1
|
Kokhan VS, Chaprov K, Abaimov DA, Nesterov MS, Pikalov VA. Combined irradiation by gamma-rays and carbon-12 nuclei caused hyperlocomotion and change in striatal metabolism of rats. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:99-107. [PMID: 39864919 DOI: 10.1016/j.lssr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 01/28/2025]
Abstract
Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved. We conducted a study on grip strength, locomotor activity and intrasession habituation to novelty in 5-month-old rats after exposure to radiation (combined 0.4 Gy gamma-rays and 0.14 Gy 12C nuclei). At the same time, we carried out neurochemical and molecular analysis of the nucleus accumbens (NAc) and the dorsal striatum (dST). The study revealed radiation-induced hyperlocomotion and enhanced habituation. It also showed an increase in choline concentration and a decreased in 5-hydroxyindoleacetic acid concentration in the NAc after irradiation. In addition to this, a down-regulation of syntaxin 1A in NAc and dST as well as up-regulation α-synuclein in NAc were observed. The obtained data indicate both the damaging effect of irradiation on striatum tissues and the initiation of neuronal/axonal regeneration processes. It is hypothesized that the increase in choline concentration in NAc and the decreased content of syntaxin 1A in dST may be the part of the mechanism responsible for the radiation-induced hyperlocomotion.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia.
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia
| | | | - Maxim S Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, settlement Svetlye Gory, Russia
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino, Russia
| |
Collapse
|
2
|
Kokhan VS, Pikalov VA, Chaprov K, Gulyaev MV. Combined Ionizing Radiation Exposure by Gamma Rays and Carbon-12 Nuclei Increases Neurotrophic Factor Content and Prevents Age-Associated Decreases in the Volume of the Sensorimotor Cortex in Rats. Int J Mol Sci 2024; 25:6725. [PMID: 38928431 PMCID: PMC11203503 DOI: 10.3390/ijms25126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
In orbital and ground-based experiments, it has been demonstrated that ionizing radiation (IR) can stimulate the locomotor and exploratory activity of rodents, but the underlying mechanism of this phenomenon remains undisclosed. Here, we studied the effect of combined IR (0.4 Gy γ-rays and 0.14 Gy carbon-12 nuclei) on the locomotor and exploratory activity of rats, and assessed the sensorimotor cortex volume by magnetic resonance imaging-based morphometry at 1 week and 7 months post-irradiation. The sensorimotor cortex tissues were processed to determine whether the behavioral and morphologic effects were associated with changes in neurotrophin content. The irradiated rats were characterized by increased locomotor and exploratory activity, as well as novelty-seeking behavior, at 3 days post-irradiation. At the same time, only unirradiated rats experienced a significant decrease in the sensorimotor cortex volume at 7 months. While there were no significant differences at 1 week, at 7 months, the irradiated rats were characterized by higher neurotrophin-3 and neurotrophin-4 content in the sensorimotor cortex. Thus, IR prevents the age-associated decrease in the sensorimotor cortex volume, which is associated with neurotrophic and neurogenic changes. Meanwhile, IR-induced increases in locomotor activity may be the cause of the observed changes.
Collapse
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, 119034 Moscow, Russia
| | - Vladimir A. Pikalov
- Institute for High Energy Physics Named by A.A. Logunov of NRC “Kurchatov Institute”, 142281 Protvino, Russia;
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Mikhail V. Gulyaev
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
3
|
Oyefeso FA, Goldberg G, Opoku NYPS, Vazquez M, Bertucci A, Chen Z, Wang C, Muotri AR, Pecaut MJ. Effects of acute low-moderate dose ionizing radiation to human brain organoids. PLoS One 2023; 18:e0282958. [PMID: 37256873 PMCID: PMC10231836 DOI: 10.1371/journal.pone.0282958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/27/2023] [Indexed: 06/02/2023] Open
Abstract
Human exposure to low-to-moderate dose ionizing radiation (LMD-IR) is increasing via environmental, medical, occupational sources. Acute exposure to LMD-IR can cause subclinical damage to cells, resulting in altered gene expression and cellular function within the human brain. It has been difficult to identify diagnostic and predictive biomarkers of exposure using traditional research models due to factors including lack of 3D structure in monolayer cell cultures, limited ability of animal models to accurately predict human responses, and technical limitations of studying functional human brain tissue. To address this gap, we generated brain/cerebral organoids from human induced pluripotent stem cells to study the radiosensitivity of human brain cells, including neurons, astrocytes, and oligodendrocytes. While organoids have become popular models for studying brain physiology and pathology, there is little evidence to confirm that exposing brain organoids to LMD-IR will recapitulate previous in vitro and in vivo observations. We hypothesized that exposing brain organoids to proton radiation would (1) cause a time- and dose-dependent increase in DNA damage, (2) induce cell type-specific differences in radiosensitivity, and (3) increase expression of oxidative stress and DNA damage response genes. Organoids were exposed to 0.5 or 2 Gy of 250 MeV protons and samples were collected at 30 minute, 24 hour, and 48 hour timepoints. Using immunofluorescence and RNA sequencing, we found time- and dose-dependent increases in DNA damage in irradiated organoids; no changes in cell populations for neurons, oligodendrocytes, and astrocytes by 24 hours; decreased expression of genes related to oligodendrocyte lineage, astrocyte lineage, mitochondrial function, and cell cycle progression by 48 hours; increased expression of genes related to neuron lineage, oxidative stress, and DNA damage checkpoint regulation by 48 hours. Our findings demonstrate the possibility of using organoids to characterize cell-specific radiosensitivity and early radiation-induced gene expression changes within the human brain, providing new avenues for further study of the mechanisms underlying acute neural cell responses to IR exposure at low-to-moderate doses.
Collapse
Affiliation(s)
- Foluwasomi A. Oyefeso
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Gabriela Goldberg
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nana Yaa P. S. Opoku
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Marcelo Vazquez
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Antonella Bertucci
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Zhong Chen
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Charles Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Alysson R. Muotri
- Department of Radiation Medicine, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Michael J. Pecaut
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
4
|
Baier J, Rix A, Darguzyte M, Girbig RM, May JN, Palme R, Tolba R, Kiessling F. Repeated Contrast-Enhanced Micro-CT Examinations Decrease Animal Welfare and Influence Tumor Physiology. Invest Radiol 2023; 58:327-336. [PMID: 36730911 DOI: 10.1097/rli.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Computed tomography (CT) imaging is considered relatively safe and is often used in preclinical research to study physiological processes. However, the sum of low-dose radiation, anesthesia, and animal handling might impact animal welfare and physiological parameters. This is particularly relevant for longitudinal studies with repeated CT examinations. Therefore, we investigated the influence of repeated native and contrast-enhanced (CE) CT on animal welfare and tumor physiology in regorafenib-treated and nontreated tumor-bearing mice. MATERIAL AND METHODS Mice bearing 4T1 breast cancer were divided into 5 groups: (1) no imaging, (2) isoflurane anesthesia only, (3) 4 mGy CT, (4) 50 mGy CT, and (5) CE-CT (iomeprol). In addition, half of each group was treated with the multikinase inhibitor regorafenib. Mice were imaged 3 times within 1 week under isoflurane anesthesia. Behavioral alterations were investigated by score sheet evaluation, rotarod test, heart rate measurements, and fecal corticosterone metabolite analysis. Tumor growth was measured daily with a caliper. Tumors were excised at the end of the experiment and histologically examined for blood vessel density, perfusion, and cell proliferation. RESULTS According to the score sheet, animals showed a higher burden after anesthesia administration and in addition with CT imaging ( P < 0.001). Motor coordination was not affected by native CT, but significantly decreased after CE-CT in combination with the tumor therapy ( P < 0.001). Whereas tumor growth and blood vessel density were not influenced by anesthesia or imaging, CT-scanned animals had a higher tumor perfusion ( P < 0.001) and a lower tumor cell proliferation ( P < 0.001) for both radiation doses. The most significant difference was observed between the control and CE-CT groups. CONCLUSION Repeated (CE-) CT imaging of anesthetized animals can lead to an impairment of animal motor coordination and, thus, welfare. Furthermore, these standard CT protocols seem to be capable of inducing alterations in tumor physiology when applied repetitively. These potential effects of native and CE-CT should be carefully considered in preclinical oncological research.
Collapse
Affiliation(s)
- Jasmin Baier
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Anne Rix
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Milita Darguzyte
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Renée Michèle Girbig
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Jan-Niklas May
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - René Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Fabian Kiessling
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| |
Collapse
|
5
|
The Effects of Galactic Cosmic Rays on the Central Nervous System: From Negative to Unexpectedly Positive Effects That Astronauts May Encounter. BIOLOGY 2023; 12:biology12030400. [PMID: 36979092 PMCID: PMC10044754 DOI: 10.3390/biology12030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Galactic cosmic rays (GCR) pose a serious threat to astronauts’ health during deep space missions. The possible functional alterations of the central nervous system (CNS) under GCR exposure can be critical for mission success. Despite the obvious negative effects of ionizing radiation, a number of neutral or even positive effects of GCR irradiation on CNS functions were revealed in ground-based experiments with rodents and primates. This review is focused on the GCR exposure effects on emotional state and cognition, emphasizing positive effects and their potential mechanisms. We integrate these data with GCR effects on adult neurogenesis and pathological protein aggregation, forming a complete picture. We conclude that GCR exposure causes multidirectional effects on cognition, which may be associated with emotional state alterations. However, the irradiation in space-related doses either has no effect or has performance enhancing effects in solving high-level cognition tasks and tasks with a high level of motivation. We suppose the model of neurotransmission changes after irradiation, although the molecular mechanisms of this phenomenon are not fully understood.
Collapse
|
6
|
Blackwell AA, Tracz JA, Fesshaye AS, Tidmore A, Osterlund Oltmanns JR, Schaeffer EA, Lake RI, Wallace DG, Britten RA. Fine motor deficits exhibited in rat string-pulling behavior following exposure to sleep fragmentation and deep space radiation. Exp Brain Res 2023; 241:427-440. [PMID: 36574036 DOI: 10.1007/s00221-022-06527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022]
Abstract
Deep space flight missions will expose astronauts to multiple stressors, including sleep fragmentation and space radiation. There is debate over whether sleep disruptions are an issue in deep space. While these stressors independently impair sensorimotor function, the combined effects on performance are currently unknown. String-pulling behavior involves highly organized bimanual reach-to-grasp and withdraw movements. This behavior was examined under rested wakeful conditions and immediately following one session of sleep fragmentation in Sham and irradiated rats 3 months after exposure (10 cGy 4Helium or 5-ion simulated Galactic Cosmic Radiation). Sleep fragmentation disrupted several aspects of string-pulling behavior, such that rats' ability to grasp the string was reduced, reach endpoint concentration was more variable, and distance traveled by the nose increased in the Y-range compared to rested wakeful performance. Overall, irradiated rats missed the string more than Sham rats 3 months post-exposure. Irradiated rats also exhibited differential impairments at 3 months, with additional deficits unveiled after sleep fragmentation. 4Helium-exposed rats took longer to approach the string after sleep fragmentation. Further, rats exposed to 4Helium traveled shorter withdraw distances 3 months after irradiation, while this only emerged in the other irradiated group after sleep fragmentation. These findings identify sleep fragmentation as a risk for fine motor dysfunction in Sham and irradiated conditions, in addition to radiation exposure. There may be complex temporal alterations in performance that are stressor- and ion-dependent. Thus, it is critical to implement appropriate models of multi-flight stressors and performance assessments in preparation for future deep space flight missions.
Collapse
Affiliation(s)
- Ashley A Blackwell
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA, 23507, USA. .,Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Jovanna A Tracz
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Arriyam S Fesshaye
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA, 23507, USA
| | - Alyssa Tidmore
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA, 23507, USA
| | | | - Ericka A Schaeffer
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Rami I Lake
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA, 23507, USA.,Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.,Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| |
Collapse
|
7
|
Sorokina SS, Paskevich SI, Zaichkina SI, Malkov AE, Pikalov VA. The Combined Effect of Protective Agents and Accelerated Carbon Ions on the Behavior of Mice. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Blackwell AA, Fesshaye A, Tidmore A, I Lake R, Wallace DG, Britten RA. Rapid loss of fine motor skills after low dose space radiation exposure. Behav Brain Res 2022; 430:113907. [DOI: 10.1016/j.bbr.2022.113907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 01/04/2023]
|
9
|
Long-Term Sex- and Genotype-Specific Effects of 56Fe Irradiation on Wild-Type and APPswe/PS1dE9 Transgenic Mice. Int J Mol Sci 2021; 22:ijms222413305. [PMID: 34948098 PMCID: PMC8703695 DOI: 10.3390/ijms222413305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aβ) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aβ and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.
Collapse
|
10
|
Boutros SW, Zimmerman B, Nagy SC, Lee JS, Perez R, Raber J. Amifostine (WR-2721) Mitigates Cognitive Injury Induced by Heavy Ion Radiation in Male Mice and Alters Behavior and Brain Connectivity. Front Physiol 2021; 12:770502. [PMID: 34867479 PMCID: PMC8637850 DOI: 10.3389/fphys.2021.770502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
The deep space environment contains many risks to astronauts during space missions, such as galactic cosmic rays (GCRs) comprised of naturally occurring heavy ions. Heavy ion radiation is increasingly being used in cancer therapy, including novel regimens involving carbon therapy. Previous investigations involving simulated space radiation have indicated a host of detrimental cognitive and behavioral effects. Therefore, there is an increasing need to counteract these deleterious effects of heavy ion radiation. Here, we assessed the ability of amifostine to mitigate cognitive injury induced by simulated GCRs in C57Bl/6J male and female mice. Six-month-old mice received an intraperitoneal injection of saline, 107 mg/kg, or 214 mg/kg of amifostine 1 h prior to exposure to a simplified five-ion radiation (protons, 28Si, 4He, 16O, and 56Fe) at 500 mGy or sham radiation. Mice were behaviorally tested 2-3 months later. Male mice that received saline and radiation exposure failed to show novel object recognition, which was reversed by both doses of amifostine. Conversely, female mice that received saline and radiation exposure displayed intact object recognition, but those that received amifostine prior to radiation did not. Amifostine and radiation also had distinct effects on males and females in the open field, with amifostine affecting distance moved over time in both sexes, and radiation affecting time spent in the center in females only. Whole-brain analysis of cFos immunoreactivity in male mice indicated that amifostine and radiation altered regional connectivity in areas involved in novel object recognition. These data support that amifostine has potential as a countermeasure against cognitive injury following proton and heavy ion irradiation in males.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sydney C. Nagy
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Joanne S. Lee
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology and Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, United States
| |
Collapse
|
11
|
Narasimhamurthy RK, Mumbrekar KD, Satish Rao BS. Effects of low dose ionizing radiation on the brain- a functional, cellular, and molecular perspective. Toxicology 2021; 465:153030. [PMID: 34774978 DOI: 10.1016/j.tox.2021.153030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Over the years, the advancement of radio diagnostic imaging tools and techniques has radically improved the diagnosis of different pathophysiological conditions, accompanied by increased exposure to low-dose ionizing radiation. Though the consequences of high dose radiation exposure on humans are very well comprehended, the more publicly relevant effects of low dose radiation (LDR) (≤100 mGy) exposure on the biological system remain ambiguous. The central nervous system, predominantly the developing brain with more neuronal precursor cells, is exceptionally radiosensitive and thus more liable to neurological insult even at low doses, as shown through several rodent studies. Further molecular studies have unraveled the various inflammatory and signaling mechanisms involved in cellular damage and repair that drive these physiological alterations that lead to functional alterations. Interestingly, few studies also claim that LDR exerts therapeutic effects on the brain by initiating an adaptive response. The present review summarizes the current understanding of the effects of low dose radiation at functional, cellular, and molecular levels and the various risks and benefits associated with it based on the evidence available from in vitro, in vivo, and clinical studies. Although the consensus indicates minimum consequences, the overall evidence suggests that LDR can bring about considerable neurological effects in the exposed individual, and hence a re-evaluation of the LDR usage levels and frequency of exposure is required.
Collapse
Affiliation(s)
- Rekha K Narasimhamurthy
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - B S Satish Rao
- Research Directorate Office, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
12
|
Belyaeva AG, Kudrin VS, Koshlan IV, Koshlan NA, Isakova MD, Bogdanova YV, Timoshenko GN, Krasavin EA, Blokhina TM, Yashkina EI, Osipov AN, Nosovsky AN, Perevezentsev AA, Shtemberg AS. Effects of combined exposure to modeled radiation and gravitation factors of the interplanetary flight: Monkeys' cognitive functions and the content of monoamines and their metabolites; cytogenetic changes in peripheral blood lymphocytes. LIFE SCIENCES IN SPACE RESEARCH 2021; 30:45-54. [PMID: 34281664 DOI: 10.1016/j.lssr.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
In a study on primates (Macaca mulatta), neurobiological and radiobiological effects have been studied of the synchronous combined action of 7-day antiorthostatic hypokinesia and exposure of the monkeys' head first to γ-rays during 24 h and then to accelerated 12C ions. The neurobiological effects were evaluated by the cognitive functions which model the basic elements of operator activity and the concentration of monoamines and their metabolites in peripheral blood. The radiobiological effects were evaluated by the chromosomal aberration and DNA double-strand break (DSB) yield in peripheral blood lymphocytes. The results of the cognitive function research show that the typological features of the animals' higher nervous activity are the prevailing factor that determines changes in these functions. The monkey of the strong balanced type effectively retained its cognitive functions after the exposures, while in the weak unbalanced type animals these functions were impaired. These changes went along with a decrease in the concentration of monoamines and their metabolites and an increase in the DNA DSB and chromosomal aberration yield in lymphocytes.
Collapse
Affiliation(s)
- Alexandra G Belyaeva
- Institute of Biomedical Problems of the Russian Academy of Sciences (RAS), 123007, Moscow, Russian Federation.
| | - Vladimir S Kudrin
- Institute of Biomedical Problems of the Russian Academy of Sciences (RAS), 123007, Moscow, Russian Federation; Zakusov Institute of Pharmacology, 125315, Moscow, Russian Federation.
| | - Igor V Koshlan
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation; Dubna State University, 141982, Dubna, Moscow Oblast, Russian Federation.
| | - Nataliya A Koshlan
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation.
| | - Mariya D Isakova
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation; Dubna State University, 141982, Dubna, Moscow Oblast, Russian Federation.
| | - Yulia V Bogdanova
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation.
| | - Gennady N Timoshenko
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation; Dubna State University, 141982, Dubna, Moscow Oblast, Russian Federation.
| | - Evgeny A Krasavin
- Joint Institute for Nuclear Research 141980, Dubna, Moscow Oblast, Russian Federation; Dubna State University, 141982, Dubna, Moscow Oblast, Russian Federation.
| | - Taisia M Blokhina
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098, Moscow, Russian Federation; Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation; School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russian Federation.
| | - Elizaveta I Yashkina
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098, Moscow, Russian Federation
| | - Andreyan N Osipov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098, Moscow, Russian Federation; Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation; School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russian Federation.
| | - Andrey N Nosovsky
- Institute of Biomedical Problems of the Russian Academy of Sciences (RAS), 123007, Moscow, Russian Federation.
| | - Alexandr A Perevezentsev
- Institute of Biomedical Problems of the Russian Academy of Sciences (RAS), 123007, Moscow, Russian Federation.
| | - Andrey S Shtemberg
- Institute of Biomedical Problems of the Russian Academy of Sciences (RAS), 123007, Moscow, Russian Federation.
| |
Collapse
|
13
|
Kokhan VS, Mariasina S, Pikalov VA, Abaimov DA, Somasundaram SG, Kirkland CE, Aliev G. Neurokinin-1 receptor antagonist reverses functional CNS alteration caused by combined γ-rays and carbon nuclei irradiation. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:278-289. [PMID: 33480350 DOI: 10.2174/1871527320666210122092330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ionizing radiation (IR) is one of the major limiting factors for human deep-space missions. Preventing IR-induced cognitive alterations in astronauts is a critical success factor. It has been shown that cognitive alterations in rodents can be inferred by alterations of a psycho-emotional balance, primarily an anxiogenic effect of IR. In our recent work we hypothesized that the neurokinin-1 (NK1) receptor may be instrumental for such alterations. OBJECTIVE The NK1 receptor antagonist rolapitant and the classic anxiolytic diazepam (as a comparison drug) were selected to test this hypothesis on Wistar rats. METHOD Pharmacological substances were administered through intragastric probes. We used a battery of tests for a comprehensive ethological analysis. A high-performance liquid chromatography was applied to quantify monoamines content. An analysis of mRNA expression was performed by real-time PCR. Protein content was studied by Western blotting technique. RESULTS Our salient finding includes no substantial changes in anxiety, locomotor activity and cognitive abilities of treated rats under irradiation. No differences were found in the content of monoamines. We discovered a synchronous effect on mRNA expression and protein content of 5-HT2a and 5-HT4 receptors in the prefrontal cortex, as well as decreased content of serotonin transporter and increased content of tryptophan hydroxylase in the hypothalamus of irradiated rats. Rolapitant affected the protein amount of a number of serotonin receptors in the amygdala of irradiated rats. CONCLUSION Rolapitant may be the first atypical radioprotector, providing symptomatic treatment of CNS functional disorders in astronauts caused by IR.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology, Moscow. Russian Federation
| | - Sofia Mariasina
- M.V. Lomonosov Moscow State University, Moscow. Russian Federation
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino. Russian Federation
| | | | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991. Russian Federation
| |
Collapse
|
14
|
Davis CM, Allen AR, Bowles DE. Consequences of space radiation on the brain and cardiovascular system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:180-218. [PMID: 33902387 DOI: 10.1080/26896583.2021.1891825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Staying longer in outer space will inevitably increase the health risks of astronauts due to the exposures to galactic cosmic rays and solar particle events. Exposure may pose a significant hazard to space flight crews not only during the mission but also later, when slow-developing adverse effects could finally become apparent. The body of literature examining ground-based outcomes in response to high-energy charged-particle radiation suggests differential effects in response to different particles and energies. Numerous animal and cellular models have repeatedly demonstrated the negative effects of high-energy charged-particle on the brain and cognitive function. However, research on the role of space radiation in potentiating cardiovascular dysfunction is still in its early stages. This review summarizes the available data from studies using ground-based animal models to evaluate the response of the brain and heart to the high-energy charged particles of GCR and SPE, addresses potential sex differences in these effects, and aims to highlight gaps in the current literature for future study.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
15
|
Blackwell AA, Schell BD, Osterlund Oltmanns JR, Whishaw IQ, Ton ST, Adamczyk NS, Kartje GL, Britten RA, Wallace DG. Skilled movement and posture deficits in rat string-pulling behavior following low dose space radiation ( 28Si) exposure. Behav Brain Res 2020; 400:113010. [PMID: 33181183 DOI: 10.1016/j.bbr.2020.113010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Deep space flight missions beyond the Van Allen belt have the potential to expose astronauts to space radiation which may damage the central nervous system and impair function. The proposed mission to Mars will be the longest mission-to-date and identifying mission critical tasks that are sensitive to space radiation is important for developing and evaluating the efficacy of counter measures. Fine motor control has been assessed in humans, rats, and many other species using string-pulling behavior. For example, focal cortical damage has been previously shown to disrupt the topographic (i.e., path circuity) and kinematic (i.e., moment-to-moment speed) organization of rat string-pulling behavior count to compromise task accuracy. In the current study, rats were exposed to a ground-based model of simulated space radiation (5 cGy 28Silicon), and string-pulling behavior was used to assess fine motor control. Irradiated rats initially took longer to pull an unweighted string into a cage, exhibited impaired accuracy in grasping the string, and displayed postural deficits. Once rats were switched to a weighted string, some deficits lessened but postural instability remained. These results demonstrate that a single exposure to a low dose of space radiation disrupts skilled hand movements and posture, suggestive of neural impairment. This work establishes a foundation for future studies to investigate the neural structures and circuits involved in fine motor control and to examine the effectiveness of counter measures to attenuate the effects of space radiation on fine motor control.
Collapse
Affiliation(s)
- Ashley A Blackwell
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, United States.
| | - Brandi D Schell
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, United States
| | | | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Son T Ton
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, United States; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, IL, 60153, United States
| | - Natalie S Adamczyk
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, United States
| | - Gwendolyn L Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, United States; Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, IL, 60153, United States
| | - Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, 23507, United States
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115, United States
| |
Collapse
|
16
|
Kokhan VS, Anokhin PK, Belov OV, Gulyaev MV. Cortical Glutamate/GABA Imbalance after Combined Radiation Exposure: Relevance to Human Deep-Space Missions. Neuroscience 2019; 416:295-308. [DOI: 10.1016/j.neuroscience.2019.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/01/2019] [Accepted: 08/03/2019] [Indexed: 12/22/2022]
|
17
|
Liu B, Hinshaw RG, Le KX, Park MA, Wang S, Belanger AP, Dubey S, Frost JL, Shi Q, Holton P, Trojanczyk L, Reiser V, Jones PA, Trigg W, Di Carli MF, Lorello P, Caldarone BJ, Williams JP, O'Banion MK, Lemere CA. Space-like 56Fe irradiation manifests mild, early sex-specific behavioral and neuropathological changes in wildtype and Alzheimer's-like transgenic mice. Sci Rep 2019; 9:12118. [PMID: 31431669 PMCID: PMC6702228 DOI: 10.1038/s41598-019-48615-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Space travel will expose people to high-energy, heavy particle radiation, and the cognitive deficits induced by this exposure are not well understood. To investigate the short-term effects of space radiation, we irradiated 4-month-old Alzheimer’s disease (AD)-like transgenic (Tg) mice and wildtype (WT) littermates with a single, whole-body dose of 10 or 50 cGy 56Fe ions (1 GeV/u) at Brookhaven National Laboratory. At ~1.5 months post irradiation, behavioural testing showed sex-, genotype-, and dose-dependent changes in locomotor activity, contextual fear conditioning, grip strength, and motor learning, mainly in Tg but not WT mice. There was little change in general health, depression, or anxiety. Two months post irradiation, microPET imaging of the stable binding of a translocator protein ligand suggested no radiation-specific change in neuroinflammation, although initial uptake was reduced in female mice independently of cerebral blood flow. Biochemical and immunohistochemical analyses revealed that radiation reduced cerebral amyloid-β levels and microglia activation in female Tg mice, modestly increased microhemorrhages in 50 cGy irradiated male WT mice, and did not affect synaptic marker levels compared to sham controls. Taken together, we show specific short-term changes in neuropathology and behaviour induced by 56Fe irradiation, possibly having implications for long-term space travel.
Collapse
Affiliation(s)
- Bin Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Robert G Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin X Le
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Mi-Ae Park
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shuyan Wang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anthony P Belanger
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shipra Dubey
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jeffrey L Frost
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Qiaoqiao Shi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Holton
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lee Trojanczyk
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | - Paul A Jones
- GE Healthcare, Chalfont St Giles, HP8 4SP, United Kingdom
| | - William Trigg
- GE Healthcare, Chalfont St Giles, HP8 4SP, United Kingdom
| | - Marcelo F Di Carli
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Paul Lorello
- Harvard Medical School Mouse Behavior Core, Boston, MA, 02115, USA
| | | | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Cucinotta FA, Cacao E. Risks of cognitive detriments after low dose heavy ion and proton exposures. Int J Radiat Biol 2019; 95:985-998. [PMID: 31120359 PMCID: PMC6606350 DOI: 10.1080/09553002.2019.1623427] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Purpose: Heavy ion and proton brain irradiations occur during space travel and in Hadron therapy for cancer. Heavy ions produce distinct patterns of energy deposition in neuron cells and brain tissues compared to X-rays leading to large uncertainties in risk estimates. We make a critical review of findings from research studies over the last 25 years for understanding risks at low dose. Conclusions: A large number of mouse and rat cognitive testing measures have been reported for a variety of particle species and energies for acute doses. However, tissue reactions occur above dose thresholds and very few studies were performed at the heavy ion doses to be encountered on space missions (<0.04 Gy/y) or considered dose-rate effects, such that threshold doses are not known in rodent models. Investigations of possible mechanisms for cognitive changes have been limited by experimental design with largely group specific and not subject specific findings reported. Persistent oxidative stress and activated microglia cells are common mechanisms studied, while impairment of neurogenesis, detriments in neuron morphology, and changes to gene and protein expression were each found to be important in specific studies. Future research should focus on estimating threshold doses carried out with experimental designs aimed at understating causative mechanisms, which will be essential for extrapolating rodent findings to humans and chronic radiation scenarios, while establishing if mitigation are needed.
Collapse
|
19
|
Kiffer F, Boerma M, Allen A. Behavioral effects of space radiation: A comprehensive review of animal studies. LIFE SCIENCES IN SPACE RESEARCH 2019; 21:1-21. [PMID: 31101151 PMCID: PMC7150604 DOI: 10.1016/j.lssr.2019.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 05/04/2023]
Abstract
As NASA prepares for the first manned mission to Mars in the next 20 years, close attention has been placed on the cognitive welfare of astronauts, who will likely endure extended durations in confinement and microgravity and be subjected to the radioactive charged particles travelling at relativistic speeds in interplanetary space. The future of long-duration manned spaceflight, thus, depends on understanding the individual hazards associated with the environment beyond Earth's protective magnetosphere. Ground-based single-particle studies of exposed mice and rats have, in the last 30 years, overwhelmingly reported deficits in their cognitive behaviors. However, as particle-accelerator technologies at NASA's Space Radiation Laboratory continue to progress, more realistic representations of space radiation are materializing, including multiple-particle exposures and, eventually, at multiple energy distributions. These advancements help determine how to best mitigate possible hazards due to space radiation. However, risk models will depend on delineating which particles are most responsible for specific behavioral outcomes and whether multiple-particle exposures produce synergistic effects. Here, we review the literature on animal exposures by particle, energy, and behavioral assay to inform future mixed-field radiation studies of possible behavioral outcomes.
Collapse
Affiliation(s)
- Frederico Kiffer
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Marjan Boerma
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Antiño Allen
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
20
|
Whole-Body 12C Irradiation Transiently Decreases Mouse Hippocampal Dentate Gyrus Proliferation and Immature Neuron Number, but Does Not Change New Neuron Survival Rate. Int J Mol Sci 2018; 19:ijms19103078. [PMID: 30304778 PMCID: PMC6213859 DOI: 10.3390/ijms19103078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus—a brain structure important in memory—prior work suggests that 12C does not. However, much about 12C’s influence on neurogenesis remains unknown, including the time course of its impact on neurogenesis. To address this knowledge gap, male mice (9–11 weeks of age) were exposed to whole-body 12C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment. To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested 2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX) immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-12C irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell survival, but there was no difference in BrdU+ cell survival rate when compared within treatment and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover from the detrimental effect of 12C exposure.
Collapse
|
21
|
Whoolery CW, Walker AK, Richardson DR, Lucero MJ, Reynolds RP, Beddow DH, Clark KL, Shih HY, LeBlanc JA, Cole MG, Amaral WZ, Mukherjee S, Zhang S, Ahn F, Bulin SE, DeCarolis NA, Rivera PD, Chen BPC, Yun S, Eisch AJ. Whole-Body Exposure to 28Si-Radiation Dose-Dependently Disrupts Dentate Gyrus Neurogenesis and Proliferation in the Short Term and New Neuron Survival and Contextual Fear Conditioning in the Long Term. Radiat Res 2017; 188:532-551. [PMID: 28945526 PMCID: PMC5901735 DOI: 10.1667/rr14797.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Astronauts traveling to Mars will be exposed to chronic low doses of galactic cosmic space radiation, which contains highly charged, high-energy (HZE) particles. 56Fe-HZE-particle exposure decreases hippocampal dentate gyrus (DG) neurogenesis and disrupts hippocampal function in young adult rodents, raising the possibility of impaired astronaut cognition and risk of mission failure. However, far less is known about how exposure to other HZE particles, such as 28Si, influences hippocampal neurogenesis and function. To compare the influence of 28Si exposure on indices of neurogenesis and hippocampal function with previous studies on 56Fe exposure, 9-week-old C57BL/6J and Nestin-GFP mice (NGFP; made and maintained for 10 or more generations on a C57BL/6J background) received whole-body 28Si-particle-radiation exposure (0, 0.2 and 1 Gy, 300 MeV/n, LET 67 KeV/μ, dose rate 1 Gy/min). For neurogenesis assessment, the NGFP mice were injected with the mitotic marker BrdU at 22 h postirradiation and brains were examined for indices of hippocampal proliferation and neurogenesis, including Ki67+, BrdU+, BrdU+NeuN+ and DCX+ cell numbers at short- and long-term time points (24 h and 3 months postirradiation, respectively). In the short-term group, stereology revealed fewer Ki67+, BrdU+ and DCX+ cells in 1-Gy-irradiated group relative to nonirradiated control mice, fewer Ki67+ and DCX+ cells in 0.2 Gy group relative to control group and fewer BrdU+ and DCX+ cells in 1 Gy group relative to 0.2 Gy group. In contrast to the clearly observed radiation-induced, dose-dependent reductions in the short-term group across all markers, only a few neurogenesis indices were changed in the long-term irradiated groups. Notably, there were fewer surviving BrdU+ cells in the 1 Gy group relative to 0- and 0.2-Gy-irradiated mice in the long-term group. When the short- and long-term groups were analyzed by sex, exposure to radiation had a similar effect on neurogenesis indices in male and female mice, although only male mice showed fewer surviving BrdU+ cells in the long-term group. Fluorescent immunolabeling and confocal phenotypic analysis revealed that most surviving BrdU+ cells in the long-term group expressed the neuronal marker NeuN, definitively confirming that exposure to 1 Gy 28Si radiation decreased the number of surviving adult-generated neurons in male mice relative to both 0- and 0.2-Gy-irradiated mice. For hippocampal function assessment, 9-week-old male C57BL/6J mice received whole-body 28Si-particle exposure and were then assessed long-term for performance on contextual and cued fear conditioning. In the context test the animals that received 0.2 Gy froze less relative to control animals, suggesting decreased hippocampal-dependent function. However, in the cued fear conditioning test, animals that received 1 Gy froze more during the pretone portion of the test, relative to controls and 0.2-Gy-irradiated mice, suggesting enhanced anxiety. Compared to previously reported studies, these data suggest that 28Si-radiation exposure damages neurogenesis, but to a lesser extent than 56Fe radiation and that low-dose 28Si exposure induces abnormalities in hippocampal function, disrupting fear memory but also inducing anxiety-like behavior. Furthermore, exposure to 28Si radiation decreased new neuron survival in long-term male groups but not females suggests that sex may be an important factor when performing brain health risk assessment for astronauts traveling in space.
Collapse
Affiliation(s)
- Cody W. Whoolery
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Angela K. Walker
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | | | - Melanie J. Lucero
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Ryan P. Reynolds
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David H. Beddow
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - K. Lyles Clark
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hung-Ying Shih
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Junie A. LeBlanc
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Mara G. Cole
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | | | - Shibani Mukherjee
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Shichuan Zhang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Francisca Ahn
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Sarah E. Bulin
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | | | - Phillip D. Rivera
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Benjamin P. C. Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Sanghee Yun
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Amelia J. Eisch
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Patel R, Arakawa H, Radivoyevitch T, Gerson SL, Welford SM. Long-Term Deficits in Behavior Performances Caused by Low- and High-Linear Energy Transfer Radiation. Radiat Res 2017; 188:672-680. [PMID: 28961076 DOI: 10.1667/rr14795.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Efforts to protect astronauts from harmful galactic cosmic radiation (GCR) require a better understanding of the effects of GCR on human health. In particular, little is known about the lasting effects of GCR on the central nervous system (CNS), which may lead to behavior performance deficits. Previous studies have shown that high-linear energy transfer (LET) radiation in rodents leads to short-term declines in a variety of behavior tests. However, the lasting impact of low-, medium- and high-LET radiation on behavior are not fully defined. Therefore, in this study C57BL/6 male mice were irradiated with 100 or 250 cGy of γ rays (LET ∼0.3 KeV/μm), 10 or 100 cGy of 1H at 1,000 MeV/n (LET ∼0.2 KeV/μm), 28Si at 300 MeV/n (LET ∼69 KeV/μm) or 56Fe at 600 MeV/n (LET of ∼180 KeV/μm), and behavior metrics were collected at 5 and 9 months postirradiation to analyze differences among radiation qualities and doses. A significant dose effect was observed on recognition memory and activity levels measured 9 months postirradiation, regardless of radiation source. In contrast, we observed that each ion species had a distinct effect on anxiety, motor coordination and spatial memory at extended time points. Although 28Si and 56Fe are both regarded as high-LET particles, they were shown to have different detrimental effects on behavior. In summary, our findings suggest that GCR not only affects the CNS in the short term, but also has lasting damaging effects on the CNS that can cause sustained declines in behavior performance.
Collapse
Affiliation(s)
| | | | - Tomas Radivoyevitch
- f Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Stanton L Gerson
- d Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,e Seidman Cancer Center, University Hospitals, Cleveland, Ohio; and
| | | |
Collapse
|
23
|
Risk of defeats in the central nervous system during deep space missions. Neurosci Biobehav Rev 2016; 71:621-632. [DOI: 10.1016/j.neubiorev.2016.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/04/2023]
|
24
|
Kokhan VS, Matveeva MI, Bazyan AS, Kudrin VS, Mukhametov A, Shtemberg AS. Combined effects of antiorthostatic suspension and ionizing radiation on the behaviour and neurotransmitters changes in different brain structures of rats. Behav Brain Res 2016; 320:473-483. [PMID: 27776994 DOI: 10.1016/j.bbr.2016.10.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/16/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022]
Abstract
Space flight factors (SFF) significantly affect the operating activity of astronauts during deep space missions. In contrast to an orbital flight, leaving the Earth's magnetic field is fraught with the dangers of exposure to ionizing radiation and more specifically, the high-energy nuclei component of galactic cosmic rays. Microgravity, just another critical non-radiation factor, significantly affects the normal functioning of the CNS. Some morphological structures of the brain, such as the prefrontal cortex and the hippocampus, that are rich in monoaminergic and acetylcholinergic neurones, are the most sensitive to the effects of ionizing radiation and non-radiation spaceflight factors (SFF). In this work we have studied the combined effects of microgravity (in antiorthostatic suspension model, AS) and irradiation (γ-ray and protons in spread-out Bragg peak) on the behaviour, cognitive abilities, and metabolism of monoamines and acetylcholine in the key structures of the rat's brain. Irradiation (as independently as combined with AS) resulted in the decrease of thigmotaxis in rats. Learning problems, caused by the malfunctioning of the working memory but not the spatial memory, were observed in response to AS as well as to the SFF in combination. Analysis of monoamines metabolism showed that the serotoninergic system was the most affected by the SFF. Concentration of acetylcholine in the hippocampus significantly increased in the groups of irradiated rats, and in the groups which were exposed to the SFF in combination, compared to the rats exposed only to AS.
Collapse
Affiliation(s)
- V S Kokhan
- Laboratory of Extreme Physiology, Institute of Medico-Biological Problems RAS, Moscow, Russia.
| | - M I Matveeva
- Laboratory of Extreme Physiology, Institute of Medico-Biological Problems RAS, Moscow, Russia
| | - A S Bazyan
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - V S Kudrin
- Zakusov Institute of Pharmacology RAMS, Moscow, Russia
| | - A Mukhametov
- Institute of Physiologically Active Compounds RAS, Chernogolovka, Russia
| | - A S Shtemberg
- Laboratory of Extreme Physiology, Institute of Medico-Biological Problems RAS, Moscow, Russia
| |
Collapse
|
25
|
Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production. Aging (Albany NY) 2014; 5:607-22. [PMID: 23928451 PMCID: PMC3796214 DOI: 10.18632/aging.100587] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite recent epidemiological evidences linking radiation exposure and a number of human ailments including cancer, mechanistic understanding of how radiation inflicts long-term changes in cerebral cortex, which regulates important neuronal functions, remains obscure. The current study dissects molecular events relevant to pathology in cerebral cortex of 6 to 8 weeks old female C57BL/6J mice two and twelve months after exposure to a γ radiation dose (2 Gy) commonly employed in fractionated radiotherapy. For a comparative study, effects of 1.6 Gy heavy ion 56Fe radiation on cerebral cortex were also investigated, which has implications for space exploration. Radiation exposure was associated with increased chronic oxidative stress, oxidative DNA damage, lipid peroxidation, and apoptosis. These results when considered with decreased cortical thickness, activation of cell-cycle arrest pathway, and inhibition of DNA double strand break repair factors led us to conclude to our knowledge for the first time that radiation caused aging-like pathology in cerebral cortical cells and changes after heavy ion radiation were more pronounced than γ radiation.
Collapse
|
26
|
Yasuda T, Oda S, Yasuda H, Hibi Y, Anzai K, Mitani H. Neurocytotoxic effects of iron-ions on the developing brain measured in vivo using medaka (Oryzias latipes), a vertebrate model. Int J Radiat Biol 2011; 87:915-22. [PMID: 21770703 PMCID: PMC3169016 DOI: 10.3109/09553002.2011.584944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/16/2011] [Accepted: 04/21/2011] [Indexed: 12/02/2022]
Abstract
PURPOSE Exposure to heavy-ion radiation is considered a critical health risk on long-term space missions. The developing central nervous system (CNS) is a highly radiosensitive tissue; however, the biological effects of heavy-ion radiation, which are greater than those of low-linear energy transfer (LET) radiation, are not well studied, especially in vivo in intact organisms. Here, we examined the effects of iron-ions on the developing CNS using vertebrate organism, fish embryos of medaka (Oryzias latipes). MATERIALS AND METHODS Medaka embryos at developmental stage 28 were irradiated with iron-ions at various doses of 0-1.5 Gy. At 24 h after irradiation, radiation-induced apoptosis was examined using an acridine orange (AO) assay and histologically. To estimate the relative biological effectiveness (RBE), we quantified only characteristic AO-stained rosette-shaped apoptosis in the developing optic tectum (OT). At the time of hatching, morphological abnormalities in the irradiated brain were examined histologically. RESULTS The dose-response curve utilizing an apoptotic index for the iron-ion irradiated embryos was much steeper than that for X-ray irradiated embryos, with RBE values of 3.7-4.2. Histological examinations of irradiated medaka brain at 24 h after irradiation showed AO-positive rosette-shaped clusters as aggregates of condensed nuclei, exhibiting a circular hole, mainly in the marginal area of the OT and in the retina. However, all of the irradiated embryos hatched normally without apparent histological abnormalities in their brains. CONCLUSION Our present study indicates that the medaka embryo is a useful model for evaluating neurocytotoxic effects on the developing CNS induced by exposure to heavy iron-ions relevant to the aerospace radiation environment.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba.
| | | | | | | | | | | |
Collapse
|
27
|
Haerich P, Nelson GA, Pecaut MJ. HZE radiation and dopaminergic modification of startle and prepulse inhibition in mice. Physiol Behav 2005; 86:103-10. [PMID: 16084538 DOI: 10.1016/j.physbeh.2005.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 06/23/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Abstract
C57BL/6 mice were exposed to 5 Gy (28)Si or (56)Fe particle radiation in order to explore the immediate or short-latency effect of exposure to high energy (HZE) particle radiation on dopaminergic modification of acoustic startle and prepulse inhibition. The radiation is representative of the type which would be encountered as galactic cosmic rays during long-duration space flight. The acoustic startle response was elicited with 120 dB white noise and prepulse inhibition of the startle response was produced with 79 dB and 86 dB stimuli presented with a 125 ms onset asynchrony. Startle reactivity was inhibited by (56)Fe radiation but not by (28)Si particles. Apomorphine (3 mg/kg) produced a general inhibition of startle reactivity while haloperidol (1 mg/kg) facilitated it. Apomorphine disrupted prepulse inhibition, but only in animals which were not exposed to radiation. Both (56)Fe and (28)Si radiation exposure attenuated the disruption of prepulse inhibition induced by apomorphine. In contrast, the facilitation of prepulse inhibition induced by haloperidol was not modified by radiation. These data are consistent with a short-latency disruption of dopaminergic systems by HZE particle radiation. We speculate that this disruption may occur as a restriction in the capacity of the dopaminergic system.
Collapse
Affiliation(s)
- Paul Haerich
- NeuroCognition and Brain Studies Section, Department of Psychology, School of Science and Technology, Loma Linda University and Medical Center, CA 92350, USA.
| | | | | |
Collapse
|