1
|
Wang C, Fan X, Shi Y, Tang F. Radiation-Induced Brain Injury with Special Reference to Astrocytes as a Therapeutic Target. J Integr Neurosci 2025; 24:25907. [PMID: 40152565 DOI: 10.31083/jin25907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 03/29/2025] Open
Abstract
Radiotherapy is one of the primary modalities for oncologic treatment and has been utilized at least once in over half of newly diagnosed cancer patients. Cranial radiotherapy has significantly enhanced the long-term survival rates of patients with brain tumors. However, radiation-induced brain injury, particularly hippocampal neuronal damage along with impairment of neurogenesis, inflammation, and gliosis, adversely affects the quality of life for these patients. Astrocytes, a type of glial cell that are abundant in the brain, play essential roles in maintaining brain homeostasis and function. Despite their importance, the pathophysiological changes in astrocytes induced by radiation have not been thoroughly investigated, and no systematic or comprehensive review addressing the effects of radiation on astrocytes and related diseases has been conducted. In this paper, we review current studies on the neurophysiological roles of astrocytes following radiation exposure. We describe the pathophysiological changes in astrocytes, including astrogliosis, astrosenescence, and the associated cellular and molecular mechanisms. Additionally, we summarize the roles of astrocytes in radiation-induced impairments of neurogenesis and the blood-brain barrier (BBB). Based on current research, we propose that brain astrocytes may serve as potential therapeutic targets for treating radiation-induced brain injury (RIBI) and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, Jiangsu, China
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, Jiangsu, China
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| |
Collapse
|
2
|
Richard SA. Pathological Mechanisms of Irradiation-Induced Neurological Deficits in the Developing Brain. Eur J Neurosci 2025; 61:e70070. [PMID: 40098303 DOI: 10.1111/ejn.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Cranial irradiation or radiotherapy (CRT) is one of the essential therapeutic modalities for central nervous system (CNS) tumors, and its efficacy is well known. Nevertheless, CRT is also associated with brain damages such as focal cerebral necrosis, neuroinflammation, cerebral microvascular anomalies, neurocognitive dysfunction, and hormone deficiencies in children. Children's brains are much more sensitive to CRT compared to the adult's brains. Thus, children's brains are also more likely to develop long-term CRT complication, which severely lessens their long-term quality of life after treatment. CRT to the juvenile rat led to a retardation of growth of the cerebellum; both the gray and white matter and neurogenic regions like the subventricular zone and the dentate gyrus in the hippocampus were predominantly vulnerable to CRT. Also, CRT-induced cognitive changes typically manifested as deficits in hippocampal-related functions of learning as well as memory, such as spatial information processing. Fractionated CRT-stimulated cognitive decline and hormone deficiencies were precisely associated with augmented neuronal cell death, blockade of neurogenesis, and stimulation of astrocytes and microglia. Thus, the aim of this review is to highlight the pathological mechanism of CRT-induced neurological deficits in the developing brain.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Out-of-Field Hippocampus from Partial-Body Irradiated Mice Displays Changes in Multi-Omics Profile and Defects in Neurogenesis. Int J Mol Sci 2021; 22:ijms22084290. [PMID: 33924260 PMCID: PMC8074756 DOI: 10.3390/ijms22084290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
The brain undergoes ionizing radiation exposure in many clinical situations, particularly during radiotherapy for brain tumors. The critical role of the hippocampus in the pathogenesis of radiation-induced neurocognitive dysfunction is well recognized. The goal of this study is to test the potential contribution of non-targeted effects in the detrimental response of the hippocampus to irradiation and to elucidate the mechanisms involved. C57Bl/6 mice were whole body (WBI) or partial body (PBI) irradiated with 0.1 or 2.0 Gy of X-rays or sham irradiated. PBI consisted of the exposure of the lower third of the mouse body, whilst the upper two thirds were shielded. Hippocampi were collected 15 days or 6 months post-irradiation and a multi-omics approach was adopted to assess the molecular changes in non-coding RNAs, proteins and metabolic levels, as well as histological changes in the rate of hippocampal neurogenesis. Notably, at 2.0 Gy the pattern of early molecular and histopathological changes induced in the hippocampus at 15 days following PBI were similar in quality and quantity to the effects induced by WBI, thus providing a proof of principle of the existence of out-of-target radiation response in the hippocampus of conventional mice. We detected major alterations in DAG/IP3 and TGF-β signaling pathways as well as in the expression of proteins involved in the regulation of long-term neuronal synaptic plasticity and synapse organization, coupled with defects in neural stem cells self-renewal in the hippocampal dentate gyrus. However, compared to the persistence of the WBI effects, most of the PBI effects were only transient and tended to decrease at 6 months post-irradiation, indicating important mechanistic difference. On the contrary, at low dose we identified a progressive accumulation of molecular defects that tended to manifest at later post-irradiation times. These data, indicating that both targeted and non-targeted radiation effects might contribute to the pathogenesis of hippocampal radiation-damage, have general implications for human health.
Collapse
|
4
|
Bálentová S, Hnilicová P, Kalenská D, Baranovičová E, Muríň P, Hajtmanová E, Adamkov M. Effect of fractionated whole-brain irradiation on brain and plasma in a rat model: Metabolic, volumetric and histopathological changes. Neurochem Int 2021; 145:104985. [PMID: 33582163 DOI: 10.1016/j.neuint.2021.104985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
In the present study, we investigated the correlation between histopathological, metabolic, and volumetric changes in the brain and plasma under experimental conditions. Adult male Wistar rats received fractionated whole-brain irradiation (fWBI) with a total dose of 32 Gy delivered in 4 fractions (dose 8 Gy per fraction) once a week on the same day for 4 consecutive weeks. Proton magnetic resonance spectroscopy (1H MRS) and imaging were used to detect metabolic and volumetric changes in the brain and plasma. Histopathological changes in the brain were determined by image analysis of immunofluorescent stained sections. Metabolic changes in the brain measured by 1H MRS before, 48 h, and 9 weeks after the end of fWBI showed a significant decrease in the ratio of total N-acetylaspartate to total creatine (tNAA/tCr) in the corpus striatum. We found a significant decrease in glutamine + glutamate/tCr (Glx/tCr) and, conversely, an increase in gamma-aminobutyric acid to tCr (GABA/tCr) in olfactory bulb (OB). The ratio of astrocyte marker myoinositol/tCr (mIns/tCr) significantly increased in almost all evaluated areas. Magnetic resonance imaging (MRI)-based brain volumetry showed a significant increase in volume, and a concomitant increase in the T2 relaxation time of the hippocampus. Proton nuclear magnetic resonance (1H NMR) plasma metabolomics displayed a significant decrease in the level of glucose and glycolytic intermediates and an increase in ketone bodies. The histomorphological analysis showed a decrease to elimination of neuroblasts, increased astrocyte proliferation, and a mild microglia response. The results of the study clearly reflect early subacute changes 9-11 weeks after fWBI with strong manifestations of brain edema, astrogliosis, and ongoing ketosis.
Collapse
Affiliation(s)
- Soňa Bálentová
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic.
| | - Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4D, 036 01, Martin, Slovak Republic
| | - Dagmar Kalenská
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4D, 036 01, Martin, Slovak Republic
| | - Peter Muríň
- Department of Radiotherapy and Oncology, Martin University Hospital, Kollárova 2, 036 59, Martin, Slovak Republic
| | - Eva Hajtmanová
- Department of Radiotherapy and Oncology, Martin University Hospital, Kollárova 2, 036 59, Martin, Slovak Republic
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic
| |
Collapse
|
5
|
Shenqi Fuzheng Injection Ameliorates Radiation-induced Brain Injury. Curr Med Sci 2019; 39:965-971. [DOI: 10.1007/s11596-019-2129-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 10/28/2019] [Indexed: 10/25/2022]
|
6
|
Cucinotta FA, Cacao E. Risks of cognitive detriments after low dose heavy ion and proton exposures. Int J Radiat Biol 2019; 95:985-998. [PMID: 31120359 PMCID: PMC6606350 DOI: 10.1080/09553002.2019.1623427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Purpose: Heavy ion and proton brain irradiations occur during space travel and in Hadron therapy for cancer. Heavy ions produce distinct patterns of energy deposition in neuron cells and brain tissues compared to X-rays leading to large uncertainties in risk estimates. We make a critical review of findings from research studies over the last 25 years for understanding risks at low dose. Conclusions: A large number of mouse and rat cognitive testing measures have been reported for a variety of particle species and energies for acute doses. However, tissue reactions occur above dose thresholds and very few studies were performed at the heavy ion doses to be encountered on space missions (<0.04 Gy/y) or considered dose-rate effects, such that threshold doses are not known in rodent models. Investigations of possible mechanisms for cognitive changes have been limited by experimental design with largely group specific and not subject specific findings reported. Persistent oxidative stress and activated microglia cells are common mechanisms studied, while impairment of neurogenesis, detriments in neuron morphology, and changes to gene and protein expression were each found to be important in specific studies. Future research should focus on estimating threshold doses carried out with experimental designs aimed at understating causative mechanisms, which will be essential for extrapolating rodent findings to humans and chronic radiation scenarios, while establishing if mitigation are needed.
Collapse
|
7
|
Bálentová S, Hnilicová P, Kalenská D, Baranovičová E, Muríň P, Bittšanský M, Hajtmanová E, Lehotský J, Adamkov M. Metabolic and histopathological changes in the brain and plasma of rats exposed to fractionated whole-brain irradiation. Brain Res 2019; 1708:146-159. [DOI: 10.1016/j.brainres.2018.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022]
|
8
|
Cacao E, Kapukotuwa S, Cucinotta FA. Modeling Reveals the Dependence of Hippocampal Neurogenesis Radiosensitivity on Age and Strain of Rats. Front Neurosci 2018; 12:980. [PMID: 30618596 PMCID: PMC6306485 DOI: 10.3389/fnins.2018.00980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Cognitive dysfunction following radiation treatment for brain cancers in both children and adults have been correlated to impairment of neurogenesis in the hippocampal dentate gyrus. Various species and strains of rodent models have been used to study radiation-induced changes in neurogenesis and these investigations have utilized only a limited number of doses, dose-fractions, age and time after exposures conditions. In this paper, we have extended our previous mathematical model of radiation-induced hippocampal neurogenesis impairment of C57BL/6 mice to delineate the time, age, and dose dependent alterations in neurogenesis of a diverse strain of rats. To the best of our knowledge, this is the first predictive mathematical model to be published about hippocampal neurogenesis impairment for a variety of rat strains after acute or fractionated exposures to low linear energy transfer (low LET) radiation, such as X-rays and γ-rays, which are conventionally used in cancer radiation therapy. We considered four compartments to model hippocampal neurogenesis and its impairment following radiation exposures. Compartments include: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN), and (4) glioblasts (GB). Additional consideration of dose and time after irradiation dependence of microglial activation and a possible shift of NSC proliferation from neurogenesis to gliogenesis at higher doses is established. Using a system of non-linear ordinary differential equations (ODEs), characterization of rat strain and age-related dynamics of hippocampal neurogenesis for unirradiated and irradiated conditions is developed. The model is augmented with the description of feedback regulation on early and late neuronal proliferation following radiation exposure. Predictions for dose-fraction regimes compared to acute radiation exposures, along with the dependence of neurogenesis sensitivity to radiation on age and strain of rats are discussed. A major result of this work is predictions of the rat strain and age dependent differences in radiation sensitivity and sub-lethal damage repair that can be used for predictions for arbitrary dose and dose-fractionation schedules.
Collapse
Affiliation(s)
| | | | - Francis A. Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
9
|
Clausi MG, Stessin AM, Tsirka SE, Ryu S. Mitigation of radiation myelopathy and reduction of microglial infiltration by Ramipril, ACE inhibitor. Spinal Cord 2018; 56:733-740. [PMID: 29904189 DOI: 10.1038/s41393-018-0158-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Experimental study. OBJECTIVES To evaluate the efficacy of Angiotensin-converting enzyme inhibitor Ramipril, as a mitigator of radiation-induced spinal cord injury. SETTING Stony Brook University, Stony Brook, NY, USA. METHODS Total of 22 rats were irradiated with single doses of 23.6-33 Gy at the C4-T2 spinal levels. After irradiation, the rats were randomized to the radiation only control group and the Ramipril-treated (radiation + Ramipril) experimental group. Ramipril 1.5 mg/kg/day was given in the drinking water starting 1 week after radiation through the study duration. RESULTS All the rats irradiated with 28.5-33 Gy became paralyzed at 125 ± 4 days, whereas no rats became paralyzed after 23.6 Gy. The time to develop paralysis was delayed to 135 ± 4 days in Ramipril-treated group (P < 0.001). H&E and LFB showed microscopic structural restoration and remyelination with Ramipril treatment. VEGF expression was increased in the irradiated spinal cord, and the number of VEGF-positive cells was significantly decreased by Ramipril treatment (P < 0.001). Immunohistochemical stain with Iba-1 showed increased microglial infiltration in the irradiated spinal cords. The number of Iba-1-positive microglia was significantly reduced by Ramipril treatment (P < 0.05). CONCLUSION Ramipril reduced the rate of paralysis even at the paralysis-inducing radiation doses. It also significantly delayed the onset of paralysis. Neuroinflammation and endothelial cell damage may be the key mediators of radiation injury. Ramipril can be readily translatable to clinical application as a mitigatory of radiotherapeutic toxicity.
Collapse
Affiliation(s)
- Mariano G Clausi
- Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Alexander M Stessin
- Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY, USA.,Department of Pharmacological Sciences, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Samuel Ryu
- Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY, USA. .,Department of Pharmacological Sciences, Stony Brook University Hospital, Stony Brook, NY, USA.
| |
Collapse
|
10
|
Pinter M, Kwanten WJ, Jain RK. Renin-Angiotensin System Inhibitors to Mitigate Cancer Treatment-Related Adverse Events. Clin Cancer Res 2018; 24:3803-3812. [PMID: 29610292 DOI: 10.1158/1078-0432.ccr-18-0236] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/01/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022]
Abstract
Treatment-related side effects are a major clinical problem in cancer treatment. They lead to reduced compliance to therapy as well as increased morbidity and mortality. Well-known are the sequelae of chemotherapy on the heart, especially in childhood cancer survivors. Therefore, measures to mitigate the adverse events of cancer therapy may improve health and quality of life in patients with cancer, both in the short and long term. The renin-angiotensin system (RAS) affects all hallmarks of cancer, and blockage of the RAS is associated with an improved outcome in several cancer types. There is also increasing evidence that inhibition of the RAS might be able to alleviate or even prevent certain types of cancer treatment-related adverse effects. In this review, we summarize the potential of RAS inhibitors to mitigate cancer treatment-related adverse events, with a special emphasis on chemotherapy-induced cardiotoxicity, radiation injury, and arterial hypertension. Clin Cancer Res; 24(16); 3803-12. ©2018 AACR.
Collapse
Affiliation(s)
- Matthias Pinter
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts.,Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wilhelmus J Kwanten
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts.,Laboratory of Experimental Medicine and Paediatrics (LEMP), University of Antwerp, Antwerp, Belgium
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
11
|
Bálentová S, Hajtmanová E, Filová B, Borbélyová V, Lehotský J, Adamkov M. Effects of fractionated whole-brain irradiation on cellular composition and cognitive function in the rat brain. Int J Radiat Biol 2018; 94:238-247. [PMID: 29309205 DOI: 10.1080/09553002.2018.1425805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The aim of this study was investigate whether histopathological changes in the neurogenic region correlate with appropriate cognitive impairment in the experimental model of radiation-induced brain injury. MATERIALS AND METHODS Adult male Wistar rats randomized into sham (0 Gy) and two experimental groups (survived 30 and 100 days after treatment) received fractionated whole-brain irradiation (one 5 Gy fraction/week for four weeks) with a total dose of 20 Gy of gamma rays. Morris water maze cognitive testing, histochemistry, immunohistochemistry and confocal microscopy were used to determine whether the cognitive changes are associated with the alteration of neurogenesis, astrocytic response and activation of microglia along and/or adjacent to well-defined pathway, subventricular zone-olfactory bulb axis (SVZ-OB axis). RESULTS Irradiation revealed altered cognitive functions usually at 100 days after treatment. Neurodegenerative changes were characterized by a significant increase of Fluoro-Jade-positive cells 30 days after irradiation accompanied by a steep decline of neurogenesis 100 days after treatment. A strong astrocytic response and upregulation of the activated microglia were seen in both of experimental groups. CONCLUSIONS Results shows that fractionated irradiation led to cognitive impairment closely associated with accerelation of neuronal cell death, inhibition of neurogenesis, activation of astrocytes and microglia indicate early delayed radiation-induced changes.
Collapse
Affiliation(s)
- Soňa Bálentová
- a Institute of Histology and Embryology, Jessenius Faculty of Medicine , Comenius University in Bratislava , Martin , Slovak Republic
| | - Eva Hajtmanová
- b Department of Radiotherapy and Oncology , Martin University Hospital , Martin , Slovak Republic
| | - Barbora Filová
- c Institute of Medical Physics, Biophysics, Informatics and Telemedicine , Faculty of Medicine, Comenius University in Bratislava , Bratislava , Slovak Republic
| | - Veronika Borbélyová
- d Institute of Molecular Biomedicine , Faculty of Medicine, Comenius University in Bratislava , Bratislava , Slovak Republic
| | - Ján Lehotský
- e Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin , Comenius University in Bratislava , Martin , Slovak Republic.,f Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin , Comenius University in Bratislava , Martin , Slovak Republic
| | - Marian Adamkov
- a Institute of Histology and Embryology, Jessenius Faculty of Medicine , Comenius University in Bratislava , Martin , Slovak Republic
| |
Collapse
|
12
|
Ding Z, Zhang H, Lv X, Xie F, Liu L, Qiu S, Li L, Shen D. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Hum Brain Mapp 2018; 39:407-427. [PMID: 29058342 PMCID: PMC6866621 DOI: 10.1002/hbm.23852] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/07/2017] [Accepted: 10/09/2017] [Indexed: 01/08/2023] Open
Abstract
Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhongxiang Ding
- Zhejiang Provincial People's HospitalHangzhouZhejiang310014China
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Han Zhang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Xiao‐Fei Lv
- Department of Medical ImagingCollaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Fei Xie
- Department of Medical ImagingCollaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Lizhi Liu
- Department of Medical ImagingCollaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Shijun Qiu
- Medical Imaging CenterThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou510405China
| | - Li Li
- Department of Medical ImagingCollaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dinggang Shen
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Brain and Cognitive EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
13
|
Hofer T, Duale N, Muusse M, Eide DM, Dahl H, Boix F, Andersen JM, Olsen AK, Myhre O. Restoration of Cognitive Performance in Mice Carrying a Deficient Allele of 8-Oxoguanine DNA Glycosylase by X-ray Irradiation. Neurotox Res 2017; 33:824-836. [DOI: 10.1007/s12640-017-9833-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
|
14
|
Saavedra J. Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacol Res 2017; 125:91-103. [DOI: 10.1016/j.phrs.2017.06.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/17/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
|
15
|
Xu M, Fan Q, Zhang J, Chen Y, Xu R, Chen L, Zhao P, Tian Y. NFAT3/c4-mediated excitotoxicity in hippocampal apoptosis during radiation-induced brain injury. JOURNAL OF RADIATION RESEARCH 2017; 58:827-833. [PMID: 28992110 PMCID: PMC5710526 DOI: 10.1093/jrr/rrx041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 05/09/2023]
Abstract
Whole brain irradiation (WBI) has become an indispensible tool in the treatment of head and neck cancer, and it has greatly improved patient survival rate and total survival time. In addition, prophylactic cranial irradiation (PCI) has dramatically decreased the incidence of brain metastatic carcinoma. However, WBI may induce temporary functional deficits or even progressive, irreversible cognitive dysfunction that compromises the quality of life for survivors. Unfortunately, the exact molecular mechanisms for cognitive damage remain elusive, and no treatment or preventative measures are available for use in the clinic. In the present study, the nuclear factor of activated T cells isoform 4 (NFAT3/c4) was found to play a vital role in excitotoxic hippocampus cell apoptosis induced by radiation. Sprague-Dawley (SD) rats received 20 Gy WBI, after which we detected NFAT3/c4-mediated excitotoxicity. We found that radiation caused hippocampus excitotoxicity, resulting from overactivation of the N-methyl-D-aspartate receptor (NMDAR) and always accompanied by subsequent elevation of the intracellular calcium level and activation of calcineurin (CaN). P-NFAT3/c4 was the principal downstream target of CaN, including regulation of its nuclear translocation as well as transcriptional activities. Radiation recruited NMDAR/NFAT3/c4 activation and subsequent Bax induction in hippocampus cells. Once treated with the NFAT3/c4 inhibitor 11R-VIVIT peptide pre-irradiation, hippocampal proliferation and neuron survival (dentate gyrus cells in particular) were protected from radiation-induced injury, resulting in inhibition of the apoptosis marker Bax. Our principal aim was to illuminate the role of NFAT3/c4-mediated excitotoxicity in hippocampal apoptosis during radiation-induced brain injury. This study is the first time that radiation-induced activation of NFAT3/c4 has been recorded, and our results suggest that NFAT3/c4 may be a novel target for prevention and treatment of radiation-induced brain injury.
Collapse
Affiliation(s)
- Meiling Xu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China
| | - Qiuhong Fan
- Institute of Radiotherapy & Oncology, Soochow University
| | - Junjun Zhang
- Suzhou Key Laboratory for Radiation Oncology, San Xiang Road No. 1055, Suzhou 215004, China
| | - Yanfang Chen
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China
| | - Ruizhe Xu
- Institute of Radiotherapy & Oncology, Soochow University
| | - Liesong Chen
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China
| | - Peifeng Zhao
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China
- Corresponding author. Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004, China. Tel.: +86-512-6778-3430; Fax: +86-512-6828-4303; E-mail:
| |
Collapse
|
16
|
Pius-Sadowska E, Kawa MP, Kłos P, Rogińska D, Rudnicki M, Boehlke M, Waloszczyk P, Machaliński B. Alteration of Selected Neurotrophic Factors and their Receptor Expression in Mouse Brain Response to Whole-Brain Irradiation. Radiat Res 2016; 186:489-507. [DOI: 10.1667/rr14457.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Betlazar C, Middleton RJ, Banati RB, Liu GJ. The impact of high and low dose ionising radiation on the central nervous system. Redox Biol 2016; 9:144-156. [PMID: 27544883 PMCID: PMC4993858 DOI: 10.1016/j.redox.2016.08.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Responses of the central nervous system (CNS) to stressors and injuries, such as ionising radiation, are modulated by the concomitant responses of the brains innate immune effector cells, microglia. Exposure to high doses of ionising radiation in brain tissue leads to the expression and release of biochemical mediators of ‘neuroinflammation’, such as pro-inflammatory cytokines and reactive oxygen species (ROS), leading to tissue destruction. Contrastingly, low dose ionising radiation may reduce vulnerability to subsequent exposure of ionising radiation, largely through the stimulation of adaptive responses, such as antioxidant defences. These disparate responses may be reflective of non-linear differential microglial activation at low and high doses, manifesting as an anti-inflammatory or pro-inflammatory functional state. Biomarkers of pathology in the brain, such as the mitochondrial Translocator Protein 18 kDa (TSPO), have facilitated in vivo characterisation of microglial activation and ‘neuroinflammation’ in many pathological states of the CNS, though the exact function of TSPO in these responses remains elusive. Based on the known responsiveness of TSPO expression to a wide range of noxious stimuli, we discuss TSPO as a potential biomarker of radiation-induced effects. Ionising radiation can modulate responses of microglial cells in the CNS. High doses can induce ROS formation, oxidative stress and neuroinflammation. Low doses can mitigate tissue damage via antioxidant defences. TSPO as a potential biomarker and modulator of radiation induced effects in the CNS. Non-linear differential microglial activation to high and low doses is proposed.
Collapse
Affiliation(s)
- Calina Betlazar
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcombe, NSW 2141, Australia
| | - Ryan J Middleton
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Richard B Banati
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcombe, NSW 2141, Australia.
| | - Guo-Jun Liu
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcombe, NSW 2141, Australia.
| |
Collapse
|
18
|
Alfotih GTA, Zheng MG, Cai WQ, Xu XK, Hu Z, Li FC. Surgical techniques in radiation induced temporal lobe necrosis in nasopharyngeal carcinoma patients. Neurol Neurochir Pol 2016; 50:172-9. [PMID: 27154443 DOI: 10.1016/j.pjnns.2016.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 02/07/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Radiation induced brain injury ranges from acute reversible edema to late, irreversible radiation necrosis. Radiation induced temporal lobe necrosis is associated with permanent neurological deficits and occasionally progresses to death. OBJECTIVE We present our experience with surgery on radiation induced temporal lobe necrosis (RTLN) in nasopharyngeal carcinoma (NPC) patients with special consideration of clinical presentation, surgical technique, and outcomes. METHOD This retrospective study includes 12 patients with RTLN treated by the senior author between January 2010 and December 2014. Patients initially sought medical treatment due to headache; other symptoms were hearing loss, visual deterioration, seizure, hemiparesis, vertigo, memory loss and agnosia. A temporal approach through a linear incision was performed for all cases. RTLN was found in one side in 7 patients, and bilaterally in 5. 4 patients underwent resection of necrotic tissue bilaterally and 8 patients on one side. RESULTS No death occurred in this series of cases. There were no post-operative complications, except 1 patient who developed aseptic meningitis. All 12 patients were free from headache. No seizure occurred in patients with preoperative epilepsy. Other symptoms such as hemiparesis and vertigo improved in all patients. Memory loss, agnosia and hearing loss did not change post-operatively in all cases. The follow-up MR images demonstrated no recurrence of necrotic lesions in all 12 patients. CONCLUSION Neurosurgical intervention through a temporal approach with linear incision is warranted in patients with radiation induced temporal lobe necrosis with significant symptoms and signs of increased intracranial pressure, minimum space occupying effect on imaging, or neurological deterioration despite conservative management.
Collapse
Affiliation(s)
- Gobran Taha Ahmed Alfotih
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Road of Riverside, Guangzhou 510120, China; Department of Neurosurgery, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Guangzhou 510623, China
| | - Mei Guang Zheng
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Road of Riverside, Guangzhou 510120, China
| | - Wang Qing Cai
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Road of Riverside, Guangzhou 510120, China
| | - Xin Ke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Guangzhou 510623, China
| | - Zhen Hu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Road of Riverside, Guangzhou 510120, China
| | - Fang Cheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Guangzhou 510623, China.
| |
Collapse
|
19
|
Yang L, Yang J, Li G, Li Y, Wu R, Cheng J, Tang Y. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury. Mol Neurobiol 2016; 54:1022-1032. [PMID: 26797684 PMCID: PMC5310567 DOI: 10.1007/s12035-015-9628-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.
Collapse
Affiliation(s)
- Lianhong Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianhua Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guoqian Li
- Department of Neurology, Fujian Provincical Quanzhou First Hospital, Quanzhou, Fujian Province, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rong Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China. .,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
20
|
Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review. Int J Mol Sci 2015; 16:27796-815. [PMID: 26610477 PMCID: PMC4661926 DOI: 10.3390/ijms161126068] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/10/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors.
Collapse
|
21
|
Hanbury DB, Robbins ME, Bourland JD, Wheeler KT, Peiffer AM, Mitchell EL, Daunais JB, Deadwyler SA, Cline JM. Pathology of fractionated whole-brain irradiation in rhesus monkeys ( Macaca mulatta ). Radiat Res 2015; 183:367-74. [PMID: 25688996 PMCID: PMC4467778 DOI: 10.1667/rr13898.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fractionated whole-brain irradiation (fWBI), used to treat brain metastases, often leads to neurologic injury and cognitive impairment. The cognitive effects of irradiation in nonhuman primates (NHP) have been previously published; this report focuses on corresponding neuropathologic changes that could have served as the basis for those effects in the same study. Four rhesus monkeys were exposed to 40 Gy of fWBI [5 Gy × 8 fraction (fx), 2 fx/week for four weeks] and received anatomical MRI prior to, and 14 months after fWBI. Neurologic and histologic sequelae were studied posthumously. Three of the NHPs underwent cognitive assessments, and each exhibited radiation-induced impairment associated with various degrees of vascular and inflammatory neuropathology. Two NHPs had severe multifocal necrosis of the forebrain, midbrain and brainstem. Histologic and MRI findings were in agreement, and the severity of cognitive decrement previously reported corresponded to the degree of observed pathology in two of the animals. In response to fWBI, the NHPs showed pathology similar to humans exposed to radiation and show comparable cognitive decline. These results provide a basis for implementing NHPs to examine and treat adverse cognitive and neurophysiologic sequelae of radiation exposure in humans.
Collapse
Affiliation(s)
- David B. Hanbury
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mike E. Robbins
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kenneth T. Wheeler
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ann M. Peiffer
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Erin L. Mitchell
- Animal Resources Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - James B. Daunais
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Samuel A. Deadwyler
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Mark Cline
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
22
|
Son Y, Yang M, Wang H, Moon C. Hippocampal dysfunctions caused by cranial irradiation: a review of the experimental evidence. Brain Behav Immun 2015; 45:287-96. [PMID: 25596174 DOI: 10.1016/j.bbi.2015.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/11/2022] Open
Abstract
Cranial irradiation (IR) is commonly used for the treatment of brain tumors but may cause disastrous brain injury, especially in the hippocampus, which has important cognition and emotional regulation functions. Several preclinical studies have investigated the mechanisms associated with cranial IR-induced hippocampal dysfunction such as memory defects and depression-like behavior. However, current research on hippocampal dysfunction and its associated mechanisms, with the ultimate goal of overcoming the side effects of cranial radiation therapy in the hippocampus, is still very much in progress. This article reviews several in vivo studies on the possible mechanisms of radiation-induced hippocampal dysfunction, which may be associated with hippocampal neurogenesis, neurotrophin and neuroinflammation. Thus, this review may be helpful to gain new mechanistic insights into hippocampal dysfunction following cranial IR and provide effective strategies for potential therapeutic approaches for cancer patients receiving radiation therapy.
Collapse
Affiliation(s)
- Yeonghoon Son
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Miyoung Yang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Hongbing Wang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea.
| |
Collapse
|
23
|
Dong X, Luo M, Huang G, Zhang J, Tong F, Cheng Y, Cai Q, Dong J, Wu G, Cheng J. Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int J Radiat Biol 2015; 91:224-39. [PMID: 25426696 DOI: 10.3109/09553002.2014.988895] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Radiation-induced brain injury (RIBI) is the most common side-effect after cranial radiation therapy (CRT). In the present study, the RIBI mice model was established and the changes in the expression of tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β) mRNA, and the related signal pathways in the hippocampus of this model were investigated. MATERIALS AND METHODS 10 Gy CRT or sham-irradiation was given to the three-week old mice. The water maze test was used to test the RIBI model in mice. The expression of pro-inflammatory cytokines was detected by real-time polymerase chain reaction (PCR) in vivo. The changes of microglial activation and neurogensis in the hippocampus were analyzed by immunofluorescence and immunohistochemistry. The cytoplasm to nuclei translocation of Nuclear factor kappa B (NF-κB), and the protein expressions of IkappaB-alpha (IκB-α), NF-κB essential modulator (NEMO), p53-induced protein with a death domain (PIDD), TNF-α and IL-1β were examined by Western blotting. A RIBI model was established by Morris water maze test 6 weeks after 10 Gy CRT in three-week old C57BL/6J mice. RESULTS The mRNA and protein expression levels of TNF-α and IL-1β reached the peak during the early phase after CRT. Increases in cytokine levels also were observed after irradiation of mouse BV-2 microglial cells. Neurogensis was significantly inhibited in the hippocampus with an increase of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells. The total number of microglia was decreased after CRT, but microglial activation was significantly increased. Western blotting revealed, in the RIBI mice, the expression of IκB-α was down-regulated, accompanied by the up-regulated expression of NEMO and regulated auto-proteolysis of PIDD. Also the NF-κB pathway activation was observed in BV-2 cells after irradiation. CONCLUSIONS CRT-induced pro-inflammatory cytokines release in the brain tissues and inhibition of neurogenesis in the hippocampus might be contributed by the microglial activation and play an important role in RIBI.
Collapse
Affiliation(s)
- Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Piskunov AK, Nikitin KV, Potapov AA. Cellular and molecular mechanisms of radiation-induced brain injury: can peripheral markers be detected? ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2015; 79:90-96. [PMID: 25945381 DOI: 10.17116/neiro201579190-96] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Investigation of the mechanisms of radiation-induced brain injury is a relevant fundamental objective of radiobiology and neuroradiology. Damage to the healthy brain tissue is the key factor limiting the application of radiation therapy in patients with nervous systems neoplasms. Furthermore, postradiation brain injury can be clinically indiscernible from continued tumor growth and requires differential diagnosis. Thus, there exists high demand for biomarkers of radiation effects on the brain in neurosurgery and radiobiology. These markers could be used for better understanding and quantifying the effects of ionizing radiation on brain tissues, as well as for elaborating personalized therapy. Despite the high demand, biomarkers of radiation-induced brain injury have not been identified thus far. The cellular and molecular mechanisms of the effect of ionizing radiation on the brain were analyzed in this review in order to identify potential biomarkers of radiation-induced injury to nervous tissue.
Collapse
Affiliation(s)
- A K Piskunov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - K V Nikitin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
25
|
Differential expression of doublecortin and microglial markers in the rat brain following fractionated irradiation. Neurochem Res 2014; 40:501-13. [PMID: 25488152 DOI: 10.1007/s11064-014-1495-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2022]
Abstract
Ionizing radiation induces altered brain tissue homeostasis and can lead to morphological and functional deficits. In this study, adult male Wistar rats received whole-body exposure with fractionated doses of gamma rays (a total dose of 5 Gy) and were investigated 30 and 60 days later. Immunohistochemistry and confocal microscopy were used to determine proliferation rate of cells residing or derived from the forebrain anterior subventricular zone (SVZa) and microglia distributed along and/or adjacent to subventricular zone-olfactory bulb axis. Cell counting was performed in four anatomical parts along the well-defined pathway, known as the rostral migratory stream (RMS) represented by the SVZa, vertical arm, elbow and horizontal arm of the RMS. Different spatiotemporal distribution pattern of cell proliferation was seen up to 60 days after irradiation through the migratory pathway. A population of neuroblasts underwent less evident changes up to 60 days after treatment. Fractionated exposure led to decline or loss of resting as well as reactive forms of microglia until 60 days after irradiation. Results showed that altered expression of the SVZa derived cells and ultimative decrease of microglia may contribute to development of radiation-induced late effects.
Collapse
|
26
|
Greene-Schloesser DM, Kooshki M, Payne V, D'Agostino RB, Wheeler KT, Metheny-Barlow LJ, Robbins ME. Cellular response of the rat brain to single doses of (137)Cs γ rays does not predict its response to prolonged 'biologically equivalent' fractionated doses. Int J Radiat Biol 2014; 90:790-8. [PMID: 24937374 DOI: 10.3109/09553002.2014.933915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To determine if the brain's response to single doses predicts its response to 'biologically equivalent' fractionated doses. METHODS Young adult male Fischer 344 rats were whole-brain irradiated with either single 11, 14, or 16.5 Gy doses of (137)Cs γ rays or their 'biologically equivalent' 20, 30, or 40 Gy fractionated doses (fWBI) delivered in 5 Gy fractions, twice/week for 2, 3, or 4 weeks, respectively. At 2 months post-irradiation, cellular markers of inflammation (total, activated, and newborn microglia) and neurogenesis (newborn neurons) were measured in 40 μm sections of the dentate gyrus (DG). RESULTS Although the total number of microglia in the DG/hilus was not significantly different (p > 0.7) in unirradiated, single dose, and fWBI rats, single doses produced a significant (p < 0.003) increase in the percent-activated microglia; fWBI did not (p > 0.1). Additionally, single doses produced a significant (p < 0.002) dose-dependent increase in surviving newborn microglia; fWBI did not (p < 0.8). Although total proliferation in the DG was reduced equally by single and fWBI doses, single doses produced a significant dose-dependent (p < 0.02) decrease in surviving newborn neurons; fWBI did not (p > 0.6). CONCLUSIONS These data demonstrate that the rat brain's cellular response to single doses often does not predict its cellular response to 'biologically equivalent' fWBI doses.
Collapse
Affiliation(s)
- Dana M Greene-Schloesser
- Department of Radiation Oncology, Wake Forest School of Medicine , Winston-Salem, North Carolina , USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, Malard O, Stewart F, Tamarat R, van Luijk P, Limoli CL. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal 2014; 21:338-55. [PMID: 24147585 PMCID: PMC4060814 DOI: 10.1089/ars.2013.5652] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the irradiated tissue bed. RECENT ADVANCES Preclinical studies presented in this review provide encouraging proof of concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin complications are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue regeneration. CRITICAL ISSUES While therapeutic efficacy has been demonstrated in a variety of animal models and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. FUTURE DIRECTIONS Follow-up studies will need to identify the best possible stem cell types for the treatment of early and late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes, identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the irradiated microenvironment.
Collapse
Affiliation(s)
- Marc Benderitter
- 1 Laboratory of Radiopathology and Experimental Therapies, IRSN , PRP-HOM, SRBE, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Prasanna PGS, Ahmed MM, Stone HB, Vikram B, Mehta MP, Coleman CN. Radiation-induced brain damage, impact of Michael Robbins’ work and the need for predictive biomarkers. Int J Radiat Biol 2014; 90:742-52. [DOI: 10.3109/09553002.2014.925607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Greene-Schloesser D, Payne V, Peiffer AM, Hsu FC, Riddle DR, Zhao W, Chan MD, Metheny-Barlow L, Robbins ME. The peroxisomal proliferator-activated receptor (PPAR) α agonist, fenofibrate, prevents fractionated whole-brain irradiation-induced cognitive impairment. Radiat Res 2014; 181:33-44. [PMID: 24397438 DOI: 10.1667/rr13202.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We hypothesized that dietary administration of the peroxisomal proliferator-activated receptor α agonist, fenofibrate, to young adult male rats would prevent the fractionated whole-brain irradiation (fWBI)-induced reduction in cognitive function and neurogenesis and prevent the fWBI-induced increase in the total number of activated microglia. Eighty 12-14-week-old young adult male Fischer 344 × Brown Norway rats received either: (1) sham irradiation, (2) 40 Gy of fWBI delivered as two 5 Gy fractions/week for 4 weeks, (3) sham irradiation + dietary fenofibrate (0.2% w/w) starting 7 days prior to irradiation, or (4) fWBI + fenofibrate. Cognitive function was measured 26-29 weeks after irradiation using: (1) the perirhinal cortex (PRh)-dependent novel object recognition task; (2) the hippocampal-dependent standard Morris water maze (MWM) task; (3) the hippocampal-dependent delayed match-to-place version of the MWM task; and (4) a cue strategy preference version of the MWM to distinguish hippocampal from striatal task performance. Neurogenesis was assessed 29 weeks after fWBI in the granular cell layer and subgranular zone of the dentate gyrus using a doublecortin antibody. Microglial activation was assessed using an ED1 antibody in the dentate gyrus and hilus of the hippocampus. A significant impairment in perirhinal cortex-dependent cognitive function was measured after fWBI. In contrast, fWBI failed to alter hippocampal-dependent cognitive function, despite a significant reduction in hippocampal neurogenesis. Continuous administration of fenofibrate prevented the fWBI-induced reduction in perirhinal cortex-dependent cognitive function, but did not prevent the radiation-induced reduction in neurogenesis or the radiation-induced increase in activated microglia. These data suggest that fenofibrate may be a promising therapeutic for the prevention of some modalities of radiation-induced cognitive impairment in brain cancer patients.
Collapse
|
30
|
Moore ED, Kooshki M, Wheeler KT, Metheny-Barlow LJ, Robbins ME. Differential expression of Homer1a in the hippocampus and cortex likely plays a role in radiation-induced brain injury. Radiat Res 2013; 181:21-32. [PMID: 24377717 DOI: 10.1667/rr13475.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fractionated partial or whole-brain irradiation is the primary treatment for metastatic brain tumors. Despite reducing tumor burden and increasing lifespan, progressive, irreversible cognitive impairment occurs in >50% of the patients who survive >6 months after fractionated whole-brain irradiation. The exact mechanism(s) responsible for this radiation-induced brain injury are unknown; however, preclinical studies suggest that radiation modulates the extracellular receptor kinase signaling pathway, which is associated with cognitive impairment in many neurological diseases. In the study reported here, we demonstrated that the extracellular receptor kinase transcriptionally-regulated early response gene, Homer1a, was up-regulated transiently in the hippocampus and down-regulated in the cortex of young adult male Fischer 344 X Brown Norway rats at 48 h after 40 Gy of fractionated whole-brain irradiation. Two months after fractionated whole-brain irradiation, these changes in Homer1a expression correlated with a down-regulation of the hippocampal glutamate receptor 1 and protein kinase Cγ, and an up-regulation of cortical glutamate receptor 1 and protein kinase Cγ. Two drugs that prevent radiation-induced cognitive impairment in rats, the angiotensin type-1 receptor blocker, L-158,809, and the angiotensin converting enzyme inhibitor, ramipril, reversed the fractionated whole-brain irradiation-induced Homer1a expression at 48 h in the hippocampus and cortex and restored glutamate receptor 1 and protein kinase Cγ to the levels in sham-irradiated controls at 2 months after fractionated whole-brain irradiation. These data indicate that Homer1a is, (1) a brain region specific regulator of radiation-induced brain injury, including cognitive impairment and (2) potentially a druggable target for preventing it.
Collapse
|
31
|
Moore ED, Kooshki M, Metheny-Barlow LJ, Gallagher PE, Robbins ME. Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic Biol Med 2013; 65:1060-1068. [PMID: 24012919 PMCID: PMC3879043 DOI: 10.1016/j.freeradbiomed.2013.08.183] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 12/15/2022]
Abstract
About 500,000 new cancer patients will develop brain metastases in 2013. The primary treatment modality for these patients is partial or whole brain irradiation which leads to a progressive, irreversible cognitive impairment. Although the exact mechanisms behind this radiation-induced brain injury are unknown, neuroinflammation in glial populations is hypothesized to play a role. Blockers of the renin-angiotensin system (RAS) prevent radiation-induced cognitive impairment and modulate radiation-induced neuroinflammation. Recent studies suggest that RAS blockers may reduce inflammation by increasing endogenous concentrations of the anti-inflammatory heptapeptide angiotensin-(1-7) [Ang-(1-7)]. Ang-(1-7) binds to the AT(1-7) receptor and inhibits MAP kinase activity to prevent inflammation. This study describes the inflammatory response to radiation in astrocytes characterized by radiation-induced increases in (i) IL-1β and IL-6 gene expression; (ii) COX-2 and GFAP immunoreactivity; (iii) activation of AP-1 and NF-κB transcription factors; and (iv) PKCα, MEK, and ERK (MAP kinase) activation. Treatment with U-0126, a MEK inhibitor, demonstrates that this radiation-induced inflammation in astrocytes is mediated through the MAP kinase pathway. Ang-(1-7) inhibits radiation-induced inflammation, increases in PKCα, and MAP kinase pathway activation (phosphorylation of MEK and ERK). Additionally Ang-(1-7) treatment leads to an increase in dual specificity phosphatase 1 (DUSP1). Furthermore, treatment with sodium vanadate (Na3VO4), a phosphatase inhibitor, blocks Ang-(1-7) inhibition of radiation-induced inflammation and MAP kinase activation, suggesting that Ang-(1-7) alters phosphatase activity to inhibit radiation-induced inflammation. These data suggest that RAS blockers inhibit radiation-induced inflammation and prevent radiation-induced cognitive impairment not only by reducing Ang II but also by increasing Ang-(1-7) levels.
Collapse
Affiliation(s)
- Elizabeth D Moore
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mitra Kooshki
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Linda J Metheny-Barlow
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Patricia E Gallagher
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mike E Robbins
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
32
|
Ballesteros-Zebadua P, Custodio V, Franco-Perez J, Rubio C, González E, Trejo C, Celis MA, Paz C. Whole-brain irradiation increases NREM sleep and hypothalamic expression of IL-1β in rats. Int J Radiat Biol 2013; 90:142-8. [DOI: 10.3109/09553002.2014.859767] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Schnegg CI, Greene-Schloesser D, Kooshki M, Payne VS, Hsu FC, Robbins ME. The PPARδ agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation. Free Radic Biol Med 2013; 61:1-9. [PMID: 23499837 PMCID: PMC3884086 DOI: 10.1016/j.freeradbiomed.2013.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/02/2013] [Indexed: 01/08/2023]
Abstract
Brain tumor patients often develop cognitive impairment months to years after partial or fractionated whole-brain irradiation (WBI). Studies suggest that neuroinflammation and decreased hippocampal neurogenesis contribute to the pathogenesis of radiation-induced brain injury. In this study, we determined if the peroxisomal proliferator-activated receptor (PPAR) δ agonist GW0742 can prevent radiation-induced brain injury in C57Bl/6 wild-type (WT) and PPARδ knockout (KO) mice. Dietary GW0742 prevented the acute increase in IL-1β mRNA and ERK phosphorylation measured at 3h after a single 10-Gy dose of WBI; it also prevented the increase in the number of activated hippocampal microglia 1 week after WBI. In contrast, dietary GW074 failed to prevent the radiation-induced decrease in hippocampal neurogenesis determined 2 months after WBI in WT mice or to mitigate their hippocampal-dependent spatial memory impairment measured 3 months after WBI using the Barnes maze task. PPARδ KO mice exhibited defects including decreased numbers of astrocytes in the dentate gyrus/hilus of the hippocampus and a failure to exhibit a radiation-induced increase in activated hippocampal microglia. Interestingly, the number of astrocytes in the dentate gyrus/hilus was reduced in WT mice, but not in PPARδ KO mice 2 months after WBI. These results demonstrate that, although dietary GW0742 prevents the increase in inflammatory markers and hippocampal microglial activation in WT mice after WBI, it does not restore hippocampal neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after WBI. Thus, the exact relationship between radiation-induced neuroinflammation, neurogenesis, and cognitive impairment remains elusive.
Collapse
Affiliation(s)
- Caroline I Schnegg
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Dana Greene-Schloesser
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mitra Kooshki
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Valerie S Payne
- Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Fang-Chi Hsu
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mike E Robbins
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
34
|
Greene-Schloesser D, Robbins ME. Radiation-induced cognitive impairment--from bench to bedside. Neuro Oncol 2013; 14 Suppl 4:iv37-44. [PMID: 23095829 DOI: 10.1093/neuonc/nos196] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Approximately 100,000 patients per year in the United States with primary and metastatic brain tumor survive long enough (>6 months) to develop radiation-induced brain injury. Before 1970, the human brain was thought to be radioresistant; the acute central nervous system (CNS) syndrome occurs after single doses of ≥ 30 Gy, and white matter necrosis can occur at fractionated doses of ≥ 60 Gy. Although white matter necrosis is uncommon with modern radiation therapy techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become increasingly important, having profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenic mechanisms involved in radiation-induced cognitive impairment. Although reductions in hippocampal neurogenesis and hippocampal-dependent cognitive function have been observed in rodent models, it is important to recognize that other brain regions are affected; non-hippocampal-dependent reductions in cognitive function occur. Neuroinflammation is viewed as playing a major role in radiation-induced cognitive impairment. During the past 5 years, several preclinical studies have demonstrated that interventional therapies aimed at modulating neuroinflammation can prevent/ameliorate radiation-induced cognitive impairment independent of changes in neurogenesis. Translating these exciting preclinical findings to the clinic offers the promise of improving the quality of life in patients with brain tumors who receive radiation therapy.
Collapse
Affiliation(s)
- Dana Greene-Schloesser
- Department of Radiation Oncology, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
35
|
Greene-Schloesser D, Moore E, Robbins ME. Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res 2013; 19:2294-300. [PMID: 23388505 DOI: 10.1158/1078-0432.ccr-11-2903] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Each year, approximately 200,000 patients in the United States will receive partial- or whole-brain irradiation for the treatment of primary or metastatic brain cancer. Early and delayed radiation effects are transient and reversible with modern therapeutic standards; yet, late radiation effects (≥6 months postirradiation) remain a significant risk, resulting in progressive cognitive impairment. These risks include functional deficits in memory, attention, and executive function that severely affect the patient's quality of life. The mechanisms underlying radiation-induced cognitive impairment remain ill defined. Classically, radiation-induced alterations in vascular and neuroinflammatory glial cell clonogenic populations were hypothesized to be responsible for radiation-induced brain injury. Recently, preclinical studies have focused on the hippocampus, one of two sites of adult neurogenesis within the brain, which plays an important role in learning and memory. Radiation ablates hippocampal neurogenesis, alters neuronal function, and induces neuroinflammation. Neuronal stem cells implanted into the hippocampus prevent the decrease in neurogenesis and improve cognition after irradiation. Clinically prescribed drugs, including PPARα and PPARγ agonists, as well as RAS blockers, prevent radiation-induced neuroinflammation and cognitive impairment independent of improved neurogenesis. Translating these exciting findings to the clinic offers the promise of improving the quality of life of brain tumor patients who receive radiotherapy.
Collapse
Affiliation(s)
- Dana Greene-Schloesser
- Department of Radiation Oncology and Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
36
|
Hua K, Schindler MK, McQuail JA, Forbes ME, Riddle DR. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats. PLoS One 2012; 7:e52728. [PMID: 23300752 PMCID: PMC3530502 DOI: 10.1371/journal.pone.0052728] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/21/2012] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically “activated” phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and represent important end-points for analysis in studies of therapeutic strategies to protect patients from neural dysfunction.
Collapse
Affiliation(s)
- Kun Hua
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Matthew K. Schindler
- Department of Neurology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, United States of America
| | - Joseph A. McQuail
- Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - M. Elizabeth Forbes
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - David R. Riddle
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
37
|
Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: A review. Front Oncol 2012; 2:73. [PMID: 22833841 PMCID: PMC3400082 DOI: 10.3389/fonc.2012.00073] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/26/2012] [Indexed: 12/03/2022] Open
Abstract
Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their integration at clinically relevant doses and schedules. Recently developed techniques in neuroscience and neuroimaging provide not only an opportunity to accomplish this, but they also offer the opportunity to identify new biomarkers and new targets for interventions to prevent or ameliorate these late effects.
Collapse
Affiliation(s)
- Dana Greene-Schloesser
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | |
Collapse
|
38
|
Lee TC, Greene-Schloesser D, Payne V, Diz DI, Hsu FC, Kooshki M, Mustafa R, Riddle DR, Zhao W, Chan MD, Robbins ME. Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Radiat Res 2012; 178:46-56. [PMID: 22687052 PMCID: PMC3422865 DOI: 10.1667/rr2731.1] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We hypothesized that chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, to young adult male rats would prevent/ameliorate fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Eighty 12-14-week-old young adult male Fischer 344 rats received either: (1) sham irradiation, (2) 40 Gy of fractionated whole-brain irradiation delivered as two 5 Gy fractions/week for 4 weeks, (3) sham irradiation plus continuous administration of 15 mg/L of ramipril in the drinking water starting 3 days before irradiation, or (4) fractionated whole-brain irradiation plus ramipril. Cognitive function was assessed using a perirhinal cortex-dependent version of the novel object recognition task 26 weeks after irradiation. Microglial activation was determined in the perirhinal cortex and the dentate gyrus of the hippocampus 28 weeks after irradiation using the ED1 antibody. Neurogenesis was assessed in the granular cell layer and subgranular zones of the dentate gyrus using a doublecortin antibody. Fractionated whole-brain irradiation led to: (1) a significant impairment in perirhinal cortex-dependent cognitive function, (2) a significant increase in activated microglia in the dentate gyrus but not in the perirhinal cortex, and (3) a significant decrease in neurogenesis. Continuous administration of ramipril before, during, and after irradiation prevented the fractionated whole-brain irradiation-induced changes in perirhinal cortex-dependent cognitive function, as well as in microglial activation in the dentate gyrus. Thus, as hypothesized, continuous administration of the angiotensin-converting enzyme inhibitor, ramipril, can prevent the fractionated whole-brain irradiation-induced impairment in perirhinal cortex-dependent cognitive function.
Collapse
Affiliation(s)
- Tammy C Lee
- Department of Molecular Medicine and Translational Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Prasanna PGS, Stone HB, Wong RS, Capala J, Bernhard EJ, Vikram B, Coleman CN. Normal tissue protection for improving radiotherapy: Where are the Gaps? Transl Cancer Res 2012; 1:35-48. [PMID: 22866245 PMCID: PMC3411185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Any tumor could be controlled by radiation therapy if sufficient dose were delivered to all tumor cells. Although technological advances in physical treatment delivery have been developed to allow more radiation dose conformity, normal tissues are invariably included in any radiation field within the tumor volume and also as part of the exit and entrance doses relevant for particle therapy. Mechanisms of normal tissue injury and related biomarkers are now being investigated, facilitating the discovery and development of a next generation of radiation protectors and mitigators. Bringing recent research advances stimulated by development of radiation countermeasures for mass casualties, to clinical cancer care requires understanding the impact of protectors and mitigators on tumor response. These may include treatments that modify cellular damage and death processes, inflammation, alteration of normal flora, wound healing, tissue regeneration and others, specifically to counter cancer site-specific adverse effects to improve outcome of radiation therapy. Such advances in knowledge of tissue and organ biology, mechanisms of injury, development of predictive biomarkers and mechanisms of radioprotection have re-energized the field of normal tissue protection and mitigation. Since various factors, including organ sensitivity to radiation, cellular turnover rate, and differences in mechanisms of injury manifestation and damage response vary among tissues, successful development of radioprotectors/mitigators/treatments may require multiple approaches to address cancer site specific needs. In this review, we discuss examples of important adverse effects of radiotherapy (acute and intermediate to late occurring, when it is delivered either alone or in conjunction with chemotherapy, and important limitations in the current approaches of using radioprotectors and/or mitigators for improving radiation therapy. Also, we are providing general concepts for drug development for improving radiation therapy.
Collapse
Affiliation(s)
- Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Lee WH, Warrington JP, Sonntag WE, Lee YW. Irradiation alters MMP-2/TIMP-2 system and collagen type IV degradation in brain. Int J Radiat Oncol Biol Phys 2012; 82:1559-66. [PMID: 22429332 DOI: 10.1016/j.ijrobp.2010.12.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/09/2010] [Accepted: 12/15/2010] [Indexed: 02/06/2023]
Abstract
PURPOSE Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. METHODS AND MATERIALS Animals received either whole-brain irradiation (a single dose of 10 Gy γ-rays or a fractionated dose of 40 Gy γ-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. RESULTS A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. CONCLUSIONS The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.
Collapse
Affiliation(s)
- Won Hee Lee
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | | | | | |
Collapse
|
41
|
Saavedra JM. Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders. Cell Mol Neurobiol 2011; 32:667-81. [PMID: 21938488 DOI: 10.1007/s10571-011-9754-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/26/2011] [Indexed: 01/06/2023]
Abstract
Excessive allostatic load as a consequence of deregulated brain inflammation participates in the development and progression of multiple brain diseases, including but not limited to mood and neurodegenerative disorders. Inhibition of the peripheral and brain Renin-Angiotensin System by systemic administration of Angiotensin II AT(1) receptor blockers (ARBs) ameliorates inflammatory stress associated with hypertension, cold-restraint, and bacterial endotoxin administration. The mechanisms involved include: (a) decreased inflammatory factor production in peripheral organs and their release to the circulation; (b) reduced progression of peripherally induced inflammatory cascades in the cerebral vasculature and brain parenchyma; and (c) direct anti-inflammatory effects in cerebrovascular endothelial cells, microglia, and neurons. In addition, ARBs reduce bacterial endotoxin-induced anxiety and depression. Further pre-clinical experiments reveal that ARBs reduce brain inflammation, protect cognition in rodent models of Alzheimer's disease, and diminish brain inflammation associated with genetic hypertension, ischemia, and stroke. The anti-inflammatory effects of ARBs have also been reported in circulating human monocytes. Clinical studies demonstrate that ARBs improve mood, significantly reduce cognitive decline after stroke, and ameliorate the progression of Alzheimer's disease. ARBs are well-tolerated and extensively used to treat cardiovascular and metabolic disorders such as hypertension and diabetes, where inflammation is an integral pathogenic mechanism. We propose that including ARBs in a novel integrated approach for the treatment of brain disorders such as depression and Alzheimer's disease may be of immediate translational relevance.
Collapse
Affiliation(s)
- Juan M Saavedra
- Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Acharya MM, Christie LA, Lan ML, Giedzinski E, Fike JR, Rosi S, Limoli CL. Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Res 2011; 71:4834-45. [PMID: 21757460 DOI: 10.1158/0008-5472.can-11-0027] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cranial radiotherapy induces progressive and debilitating declines in cognition that may, in part, be caused by the depletion of neural stem cells. The potential of using stem cell replacement as a strategy to combat radiation-induced cognitive decline was addressed by irradiating athymic nude rats followed 2 days later by intrahippocampal transplantation with human neural stem cells (hNSC). Measures of cognitive performance, hNSC survival, and phenotypic fate were assessed at 1 and 4 months after irradiation. Irradiated animals engrafted with hNSCs showed significantly less decline in cognitive function than irradiated, sham-engrafted animals and acted indistinguishably from unirradiated controls. Unbiased stereology revealed that 23% and 12% of the engrafted cells survived 1 and 4 months after transplantation, respectively. Engrafted cells migrated extensively, differentiated along glial and neuronal lineages, and expressed the activity-regulated cytoskeleton-associated protein (Arc), suggesting their capability to functionally integrate into the hippocampus. These data show that hNSCs afford a promising strategy for functionally restoring cognition in irradiated animals.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Conner KR, Forbes ME, Lee WH, Lee YW, Riddle DR. AT1 receptor antagonism does not influence early radiation-induced changes in microglial activation or neurogenesis in the normal rat brain. Radiat Res 2011; 176:71-83. [PMID: 21545290 DOI: 10.1667/rr2560.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS) ameliorate cognitive deficits and some aspects of brain injury after whole-brain irradiation. We investigated whether treatment with the angiotensin II type 1 receptor antagonist L-158,809 at a dose that protects cognitive function after fractionated whole-brain irradiation reduced radiation-induced neuroinflammation and changes in hippocampal neurogenesis, well-characterized effects that are associated with radiation-induced brain injury. Male F344 rats received L-158,809 before, during and after a single 10-Gy dose of radiation. Expression of cytokines, angiotensin II receptors and angiotensin-converting enzyme 2 was evaluated by real-time PCR 24 h, 1 week and 12 weeks after irradiation. At the latter times, microglial density and proliferating and activated microglia were analyzed in the dentate gyrus of the hippocampus. Cell proliferation and neurogenesis were also quantified in the dentate subgranular zone. L-158,809 treatment modestly increased mRNA expression for Ang II receptors and TNF-α but had no effect on radiation-induced effects on hippocampal microglia or neurogenesis. Thus, although L-158,809 ameliorates cognitive deficits after whole-brain irradiation, the drug did not mitigate the neuroinflammatory microglial response or rescue neurogenesis. Additional studies are required to elucidate other mechanisms of normal tissue injury that may be modulated by RAAS blockers.
Collapse
Affiliation(s)
- Kelly R Conner
- Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1010, USA
| | | | | | | | | |
Collapse
|
44
|
Robbins ME, Zhao W, Garcia-Espinosa MA, Diz DI. Renin-angiotensin system blockers and modulation of radiation-induced brain injury. Curr Drug Targets 2010; 11:1413-22. [PMID: 20583976 PMCID: PMC3068470 DOI: 10.2174/1389450111009011413] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 04/05/2010] [Indexed: 01/05/2023]
Abstract
Radiation-induced brain injury remains a major cause of morbidity in cancer patients with primary or metastatic brain tumors. Approximately 200,000 individuals/year are treated with fractionated partial or whole-brain irradiation, and > half will survive long enough (≤6 months) to develop radiation-induced brain injury, including cognitive impairment. Although short-term treatments have shown efficacy, no long-term treatments or preventive approaches are presently available for modulating radiation-induced brain injury. Based on previous preclinical studies clearly demonstrating that renin-angiotensin system (RAS) blockers can modulate radiation-induced late effects in the kidney and lung, we and others hypothesized that RAS blockade would similarly modulate radiation-induced brain injury. Indeed, studies in the last 5 years have shown that both angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 receptor antagonists (AT(1)RAs) can prevent/ameliorate radiation-induced brain injury, including cognitive impairment, in the rat. The mechanistic basis for this RAS blocker-mediated effect remains the subject of ongoing investigations. Putative mechanisms include, i] blockade of Ang II/NADPH oxidase-mediated oxidative stress and neuroinflammation, and ii] a change in the balance of angiotensin (Ang) peptides from the pro-inflammatory and pro-oxidative Ang II to the anti-inflammatory and anti-oxidative Ang-1-7). However, given that both ACEIs and AT(1)RAs are 1] well-tolerated drugs routinely prescribed for hypertension, 2] exhibit some antitumor properties, and 3] can prevent/ameliorate radiation-induced brain injury, they appear to be ideal drugs for future clinical trials, offering the promise of improving the quality of life of brain tumor patients receiving brain irradiation.
Collapse
Affiliation(s)
- M E Robbins
- Department of Radiation Oncology, Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|