1
|
Wang J, Song Y, Tan X, Wang T, Shi Y, Xu X, Du J, Yu Z, Song B. Targeting PIM1 by Bruceine D attenuates skin fibrosis via myofibroblast ferroptosis. Redox Biol 2025; 82:103619. [PMID: 40168881 PMCID: PMC11993190 DOI: 10.1016/j.redox.2025.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025] Open
Abstract
Skin pan-fibrosis diseases-such as hypertrophic scar (HS), keloid scar (KS), and systemic sclerosis (SSc)-pose significant threats to patients' health and quality of life. In this study, the authors conducted both in vivo and in vitro experiments and discovered that the serine/threonine kinase PIM1 is upregulated in the myofibroblasts of human HS, KS, and SSc tissues, as well as in various animal models of skin fibrosis. Overexpression of PIM1 enhanced the profibrotic phenotypes of human hypertrophic scar fibroblasts (HSFs), which serve as key effector cells in the pathogenesis of skin pan-fibrosis diseases. Through high-throughput screening and subsequent laboratory assays, we identified the small molecule Bruceine D (BD) as a direct binder of PIM1. BD promoted ferroptosis in HSFs by selectively suppressing the PIM1-KEAP1-NRF2 pathway through augmented degradation of PIM1. In various in vivo models-including a hypertrophic scar mouse model, a rabbit ear hypertrophic scar model, and a bleomycin (BLM)-induced skin fibrosis mouse model-BD effectively attenuated fibrotic phenotypes. Collectively, these findings demonstrate that PIM1 serves as a common biomarker and therapeutic target for skin pan-fibrosis diseases. BD mitigates skin fibrosis by activating ferroptosis via PIM1 inhibition, highlighting its great translational potential and high promise to be developed to a clinical drug in treating these conditions, especially those with abnormally elevated PIM1 expression.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Shi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xingbo Xu
- Clinic for Cardiology and Pulmonology, University Medical Center Göttingen, Göttingen, 37075, Germany.
| | - Juan Du
- Department of Dermatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Warren WG, Osborn M, Yates A, O'Sullivan SE. ART26.12, an FABP5 Inhibitor, Shows Efficacy in Preclinical Psoriasis Models. J Invest Dermatol 2025:S0022-202X(25)00393-8. [PMID: 40210114 DOI: 10.1016/j.jid.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/12/2025]
Abstract
FABP5 is upregulated in psoriasis. This study assessed the efficacy of the potent, selective, and orally active FABP5 inhibitor ART26.12 in preclinical psoriasis models. In vitro, reconstructed human epidermis was stimulated with cytokines (IL-17 + IL-22 + TNF at 3 ng/ml each) and treated with ART26.12 (1, 3, or 10 μM) or Jak1 inhibitor (10 μM) for 24 hours; after which, 64 psoriasis-related genes were measured. ART26.12 (3 and 10 μM) treatment reduced cytokines, chemokines, and markers of keratinocyte proliferation/differentiation and increased certain antimicrobial peptides. In vivo, ART26.12 (25 or 100 mg/kg twice a day) or BMS-986165 (TYK2 inhibitor; 10 mg/kg once a day) was given orally for 10 days in the imiquimod mouse model. Imiquimod increased psoriasis-like symptoms. ART26.12 (25 mg/kg twice a day) and BMS-986165 comparably reduced psoriasis-like symptoms by day 6 of imiquimod treatment. Histopathology showed that ART26.12 reduced symptom severity, for example, hyperkeratosis, parakeratosis, epidermal acanthosis, and inflammatory infiltrates. Proteomic analysis indicated that ART26.12 rescued the expression of FLG-2; promoted epidermal differentiation complex-associated proteins; and modulated peroxisome proliferator-activated receptor, NF-kB, and protein kinase C pathways likely downstream of lipid modulation. Lipidomic analysis showed widespread modulation, including ceramides and linoleic acid derivatives. These data suggest that ART26.12 may be a potential psoriasis treatment.
Collapse
|
3
|
Mascharak S, Griffin M, Talbott HE, Guo JL, Parker J, Morgan AG, Valencia C, Kuhnert MM, Li DJ, Liang NE, Kratofil RM, Daccache JA, Sidhu I, Davitt MF, Guardino N, Lu JM, Abbas DB, Deleon NMD, Lavin CV, Adem S, Khan A, Chen K, Henn D, Spielman A, Cotterell A, Akras D, Downer M, Tevlin R, Lorenz HP, Gurtner GC, Januszyk M, Naik S, Wan DC, Longaker MT. Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model. Sci Transl Med 2025; 17:eadt6387. [PMID: 39970235 DOI: 10.1126/scitranslmed.adt6387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Modulating mechanotransduction by inhibiting yes-associated protein (YAP) in mice yields wound regeneration without scarring. However, rodents are loose-skinned and fail to recapitulate key aspects of human wound repair. We sought to elucidate the effects of YAP inhibition in red Duroc pig wounds, the most human-like model of scarring. We show that one-time treatment with verteporfin, a YAP inhibitor, immediately after wounding is sufficient to prevent scarring and to drive wound regeneration in pigs. By performing single-cell RNA sequencing (scRNA-seq) on porcine wounds in conjunction with spatial proteomic analysis, we found perturbations in fibroblast dynamics with verteporfin treatment and the presence of putative pro-regenerative/profibrotic fibroblasts enriched in regenerating/scarring pig wounds, respectively. We also identified differences in enriched myeloid cell subpopulations after treatment and linked this observation to increased elaboration of interleukin-33 (IL-33) in regenerating wounds. Finally, we validated our findings in a xenograft wound model containing human neonatal foreskin engrafted onto nude mice and used scRNA-seq of human wound cells to draw parallels with fibroblast subpopulation dynamics in porcine wounds. Collectively, our findings provide support for the clinical translation of local mechanotransduction inhibitors to prevent human skin scarring, and they clarify a YAP/IL-33 signaling axis in large animal wound regeneration.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E Talbott
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason L Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annah Grace Morgan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maxwell Michael Kuhnert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dayan J Li
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Norah E Liang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel M Kratofil
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph A Daccache
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA
| | - Michael F Davitt
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Guardino
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M Lu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Darren B Abbas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nestor M D Deleon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher V Lavin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandeep Adem
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Spielman
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Asha Cotterell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deena Akras
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Peter Lorenz
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Chen S, Fan Y, Wu Q, Zhang G, Wang Y, Li W, Yang S, Matucci-Cerinic M, Furst DE. Integrative Transcriptomic Analysis of Peripheral Blood Monocytes in Systemic Sclerosis and Shared Pathogenic Pathways in Autoimmune Diseases. Arch Med Res 2025; 56:103072. [PMID: 39208548 DOI: 10.1016/j.arcmed.2024.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/04/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Systemic sclerosis (SSc) is an autoimmune disease (AD), that receives less attention compared to rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and primary Sjögren's syndrome (pSS). This study aims to analyze transcriptional profiles and immune cell composition in peripheral blood mononuclear cells (PBMC) from SSc patients compared to other ADs. METHODS RNA-seq data from 119 untreated patients (eight with SSc, 42 with RA, 41 with pSS, 28 with SLE) and 20 healthy controls were analyzed. Bioinformatics tools were employed to identify differentially expressed genes (DEGs), biological functions and immune cell profiles unique to SSc and shared with other ADs. RESULTS 1,148 DEGs were found in SSc, with upregulated genes associated with megakaryocyte processes and downregulated genes associated with neutrophil function and immune response. DEGs, including ALDH1A1 and MEGF9, were associated with neutropenia. Upregulated transcription factors (TFs) were linked to embryonic hematopoiesis and downregulated TFs were involved in leukocyte differentiation and immune regulation. Comparative analysis with other ADs revealed common pathogenic pathways, emphasizing megakaryocyte proliferation. Neutrophils count was significantly decreased in ADs (p <0.001) compared to healthy controls. Comparative analysis highlighted common pathways, particularly in megakaryocyte proliferation, and unique genes (MEGF9, MMP8, and KRT family members) in SSc, suggesting roles in neutrophil function, skin integrity, and fibrosis. CONCLUSIONS This study identifies dysregulated gene expression (KRT and MMP8) associated with neutrophil function and increased megakaryocytes in SSc, highlighting common patterns across autoimmune diseases. These findings offer new insights into the potential pathogenesis of SSc, and help to explore new targets for the treatment.
Collapse
Affiliation(s)
- Shaoqi Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yu Fan
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Qiulin Wu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yukai Wang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Weiping Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Shengli Yang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Shanghai Academician Consulting and Academic Activities Center of Chinese Academy of Engineering, Shanghai, China.
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, San Raffaele Hospital, Milan, Italy
| | - Daniel E Furst
- Division of Rheumatology, School of Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
5
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Chen X, Wu Y, Jia S, Zhao M. Fibroblast: A Novel Target for Autoimmune and Inflammatory Skin Diseases Therapeutics. Clin Rev Allergy Immunol 2024; 66:274-293. [PMID: 38940997 DOI: 10.1007/s12016-024-08997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Fibroblasts are crucial components of the skin structure. They were traditionally believed to maintain the skin's structure by producing extracellular matrix and other elements. Recent research illuminated that fibroblasts can respond to external stimuli and exhibit diverse functions, such as the secretion of pro-inflammatory factors, adipogenesis, and antigen presentation, exhibiting remarkable heterogeneity and plasticity. This revelation positions fibroblasts as active contributors to the pathogenesis of skin diseases, challenging the traditional perspective that views fibroblasts solely as structural entities. Based on their diverse functions, fibroblasts can be categorized into six subtypes: pro-inflammatory fibroblasts, myofibroblasts, adipogenic fibroblasts, angiogenic fibroblasts, mesenchymal fibroblasts, and antigen-presenting fibroblasts. Cytokines, metabolism, and epigenetics regulate functional abnormalities in fibroblasts. The dynamic changes fibroblasts exhibit in different diseases and disease states warrant a comprehensive discussion. We focus on dermal fibroblasts' aberrant manifestations and pivotal roles in inflammatory and autoimmune skin diseases, including psoriasis, vitiligo, lupus erythematosus, scleroderma, and atopic dermatitis, and propose targeting aberrantly activated fibroblasts as a potential therapeutic strategy for inflammatory and autoimmune skin diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yutong Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
7
|
Ma Z, An P, Hao S, Huang Z, Yin A, Li Y, Tian J. Single-cell sequencing analysis and multiple machine-learning models revealed the cellular crosstalk of dendritic cells and identified FABP5 and KLRB1 as novel biomarkers for psoriasis. Front Immunol 2024; 15:1374763. [PMID: 38596682 PMCID: PMC11002082 DOI: 10.3389/fimmu.2024.1374763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, China
| | - Siyu Hao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Anqi Yin
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| |
Collapse
|
8
|
Wang P, Xie D, Xiao T, Cheng C, Wang D, Sun J, Wu M, Yang Y, Zhang A, Liu Q. H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132582. [PMID: 37742376 DOI: 10.1016/j.jhazmat.2023.132582] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
As epigenetic modifications, lactylation and N6-methyladenosine (m6A) have attracted wide attention. Arsenite is an environmental pollutant that has been proven to induce idiopathic pulmonary fibrosis (IPF). However, the molecular mechanisms of lactylation and m6A methylation are unclear in arsenite-related IPF (As-IPF). In view of the limited understanding of molecular mechanism of m6A and lactylation in As-IPF, MeRIP-seq, RNA-seq and ChIP-seq were analyzed to verify the target gene regulated by m6A and H3K18 lactylation (H3K18la). We found that, for As-IPF, the global levels of m6A, levels of YTHDF1 and m6A-modified neuronal protein 3.1 (NREP) were elevated in alveolar epithelial cells (AECs). The secretion levels of TGF-β1 were increased via YTHDF1/m6A/NREP, which promoted the fibroblast-to-myofibroblast transition (FMT). Further, extracellular lactate from myofibroblasts elevated levels of the global lactylation (Kla) and H3K18la via the lactate monocarboxylate transporter 1 (MCT1), and, in AECs, H3K18la facilitated the transcription of Ythdf1. This report highlights the role of crosstalk between AECs and myofibroblasts via lactylation and m6A and the significance of H3K18la regulation of YTHDF1 in the progression of As-IPF, which may be useful for finding effective therapeutic targets.
Collapse
Affiliation(s)
- Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, PR China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
9
|
Li Y, Wu Q. KRT6A Inhibits IL-1β-Mediated Pyroptosis of Keratinocytes via Blocking IL-17 Signaling. Crit Rev Eukaryot Gene Expr 2024; 34:1-11. [PMID: 38505868 DOI: 10.1615/critreveukaryotgeneexpr.2023050039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Keratin 6A (KRT6A) is involved in the pathogenesis of various skin diseases. However, the reports on the roles of KRT6A in atopic dermatitis (AD) are limited. This study aimed to investigate the potentials of KRT6A in AD. mRNA levels were detected by RT-PCR. Cytokine release was determined by ELISA. Protein expression was determined using Western blot. Cell viability was determined by CCK-8. Cytotoxicity was detected by LDH assay. Cell death was determined by TUNEL. The pyroptosis of keratinocytes was detected using flow cytometry. We found that KRT6A was overexpressed in AD patients. Moreover, KRT6A was stimulated after exposed to proinflammatory cytokines. Overexpressed KRT6A suppressed inflammatory response, while KRT6A knockdown exerted the opposite effects. Overexpressed KRT6A suppressed inflammation-induced pyroptosis of keratinocytes. Additionally, KRT6A negatively regulated interleukin-17a (IL-17a) expression, blocking IL-17 signaling. IL-17a overexpression antagonized the effects of KRT6A and promoted pyroptosis of keratinocytes. In conclusion, KRT6A exerted protective functions in AD via regulating IL-17 signaling. This KRT6A/IL-17 may be a novel target for AD.
Collapse
Affiliation(s)
- Yuan Li
- Department of Dermatology, Union Jiangbei Hospital Huazhong University of Science and Technology (Caidian District People's Hospital of Wuhan), Wuhan City, Hubei Province 430100, China
| | - Qi Wu
- Wuhan Jiangxia District Traditional Chinese Medicine Hospital
| |
Collapse
|
10
|
Fan J, Lu F, Qin T, Peng W, Zhuang X, Li Y, Hou X, Fang Z, Yang Y, Guo E, Yang B, Li X, Fu Y, Kang X, Wu Z, Han L, Mills GB, Ma X, Li K, Wu P, Ma D, Chen G, Sun C. Multiomic analysis of cervical squamous cell carcinoma identifies cellular ecosystems with biological and clinical relevance. Nat Genet 2023; 55:2175-2188. [PMID: 37985817 DOI: 10.1038/s41588-023-01570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Cervical squamous cell carcinoma (CSCC) exhibits a limited response to immune-checkpoint blockade. Here we conducted a multiomic analysis encompassing single-cell RNA sequencing, spatial transcriptomics and spatial proteomics, combined with genetic and pharmacological perturbations to systematically develop a high-resolution and spatially resolved map of intratumoral expression heterogeneity in CSCC. Three tumor states (epithelial-cytokeratin, epithelial-immune (Epi-Imm) and epithelial senescence), recapitulating different stages of squamous differentiation, showed distinct tumor immune microenvironments. Bidirectional interactions between epithelial-cytokeratin malignant cells and immunosuppressive cancer-associated fibroblasts form an immune exclusionary microenvironment through transforming growth factor β pathway signaling mediated by FABP5. In Epi-Imm tumors, malignant cells interact with natural killer and T cells through interferon signaling. Preliminary analysis of samples from a cervical cancer clinical trial ( NCT04516616 ) demonstrated neoadjuvant chemotherapy induces a state transition to Epi-Imm, which correlates with pathological complete remission following treatment with immune-checkpoint blockade. These findings deepen the understanding of cellular state diversity in CSCC.
Collapse
Affiliation(s)
- Junpeng Fan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Funian Lu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Qin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenju Peng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xucui Zhuang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinuo Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Hou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunyi Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ensong Guo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Kang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zimeng Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Han
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Gordon B Mills
- Division of Oncological Sciences, Oregon Health and Sciences University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
| | - Xiangyi Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Wu
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecological Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gang Chen
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Li X, Qian K, Zhang Y, Zhang Y, Liu Y, Sun C, Jiao Y, Yu D, Geng F, Cao J, Zhang S. Ubiquitin-specific peptidase 47 (USP47) regulates cutaneous oxidative injury through nicotinamide nucleotide transhydrogenase (NNT). Toxicol Appl Pharmacol 2023; 480:116734. [PMID: 37924851 DOI: 10.1016/j.taap.2023.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Human skin is daily exposed to oxidative stresses in the environment such as physical stimulation, chemical pollutants and pathogenic microorganisms, which are likely to cause skin diseases. As important post-translational modifications, protein ubiquitination and deubiquitination play crucial roles in maintaining cellular homeostasis by the proteolytic removal of oxidized proteins. We have previously reported that the expression of ubiquitin-specific protease 47 (USP47), a kind of deubiquitinating enzymes (DUBs), was significantly elevated in response to oxidative stress. However, the role of USP47 in cutaneous oxidative injury remains unclear. Usp47 wild-type (Usp47+/+) mice and Usp47 knockout (Usp47-/-) mice were used to establish two animal models of oxidative skin damage: (1) radiation- and (2) imiquimod (IMQ)-induced skin injury. Loss of Usp47 consistently aggravated mouse skin damage in vivo. Subsequently, we screened 63 upregulated and 170 downregulated proteins between the skin tissues of wild-type and Usp47-/- mice after 35 Gy electron beam radiation using proteomic analysis. Among the dysregulated proteins, nicotinamide nucleotide transhydrogenase (NNT), which has been reported as a significant regulator of oxidative stress and redox homeostasis, was further investigated in detail. Results showed that NNT was regulated by USP47 through direct ubiquitination mediated degradation and involved in the pathogenesis of cutaneous oxidative injury. Knockdown of NNT expression dramatically limited the energy production ability, with elevated mitochondrial reactive oxygen species (ROS) accumulation and increased mitochondrial membrane potential in irradiated HaCaT cells. Taken together, our present findings illustrate the critical role of USP47 in oxidative skin damage by modulating NNT degradation and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Xiaoqian Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kun Qian
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China
| | - Yuehua Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Chuntang Sun
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Jiao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Fenghao Geng
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
12
|
Berkowitz JS, Tabib T, Xiao H, Sadej GM, Khanna D, Fuschiotti P, Lafyatis RA, Das J. Cell Type-Specific Biomarkers of Systemic Sclerosis Disease Severity Capture Cell-Intrinsic and Cell-Extrinsic Circuits. Arthritis Rheumatol 2023; 75:1819-1830. [PMID: 37096444 PMCID: PMC10543405 DOI: 10.1002/art.42536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/04/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a multifactorial autoimmune fibrotic disorder involving complex rewiring of cell-intrinsic and cell-extrinsic signaling coexpression networks involving a range of cell types. However, the rewired circuits as well as corresponding cell-cell interactions remain poorly understood. To address this, we used a predictive machine learning framework to analyze single-cell RNA-sequencing data from 24 SSc patients across the severity spectrum as quantified by the modified Rodnan skin score (MRSS). METHODS We used a least absolute shrinkage and selection operator (LASSO)-based predictive machine learning approach on the single-cell RNA-sequencing data set to identify predictive biomarkers of SSc severity, both across and within cell types. The use of L1 regularization helps prevent overfitting on high-dimensional data. Correlation network analyses were coupled to the LASSO model to identify cell-intrinsic and cell-extrinsic co-correlates of the identified biomarkers of SSc severity. RESULTS We found that the uncovered cell type-specific predictive biomarkers of MRSS included previously implicated genes in fibroblast and myeloid cell subsets (e.g., SFPR2+ fibroblasts and monocytes), as well as novel gene biomarkers of MRSS, especially in keratinocytes. Correlation network analyses revealed novel cross-talk between immune pathways and implicated keratinocytes in addition to fibroblast and myeloid cells as key cell types involved in SSc pathogenesis. We then validated the uncovered association of key gene expression and protein markers in keratinocytes, KRT6A and S100A8, with SSc skin disease severity. CONCLUSION Our global systems analyses reveal previously uncharacterized cell-intrinsic and cell-extrinsic signaling coexpression networks underlying SSc severity that involve keratinocytes, myeloid cells, and fibroblasts.
Collapse
Affiliation(s)
- Jacob S Berkowitz
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hanxi Xiao
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabrielle M. Sadej
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Patrizia Fuschiotti
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A. Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Coulis G, Jaime D, Guerrero-Juarez C, Kastenschmidt JM, Farahat PK, Nguyen Q, Pervolarakis N, McLinden K, Thurlow L, Movahedi S, Duarte J, Sorn A, Montoya E, Mozaffar I, Dragan M, Othy S, Joshi T, Hans CP, Kimonis V, MacLean AL, Nie Q, Wallace LM, Harper SQ, Mozaffar T, Hogarth MW, Bhattacharya S, Jaiswal JK, Golann DR, Su Q, Kessenbrock K, Stec M, Spencer MJ, Zamudio JR, Villalta SA. Single-cell and spatial transcriptomics identify a macrophage population associated with skeletal muscle fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537253. [PMID: 37131694 PMCID: PMC10153153 DOI: 10.1101/2023.04.18.537253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six novel clusters. Unexpectedly, none corresponded to traditional definitions of M1 or M2 macrophage activation. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 and spp1. Spatial transcriptomics and computational inferences of intercellular communication indicated that spp1 regulates stromal progenitor and macrophage interactions during muscular dystrophy. Galectin-3 + macrophages were chronically activated in dystrophic muscle and adoptive transfer assays showed that the galectin-3 + phenotype was the dominant molecular program induced within the dystrophic milieu. Histological examination of human muscle biopsies revealed that galectin-3 + macrophages were also elevated in multiple myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining the transcriptional programs induced in muscle macrophages, and reveal spp1 as a major regulator of macrophage and stromal progenitor interactions.
Collapse
Affiliation(s)
- Gerald Coulis
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Diego Jaime
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Christian Guerrero-Juarez
- Department of Mathematics, University of California Irvine, USA
- Department of Developmental and Cell Biology, University of California Irvine, USA
| | - Jenna M. Kastenschmidt
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Philip K. Farahat
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Quy Nguyen
- Department of Biological Chemistry, University of California Irvine, USA
| | | | - Katherine McLinden
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - Lauren Thurlow
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - Saba Movahedi
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Jorge Duarte
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Andrew Sorn
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Elizabeth Montoya
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Izza Mozaffar
- Department of Physiology and Biophysics, University of California Irvine, USA
| | - Morgan Dragan
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, USA
| | - Chetan P. Hans
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
| | | | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Qing Nie
- Department of Mathematics, University of California Irvine, USA
- Department of Developmental and Cell Biology, University of California Irvine, USA
| | - Lindsay M. Wallace
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital
| | - Scott Q. Harper
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital
| | - Tahseen Mozaffar
- Department of Neurology, University of California Irvine, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, USA
| | - Marshall W. Hogarth
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | - Surajit Bhattacharya
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | - Jyoti K. Jaiswal
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | | | - Qi Su
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, USA
| | - Michael Stec
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Jesse R. Zamudio
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, USA
| | - S. Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, USA
- Institute for Immunology, University of California Irvine, USA
- Department of Neurology, University of California Irvine, USA
| |
Collapse
|
14
|
Maity J, Dey T, Banerjee A, Chattopadhyay A, Das AR, Bandyopadhyay D. Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors. J Pineal Res 2023; 74:e12847. [PMID: 36456538 DOI: 10.1111/jpi.12847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
In recent days, the hike in obesity-mediated epidemics across the globe and the prevalence of obesity-induced cardiovascular disease has become one of the chief grounds for morbidity and mortality. This epidemic-driven detrimental events in the cardiac tissues start with the altered distribution and metabolism pattern of high-density lipoprotein and low-density lipoprotein (LDL) leading to cholesterol (oxidized LDL) deposition on the arterial wall and atherosclerotic plaque generation, followed by vascular spasms and infarction. Subsequently, obesity-triggered metabolic malfunctions induce free radical generation which may further trigger pro-inflammatory signaling and nuclear factor kappa-light-chain-enhancer of activated B cells transcriptional factor, thus inducing interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase. This terrifying cardiomyopathy can be further aggravated in type 2 diabetes mellitus, thereby making obese diabetic patients prone toward the development of myocardial infarction (MI) or stroke in comparison to their nondiabetic counterparts. The accelerated oxidative stress and pro-inflammatory response induced cardiomyocyte hypertrophy, followed by apoptosis in obese diabetic individuals, causing progression of athero-thrombotic vascular disease. Being an efficient antioxidative and anti-inflammatory indolamine, melatonin effectively inhibits lipid peroxidation, pro-inflammatory reactions, thereby resolving free radical-induced myocardial damages along with maintaining antioxidant reservoir to preserve cardiovascular integrity. Prolonged melatonin treatment maintains balanced body weight and serum total cholesterol concentration by inhibiting cholesterol synthesis and promoting cholesterol catabolism. Additionally, melatonin promotes macrophage polarization toward the anti-inflammatory state, providing a proper shield during the recovery period. Therefore, the protective role of melatonin in maintaining the lipid metabolism homeostasis and blocking the atherosclerotic plaque rupture could be targeted as the possible therapeutic strategy for the management of obesity-induced acute MI. This review aimed at orchestrating the efficacy of melatonin in ameliorating irrevocable oxidative cardiovascular damage induced by the obesity-diabetes correlation.
Collapse
Affiliation(s)
- Juin Maity
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Adrita Banerjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Asish R Das
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
15
|
Talpan D, Salla S, Meusel L, Walter P, Kuo CC, Franzen J, Fuest M. Cytoprotective Effects of Human Platelet Lysate during the Xeno-Free Culture of Human Donor Corneas. Int J Mol Sci 2023; 24:ijms24032882. [PMID: 36769200 PMCID: PMC9917909 DOI: 10.3390/ijms24032882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
We evaluated the suitability of 2% human platelet lysate medium (2%HPL) as a replacement for 2% fetal bovine serum medium (2%FBS) for the xeno-free organ culture of human donor corneas. A total of 32 corneas from 16 human donors were cultured in 2%FBS for 3 days (TP1), then evaluated using phase contrast microscopy (endothelial cell density (ECD) and cell morphology). Following an additional 25-day culture period (TP2) in either 2%FBS or 2%HPL, the pairs were again compared using microscopy; then stroma and Descemet membrane/endothelium (DmE) were processed for next generation sequencing (NGS). At TP2 the ECD was higher in the 2%HPL group (2179 ± 288 cells/mm2) compared to 2%FBS (2113 ± 331 cells/mm2; p = 0.03), and endothelial cell loss was lower (ECL HPL = -0.7% vs. FBS = -3.8%; p = 0.01). There were no significant differences in cell morphology between TP1 and 2, or between 2%HPL and 2%FBS. NGS showed the differential expression of 1644 genes in endothelial cells and 217 genes in stromal cells. It was found that 2%HPL led to the upregulation of cytoprotective, anti-inflammatory and anti-fibrotic genes (HMOX1, SERPINE1, ANGPTL4, LEFTY2, GADD45B, PLIN2, PTX3, GFRA1/2), and the downregulation of pro-inflammatory/apoptotic genes (e.g., CXCL14, SIK1B, PLK5, PPP2R3B, FABP5, MAL, GATA3). 2%HPL is a suitable xeno-free substitution for 2%FBS in human cornea organ culture, inducing less ECL and producing potentially beneficial alterations in gene expression.
Collapse
Affiliation(s)
- Delia Talpan
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Sabine Salla
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Linus Meusel
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Franzen
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
16
|
Tu W, Tang S, Yan T, Feng Y, Mo W, Song B, Wang J, Cheng S, Geng F, Shi Y, Yu D, Zhang S. Integrative multi-omic analysis of radiation-induced skin injury reveals the alteration of fatty acid metabolism in early response of ionizing radiation. J Dermatol Sci 2022; 108:178-186. [PMID: 36639278 DOI: 10.1016/j.jdermsci.2023.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/11/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND Radiation-induced skin injury is a serious concern during radiotherapy and accidental exposure to radiation. OBJECTIVE This study aims to investigate the molecular events in early response to ionizing radiation of skin tissues and underlying mechanism. METHODS Mice and rats were irradiated with an electron beam. Skin tissues were used for liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, mRNA-Seq and single-cell RNA sequencing (scRNA-Seq). Human keratinocytes (HaCaT) and skin fibroblasts (WS1) were used for functional studies. RESULTS The integrated analysis of metabolomics and transcriptomics showed that 6 key fatty acid-associated metabolites, 9 key fatty acid-associated genes and multiple fatty acid-associated pathways were most obviously enriched and increased in the irradiated skins. Among them, acyl-CoA dehydrogenase very long chain (ACADVL) was investigated in greater detail due to its most obvious expression difference and significance in fatty acid metabolism. ScRNA-Seq of rat skin from irradiated individuals revealed that ACADVL was expressed in all subpopulations of skin tissues, with variations at different timepoints after radiation. Immunohistochemistry confirmed an increased ACADVL expression in the epidermis from human sample and various animal models, including monkeys, rats and mice. The knockdown of ACADVL increased the radiosensitivity of human keratinocytes and human skin fibroblasts. Silencing of ACADVL facilitated the expression of apoptosis and pyroptosis-related proteins following ionizing radiation. CONCLUSION This study illustrated that cutaneous fatty acid metabolism was altered in the early response of ionizing radiation, and fatty acid metabolism-associated ACADVL is involved in radiation-induced cell death.
Collapse
Affiliation(s)
- Wenling Tu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China; School of Bioscience and Technology, Chengdu Medical College, Chengdu, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
| | - Shaokai Tang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tao Yan
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yahui Feng
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Wei Mo
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinlong Wang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Shuanghua Cheng
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Fenghao Geng
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuhong Shi
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China.
| |
Collapse
|
17
|
Deng L, Xu G, Huang Q. Comprehensive analyses of the microRNA-messenger RNA-transcription factor regulatory network in mouse and human renal fibrosis. Front Genet 2022; 13:925097. [PMID: 36457754 PMCID: PMC9705735 DOI: 10.3389/fgene.2022.925097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 09/19/2023] Open
Abstract
Objective: The aim of this study was to construct a microRNA (miRNA)-messenger RNA (mRNA)-transcription factor (TF) regulatory network and explore underlying molecular mechanisms, effective biomarkers, and drugs in renal fibrosis (RF). Methods: A total of six datasets were downloaded from Gene Expression Omnibus. "Limma" and "DESeq2" packages in R software and GEO2R were applied to identify the differentially expressed miRNAs and mRNAs (DEmiRNAs and DEmRNAs, respectively). The determination and verification of DEmiRNAs and DEmRNAs were performed through the integrated analysis of datasets from five mouse 7 days of unilateral ureteral obstruction datasets and one human chronic kidney disease dataset and the Human Protein Atlas (http://www.proteinatlas.org). Target mRNAs of DEmiRNAs and TFs were predicted by prediction databases and the iRegulon plugin in Cytoscape, respectively. A protein-protein interaction network was constructed using STRING, Cytoscape v3.9.1, and CytoNCA. Functional enrichment analysis was performed by DIANA-miRPath v3.0 and R package "clusterProfiler." A miRNA-mRNA-TF network was established using Cytoscape. Receiver operating characteristic (ROC) curve analysis was used to examine the diagnostic value of the key hub genes. Finally, the Comparative Toxicogenomics Database and Drug-Gene Interaction database were applied to identify potential drugs. Results: Here, 4 DEmiRNAs and 11 hub genes were determined and confirmed in five mouse datasets, of which Bckdha and Vegfa were further verified in one human dataset and HPA, respectively. Moreover, Bckdha and Vegfa were also predicted by miR-125a-3p and miR-199a-5p, respectively, in humans as in mice. The sequences of miR-125a-3p and miR-199a-5p in mice were identical to those in humans. A total of 6 TFs were predicted to regulate Bckdha and Vegfa across mice and humans; then, a miRNA-mRNA-TF regulatory network was built. Subsequently, ROC curve analysis showed that the area under the curve value of Vegfa was 0.825 (p = 0.002). Finally, enalapril was identified to target Vegfa for RF therapy. Conclusion: Pax2, Pax5, Sp1, Sp2, Sp3, and Sp4 together with Bckdha-dependent miR-125a-3p/Vegfa-dependent miR-199a-5p formed a co-regulatory network enabling Bckdha/Vegfa to be tightly controlled in the underlying pathogenesis of RF across mice and humans. Vegfa could act as a potential novel diagnostic marker and might be targeted by enalapril for RF therapy.
Collapse
Affiliation(s)
- Le Deng
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Qipeng Huang
- Department of Nephrology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| |
Collapse
|
18
|
Lei Q, Yu Z, Li H, Cheng J, Wang Y. Fatty acid-binding protein 5 aggravates pulmonary artery fibrosis in pulmonary hypertension secondary to left heart disease via activating wnt/β-catenin pathway. J Adv Res 2022; 40:197-206. [PMID: 36100327 PMCID: PMC9481948 DOI: 10.1016/j.jare.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/01/2021] [Accepted: 11/21/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Pulmonary hypertension secondary to left heart disease (PH-LHD) is a common and fatal disease. However, no effective therapeutic targets have been identified. OBJECTIVES Here, we set out to illustrate the functional role and underlying mechanisms of fatty acid-binding protein 5 (FABP5) in PH-LHD development. METHODS We performed a systematic analysis of datasets GSE84704 and GSE16624 to identify differentially expressed genes and then constructed protein-protein interaction network for significant modules. Potential target genes in the modules were validated by RT-qPCR and western blot in a PH-LHD mouse model. PH-LHD or sham mice were treated with FABP5 antagonist SBFI-26 or DMSO for 28 days. The role of FABP5 on cardiac function was determined by echocardiography, its impact on pulmonary vascular remodelling were evaluated with right heart catheter, histological analysis and western blot. In vitro, primary pulmonary adventitial fibroblasts were used to investigate the pro-fibrotic mechanisms involving in FABP5. RESULTS FABP5 was the only one dramatically upregulated along with increased protein expression in the established PH-LHD mouse model. Inhibition of FABP5 by SBFI-26 injection abrogated pulmonary artery remodelling in PH-LHD and improved cardiac function. In vitro, SBFI-26 or FABP5 siRNA blunted the TGF-β1-induced fibrotic response in cultured pulmonary adventitial fibroblasts. Mechanistically, FABP5 knockdown inhibited GSK3β phosphorylation and increased β-catenin phosphorylation. The wnt/β-catenin agonist SKL2001 diminished the antifibrotic effect of FABP5 knockdown on pulmonary adventitial fibroblasts under TGF-β1 stimulation. CONCLUSION FABP5 is an important mediator of pulmonary artery remodelling and a potential therapeutic target for PH-LHD.
Collapse
Affiliation(s)
- Qian Lei
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhimin Yu
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hang Li
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jun Cheng
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Kim Y, Nam Y, Rim YA, Ju JH. Anti-fibrotic effect of a selective estrogen receptor modulator in systemic sclerosis. Stem Cell Res Ther 2022; 13:303. [PMID: 35841004 PMCID: PMC9284699 DOI: 10.1186/s13287-022-02987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background The rarity of systemic sclerosis (SSc) has hampered the development of therapies for this intractable autoimmune disease. Induced pluripotent stem cell (iPSC) can be differentiated into the key disease-affected cells in vitro. The generation of patient-derived iPSCs has opened up possibilities for rare disease modeling. Since these cells can recapitulate the disease phenotypes of the cell in question, they are useful high-throughput platforms for screening for drugs that can reverse these abnormal phenotypes. Methods SSc iPSC was generated from PBMC by Sendai virus. Human iPSC lines from SSc patients were differentiated into dermal fibroblasts and keratinocytes. The iPSC-derived differentiated cells from the SSc patients were used on high-throughput platforms to screen for FDA-approved drugs that could be effective treatments for SSc. Results Skin organoids were generated from these cells exhibited fibrosis that resembled SSc skin. Screening of the 770-FDA-approved drug library showed that the anti-osteoporotic drug raloxifene reduced SSc iPSC-derived fibroblast proliferation and extracellular matrix production and skin fibrosis in organoids and bleomycin-induced SSc-model mice. Conclusions This study reveals that a disease model of systemic sclerosis generated using iPSCs-derived skin organoid is a novel tool for in vitro and in vivo dermatologic research. Since raloxifene and bazedoxifene are well-tolerated anti-osteoporotic drugs, our findings suggest that selective estrogen receptor modulator (SERM)-class drugs could treat SSc fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02987-w.
Collapse
Affiliation(s)
- Yena Kim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,YiPSCELL Inc., 47-3, Banpo-dearo 39-gil, Seocho-gu, Seoul, Republic of Korea
| | - Yoojun Nam
- YiPSCELL Inc., 47-3, Banpo-dearo 39-gil, Seocho-gu, Seoul, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea. .,YiPSCELL Inc., 47-3, Banpo-dearo 39-gil, Seocho-gu, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-040, Republic of Korea.
| |
Collapse
|
20
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
21
|
Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci 2021; 23:ijms23010218. [PMID: 35008644 PMCID: PMC8745381 DOI: 10.3390/ijms23010218] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and its complications have become a prominent global public health problem that severely threatens human health. Melatonin, originally known as an effective antioxidant, is an endogenous hormone found throughout the body that serves various physiological functions. In recent decades, increasing attention has been paid to its unique function in regulating energy metabolism, especially in glucose and lipid metabolism. Accumulating evidence has established the relationship between melatonin and obesity; nevertheless, not all preclinical and clinical evidence indicates the anti-obesity effect of melatonin, which makes it remain to conclude the clinical effect of melatonin in the fight against obesity. In this review, we have summarized the current knowledge of melatonin in regulating obesity-related symptoms, with emphasis on its underlying mechanisms. The role of melatonin in regulating the lipid profile, adipose tissue, oxidative stress, and inflammation, as well as the interactions of melatonin with the circadian rhythm, gut microbiota, sleep disorder, as well as the α7nAChR, the opioidergic system, and exosomes, make melatonin a promising agent to open new avenues in the intervention of obesity.
Collapse
|
22
|
Xue J, Yu C, Tang Y, Mo W, Tang Z, Sheng W, Jiao Y, Zhu W, Cao J. NF-E2-Related Factor 2 (Nrf2) Ameliorates Radiation-Induced Skin Injury. Front Oncol 2021; 11:680058. [PMID: 34568011 PMCID: PMC8461566 DOI: 10.3389/fonc.2021.680058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Radiation-induced skin injury (RISI) commonly occur in cancer patients who received radiotherapy and is one of the first clinical symptoms after suffering from nuclear exposure. Oxidative damage is the major causes of RISI. Nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as a key mediator of the cellular antioxidant response. However, whether Nrf2 can alleviate RISI after high-dose irradiation remains unknown. In this study, we demonstrated that Nrf2-deficient (Nrf2-/-) mice were susceptible to high-dose irradiation and adenovirus-mediated overexpression of Nrf2 (ad-Nrf2) protected against radiation in skin cells. Overexpression of Nrf2 attenuated the severity of skin injury after high-dose electron beam irradiation. To uncover the mechanisms of Nrf2 involved in RISI, mRNA sequencing technology was performed to analyze the mRNA expression profiles of Ad-Nrf2 skin cells following radiation. The results revealed that a total of 127 genes were significantly changed, 55 genes were upregulated, and 72 genes were downregulated after Nrf2 overexpression. GSEA showed that Nrf2 was associated with positive regulation of genes involved in the reactive oxygen species pathway after radiation. Taken together, this study illustrated the role of Nrf2 in RISI and provided potentially strategies for ameliorating RISI.
Collapse
Affiliation(s)
- Jiao Xue
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Chenxiao Yu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.,Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiation Oncology, Soochow University, Suzhou, China
| | - Yiting Tang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Wei Mo
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Zhicheng Tang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Wenjiong Sheng
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Wei Zhu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Identification of differentially expressed proteins involved in fetal scarless wound healing using a rat model of cleft lip. Mol Med Rep 2021; 24:596. [PMID: 34165164 PMCID: PMC8240453 DOI: 10.3892/mmr.2021.12235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/07/2020] [Indexed: 11/05/2022] Open
Abstract
In early pregnancy, fetal skin wounds can heal quickly and undergo a transition period from scarless healing to scar formation. The aim of the present study was to identify potential biomarkers associated with scarless repair of cleft lips, in order to determine the intrinsic factors leading to scar formation in embryonic tissue. A stable model of cleft lip was established using microsurgery by constructing a wedge-shaped cleft lip-like defect in fetal rats at gestational age (GA) 16.5 and GA18.5. The GA16.5 and GA18.5 groups were used to model scarless healing and scar formation, respectively. The fetuses were returned to the uterus following surgery, then removed 72 h after the procedure. Macroscopic observation of the cleft defect and histological examination were carried out. Reverse transcription-quantitative (RT-q) PCR and parallel reaction monitoring (PRM) were used to detect mRNA and protein expression levels, respectively. The upper-left lip completely healed 72 h after surgery in the GA16.5 group of fetal rats. However, this was not the case in the GA18.5 group. Histological examination indicated new follicles visible under the epidermis of the scarless group (GA16.5). Scarring was visible on the upper-left cleft lip wound of the fetal rats in the GA18.5 group. The expression of some growth and pro-inflammatory factors, including TNF-α, were also different between two groups. Label-free quantification was used to identified differentially expressed proteins and five differentially expressed proteins (Smad4, Fabp5, S100a4, S100a8 and S100a9) were identified. The relative expression of these molecules at the mRNA and protein levels were measured using RT-qPCR and PRM. These molecules may represent potential biomarkers for the scarless repair of fetal rat cleft lip wounds.
Collapse
|
24
|
Senevirathna JDM, Asakawa S. Multi-Omics Approaches and Radiation on Lipid Metabolism in Toothed Whales. Life (Basel) 2021; 11:364. [PMID: 33923876 PMCID: PMC8074237 DOI: 10.3390/life11040364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid synthesis pathways of toothed whales have evolved since their movement from the terrestrial to marine environment. The synthesis and function of these endogenous lipids and affecting factors are still little understood. In this review, we focused on different omics approaches and techniques to investigate lipid metabolism and radiation impacts on lipids in toothed whales. The selected literature was screened, and capacities, possibilities, and future approaches for identifying unusual lipid synthesis pathways by omics were evaluated. Omics approaches were categorized into the four major disciplines: lipidomics, transcriptomics, genomics, and proteomics. Genomics and transcriptomics can together identify genes related to unique lipid synthesis. As lipids interact with proteins in the animal body, lipidomics, and proteomics can correlate by creating lipid-binding proteome maps to elucidate metabolism pathways. In lipidomics studies, recent mass spectroscopic methods can address lipid profiles; however, the determination of structures of lipids are challenging. As an environmental stress, the acoustic radiation has a significant effect on the alteration of lipid profiles. Radiation studies in different omics approaches revealed the necessity of multi-omics applications. This review concluded that a combination of many of the omics areas may elucidate the metabolism of lipids and possible hazards on lipids in toothed whales by radiation.
Collapse
Affiliation(s)
- Jayan D. M. Senevirathna
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|
25
|
Qin G, Sun Y, Guo Y, Song Y. PAX5 activates telomerase activity and proliferation in keloid fibroblasts by transcriptional regulation of SND1, thus promoting keloid growth in burn-injured skin. Inflamm Res 2021; 70:459-472. [PMID: 33616676 DOI: 10.1007/s00011-021-01444-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Staphylococcal nuclease domain-containing 1 (SND1) that functioned as an oncogene in a variety of tumors was upregulated in burn-injured skin tissues, and this study aims to investigate the effect of SND1 on keloid and elucidate the underlying mechanism. METHODS Keloid fibroblasts (KFs) and normal skin fibroblasts (NFs) were isolated from the keloid tissues and adjacent normal skin tissues of keloid patients. The SND1 expression was assessed in keloid tissues and KFs with Western blot assay. Gain- and loss-of-function experiments were performed to investigate the role of SND1 in proliferation, colony formation, telomerase activity, expression of fibrogenic genes and production of pro-inflammatory factors in KFs. Chromatin immunoprecipitation (CHIP) and Dual-luciferase reporter gene assays were used to verify the interaction of Paired-box gene 5 (PAX5) on SND1 promoter. Then, a series of rescue experiments were performed to verify the effects of SND1 overexpression on PAX5 knockdown-mediated KF functions. Finally, the role of SND1 in keloid formation in vivo was validated in mice with keloid implantation. RESULTS SND1 was upregulated in keloid tissues and KFs. SND1 positively regulated proliferation, colony formation, telomerase activity, production of pro-inflammatory factors and expression of fibrogenic genes. PAX5 directly bound to the SND1 promoter to transcriptionally regulate SND1 expression and positively regulated SND1-mediated KF functions via the ERK/JNK pathway. In vivo assay further demonstrated that SND1 displayed a positive effect on keloid formation. CONCLUSION SND1 transcriptionally regulated by PAX5 promotes keloid formation through activating telomerase activity via the ERK/JNK signaling pathways, which provides a promising therapeutic target for clinical treatment of burned skin keloid.
Collapse
Affiliation(s)
- Gaoping Qin
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yaowen Sun
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yadong Guo
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yong Song
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710068, China.
| |
Collapse
|
26
|
Chauhan BK, Medsinge A, Scanga HL, Chu CT, Nischal KK. Transcriptome from opaque cornea of Fanconi anemia patient uncovers fibrosis and two connected players. Mol Genet Metab Rep 2021; 26:100712. [PMID: 33552906 PMCID: PMC7846932 DOI: 10.1016/j.ymgmr.2021.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/28/2022] Open
Abstract
Congenital corneal opacities (CCO) are a group of blinding corneal disorders, where the underlying molecular mechanisms are poorly understood. Phenotyping through specialized imaging and histopathology analysis, together with assessment of key transcriptomic changes (including glycosaminoglycan metabolic enzymes) in cornea(s) with CCO from a case of Fanconi anemia is the approach taken in this study to identify causal mechanisms. Based on our findings, we propose a novel mechanism and two key players contributing to CCO.
Collapse
Affiliation(s)
- Bharesh K Chauhan
- UPMC Eye Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anagha Medsinge
- UPMC Eye Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Hannah L Scanga
- UPMC Eye Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ken K Nischal
- UPMC Eye Center, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
Yadav P, Pandey VK, Shankar BS. Proteomic analysis of radio-resistant breast cancer xenografts: Increased TGF-β signaling and metabolism. Cell Biol Int 2020; 45:804-819. [PMID: 33325135 DOI: 10.1002/cbin.11525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
Our previous studies have shown that MCF-7 breast cancer cell line exposed to 6 Gy and allowed to recover for 7 days (D7-6G) developed radio-resistance. In this study, we have tested the ability of these cells to form tumors in severe combined immunodeficiency (SCID) mice and characterized these tumors by proteomic analyses. Untreated (MCF-C) and D7-6G cells (MCF-R) were injected s.c. in SCID mice and tumor growth monitored. On Day 18, the mice were killed and tumor tissues were fixed in formalin or RNA later. Expression of genes was assessed by reverse transcription-polymerase chain reaction and proteins by enzyme-linked immunosorbent assay/antibody labeling and flow cytometry. Label free proteomic analyses was carried out by liquid chromatography-mass spectrometry. Metabolic analysis was carried out using Seahorse analyzer. MCF-R cells had a shorter latency and formed larger tumors. These tumors were characterized by an increased expression of transforming growth factor β (TGF-β) isoforms; its downstream genes pSMAD3, Snail-1, Zeb-1, HMGA2; hybrid epithelial/mesenchymal phenotype; migration, enrichment of cancer stem cells and radioresistance following challenge dose of radiation. Proteomic analysis of MCF-7R tumors resulted in identification of a total of 649 differentially expressed proteins and pathway analyses using protein annotation through evolutionary relationship indicated enrichment of genes involved in metabolism. Data are available via ProteomeXchange with identifier PXD022506. Seahorse analyzer confirmed increased metabolism in these cells with increased oxidative phosphorylation as well as glycolysis. Increased uptake of 2-NBDG further confirmed increased glycolysis. In summary, we demonstrate that radioresistant breast cancer cells had an enrichment of TGF-β signaling and increased metabolism.
Collapse
Affiliation(s)
- Poonam Yadav
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Center, Mumbai, Maharastra, India.,Department of Life Sciences, Homi Bhabha National Institute, Mumbai, Maharastra, India
| | - Vipul K Pandey
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Center, Mumbai, Maharastra, India
| | - Bhavani S Shankar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Center, Mumbai, Maharastra, India.,Department of Life Sciences, Homi Bhabha National Institute, Mumbai, Maharastra, India
| |
Collapse
|
28
|
Jin J, Chen L, Liu GQ, Lu PR. Proteomic analysis of anti-angiogenic effects by conbercept in the mice with oxygen induced retinopathy. Int J Ophthalmol 2020; 13:1844-1853. [PMID: 33344181 PMCID: PMC7708359 DOI: 10.18240/ijo.2020.12.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022] Open
Abstract
AIM To analyze the retinal proteomes with and without conbercept treatments in mice with oxygen-induced retinopathy (OIR) and identify proteins involved in the molecular mechanisms mediated by conbercept. METHODS OIR was induced in fifty-six C57BL/6J mouse pups and randomly divided into four groups. Group 1: Normal17 (n=7), mice without OIR and treated with normal air. Group 2: OIR12/EXP1 (n=14), mice received 75% oxygen from postnatal day (P) 7 to 12. Group 3: OIR17/Control (n=14), mice received 75% oxygen from P7 to P12 and then normal air to P17. Group 4: Lang17/EXP2 (n=21), mice received 75% oxygen from P7 to P12 with intravitreal injection of 1 µL conbercept at the concentration of 10 mg/mL at P12, and then normal air from P12 to P17. Liquid Chromatography-Mass Spectrometry (LC-MS)/MS data were reviewed to find proteins that were up-regulated after the conbercept treatment. Gene ontology (GO) analysis was performed of conbercept-mediated changes in proteins involved in single-organism processes, biological regulation, cellular processes, immune responses, metabolic processes, locomotion and multiple-organism processes. RESULTS Conbercept induced a reversal of hypoxia-inducible factor 1 signaling pathway as revealed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and also induced down-regulation of proteins involved in blood coagulation and fibrin clot formation as demonstrated by the Database for Annotation, Visualization and Integrated Discovery (DAVID) and the stimulation of interferon genes studies. These appear to be risk factors of retinal fibrosis. Additional conbercept-specific fibrosis risk factors were also identified and may serve as therapeutic targets for fibrosis. CONCLUSION Our studies reveal that many novel proteins are differentially regulated by conbercept. The new insights may warrant a valuable resource for conbercept treatment.
Collapse
Affiliation(s)
- Ji Jin
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Ophthalmology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Lei Chen
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou 215025, Jiangsu Province, China
| | - Gao-Qin Liu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Pei-Rong Lu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
29
|
Jia H, Mo W, Hong M, Jiang S, Zhang YY, He D, Yu D, Shi Y, Cao J, Xu X, Zhang S. Interferon-α inducible protein 6 (IFI6) confers protection against ionizing radiation in skin cells. J Dermatol Sci 2020; 100:139-147. [PMID: 33059972 DOI: 10.1016/j.jdermsci.2020.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Radiation-induced skin injury is one of the main adverse effects and a dose-limiting factor of radiotherapy without feasible treatment. The underlying mechanism of this disease is still limited. OBJECTIVE To investigate the potential molecular pathways and mechanisms of radiation-induced skin injury. METHODS mRNA expression profiles were determined by Affymetrix Human HTA2.0 microarray.IFI6 overexpression and knockdown were mediated by lentivirus. The functional changes of skin cells were measured by flow cytometry, ROS probe and Edu probe. Protein distribution was detected by immunofluorescence experiment, and IFI6-interacting proteins were detected by immunoprecipitation (IP) combined with mass spectrometry. The global gene changes in IFI6-overexpressed skin cells after irradiation were detected by RNA-seq. RESULTS mRNA expression profiling showed 50 upregulated and 13 down regulated genes and interferon alpha inducible protein 6 (IFI6) was top upregulated. Overexpression of IFI6 promoted cell proliferation and reduced cell apoptosis as well as ROS production following radiation, and conversely, increased the radiosensitivity of HaCaT and human skin fibroblast (WS1). IFI6 was translocated into nucleus in irradiated skin cells and the interacting relationship with mitochondrial single-stranded DNA-binding protein 1 (SSBP1), which could enhance the transcriptional activity of heat shock transcription factor 1 (HSF1).IFI6 augmented HSF1 activity following radiation in HaCaT and WS1 cells. RNA-seq analysis showed IFI6 modulated virus infection and cellular response to stress pathways, which may help to further explore how IFI6 regulate the transcriptional activity of HSF1. CONCLUSION This study reveals that IFI6 is induced by ionizing radiation and confers radioprotection in skin cells.
Collapse
Affiliation(s)
- Huimin Jia
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Mo
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Min Hong
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Sheng Jiang
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yuan-Yuan Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Dan He
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Daojiang Yu
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yuhong Shi
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Jianping Cao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiaohui Xu
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Taicang, China.
| | - Shuyu Zhang
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
30
|
Griffin MF, desJardins-Park HE, Mascharak S, Borrelli MR, Longaker MT. Understanding the impact of fibroblast heterogeneity on skin fibrosis. Dis Model Mech 2020; 13:13/6/dmm044164. [PMID: 32541065 PMCID: PMC7328159 DOI: 10.1242/dmm.044164] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue fibrosis is the deposition of excessive extracellular matrix and can occur as part of the body's natural wound healing process upon injury, or as a consequence of diseases such as systemic sclerosis. Skin fibrosis contributes to significant morbidity due to the prevalence of injuries resulting from trauma and burn. Fibroblasts, the principal cells of the dermis, synthesize extracellular matrix to maintain the skin during homeostasis and also play a pivotal role in all stages of wound healing. Although it was previously believed that fibroblasts are homogeneous and mostly quiescent cells, it has become increasingly recognized that numerous fibroblast subtypes with unique functions and morphologies exist. This Review provides an overview of fibroblast heterogeneity in the mammalian dermis. We explain how fibroblast identity relates to their developmental origin, anatomical site and precise location within the skin tissue architecture in both human and mouse dermis. We discuss current evidence for the varied functionality of fibroblasts within the dermis and the relationships between fibroblast subtypes, and explain the current understanding of how fibroblast subpopulations may be controlled through transcriptional regulatory networks and paracrine communications. We consider how fibroblast heterogeneity can influence wound healing and fibrosis, and how insight into fibroblast heterogeneity could lead to novel therapeutic developments and targets for skin fibrosis. Finally, we contemplate how future studies should be shaped to implement knowledge of fibroblast heterogeneity into clinical practice in order to lessen the burden of skin fibrosis. Summary: This Review discusses the multifaceted aspects of fibroblast heterogeneity and the different roles of fibroblast subpopulations to help overcome skin scarring and fibrosis.
Collapse
Affiliation(s)
- Michelle F Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E desJardins-Park
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mimi R Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA .,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Wang Y, Tu W, Tang Y, Zhang S. Prevention and treatment for radiation-induced skin injury during radiotherapy. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
32
|
Fu H, Xue Y, Su F, Ding K, Wang Y, Yu H, Zhu J, Li Q, Ge C, Zheng X. Plasma Proteins as Biomarkers of Mortality After Total Body Irradiation in Mice. Dose Response 2020; 18:1559325820920141. [PMID: 32341685 PMCID: PMC7171989 DOI: 10.1177/1559325820920141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/28/2020] [Indexed: 11/21/2022] Open
Abstract
During large-scale acute radiation exposure, rapidly distinguishing exposed individuals from nonexposed individuals is necessary. Identifying those exposed to high and potentially lethal radiation doses, and in need of immediate treatment, is especially important. To address this and find plasma biomarkers to assess ionizing radiation-induced mortality in the early stages, mice were administered a whole-body lethal dose of γ radiation, and radiation-induced damage was evaluated. Multiple blood biomarkers were screened using an antibody array, followed by validation using enzyme-linked immunoassay. The results revealed that irradiation (IR)-induced mortality in mice and caused body weight and blood platelet losses in deceased mice compared to surviving mice. The levels of certain proteins differed after IR between these 2 groups. Specific proteins in preirradiated mice were also found to potentiate radiosensitivity. Plasma levels of interleukin (IL)-22, urokinase, resistin, and IL-6 were associated with radiation-induced mortality in irradiated mice and may be useful as potential mortality predictors. Our results suggest that estimating the levels of certain plasma proteins is a promising alternative to conventional cytogenetic biodosimetry to accurately identify individuals exposed to high radiation doses and those at risk of death due to exposure. This strategy would facilitate the rapid triage of individuals requiring immediate and intensive medical treatment.
Collapse
Affiliation(s)
- Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yong Xue
- College of Life Science and Technology, Office of Academic Affairs, Dalian University, Dalian, Liaoning, China
| | - Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Kexin Ding
- Anhui Medical University, Hefei, Anhui, China
| | - Yuan Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Haiyue Yu
- College of Life Science and Technology, Office of Academic Affairs, Dalian University, Dalian, Liaoning, China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing Li
- College of Life Science and Technology, Office of Academic Affairs, Dalian University, Dalian, Liaoning, China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Anhui Medical University, Hefei, Anhui, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
33
|
Xu H, Diolintzi A, Storch J. Fatty acid-binding proteins: functional understanding and diagnostic implications. Curr Opin Clin Nutr Metab Care 2019; 22:407-412. [PMID: 31503024 PMCID: PMC9940447 DOI: 10.1097/mco.0000000000000600] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Fatty acid-binding proteins (FABPs) are a family of small, abundant proteins with highly tissue-specific expression patterns whose different functions remain incompletely understood. The purpose of this review is to summarize recent findings regarding FABP functions and mechanisms of action, including their potential utilization as serum markers of tissue-specific metabolic diseases. RECENT FINDINGS FABPs are important not only in their tissues of origin but also appear to influence the metabolism and function of tissues distal to their sites of expression. This may be secondary to metabolic changes in their primary tissues, and/or a result of FABP secretion from these tissues leading to effects on distal sites. Their levels in the circulation are increasingly explored as potential biomarkers for tissue-specific disease prognosis and progression. SUMMARY The nine fatty acid-binding members of the FABP family have unique tissue-specific functions and important secondary effects on tissues in which they are not expressed. For many of the FABPs, circulating levels may be indicative of disease processes related to their primary tissues, and may influence physiological function in distal tissues.
Collapse
Affiliation(s)
- Heli Xu
- Department of Nutritional Sciences, Rutgers University, New Brunswick,
- Rutgers Center for Lipid Research, New Jersey, USA
| | - Anastasia Diolintzi
- Department of Kinesiology and Health, New Jersey, USA
- Rutgers Center for Lipid Research, New Jersey, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick,
- Rutgers Center for Lipid Research, New Jersey, USA
| |
Collapse
|
34
|
Cao J, Zhu W, Yu D, Pan L, Zhong L, Xiao Y, Gao Y, Jiao Y, Zhang Q, Ji J, Yang H, Zhang S, Cao J. The Involvement of SDF-1α/CXCR4 Axis in Radiation-Induced Acute Injury and Fibrosis of Skin. Radiat Res 2019; 192:410-421. [PMID: 31390312 DOI: 10.1667/rr15384.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced acute skin injury and consequent fibrosis are common complications of cancer radiotherapy and radiation accidents. Stromal cell-derived factor-1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4) have been shown to be involved in multiple cellular events. However, the role of SDF-1α/CXCR4 axis in radiation-induced acute injury and fibrosis of skin has not been reported. In this study, we found that the expression of SDF-1α and CXCR4 was significantly increased in irradiated skin tissues of humans, monkeys and rats, compared to their nonirradiated counterparts. Mice with keratinocyte-specific ablation of CXCR4 showed less severe skin damage than wild-type mice after receiving a 35 Gy dose of radiation. Consistently, subcutaneous injection of AMD3100, an FDA approved SDF-1α/CXCR4 inhibitor, attenuated skin injury and fibrosis induced by exposure to radiation in a rat model. Mechanically, the SDF-1α/CXCR4 axis promotes pro-fibrotic TGF-b/Smad signaling through the PI3K-MAPK signaling cascade in human keratinocyte HaCaT cells and skin fibroblast WS1 cells. AMD3100 inhibited Smad2 nuclear translocation and transcriptional activity of Smad2/3 induced by radiation, which suppressed the pro-fibrotic TGF-b/Smad signaling pathway activated by exposure. Taken together, these findings demonstrate the involvement of SDF-1α/CXCR4 axis in radiation-induced acute injury and fibrosis of skin, and indicate that AMD3100 would be an effective countermeasure against these diseases.
Collapse
Affiliation(s)
- Jinming Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Daojiang Yu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Departments of Plastic Surgery
| | - Lu Pan
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Li Zhong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuji Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yang Jiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qi Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiang Ji
- Departments of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuyu Zhang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.,Department of Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu 610051, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
35
|
Qiu Y, Gao Y, Yu D, Zhong L, Cai W, Ji J, Geng F, Tang G, Zhang H, Cao J, Zhang J, Zhang S. Genome-Wide Analysis Reveals Zinc Transporter ZIP9 Regulated by DNA Methylation Promotes Radiation-Induced Skin Fibrosis via the TGF-β Signaling Pathway. J Invest Dermatol 2019; 140:94-102.e7. [PMID: 31254515 DOI: 10.1016/j.jid.2019.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 01/12/2023]
Abstract
Radiation-induced skin fibrosis is a detrimental and chronic disorder that occurs after radiation exposure. DNA methylation has been characterized as an important regulatory mechanism of multiple pathological processes. In this study, we compared the genome-wide DNA methylation status in radiation-induced fibrotic skin and adjacent normal tissues of rats by methylated DNA immunoprecipitation sequencing. Radiation-induced fibrotic skin showed differentially methylated regions associated with 3,650 protein-coding genes, 72 microRNAs, 5,836 long noncoding RNAs and 3 piwi-interacting RNAs. By integrating the mRNA and methylation profiles, the zinc transporter SLC39A9/ZIP9 was investigated in greater detail. The protein level of ZIP9 was increased in irradiated skin tissues of humans, monkeys, and rats, especially in radiogenic fibrotic skin tissues. Radiation induced the demethylation of a CpG dinucleotide in exon 1 of ZIP9 that resulted in recruitment of the transcriptional factor Sp1 and increased ZIP9 expression. Overexpression of ZIP9 resulted in activation of the profibrotic transforming growth factor-β signaling pathway through protein kinase B in human fibroblasts. In addition, radiation-induced skin fibrosis was associated with increased zinc accumulation. The zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)-1,2-ethylenediamine abrogated ZIP9-induced activation of the transforming growth factor-β signaling pathway and attenuated radiation-induced skin fibrosis in a rat model. In summary, our findings illustrate epigenetic regulation of ZIP9 and its critical role in promoting radiation-induced skin fibrosis.
Collapse
Affiliation(s)
- Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiying Gao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Daojiang Yu
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Zhong
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Weichao Cai
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Ji
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fenghao Geng
- Radiation Medicine Department of Institute of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jianping Cao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhang
- Radiation Medicine Department of Institute of Preventive Medicine, Fourth Military Medical University, Xi'an, China.
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China.
| |
Collapse
|
36
|
Cun-Jin S, Jian-Hao X, Xu L, Feng-Lun Z, Jie P, Ai-Ming S, Duan-Min H, Yun-Li Y, Tong L, Yu-Song Z. X-ray induces mechanical and heat allodynia in mouse via TRPA1 and TRPV1 activation. Mol Pain 2019; 15:1744806919849201. [PMID: 31012378 PMCID: PMC6509987 DOI: 10.1177/1744806919849201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy-related pain is a common adverse reaction with a high incidence among cancer patients undergoing radiotherapy and remarkably reduces the quality of life. However, the mechanisms of ionizing radiation-induced pain are largely unknown. In this study, mice were treated with 20 Gy X-ray to establish ionizing radiation-induced pain model. X-ray evoked a prolonged mechanical, heat, and cold allodynia in mice. Transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 were significantly upregulated in lumbar dorsal root ganglion. The mechanical and heat allodynia could be transiently reverted by intrathecal injection of transient receptor potential vanilloid 1 antagonist capsazepine and transient receptor potential ankyrin 1 antagonist HC-030031. Additionally, the phosphorylated extracellular regulated protein kinases (ERK) and Jun NH2-terminal Kinase (JNK) in pain neural pathway were induced by X-ray treatment. Our findings indicated that activation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 is essential for the development of X-ray-induced allodynia. Furthermore, our findings suggest that targeting on transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 may be promising prevention strategies for X-ray-induced allodynia in clinical practice.
Collapse
Affiliation(s)
- Su Cun-Jin
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xu Jian-Hao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Xu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhao Feng-Lun
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pan Jie
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shi Ai-Ming
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hu Duan-Min
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Yun-Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Tong
- Institute of Neuroscience, Soochow University, Suzhou, China
- College of Life Sciences, Yanan University, Yanan, China
| | - Zhang Yu-Song
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
37
|
Quantitation of peptides from non-invasive skin tapings using isotope dilution and tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084:132-140. [PMID: 29601982 DOI: 10.1016/j.jchromb.2018.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023]
Abstract
Previous work from our laboratories utilized a novel skin taping method and mass spectrometry-based proteomics to discover clinical biomarkers of skin conditions; these included atopic dermatitis, Staphylococcus aureus colonization, and eczema herpeticum. While suitable for discovery purposes, semi-quantitative proteomics is generally time-consuming and expensive. Furthermore, depending on the method used, discovery-based proteomics can result in high variation and inadequate sensitivity to detect low abundant peptides. Therefore, we strove to develop a rapid, sensitive, and reproducible method to quantitate disease-related proteins from skin tapings. We utilized isotopically-labeled peptides and tandem mass spectrometry to obtain absolute quantitation values on 14 peptides from 7 proteins; these proteins had shown previous importance in skin disease. The method demonstrated good reproducibility, dynamic range, and linearity (R2 > 0.993) when n = 3 standards were analyzed across 0.05-2.5 pmol. The method was used to determine if differences exist between skin proteins in a small group of atopic versus non-atopic individuals (n = 12). While only minimal differences were found, peptides were detected in all samples and exhibited good correlation between peptides for 5 of the 7 proteins (R2 = 0.71-0.98). This method can be applied to larger cohorts to further establish the relationships of these proteins to skin disease.
Collapse
|
38
|
Dalmau N, Andrieu-Abadie N, Tauler R, Bedia C. Untargeted lipidomic analysis of primary human epidermal melanocytes acutely and chronically exposed to UV radiation. Mol Omics 2018; 14:170-180. [DOI: 10.1039/c8mo00060c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultraviolet (UV) radiation present in sunlight has been related to harmful effects on skin such as premature aging and skin cancer.
Collapse
Affiliation(s)
- Núria Dalmau
- Department of Environmental Chemistry
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC)
- 08034 Barcelona
- Spain
| | | | - Romà Tauler
- Department of Environmental Chemistry
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC)
- 08034 Barcelona
- Spain
| | - Carmen Bedia
- Department of Environmental Chemistry
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC)
- 08034 Barcelona
- Spain
| |
Collapse
|