will be determined mainly by the response of normal tissues receiving relatively low doses, and will be mediated and moderated by systemic effects. Therefore, there is an urgent need for further research on the impact of low-dose radiation. In this article, we review radiation-associated risks of circulatory and metabolic diseases in clinical, occupational or environmental exposure situations, addressing epidemiological, biological, risk modelling, and systems biology aspects, highlight the gaps in knowledge and discuss future directions to address these gaps.
Collapse
Affiliation(s)
- Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), MD, USA
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Mol, Belgium
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Loganovsky KN, Masiuk SV, Buzunov VA, Marazziti D, Voychulene YS. Radiation Risk Analysis of Neuropsychiatric Disorders in Ukrainian Chornobyl Catastrophe Liquidators. Front Psychiatry 2020; 11:553420. [PMID: 33312134 PMCID: PMC7704427 DOI: 10.3389/fpsyt.2020.553420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022] Open
Abstract
Goal: To explore the possible impact of ionizing radiation in the pathophysiology of neuropsychiatric disorders amongst clean-up workers of the Chornobyl catastrophe (liquidators). Design, object, and methods: Retrospective-prospective study (1987-2015) of liquidators from the State Register of Ukraine (SRU) with radiation doses records and Clinical-Epidemiological Register (CER) of the State Institution ≪National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine≫ (NRCRM). Moreover, cohort and cross-sectional studies of the randomized sample of liquidators from the CER (exposed group, 198 subjects) were examined. Internal control group included the liquidators irradiated in doses <50.0 mSv (42 persons). All subjects were assessed by a detailed clinical examination and a battery of standardized neuropsychiatric scales, psychometric, and neuropsychological tests. Descriptive and variation statistics, non-parametric criteria, regression-correlation analysis, survival analysis by Kaplan & Meier, and risk analysis were used. Results: Exposed group vs. control group showed cognitive disorders in 99 (50.0%) vs. 20 (18.1%), (P = 0.04); affective disorders in 96 (48.3%) vs. 36 (32.7%) (P = 0.007), and stress-related disorders in 115 (58.4%) vs. 8 (7.3%) (P < 0.001). In the main group exposed to ≥50 mSv vs. internal control group (exposed to <50 mSv), affective disorders were present, respectively, in 89 (56.4%) vs. 7 (19.1%) (P < 0.001), and stress-related disorders in 98 (62.8%) vs. 17 (40.4%) (P = 0.009). Relative risks (RR) and 95% confidential intervals (95%CI) of Incidence of some neuropsychiatric disorders in liquidators of 1986-1987 related to internal control (doses <50 mSv) were as follows: organic psychosis (RR = 3.15; 95% CI: 2.6; 3.7); non-psychotic organic brain damage (RR = 1.99; 95% CI: 1.6; 2.5); acute (RR = 1.40, 95% CI: 1.3; 1.5), and chronic cerebrovascular disorders (RR = 1.23; 95% CI 1.0;1.5). Neuropsychiatric diseases show a strong, increasing, and approximately quadratic statistically significant (Pv < 0.001) relationship with individual dose, yielding an estimated excess relative risk ERR = 2.76 Sv-2 (95% CI 1.06-7.15). Conclusions: Liquidators have an excess of cognitive, affective, and stress-related disorders. The risk of diseases rises with radiation dose. Radiation risks are revealed for organic psychoses, non-psychotic organic brain damage, acute and chronic cerebrovascular pathology.
Collapse
Affiliation(s)
- Konstantyn N. Loganovsky
- State Institution “National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
| | - Sergii V. Masiuk
- State Institution “National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
| | - Vladimir A. Buzunov
- State Institution “National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
| | - Donatella Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Yuliya S. Voychulene
- State Institution “National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
| |
Collapse
|
25
|
Anderson JL, Bertke SJ, Yiin J, Kelly-Reif K, Daniels RD. Ischaemic heart and cerebrovascular disease mortality in uranium enrichment workers. Occup Environ Med 2020; 78:105-111. [PMID: 32883719 DOI: 10.1136/oemed-2020-106423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/19/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Linear and non-linear dose-response relationships between radiation absorbed dose to the lung from internally deposited uranium and external sources and circulatory system disease (CSD) mortality were examined in a cohort of 23 731 male and 5552 female US uranium enrichment workers. METHODS Rate ratios (RRs) for categories of lung dose and linear excess relative rates (ERRs) per unit lung dose were estimated to evaluate the associations between lung absorbed dose and death from ischaemic heart disease (IHD) and cerebrovascular disease. RESULTS There was a suggestion of modestly increased IHD risk in workers with internal uranium lung dose above 1 milligray (mGy) (RR=1.4, 95% CI 0.76 to 2.3) and a statistically significantly increased IHD risk with external dose exceeding 150 mGy (RR=1.3, 95% CI 1.1 to 1.6) compared with the lowest exposed groups. ERRs per milligray were positive for IHD and uranium internal dose and for both outcomes per gray external dose, although the CIs generally included the null. CONCLUSIONS Non-linear dose-response models using restricted cubic splines revealed sublinear responses at lower internal doses, suggesting that linear models that are common in radioepidemiological cancer studies may poorly describe the association between uranium internal dose and CSD mortality.
Collapse
Affiliation(s)
- Jeri L Anderson
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Stephen J Bertke
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - James Yiin
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Kaitlin Kelly-Reif
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Robert Douglas Daniels
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| |
Collapse
|
26
|
Affiliation(s)
- Sergei V Jargin
- Department of Public Health, Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
27
|
Cha ES, Zablotska LB, Bang YJ, Lee WJ. Occupational radiation exposure and morbidity of circulatory disease among diagnostic medical radiation workers in South Korea. Occup Environ Med 2020; 77:752-760. [DOI: 10.1136/oemed-2019-106326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/12/2020] [Accepted: 06/04/2020] [Indexed: 11/04/2022]
Abstract
ObjectivesWe investigated the association between low-dose external occupational radiation exposure and circulatory disease morbidity among diagnostic medical radiation workers.MethodsA cohort of 11 500 diagnostic medical radiation workers was linked with the National Dosimetry Registry data and the National Health Insurance Service data. Relative risks (RRs) were calculated to explore the association between occupational factors and circulatory disease morbidity, and excess relative risks per 100 milligray (ERR/100 mGy) were estimated to quantify the radiation dose-response relationship.ResultsOverall, there were 2270 cases of circulatory diseases during 93 696 person-years of observation (average follow-up=8.1 years). RRs for hypertension were significantly increased for individuals who started working before 2000 compared with those who started in 2005 and later. ERR/100 mGy for all circulatory diseases was 0.14 (95% CI −0.57 to 0.99). Radiation risks of cerebrovascular diseases and ischaemic heart disease were non-significantly increased with estimates of individual cumulative doses to the heart (ERR/100 mGy=3.10 (−0.75 to 11.59) and 1.22 (−0.71 to 4.73), respectively). However, ERR estimates were generally more strongly positive for female versus male workers and for younger workers versus more than 50-year-old workers.ConclusionsThis study provides little evidence in support of a positive association between occupational radiation exposure and the overall risk of circulatory disease over a short follow-up period among medical radiation workers in South Korea. However, significantly increased RR with earlier year first worked, elevated ERR in female workers and young workers should be further followed up.
Collapse
|
28
|
Loganovsky KN, Marazziti D, Fedirko PA, Kuts KV, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Gresko MV, Masiuk SV, Mucci F, Zdorenko LL, Della Vecchia A, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV. Radiation-Induced Cerebro-Ophthalmic Effects in Humans. Life (Basel) 2020; 10:41. [PMID: 32316206 PMCID: PMC7235763 DOI: 10.3390/life10040041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure to ionizing radiation (IR) could affect the human brain and eyes leading to both cognitive and visual impairments. The aim of this paper was to review and analyze the current literature, and to comment on the ensuing findings in the light of our personal contributions in this field. The review was carried out according to the PRISMA guidelines by searching PubMed, Scopus, Embase, PsycINFO and Google Scholar English papers published from January 2000 to January 2020. The results showed that prenatally or childhood-exposed individuals are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. In adulthood and medical/interventional radiologists, the most frequent IR-induced ophthalmic effects include cataracts, glaucoma, optic neuropathy, retinopathy and angiopathy, sometimes associated with specific neurocognitive deficits. According to available information that eye alterations may induce or may be associated with brain dysfunctions and vice versa, we propose to label this relationship "eye-brain axis", as well as to deepen the diagnosis of eye pathologies as early and easily obtainable markers of possible low dose IR-induced brain damage.
Collapse
Affiliation(s)
- Konstantin N. Loganovsky
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Donatella Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100 Pisa, Italy; (F.M.); (A.D.V.)
| | - Pavlo A. Fedirko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Kostiantyn V. Kuts
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Katerina Y. Antypchuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Iryna V. Perchuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Tetyana F. Babenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Tetyana K. Loganovska
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Olena O. Kolosynska
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - George Y. Kreinis
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Marina V. Gresko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Sergii V. Masiuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Federico Mucci
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100 Pisa, Italy; (F.M.); (A.D.V.)
- Dipartimento di Biochimica Biologia Molecolare, University of Siena, 53100 Siena, Italy
| | - Leonid L. Zdorenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Alessandra Della Vecchia
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100 Pisa, Italy; (F.M.); (A.D.V.)
| | - Natalia A. Zdanevich
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Natalia A. Garkava
- Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine, 9 Vernadsky Street, 49044 Dnipro, Ukraine;
| | - Raisa Y. Dorichevska
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Zlata L. Vasilenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Victor I. Kravchenko
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| | - Nataliya V. Drosdova
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, 53 Illyenko Street, 04050 Kyiv, Ukraine; (K.N.L.); (P.A.F.); (K.V.K.); (K.Y.A.); (I.V.P.); (T.F.B.); (T.K.L.); (O.O.K.); (G.Y.K.); (M.V.G.); (S.V.M.); (L.L.Z.); (N.A.Z.); (R.Y.D.); (Z.L.V.); (V.I.K.); (N.V.D.)
| |
Collapse
|
29
|
Abdullaev S, Gubina N, Bulanova T, Gaziev A. Assessment of Nuclear and Mitochondrial DNA, Expression of Mitochondria-Related Genes in Different Brain Regions in Rats after Whole-Body X-ray Irradiation. Int J Mol Sci 2020; 21:ijms21041196. [PMID: 32054039 PMCID: PMC7072726 DOI: 10.3390/ijms21041196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 01/02/2023] Open
Abstract
Studies of molecular changes occurred in various brain regions after whole-body irradiation showed a significant increase in terms of the importance in gaining insight into how to slow down or prevent the development of long-term side effects such as carcinogenesis, cognitive impairment and other pathologies. We have analyzed nDNA damage and repair, changes in mitochondrial DNA (mtDNA) copy number and in the level of mtDNA heteroplasmy, and also examined changes in the expression of genes involved in the regulation of mitochondrial biogenesis and dynamics in three areas of the rat brain (hippocampus, cortex and cerebellum) after whole-body X-ray irradiation. Long amplicon quantitative polymerase chain reaction (LA-QPCR) was used to detect nDNA and mtDNA damage. The level of mtDNA heteroplasmy was estimated using Surveyor nuclease technology. The mtDNA copy numbers and expression levels of a number of genes were determined by real-time PCR. The results showed that the repair of nDNA damage in the rat brain regions occurs slowly within 24 h; in the hippocampus, this process runs much slower. The number of mtDNA copies in three regions of the rat brain increases with a simultaneous increase in mtDNA heteroplasmy. However, in the hippocampus, the copy number of mutant mtDNAs increases significantly by the time point of 24 h after radiation exposure. Our analysis shows that in the brain regions of irradiated rats, there is a decrease in the expression of genes (ND2, CytB, ATP5O) involved in ATP synthesis, although by the same time point after irradiation, an increase in transcripts of genes regulating mitochondrial biogenesis is observed. On the other hand, analysis of genes that control the dynamics of mitochondria (Mfn1, Fis1) revealed that sharp decrease in gene expression level occurred, only in the hippocampus. Consequently, the structural and functional characteristics of the hippocampus of rats exposed to whole-body radiation can be different, most significantly from those of the other brain regions.
Collapse
Affiliation(s)
- Serazhutdin Abdullaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (N.G.); (A.G.)
- Correspondence: ; Tel.: +7-(4967)-739364; Fax: +7-(4967)-330553
| | - Nina Gubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (N.G.); (A.G.)
| | - Tatiana Bulanova
- Joint Institute for Nuclear Research, Dubna, 141980 Moscow, Russia;
| | - Azhub Gaziev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (N.G.); (A.G.)
- Joint Institute for Nuclear Research, Dubna, 141980 Moscow, Russia;
| |
Collapse
|
30
|
Loganovsky KN, Fedirko PA, Kuts KV, Marazziti D, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Gresko MV, Masiuk SV, Zdorenko LL, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV, Yefimova YV. BRAIN AND EYE AS POTENTIAL TARGETS FOR IONIZING RADIATION IMPACT. Part І. THE CONSEQUENCES OF IRRADIATION OF THE PARTICIPANTS OF THE LIQUIDATION OF THE CHORNOBYL ACCIDENT. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:90-129. [PMID: 33361831 DOI: 10.33145/2304-8336-2020-25-90-129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Exposure to ionizing radiation could affect the brain and eyes leading to cognitive and vision impairment, behavior disorders and performance decrement during professional irradiation at medical radiology, includinginterventional radiological procedures, long-term space flights, and radiation accidents. OBJECTIVE The objective was to analyze the current experimental, epidemiological, and clinical data on the radiation cerebro-ophthalmic effects. MATERIALS AND METHODS In our analytical review peer-reviewed publications via the bibliographic and scientometric bases PubMed / MEDLINE, Scopus, Web of Science, and selected papers from the library catalog of NRCRM - theleading institution in the field of studying the medical effects of ionizing radiation - were used. RESULTS The probable radiation-induced cerebro-ophthalmic effects in human adults comprise radiation cataracts,radiation glaucoma, radiation-induced optic neuropathy, retinopathies, angiopathies as well as specific neurocognitive deficit in the various neuropsychiatric pathology including cerebrovascular pathology and neurodegenerativediseases. Specific attention is paid to the likely stochastic nature of many of those effects. Those prenatally and inchildhood exposed are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. CONCLUSIONS The experimental, clinical, epidemiological, anatomical and pathophysiological rationale for visualsystem and central nervous system (CNS) radiosensitivity is given. The necessity for further international studieswith adequate dosimetric support and the follow-up medical and biophysical monitoring of high radiation riskcohorts is justified. The first part of the study currently being published presents the results of the study of theeffects of irradiation in the participants of emergency works at the Chornobyl Nuclear Power Plant (ChNPP).
Collapse
Affiliation(s)
- K N Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - P A Fedirko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - D Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100, Pisa, Italy
| | - K Yu Antypchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - I V Perchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - T F Babenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - O O Kolosynska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - G Yu Kreinis
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - M V Gresko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - S V Masiuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - L L Zdorenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N A Zdanevich
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N A Garkava
- State Institution «Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine», 9 Vernadsky Street, Dnipro, 49044, Ukraine
| | - R Yu Dorichevska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - Z L Vasilenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - V I Kravchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N V Drosdova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - Yu V Yefimova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| |
Collapse
|
31
|
Wakeford R. Does Low-Level Exposure to Ionizing Radiation Increase the Risk of Cardiovascular Disease? Hypertension 2019; 73:1170-1171. [DOI: 10.1161/hypertensionaha.119.11892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Richard Wakeford
- From the Centre for Occupational and Environmental Health, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| |
Collapse
|
32
|
Hypertension Incidence Risk in a Cohort of Russian Workers Exposed to Radiation at the Mayak Production Association Over Prolonged Periods. Hypertension 2019; 73:1174-1184. [DOI: 10.1161/hypertensionaha.118.11719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Azizova TV, Hamada N, Bragin EV, Bannikova MV, Grigoryeva ES. Risk of cataract removal surgery in Mayak PA workers occupationally exposed to ionizing radiation over prolonged periods. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:139-149. [PMID: 30879144 DOI: 10.1007/s00411-019-00787-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
In this study, the risk of cataract removal surgery was assessed in a cohort of workers occupationally exposed to ionizing radiation over a prolonged period. The study cohort includes 22,377 workers of the Mayak Production Association (about 25% of whom are females) first employed at one of the main facilities in 1948-1982, who were followed up to the end of 2008. Dose estimates used in the study are provided by the Mayak Worker Dosimetry System 2008. The mean cumulative dose from external γ-rays [personal dose equivalent Hp(10)] is 0.54 ± 0.76 Sv for males and 0.44 ± 0.65 Sv for females. The mean cumulative doses from neutrons (personal dose equivalent Hp(10)n) were 0.034 ± 0.080 Sv for males and 0.033 ± 0.092 Sv for females. Relative risks and excess relative risks per unit dose were calculated based on maximum likelihood. Among 4,177 workers diagnosed with a verified diagnosis of senile cataract, 701 lens removal surgeries (16.7%) were performed by the end of the follow-up period. The risk of cataract removal surgery was shown to be significantly associated with non-radiation factors such as sex, attained age, smoking, an ocular comorbidity (e.g., glaucoma), and a somatic comorbidity (e.g., diabetes mellitus). There was no significant association of cataract removal surgery with external γ-dose regardless of inclusion of the neutron dose adjustment with either linear or non-linear models. It is concluded that cataract removal surgery rate may not be a highly sensitive and specific indicator that could serve as a surrogate for radiation-related cataracts.
Collapse
Affiliation(s)
- Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, 456780, Russia.
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo, 201-8511, Japan
| | - Evgeny V Bragin
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, 456780, Russia
| | - Maria V Bannikova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, 456780, Russia
| | - Evgeniya S Grigoryeva
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, 456780, Russia
| |
Collapse
|
34
|
Tang FR, Loganovsky K. Low dose or low dose rate ionizing radiation-induced health effect in the human. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:32-47. [PMID: 29883875 DOI: 10.1016/j.jenvrad.2018.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect.
Collapse
Affiliation(s)
- Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602, Singapore.
| | - Konstantin Loganovsky
- Radiation Psychoneurology Department, Institute of Clinical Radiology, State Institution "National Research Centre for Radiation Medicne, National Academy of Medical Sciences of Ukraine", 53 Melnikov Str., Kyiv, 04050, Ukraine
| |
Collapse
|
35
|
Vaiserman A, Koliada A, Zabuga O, Socol Y. Health Impacts of Low-Dose Ionizing Radiation: Current Scientific Debates and Regulatory Issues. Dose Response 2018; 16:1559325818796331. [PMID: 30263019 PMCID: PMC6149023 DOI: 10.1177/1559325818796331] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
Health impacts of low-dose ionizing radiation are significant in important fields such as X-ray imaging, radiation therapy, nuclear power, and others. However, all existing and potential applications are currently challenged by public concerns and regulatory restrictions. We aimed to assess the validity of the linear no-threshold (LNT) model of radiation damage, which is the basis of current regulation, and to assess the justification for this regulation. We have conducted an extensive search in PubMed. Special attention has been given to papers cited in comprehensive reviews of the United States (2006) and French (2005) Academies of Sciences and in the United Nations Scientific Committee on Atomic Radiation 2016 report. Epidemiological data provide essentially no evidence for detrimental health effects below 100 mSv, and several studies suggest beneficial (hormetic) effects. Equally significant, many studies with in vitro and in animal models demonstrate that several mechanisms initiated by low-dose radiation have beneficial effects. Overall, although probably not yet proven to be untrue, LNT has certainly not been proven to be true. At this point, taking into account the high price tag (in both economic and human terms) borne by the LNT-inspired regulation, there is little doubt that the present regulatory burden should be reduced.
Collapse
|
36
|
Sharma NK, Sharma R, Mathur D, Sharad S, Minhas G, Bhatia K, Anand A, Ghosh SP. Role of Ionizing Radiation in Neurodegenerative Diseases. Front Aging Neurosci 2018; 10:134. [PMID: 29867445 PMCID: PMC5963202 DOI: 10.3389/fnagi.2018.00134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 04/23/2018] [Indexed: 02/03/2023] Open
Abstract
Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR.
Collapse
Affiliation(s)
- Neel K. Sharma
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Rupali Sharma
- Center for Neuroscience and Regenerative Medicine, Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Deepali Mathur
- Neurobiology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gillipsie Minhas
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
37
|
Abstract
Hormesis can be explained by evolutionary adaptation to the current level of a factor present in the natural environment or to some average from the past. This pertains also to ionizing radiation as the natural background has been decreasing during the time of the life existence. DNA damage and repair are normally in a dynamic balance. The conservative nature of the DNA repair suggests that cells may have retained some capability to repair damage from higher radiation levels than that existing today. According to this concept, the harm caused by radioactive contamination would tend to zero with a dose rate tending to a wide range level of the natural radiation background. Existing evidence in favor of hormesis is substantial, experimental data being partly at variance with results of epidemiological studies. Potential bias, systematic errors, and motives to exaggerate risks from low-dose low-rate ionizing radiation are discussed here. In conclusion, current radiation safety norms are exceedingly restrictive and should be revised on the basis of scientific evidence. Elevation of the limits must be accompanied by measures guaranteeing their observance.
Collapse
Affiliation(s)
- S V Jargin
- Peoples' Friendship University of Russia, Moscow, Russian Federation
| |
Collapse
|
38
|
Rühm W, Azizova T, Bouffler S, Cullings HM, Grosche B, Little MP, Shore RS, Walsh L, Woloschak GE. Typical doses and dose rates in studies pertinent to radiation risk inference at low doses and low dose rates. JOURNAL OF RADIATION RESEARCH 2018; 59:ii1-ii10. [PMID: 29432579 PMCID: PMC5941142 DOI: 10.1093/jrr/rrx093] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 02/05/2018] [Indexed: 05/20/2023]
Abstract
In order to quantify radiation risks at exposure scenarios relevant for radiation protection, often extrapolation of data obtained at high doses and high dose rates down to low doses and low dose rates is needed. Task Group TG91 on 'Radiation Risk Inference at Low-dose and Low-dose Rate Exposure for Radiological Protection Purposes' of the International Commission on Radiological Protection is currently reviewing the relevant cellular, animal and human studies that could be used for that purpose. This paper provides an overview of dose rates and doses typically used or present in those studies, and compares them with doses and dose rates typical of those received by the A-bomb survivors in Japan.
Collapse
Affiliation(s)
- Werner Rühm
- Institute of Radiation Protection, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, 456780, Ozyorsk, Chelyabinsk Region, Russian Federation
| | - Simon Bouffler
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Chilton, Didcot OX11 ORQ, UK
| | - Harry M Cullings
- Radiation Effects Research Foundation, 5–2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Bernd Grosche
- Federal Office for Radiation Protection, Ingolstädter Landstr. 1, 85764 Oberschleißheim, Germany
| | - Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 20892-9778, USA
| | - Roy S Shore
- New York University School of Medicine, 650 First Ave., New York, NY 10016, USA
| | - Linda Walsh
- Medical Physics Group, Department of Physics, Science Faculty, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gayle E Woloschak
- Departments of Radiation Oncology, Radiology, and Cell and Molecular Biology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 300 E. Superior St., Tarry 4-760, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Schöllnberger H, Eidemüller M, Cullings HM, Simonetto C, Neff F, Kaiser JC. Dose-responses for mortality from cerebrovascular and heart diseases in atomic bomb survivors: 1950-2003. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:17-29. [PMID: 29222678 PMCID: PMC6373359 DOI: 10.1007/s00411-017-0722-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/23/2017] [Indexed: 05/04/2023]
Abstract
The scientific community faces important discussions on the validity of the linear no-threshold (LNT) model for radiation-associated cardiovascular diseases at low and moderate doses. In the present study, mortalities from cerebrovascular diseases (CeVD) and heart diseases from the latest data on atomic bomb survivors were analyzed. The analysis was performed with several radio-biologically motivated linear and nonlinear dose-response models. For each detrimental health outcome one set of models was identified that all fitted the data about equally well. This set was used for multi-model inference (MMI), a statistical method of superposing different models to allow risk estimates to be based on several plausible dose-response models rather than just relying on a single model of choice. MMI provides a more accurate determination of the dose response and a more comprehensive characterization of uncertainties. It was found that for CeVD, the dose-response curve from MMI is located below the linear no-threshold model at low and medium doses (0-1.4 Gy). At higher doses MMI predicts a higher risk compared to the LNT model. A sublinear dose-response was also found for heart diseases (0-3 Gy). The analyses provide no conclusive answer to the question whether there is a radiation risk below 0.75 Gy for CeVD and 2.6 Gy for heart diseases. MMI suggests that the dose-response curves for CeVD and heart diseases in the Lifespan Study are sublinear at low and moderate doses. This has relevance for radiotherapy treatment planning and for international radiation protection practices in general.
Collapse
Affiliation(s)
- Helmut Schöllnberger
- Department of Radiation Sciences, Institute of Radiation Protection, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Department of Radiation Protection and the Environment, Federal Office for Radiation Protection, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Markus Eidemüller
- Department of Radiation Sciences, Institute of Radiation Protection, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Harry M Cullings
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Cristoforo Simonetto
- Department of Radiation Sciences, Institute of Radiation Protection, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Frauke Neff
- Institute of Pathology, Städtisches Klinikum München and Technical University of Munich, Munich, Germany
| | - Jan Christian Kaiser
- Department of Radiation Sciences, Institute of Radiation Protection, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| |
Collapse
|
40
|
Azizova TV, Batistatou E, Grigorieva ES, McNamee R, Wakeford R, Liu H, de Vocht F, Agius RM. An Assessment of Radiation-Associated Risks of Mortality from Circulatory Disease in the Cohorts of Mayak and Sellafield Nuclear Workers. Radiat Res 2018; 189:371-388. [PMID: 29494323 DOI: 10.1667/rr14468.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mortality from circulatory disease (CD), ischemic heart disease (IHD) and cerebrovascular disease (CeVD) was investigated in relationship to cumulative doses of external gamma radiation and internal alpha radiation to the liver from deposited plutonium over long follow-up periods in two large cohorts of nuclear workers: the Russian Mayak Worker Cohort (MWC) and the UK Sellafield Worker Cohort (SWC). The MWC comprised 22,374 workers (74.6% males) with 5,123 CD deaths registered during 842,538 person-years of follow-up, while the SWC comprised 23,443 workers (87.8% males) with 2,322 CD deaths registered during 602,311 person-years of follow-up. Dose estimates for external gamma radiation and internal alpha radiation to the liver were calculated via a common methodology, in accordance with an agreed protocol. The mean cumulative external Hp(10) dose was 0.52 Sv for the MWC and 0.07 Sv for the SWC, while the mean cumulative internal dose was 0.19 Gy for the MWC and 0.01 Gy for the SWC. Categorical relative risks (RR) and excess relative risks (ERR) per unit dose were estimated for each cohort and for the pooled cohort when appropriate. The dose responses for CD, IHD and CeVD in relationship to internal alpha-particle dose did not differ significantly from the null for either the MWC, the SWC or the pooled plutonium worker cohort. The ERR/Sv estimates in relationship to external exposure were significantly raised for both cohorts (marginally so for the MWC) for CD and IHD (but not for CeVD), but differed significantly between the two cohorts, the estimate for the SWC being approximately ten times greater than that for the MWC. Examination of the ERR/Sv estimates for two periods of first employment at the two facilities revealed that the significant heterogeneity was confined to the earlier sub-cohorts, and that the estimates for the later sub-cohorts were compatible. The two sub-cohorts for the later first-employment periods were pooled, producing risk estimates that were raised, but not significantly so: ERR/Sv for CD, IHD and CeVD of 0.22 (95% CI: -0.01, 0.49), 0.22 (95% CI: -0.06, 0.57) and 0.24 (95% CI: -0.17, 0.80), respectively. The reasons for the complex pattern of results found in this study are unclear. Among potential explanations are the influence of differences in background CD mortality rates, an effect of other occupational factors, substantial uncertainties in doses, particularly during earlier periods of operations, as well as confounding and/or modifying factors that were not taken into account in the current analysis.
Collapse
Affiliation(s)
- T V Azizova
- a Southern Urals Biophysics Institute, Ozyorsk, 456780, Chelyabinsk Region, Russian Federation
| | - E Batistatou
- b Centres for Occupational and Environmental Health and
| | - E S Grigorieva
- a Southern Urals Biophysics Institute, Ozyorsk, 456780, Chelyabinsk Region, Russian Federation
| | - R McNamee
- c Biostatistics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - R Wakeford
- b Centres for Occupational and Environmental Health and
| | - H Liu
- b Centres for Occupational and Environmental Health and
| | - F de Vocht
- b Centres for Occupational and Environmental Health and.,d Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2PS, United Kingdom
| | - R M Agius
- b Centres for Occupational and Environmental Health and
| |
Collapse
|
41
|
Gillies M, Richardson DB, Cardis E, Daniels RD, O’Hagan JA, Haylock R, Laurier D, Leuraud K, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A. Mortality from Circulatory Diseases and other Non-Cancer Outcomes among Nuclear Workers in France, the United Kingdom and the United States (INWORKS). Radiat Res 2017; 188:276-290. [PMID: 28692406 PMCID: PMC5651512 DOI: 10.1667/rr14608.1] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Positive associations between external radiation dose and non-cancer mortality have been found in a number of published studies, primarily of populations exposed to high-dose, high-dose-rate ionizing radiation. The goal of this study was to determine whether external radiation dose was associated with non-cancer mortality in a large pooled cohort of nuclear workers exposed to low-dose radiation accumulated at low dose rates. The cohort comprised 308,297 workers from France, United Kingdom and United States. The average cumulative equivalent dose at a tissue depth of 10 mm [Hp(10)] was 25.2 mSv. In total, 22% of the cohort were deceased by the end of follow-up, with 46,029 deaths attributed to non-cancer outcomes, including 27,848 deaths attributed to circulatory diseases. Poisson regression was used to investigate the relationship between cumulative radiation dose and non-cancer mortality rates. A statistically significant association between radiation dose and all non-cancer causes of death was observed [excess relative risk per sievert (ERR/Sv) = 0.19; 90% CI: 0.07, 0.30]. This was largely driven by the association between radiation dose and mortality due to circulatory diseases (ERR/Sv = 0.22; 90% CI: 0.08, 0.37), with slightly smaller positive, but nonsignificant, point estimates for mortality due to nonmalignant respiratory disease (ERR/Sv = 0.13; 90% CI: -0.17, 0.47) and digestive disease (ERR/Sv = 0.11; 90% CI: -0.36, 0.69). The point estimate for the association between radiation dose and deaths due to external causes of death was nonsignificantly negative (ERR = -0.12; 90% CI: <-0.60, 0.45). Within circulatory disease subtypes, associations with dose were observed for mortality due to cerebrovascular disease (ERR/Sv = 0.50; 90% CI: 0.12, 0.94) and mortality due to ischemic heart disease (ERR/Sv = 0.18; 90% CI: 0.004, 0.36). The estimates of associations between radiation dose and non-cancer mortality are generally consistent with those observed in atomic bomb survivor studies. The findings of this study could be interpreted as providing further evidence that non-cancer disease risks may be increased by external radiation exposure, particularly for ischemic heart disease and cerebrovascular disease. However, heterogeneity in the estimated ERR/Sv was observed, which warrants further investigation. Further follow-up of these cohorts, with the inclusion of internal exposure information and other potential confounders associated with lifestyle factors, may prove informative, as will further work on elucidating the biological mechanisms that might cause these non-cancer effects at low doses.
Collapse
Affiliation(s)
- Michael Gillies
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, United Kingdom
| | - David B. Richardson
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Elisabeth Cardis
- ISGlobal, Center for Research in Environmental Epidemiology (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, Ohio
| | - Jacqueline A. O’Hagan
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, United Kingdom
| | - Richard Haylock
- Public Health England Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Chilton, United Kingdom
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SRBE/LEPID, 92262 Fontenay-aux-Roses, France
| | - Klervi Leuraud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SRBE/LEPID, 92262 Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
42
|
Jargin SV. Re: The high price of public fear of low-dose radiation. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2017; 37:797-799. [PMID: 28675752 DOI: 10.1088/1361-6498/aa7c69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Sergei V Jargin
- People's Friendship University of Russia, Clementovski per 6-82, 115184 Moscow, Russia
| |
Collapse
|
43
|
Tran V, Zablotska LB, Brenner AV, Little MP. Radiation-associated circulatory disease mortality in a pooled analysis of 77,275 patients from the Massachusetts and Canadian tuberculosis fluoroscopy cohorts. Sci Rep 2017; 7:44147. [PMID: 28287147 PMCID: PMC5347030 DOI: 10.1038/srep44147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/03/2017] [Indexed: 01/06/2023] Open
Abstract
High-dose ionising radiation is associated with circulatory disease. Risks associated with lower-dose (<0.5 Gy) exposures remain unclear, with little information on risk modification by age at exposure, years since exposure or dose-rate. Tuberculosis patients in Canada and Massachusetts received multiple diagnostic x-ray fluoroscopic exposures, over a wide range of ages, many at doses <0.5 Gy. We evaluated risks of circulatory-disease mortality associated with <0.5 Gy radiation exposure in a pooled cohort of 63,707 patients in Canada and 13,568 patients in Massachusetts. Under 0.5 Gy there are increasing trends for all circulatory disease (n = 10,209; excess relative risk/Gy = 0.246; 95% CI 0.036, 0.469; p = 0.021) and for ischaemic heart disease (n = 6410; excess relative risk/Gy = 0.267; 95% CI 0.003, 0.552; p = 0.048). All circulatory-disease and ischaemic-heart-disease risk reduces with increasing time since exposure (p < 0.005). Over the entire dose range, there are negative mortality dose trends for all circulatory disease (p = 0.014) and ischaemic heart disease (p = 0.003), possibly due to competing causes of death over this dose interval.These results confirm and extend earlier findings and strengthen the evidence for circulatory-disease mortality radiation risk at doses <0.5 Gy. The limited information on well-known lifestyle/medical risk factors for circulatory disease implies that confounding of the dose trend cannot be entirely excluded.
Collapse
Affiliation(s)
- Van Tran
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alina V Brenner
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| |
Collapse
|
44
|
Takahashi I, Shimizu Y, Grant EJ, Cologne J, Ozasa K, Kodama K. Heart Disease Mortality in the Life Span Study, 1950-2008. Radiat Res 2017; 187:319-332. [PMID: 28170314 DOI: 10.1667/rr14347.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Based on the findings from the Radiation Effects Research Foundation's studies of the cohort of Japanese atomic bomb survivors, it has been reported that total-body irradiation at 0.5-1.0 Gy could be responsible for increased rates of mortality from broad-based categories of cardiovascular disease (CVD), i.e., stroke and heart disease. However, CVD consists of various subtypes that have potentially different radiation dose responses, as well as subtype-specific risks that have not been fully evaluated. Potential problems with changes in the coding rules for the International Classification of Diseases (ICD) and the underlying causes and trends in CVD mortality in Japan also need to be considered. The goal of this study was to clarify the radiation risk of subtype-specific heart disease over different time periods. Radiation dose response was examined for mortality from several heart disease subtypes in 86,600 members of the Life Span Study (LSS) cohort during 1950-2008. These subtypes included ischemic heart disease (IHD), valvular heart disease (VHD), hypertensive organ damage (HOD) and heart failure (HF). Individual radiation doses ranged between 0 and 4 Gy. In addition to analyses for the total period, we examined specific periods, 1950-1968, 1969-1980, 1981-1994 and 1995-2008, corresponding to major developments in medical technologies and ICD code revisions. We observed significant positive associations between radiation dose and mortality from heart disease overall in 1950-2008 [excess relative risk or ERR/Gy (95% CI) = 0.14 (0.06, 0.22)]. Subtype-specific ERRs also positively increased with dose: 0.45 (0.13, 0.85) for VHD, 0.36 (0.10, 0.68) for HOD and 0.21 (0.07, 0.37) for HF, respectively. No significant departure from linearity was shown for the dose-response model. Although there was no evidence for a threshold in a model function, the lowest dose ranges with a statistically significant dose response were 0-0.7 Gy for heart disease overall and VHD, 0-1.5 Gy for HOD and 0-0.4 Gy for HF. No significant association between radiation exposure and IHD was observed in any model, although a quadratic model fit the best. The risk of HOD and rheumatic VHD increased significantly in the earliest periods [ERR/Gy = 0.59 (0.07, 1.32) and 1.34 (0.24, 3.16), respectively]. The risk of nonrheumatic VHD increased with calendar time and was significant in the latest period [ERR/Gy = 0.75 (0.02, 1.92)]. The risk of IHD, especially for myocardial infarction, tended to be elevated in the most recent period after 2001, where cautious interpretation is needed due to the uncertain validity of death diagnosis. Radiation risks of heart disease mortality in the LSS appeared to vary substantially among subtypes, indicating possible differences in radiation-induced pathogenesis. Trends in CVD rates in Japan during the long observation period may also impact risk analyses.
Collapse
Affiliation(s)
- Ikuno Takahashi
- a Department of Clinical Studies, Radiation Effects Research Foundation (RERF) Hiroshima, Japan.,b Department of Epidemiology, Radiation Effects Research Foundation (RERF) Hiroshima, Japan
| | - Yukiko Shimizu
- b Department of Epidemiology, Radiation Effects Research Foundation (RERF) Hiroshima, Japan
| | - Eric J Grant
- b Department of Epidemiology, Radiation Effects Research Foundation (RERF) Hiroshima, Japan
| | - John Cologne
- c Department of Statistics, Radiation Effects Research Foundation (RERF) Hiroshima, Japan
| | - Kotaro Ozasa
- b Department of Epidemiology, Radiation Effects Research Foundation (RERF) Hiroshima, Japan
| | - Kazunori Kodama
- a Department of Clinical Studies, Radiation Effects Research Foundation (RERF) Hiroshima, Japan.,d Chief Scientist, Radiation Effects Research Foundation (RERF) Hiroshima, Japan
| |
Collapse
|
45
|
Baselet B, Rombouts C, Benotmane AM, Baatout S, Aerts A. Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). Int J Mol Med 2016; 38:1623-1641. [PMID: 27748824 PMCID: PMC5117755 DOI: 10.3892/ijmm.2016.2777] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/07/2016] [Indexed: 12/27/2022] Open
Abstract
Traditionally, non-cancer diseases are not considered as health risks following exposure to low doses of ionizing radiation. Indeed, non-cancer diseases are classified as deterministic tissue reactions, which are characterized by a threshold dose. It is judged that below an absorbed dose of 100 mGy, no clinically relevant tissue damage occurs, forming the basis for the current radiation protection system concerning non-cancer effects. Recent epidemiological findings point, however, to an excess risk of non-cancer diseases following exposure to lower doses of ionizing radiation than was previously thought. The evidence is the most sound for cardiovascular disease (CVD) and cataract. Due to limited statistical power, the dose-risk relationship is undetermined below 0.5 Gy; however, if this relationship proves to be without a threshold, it may have considerable impact on current low-dose health risk estimates. In this review, we describe the CVD risk related to low doses of ionizing radiation, the clinical manifestation and the pathology of radiation-induced CVD, as well as the importance of the endothelium models in CVD research as a way forward to complement the epidemiological data with the underlying biological and molecular mechanisms.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Charlotte Rombouts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Abderrafi Mohammed Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
46
|
Little MP. Radiation and circulatory disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 770:299-318. [PMID: 27919337 PMCID: PMC5315567 DOI: 10.1016/j.mrrev.2016.07.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 11/15/2022]
Abstract
Exposure to therapeutic doses of ionizing radiation is associated with damage to the heart and coronary arteries. However, only recently have studies with high-quality individual dosimetry data allowed this risk to be quantified while also adjusting for concomitant chemotherapy, and medical and lifestyle risk factors. At lower levels of exposure the evidence is less clear. In this article I review radiation-associated risks of circulatory disease in groups treated with radiotherapy for malignant and non-malignant disease, and in occupationally- or environmentally-exposed groups receiving rather lower levels of radiation dose, also for medical diagnostic purposes. Results of a meta-analysis suggest that excess relative risks per unit dose for various types of heart disease do not exhibit statistically significant (p>0.2) heterogeneity between studies. Although there are no marked discrepancies between risks derived from the high-dose therapeutic and medical diagnostic studies and from the moderate/low dose occupational and environmental studies, at least for ischemic heart disease and stroke there are indications of larger risks per unit dose for lower dose rate and fractionated exposures. Risks for stroke and other types of circulatory disease are significantly more variable (p<0.0001), possibly resulting from confounding and effect-modification by well known (but unobserved) risk factors. Adjustment for any of mean dose, dose fractionation or age at exposure results in the residual heterogeneity for cerebrovascular disease becoming non-significant. The review provides strong evidence in support of a causal association between both low and high dose radiation exposure and most types of circulatory disease.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA.
| |
Collapse
|
47
|
Azizova TV, Zhuntova GV, Haylock R, Moseeva MB, Grigoryeva ES, Bannikova MV, Belyaeva ZD, Bragin EV. Chronic bronchitis incidence in the extended cohort of Mayak workers first employed during 1948-1982. Occup Environ Med 2016; 74:105-113. [PMID: 27647620 DOI: 10.1136/oemed-2015-103283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 08/04/2016] [Accepted: 08/31/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This paper describes findings from the study of chronic bronchitis (CB) incidence after occupational exposure to ionising radiation among workers employed at Russian Mayak Production Association (PA) during 1948 and 1982 and followed up until 2008 based on 'Mayak Worker Dosimetry System 2008'. METHODS Analyses were based on 2135 verified cases among 21 417 workers. Rate ratios (RR) were estimated by categorical analysis for non-radiation and radiation factors. Excess rate ratios per Gy (ERR/Gy) of external or internal exposures with adjustments via stratification on other factors were calculated. RESULTS The interesting finding in relation to non-radiation factors was a sharp increase in the RR for CB incidence before 1960, which could be caused by a number of factors. Analyses restricted to the follow-up after 1960 revealed statistically significant associations of the CB incidence and external γ-ray radiation, ERR/Gy=0.14 (95% CI 0.02 to 0.28) having adjusted for sex, attained age, calendar period, plant, smoking status and lung α-particle dose, and internal α-particle radiation, ERR/Gy=1.14 (95% CI 0.41 to 2.18) having adjusted for sex, attained age, calendar period, plant, smoking status and lung γ-ray dose and ERR/Gy=1.19 (95% CI 0.32 to 2.53) having additionally adjusted for pre-employment occupational hazards and smoking index instead of smoking status. CONCLUSIONS Analyses of CB incidence in the study cohort identified positive significant association with occupational exposure to radiation: however, there are no similar studies of CB incidence in relation to radiation in other cohorts to date with which a meaningful comparison of the results could be made.
Collapse
Affiliation(s)
- T V Azizova
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - G V Zhuntova
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | | | - M B Moseeva
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - E S Grigoryeva
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - M V Bannikova
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Z D Belyaeva
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - E V Bragin
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| |
Collapse
|
48
|
Cucinotta FA, Hamada N, Little MP. No evidence for an increase in circulatory disease mortality in astronauts following space radiation exposures. LIFE SCIENCES IN SPACE RESEARCH 2016; 10:53-56. [PMID: 27662788 DOI: 10.1016/j.lssr.2016.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Previous analysis has shown that astronauts have a significantly lower standardized mortality ratio for circulatory disease mortality compared to the U.S. population, which is consistent with the rigorous selection process and healthy lifestyles of astronauts, and modest space radiation exposures from past space missions. However, a recent report by Delp et al. estimated the proportional mortality ratio for ages of 55-64 y of Apollo lunar mission astronauts to claim a high risk of cardiovascular disease due to space radiation compared to the U.S. population or to non-flight astronauts. In this Commentary we discuss important deficiencies in the methods and assumptions on radiation exposures used by Delp et al. that we judge cast serious doubt on their conclusions.
Collapse
Affiliation(s)
- Francis A Cucinotta
- Department of Diagnostic Sciences and Health Physics, University of Nevada, Las Vegas, Box 453037, Las Vegas, NV 89154-3037, USA.
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Division of Cancer Epidemiology and Genetics, HHS, 9609 Medical Center Drive, Bethesda, MD 20892-9778, USA
| |
Collapse
|
49
|
Berrington de González A, Ntowe E, Kitahara CM, Gilbert E, Miller DL, Kleinerman RA, Linet MS. Long-term Mortality in 43 763 U.S. Radiologists Compared with 64 990 U.S. Psychiatrists. Radiology 2016; 281:847-857. [PMID: 27440487 DOI: 10.1148/radiol.2016152472] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To compare mortality rates from all causes, specific causes, total cancers, and specific cancers to assess whether differences between radiologists and psychiatrists are consistent with known risks of radiation exposure and the changes in radiation exposure to radiologists over time. Materials and Methods The authors used the American Medical Association Physician Masterfile to construct a cohort of 43 763 radiologists (20% women) and 64 990 psychiatrists (27% women) (comparison group) who graduated from medical school in 1916-2006. Vital status was obtained from record linkages with the Social Security Administration and commercial databases, and cause of death was obtained from the National Death Index. Poisson regression was used to estimate relative risks (RRs) and 95% confidence intervals (CIs) for all causes and specific causes of death. Results During the follow-up period (1979-2008), 4260 male radiologists and 7815 male psychiatrists died. The male radiologists had lower death rates (all causes) compared with the psychiatrists (RR = 0.94; 95% CI: 0.90, 0.97), similar cancer death rates overall (RR = 1.00; 95% CI: 0.93, 1.07), but increased acute myeloid leukemia and/or myelodysplastic syndrome death rates (RR = 1.62; 95% CI: 1.05, 2.50); these rates were driven by those who graduated before 1940 (RR = 4.68; 95% CI: 0.91, 24.18). In these earliest workers (before 1940) there were also increased death rates from melanoma (RR = 8.75; 95% CI: 1.89, 40.53), non-Hodgkin lymphoma (NHL) (RR = 2.69; 95% CI: 1.33, 5.45), and cerebrovascular disease (RR = 1.49; 95% CI: 1.11, 2.01). The 208 deaths in female radiologists precluded detailed investigation, and the number of female radiologists who graduated before 1940 was very small (n = 47). Conclusion The excess risk of acute myeloid leukemia and/or myelodysplastic syndrome mortality in radiologists who graduated before 1940 is likely due to occupational radiation exposure. The melanoma, NHL, and cerebrovascular disease mortality risks are possibly due to radiation. The authors found no evidence of excess mortality in radiologists who graduated more recently, possibly because of increased radiation protection and/or lifestyle changes. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Amy Berrington de González
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, Bethesda, MD 20892 (A.B.d.G., E.N., C.M.K., E.G., R.A.K., M.S.L.); and FDA Office of In Vitro Diagnostics and Radiological Health, White Oak Campus, Silver Spring, Md (D.L.M.)
| | - Estelle Ntowe
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, Bethesda, MD 20892 (A.B.d.G., E.N., C.M.K., E.G., R.A.K., M.S.L.); and FDA Office of In Vitro Diagnostics and Radiological Health, White Oak Campus, Silver Spring, Md (D.L.M.)
| | - Cari M Kitahara
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, Bethesda, MD 20892 (A.B.d.G., E.N., C.M.K., E.G., R.A.K., M.S.L.); and FDA Office of In Vitro Diagnostics and Radiological Health, White Oak Campus, Silver Spring, Md (D.L.M.)
| | - Ethel Gilbert
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, Bethesda, MD 20892 (A.B.d.G., E.N., C.M.K., E.G., R.A.K., M.S.L.); and FDA Office of In Vitro Diagnostics and Radiological Health, White Oak Campus, Silver Spring, Md (D.L.M.)
| | - Donald L Miller
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, Bethesda, MD 20892 (A.B.d.G., E.N., C.M.K., E.G., R.A.K., M.S.L.); and FDA Office of In Vitro Diagnostics and Radiological Health, White Oak Campus, Silver Spring, Md (D.L.M.)
| | - Ruth A Kleinerman
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, Bethesda, MD 20892 (A.B.d.G., E.N., C.M.K., E.G., R.A.K., M.S.L.); and FDA Office of In Vitro Diagnostics and Radiological Health, White Oak Campus, Silver Spring, Md (D.L.M.)
| | - Martha S Linet
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Dr, Bethesda, MD 20892 (A.B.d.G., E.N., C.M.K., E.G., R.A.K., M.S.L.); and FDA Office of In Vitro Diagnostics and Radiological Health, White Oak Campus, Silver Spring, Md (D.L.M.)
| |
Collapse
|
50
|
Scherthan H, Sotnik N, Peper M, Schrock G, Azizova T, Abend M. Telomere Length in Aged Mayak PA Nuclear Workers Chronically Exposed to Internal Alpha and External Gamma Radiation. Radiat Res 2016; 185:658-67. [DOI: 10.1667/rr14271.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|