1
|
Kim H, Park G, Kim MK, Oh YL, Kim TH, Shin JH, Hahn SY. Prognostic significance of clinicopathological and ultrasonographic features in anaplastic thyroid carcinoma beyond TERT promoter mutation. Sci Rep 2025; 15:11736. [PMID: 40188170 PMCID: PMC11972411 DOI: 10.1038/s41598-025-96774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
TERT promoter mutation is associated with poor prognosis in differentiated thyroid carcinoma, with US features varying by mutation status. However, this correlation in anaplastic thyroid carcinoma (ATC) is understudied. We investigated the association between clinicopathological characteristics and US features of ATC with TERT mutation status and prognosis. From November 1994 to May 2022, 58 ATC nodules from 58 patients were analyzed. Two radiologists retrospectively reviewed US features based on the revised K-TIRADS and ACR-TIRADS. Of all 58 ATC nodules, 32 nodules were tested for TERT promoter mutation and detected in 11. TERT promoter-mutated ATC was larger than TERT wild-type ATC (p = 0.032); however, no other differences were observed. ATC with survival period of less than 12 months were more likely to have lymph node metastasis (p = 0.012) or distant metastasis at diagnosis (p < 0.001), larger size on US (p = 0.005), and suspicion for gross extrathyroidal extension on US (p = 0.04) compared to ATC with survival period of 12 months or more. Advanced disease at diagnosis was a critical factor associated with 1-year survival in patients with ATC, whereas the TERT promoter mutation status was not.
Collapse
Affiliation(s)
- Haejung Kim
- Department of Radiology and Center for Imaging Science, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Goeun Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Myoung Kyoung Kim
- Department of Radiology and Center for Imaging Science, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Young Lyun Oh
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tae Hyuk Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung Hee Shin
- Department of Radiology and Center for Imaging Science, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Soo Yeon Hahn
- Department of Radiology and Center for Imaging Science, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
2
|
Lyu YS, Hong R, Oh J. Anaplastic Transformation in Papillary Thyroid Carcinoma: A Case Report. EAR, NOSE & THROAT JOURNAL 2025; 104:228-231. [PMID: 38243815 DOI: 10.1177/01455613231225872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
Anaplastic thyroid cancer (ATC), a rare thyroid malignancy, accounts for only 5% of all thyroid cancers. However, it is the most aggressive form and has a very poor prognosis. Increasing evidence suggests that ATC arises from papillary thyroid carcinoma (PTC). However, the exact mechanism underlying this transformation remains unclear. In almost all cases, ATC originates within, but rarely outside, the thyroid gland. Transformation of metastatic PTC into ATC within the cervical lymph nodes is extremely rare. In this report, we present a rare case in a 63-year-old male patient who was initially diagnosed with PTC at his first hospital visit, which underwent anaplastic transformation in lymph node metastasis, and was subsequently diagnosed during the follow-up visit.
Collapse
Affiliation(s)
- Young Sang Lyu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Ran Hong
- Department of Pathology, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Jeonghyun Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Kiyota N, Koyama T, Sugitani I. Anticancer drug therapy for anaplastic thyroid cancer. Eur Thyroid J 2025; 14:e240287. [PMID: 40163699 PMCID: PMC12020464 DOI: 10.1530/etj-24-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025] Open
Abstract
Anaplastic thyroid cancer is one of the rarest subtypes of thyroid cancer, accounting for only 1-2% of all thyroid cancer cases. It is also one of the most aggressive: prognosis remains dismal and the disease-specific mortality rate is close to 100%. This rarity has markedly limited the availability of prospective trial results, and no standard chemotherapeutic option for unresectable or metastatic anaplastic thyroid cancer has yet been established. Nevertheless, combination therapy with a BRAF inhibitor and MEK inhibitor has shown encouraging efficacy in patients with BRAF V600E-mutated anaplastic thyroid cancer. Other novel treatments such as immune checkpoint inhibitors have also shown promising results. Owing to these therapeutic advances, the prognosis of anaplastic thyroid cancer appears to be gradually improving. However, further development of novel treatments for this rare malignancy requires the development of substantial infrastructure for international collaborative study.
Collapse
Affiliation(s)
- Naomi Kiyota
- Department of Medical Oncology/Hematology, Kobe University Hospital, Kobe, Japan
- Kobe University Hospital Cancer Center, Kobe, Japan
| | - Taiji Koyama
- Department of Medical Oncology/Hematology, Kobe University Hospital, Kobe, Japan
| | - Iwao Sugitani
- Department of Endocrine Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
4
|
Aykan D, Al Asadi H, Turaga A, Lodewijk L, Finnerty BM, Fahey TJ, Rinkes IHMB, Vriens MR, Zarnegar R. Rare but Complex: Outcomes and Challenges in Managing Composite Follicular-Anaplastic Thyroid Cancer. Ann Surg Oncol 2025:10.1245/s10434-025-17208-w. [PMID: 40131622 DOI: 10.1245/s10434-025-17208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND A subset of follicular thyroid cancers (FTC) can dedifferentiate into anaplastic thyroid cancer (ATC), forming composite FTC/ATC tumors. The effect of this dedifferentiation on survival outcomes remains unclear. This study aimed to characterize the clinicopathologic features of composite FTC/ATC tumors and assess their disease-specific survival (DSS). PATIENTS AND METHODS The Surveillance, Epidemiology, and End Results (SEER) database (2000-2020) was used to identify patients with FTC, composite FTC/ATC, and ATC. Propensity score matching (PSM) was performed on the basis of age, sex, race, and histologic subtype. Clinicopathologic characteristics, DSS, and treatment outcomes were compared. RESULTS A total of 60 patients with composite FTC/ATC were matched to 180 patients with FTC and 180 patients with ATC. Compared with FTC, composite tumors were associated with larger size (p < 0.001), extra-thyroidal extension (ETE) (p < 0.001), lymph node (p < 0.001) and distant metastases (p = 0.002), more external beam radiation (p < 0.001), and chemotherapy (p < 0.001), but less radioactive iodine (RAI) (p < 0.001). Compared with ATC, composite tumors showed less ETE (p = 0.01), fewer lymph node metastases (p = 0.01), less chemotherapy (p = 0.002), and more RAI (p = 0.002). The median survival of patients with co-FTC/ATC was 7 months (p < 0.001). Advanced age (hazard ratio, HR 1.05; 95% confidence intervals, CI 1.02-1.08) and incomplete thyroidectomy (HR 2.58, 95% CI 1.20-5.56) predicted worse DSS. CONCLUSIONS Composite FTC/ATC tumors have survival outcomes that fall between those of FTC and ATC. Total thyroidectomy is a key component of treatment, as incomplete thyroidectomy is linked to poorer survival. Further research is needed to explore how the proportion of ATC within composite tumors influences survival outcomes.
Collapse
Affiliation(s)
- Dilay Aykan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Department of Surgical Oncology and Endocrine Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hala Al Asadi
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Anjani Turaga
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Lutske Lodewijk
- Department of Surgical Oncology and Endocrine Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Thomas J Fahey
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Inne H M Borel Rinkes
- Department of Surgical Oncology and Endocrine Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Menno R Vriens
- Department of Surgical Oncology and Endocrine Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rasa Zarnegar
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Elia G, Ferrari SM, Tkachenko I, Walunj D, Balestri E, Botrini C, Ragusa F, Antonelli A, Gellerman G, Fallahi P. Antineoplastic effect of doxorubizen in vitro in continuous and primary human anaplastic thyroid cancer cells. Endocrine 2025; 87:1050-1059. [PMID: 39570323 DOI: 10.1007/s12020-024-04088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE New drugs are needed for the therapy of anaplastic thyroid cancer (ATC). This study aims to investigate doxorubizen (a dual-action structural hybrid (chimera) of doxorubicin (Dox) and DNA methylating drug temozolomide), in comparison with Dox, and alone or in combination with lenvatinib in ATC 8305C cells, and in primary human ATC cell cultures (pATC). METHODS We have investigated doxorubizen, Dox, and lenvatinib on 5 different pATC and in continuous 8305C cell line in vitro, evaluating their effect on cells proliferation by WST-1, apoptosis (Hoechst ad Annexin V assays) and migration (Chemicon QCM™ 96-well Migration Assay). RESULTS The results have demonstrated: (1) a significant antiproliferative and proapoptotic effect of doxorubizen in 8305C and in pATC; (2) a significant antiproliferative and proapoptotic effect of Dox in pATC, and in 8305C; (3) the antineoplastic effect of lenvatinib in 8305C and in pATC; (4) a stronger antiproliferative and proapoptotic effect of doxorubizen than that of Dox, or lenvatinib; (5) that doxorubizen induced an inhibition of migration in pATC stronger than that of Dox, or lenvatinib; (6) that doxorubizen is able to synergize in vitro with lenvatinib increasing the antiproliferative effect, while doxorubizen alone is the primary factor that promotes the proapoptotic impact. CONCLUSION We have first shown that doxorubizen has a potent antineoplastic effect in vitro in 8305C and in 5 different pATC, and that can synergize with lenvatinib. These results open the way to a future evaluation of the antineoplastic effect of doxorubizen in ATC patients.
Collapse
Affiliation(s)
- Giusy Elia
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Iryna Tkachenko
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Dipak Walunj
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Eugenia Balestri
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Chiara Botrini
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Surgery, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Gary Gellerman
- Department of Chemical Sciences, The Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
6
|
Hicks HM, Nassar VL, Lund J, Rose MM, Schweppe RE. The effects of Aurora Kinase inhibition on thyroid cancer growth and sensitivity to MAPK-directed therapies. Cancer Biol Ther 2024; 25:2332000. [PMID: 38521968 PMCID: PMC10962586 DOI: 10.1080/15384047.2024.2332000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Thyroid cancer is one of the deadliest endocrine cancers, and its incidence has been increasing. While mutations in BRAF are common in thyroid cancer, advanced PTC patients currently lack therapeutic options targeting the MAPK pathway, and despite the approved combination of BRAF and MEK1/2 inhibition for BRAF-mutant ATC, resistance often occurs. Here, we assess growth and signaling responses to combined BRAF and MEK1/2 inhibition in a panel of BRAF-mutant thyroid cancer cell lines. We first showed that combined BRAF and MEK1/2 inhibition synergistically inhibits cell growth in four out of six of the -BRAF-mutant thyroid cancer cell lines tested. Western blotting showed that the MAPK pathway was robustly inhibited in all cell lines. Therefore, to identify potential mechanisms of resistance, we performed RNA-sequencing in cells sensitive or resistant to MEK1/2 inhibition. In response to MEK1/2 inhibition, we identified a downregulation of Aurora Kinase B (AURKB) in sensitive but not resistant cells. We further demonstrated that combined MEK1/2 and AURKB inhibition slowed cell growth, which was phenocopied by inhibiting AURKB and ERK1/2. Finally, we show that combined AURKB and ERK1/2 inhibition induces apoptosis in BRAF-mutant thyroid cancer cell lines, together suggesting a potential combination therapy for BRAF-mutant thyroid cancer patients.
Collapse
Affiliation(s)
- Hannah M. Hicks
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Veronica L. Nassar
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jane Lund
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Madison M. Rose
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rebecca E. Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
7
|
Miraglia A, Giannotti L, De Nuccio F, Treglia AS, Maffia M, Lofrumento DD, Di Jeso B, Nicolardi G. Anaplastic thyroid carcinoma: vimentin segregates at the invasive front of tumors in a murine xenograft model. Histochem Cell Biol 2024; 163:6. [PMID: 39557701 DOI: 10.1007/s00418-024-02329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/20/2024]
Abstract
Anaplastic thyroid carcinoma (ATC) ranks among the most lethal human cancers. Increased migratory and invasive capabilities are critical in malignancy and are often secondary to epithelial-mesenchymal transition (EMT). However, it is not clear whether the invasive behavior of ATC is associated with the presence of EMT. In this study, we used a murine xenograft model (4-week-old male BALB/c NU/NU mice) with the human anaplastic cell line, FRO. We adopted an automated, eye-independent method to reconstruct the total/subtotal area of the tumors. To probe EMT, we evaluated the immunostaining of mesenchymal/epithelial markers at the front and center of the tumors. The transplanted cells invariably gave rise to tumor masses that histologically closely replicated patient tumors. The staining with hematoxylin-eosin and immunostaining with cytokeratin 18, an epithelial marker, were similar. However, the immunostaining of cytokeratin 18 versus vimentin, a mesenchymal marker, were strikingly dissimilar, since vimentin showed a staining concentrated at the front, rapidly declining towards the center of the tumor. The overlay, after color conversion, of cytokeratin and vimentin staining showed maximal coincidence at the front, which was rapidly lost towards the center. The results show EMT signs at the front of the ATC, which are probably at the basis of its tremendous invasiveness. Moreover, methodologically, an automated "eye-independent" acquisition of the total/subtotal area of the tumors drove the selection of second, high-magnification, automated field acquisition. Future studies may extend these results along the perspective of a personalized diagnostic procedure.
Collapse
Affiliation(s)
- Alessandro Miraglia
- Institute of Science of Food Production, C.N.R. Unit of Lecce, ISPA-CNR, 73100, Lecce, Italy
| | - Laura Giannotti
- Department of Experimental Medicine, University of Salento, 73100, Lecce, Italy
| | - Francesco De Nuccio
- Department of Experimental Medicine, University of Salento, 73100, Lecce, Italy
| | | | - Michele Maffia
- Department of Experimental Medicine, University of Salento, 73100, Lecce, Italy
| | | | - Bruno Di Jeso
- Department of Experimental Medicine, University of Salento, 73100, Lecce, Italy.
| | - Giuseppe Nicolardi
- Department of Experimental Medicine, University of Salento, 73100, Lecce, Italy
| |
Collapse
|
8
|
Chen X, Zhao P, He Y, Huang K, Zhao P, Liao F, Liu Y. Development and validation of survival nomograms for patients with anaplastic thyroid carcinoma: a SEER program-based study. Discov Oncol 2024; 15:650. [PMID: 39535681 PMCID: PMC11561200 DOI: 10.1007/s12672-024-01537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND We aimed to study the prognostic risk factors affecting patients with anaplastic thyroid carcinoma (ATC), develop a clinical prognostic model, and assess patient survival outcomes. METHODS Patients with anaplastic thyroid carcinoma from 2000 to 2019 were selected from the Surveillance, Epidemiology, and End Results (SEER) Program to extract the clinical variables used for analysis. The dataset was divided into training (70%) and validation (30%) sets based on a 7:3 ratio. Univariate and LASSO regression analyses were performed on clinical variables from the training set to identify independent prognostic factors. Independent prognostic factors were determined by Univariate and lasso regression according to the clinical variables of the training set, and a nomogram model was established to construct a prognostic model based on the contribution degree of the predictors. The prognostic model was evaluated and internally verified by C-index, ROC curve and calibration curve. RESULTS A total of 713 ATC patients were included in the SEER database. LASSO regression results indicated that age, marital status, race, tumor size, whether the primary lesion was limited to the thyroid gland, surgery, radiotherapy and chemotherapy, were associated with overall survival(OS) prognosis of ATC, and were used to construct nomograms. In the training cohort, the OS nomogram's C-index was 0.708 (95% CI 0.672-0.745); in the internal validation cohort, the C-index was 0.677 (95% CI 0.620-0.735). ROC curves demonstrated that the OS nomogram exhibits excellent predictive accuracy and discriminative ability. Calibration curves indicated strong consistency between the OS nomogram's predicted survival rates and actual survival rates. CONCLUSIONS We established a survival prediction model for ATC, which can assist clinicians in assessing patient prognosis and making personalized treatment decisions.
Collapse
Affiliation(s)
- Xinming Chen
- Department of General Surgery, Affiliated Mianyang Hospital of Chengdu University of Traditional Chinese Medicine, Mianyang, China
| | - Pingwu Zhao
- Department of General Surgery, Affiliated Mianyang Hospital of Chengdu University of Traditional Chinese Medicine, Mianyang, China
| | - Yunsheng He
- Department of General Surgery, Affiliated Mianyang Hospital of Chengdu University of Traditional Chinese Medicine, Mianyang, China
| | - Kun Huang
- Department of General Surgery, Affiliated Mianyang Hospital of Chengdu University of Traditional Chinese Medicine, Mianyang, China.
| | - Pan Zhao
- Department of General Surgery, Affiliated Mianyang Hospital of Chengdu University of Traditional Chinese Medicine, Mianyang, China
| | - Fengwan Liao
- Department of General Surgery, Affiliated Mianyang Hospital of Chengdu University of Traditional Chinese Medicine, Mianyang, China
| | - Yang Liu
- Department of General Surgery, Affiliated Mianyang Hospital of Chengdu University of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
9
|
Dey T, Yadav BS. Anaplastic thyroid cancer: Unveiling advances in diagnosis and management. World J Clin Oncol 2024; 15:786-789. [PMID: 39071466 PMCID: PMC11271728 DOI: 10.5306/wjco.v15.i7.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
The review article by Pavlidis et al published in World J Clin Oncol provides a meticulous analysis of the intricacies surrounding anaplastic carcinoma of the thyroid. Thyroid carcinoma encompasses a spectrum of diseases, each characterized by distinct behaviors and outcomes. Diagnostic approaches encompass a diverse array of tools. Surgery remains the pivotal treatment for anaplastic thyroid carcinoma. Radiotherapy and chemotherapy offer the best overall survival in aggressive disease. Combinations of immunotherapy with targeted therapies, such as dabrafenib-trametinib, demonstrate potential for enhanced effectiveness and improved survival outcomes. Multifaceted approach fuelled by precision medicine and interdisciplinary collaboration is imperative in charting a course toward improved outcomes in this formidable malignancy.
Collapse
Affiliation(s)
- Treshita Dey
- Department of Radiotherapy & Oncology, Post- Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Budhi Singh Yadav
- Department of Radiotherapy & Oncology, Post- Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
10
|
Wang L, Rao Y, Lai P, Lv Y. Development of a novel dynamic nomogram for predicting overall survival in anaplastic thyroid cancer patients with distant metastasis: a population-based study based on the SEER database. Front Endocrinol (Lausanne) 2024; 15:1375176. [PMID: 39027479 PMCID: PMC11254621 DOI: 10.3389/fendo.2024.1375176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Background Anaplastic thyroid cancer (ATC) is highly invasive, prone to distant metastasis (DM), and has a very poor prognosis. This study aims to construct an accurate survival prediction model for ATC patients with DM, providing reference for comprehensive assessment and treatment planning. Methods We extracted data of ATC patients with DM diagnosed between 2004 and 2019 from the SEER database, randomly dividing them into a training set and a validation set in a ratio of 7:3. Univariate and multivariate Cox regression analyses were sequentially performed on the training set to identify independent prognostic factors for overall survival (OS) and construct nomograms for 3-month, 6-month, and 8-month OS for ATC patients with DM based on all identified independent prognostic factors. Receiver operating characteristic (ROC) curve analysis, decision curve analysis (DCA) curve analysis, and calibration curves were separately plotted on the training and validation sets to demonstrate the model's performance. Furthermore, patients were stratified into high- and low-risk groups based on their risk scores, and the Kaplan-Meier (KM) survival curves were used to illustrate the survival differences between the two groups. Results A total of 322 patients were included in this study. Univariate and multivariate Cox regression analyses identified five independent prognostic factors for OS in ATC patients with DM: surgery, tumor size, age, chemotherapy, and radiotherapy. Nomograms for 3-month, 6-month, and 8-month OS were established based on these factors. The training set AUC values (3-month AUC: 0.767, 6-month AUC: 0.789, 8-month AUC: 0.795) and validation set AUC values (3-month AUC: 0.753, 6-month AUC: 0.798, 8-month AUC: 0.806) as well as the calibration curves demonstrated excellent applicability and accuracy of the model. Additionally, the DCA curves indicated substantial clinical net benefit of the model. The KM curves also confirmed the model's excellent stratification ability for patient OS. Conclusion The nomogram developed in this study accurately predicts OS for ATC patients with DM. It can assist clinicians in formulating appropriate treatment strategies for these patients.
Collapse
Affiliation(s)
| | | | | | - Yunxia Lv
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Liu Q, Jiang X, Tu W, Liu L, Huang Y, Xia Y, Xia X, Shi Y. Comparative efficiency of differential diagnostic methods for the identification of BRAF V600E gene mutation in papillary thyroid cancer (Review). Exp Ther Med 2024; 27:149. [PMID: 38476918 PMCID: PMC10928970 DOI: 10.3892/etm.2024.12437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) encodes a serine-threonine kinase. The V600E point mutation in the BRAF gene is the most common mutation, predominantly occurring in melanoma, and colorectal, thyroid and non-small cell lung cancer. Particularly in the context of thyroid cancer research, it is routinely employed as a molecular biomarker to assist in diagnosing and predicting the prognosis of papillary thyroid cancer (PTC), and to formulate targeted therapeutic strategies. Currently, several methods are utilized in clinical settings to detect BRAF V600E mutations in patients with PTC. However, the sensitivity and specificity of various detection techniques vary significantly, resulting in diverse detection outcomes. The present review highlights the advantages and disadvantages of the methods currently employed in medical practice, with the aim of guiding clinicians and researchers in selecting the most suitable detection approach for its high sensitivity, reproducibility and potential to develop targeted therapeutic regimens for patients with BRAF gene mutation-associated PTC.
Collapse
Affiliation(s)
- Qian Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xue Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Lina Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Ying Huang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yuxiao Xia
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xuliang Xia
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yuhong Shi
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
12
|
Califano I, Smulever A, Jerkovich F, Pitoia F. Advances in the management of anaplastic thyroid carcinoma: transforming a life-threatening condition into a potentially treatable disease. Rev Endocr Metab Disord 2024; 25:123-147. [PMID: 37648897 DOI: 10.1007/s11154-023-09833-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Anaplastic thyroid cancer (ATC) is an infrequent thyroid tumor that usually occurs in elderly patients. There is often a history of previous differentiated thyroid cancer suggesting a biological progression. It is clinically characterized by a locally invasive cervical mass of rapid onset. Metastases are found at diagnosis in 50% of patients. Due to its adverse prognosis, a prompt diagnosis is crucial. In patients with unresectable or metastatic disease, multimodal therapy (chemotherapy and external beam radiotherapy) has yielded poor outcomes with 12-month overall survival of less than 20%. Recently, significant progress has been made in understanding the oncogenic pathways of ATC, leading to the identification of BRAF V600E mutations as the driver oncogene in nearly 40% of cases. The combination of the BRAF inhibitor dabrafenib (D) and MEK inhibitor trametinib (T) showed outstanding response rates in BRAF-mutated ATC and is now considered the standard of care in this setting. Recently, it was shown that neoadjuvant use of DT followed by surgery achieved 24-month overall survival rates of 80%. Although these approaches have changed the management of ATC, effective therapies are still needed for patients with BRAF wild-type ATC, and high-quality evidence is lacking for most aspects of this neoplasia. Additionally, in real-world settings, timely access to multidisciplinary care, molecular testing, and targeted therapies continues to be a challenge. Health policies are warranted to ensure specialized treatment for ATC.The expanding knowledge of ATC´s molecular biology, in addition to the ongoing clinical trials provides hope for the development of further therapeutic options.
Collapse
Affiliation(s)
- Inés Califano
- Endocrinology Division, Instituto de Oncología AH Roffo, University of Buenos Aires, Buenos Aires, Argentina.
| | - Anabella Smulever
- Endocrinology Division, Instituto de Investigaciones Médicas A. Lanari, University of Buenos Aires, Buenos Aires, Argentina
| | - Fernando Jerkovich
- Endocrinology Division, Hospital de Clínicas, University of Buenos Aires, Buenos Aires, Argentina
| | - Fabian Pitoia
- Endocrinology Division, Hospital de Clínicas, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Uppalapati SS, Guha L, Kumar H, Mandoli A. Nanotechnological Advancements for the Theranostic Intervention in Anaplastic Thyroid Cancer: Current Perspectives and Future Direction. Curr Cancer Drug Targets 2024; 24:245-270. [PMID: 37424349 DOI: 10.2174/1568009623666230707155145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Anaplastic thyroid cancer is the rarest, most aggressive, and undifferentiated class of thyroid cancer, accounting for nearly forty percent of all thyroid cancer-related deaths. It is caused by alterations in many cellular pathways like MAPK, PI3K/AKT/mTOR, ALK, Wnt activation, and TP53 inactivation. Although many treatment strategies, such as radiation therapy and chemotherapy, have been proposed to treat anaplastic thyroid carcinoma, they are usually accompanied by concerns such as resistance, which may lead to the lethality of the patient. The emerging nanotechnology-based approaches cater the purposes such as targeted drug delivery and modulation in drug release patterns based on internal or external stimuli, leading to an increase in drug concentration at the site of the action that gives the required therapeutic action as well as modulation in diagnostic intervention with the help of dye property materials. Nanotechnological platforms like liposomes, micelles, dendrimers, exosomes, and various nanoparticles are available and are of high research interest for therapeutic intervention in anaplastic thyroid cancer. The pro gression of the disease can also be traced by using magnetic probes or radio-labeled probes and quantum dots that serve as a diagnostic intervention in anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Sai Swetha Uppalapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| |
Collapse
|
14
|
Fernandes RA, Choudhary P, Khatun GN. Chiral Pool Meets Chiral Catalysis: Eight-Step Convergent Total Synthesis of Anticancer Natural Lipid Mycalol. J Org Chem 2023; 88:17389-17397. [PMID: 38008913 DOI: 10.1021/acs.joc.3c02201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
An exemplary blend of chiral pool with chiral catalysis is exhibited in an eight-step (longest) convergent asymmetric total synthesis of mycalol, which is a promising anticancer natural lipid from a marine source. The polyhydroxy lipid is constructed by using four blocks, and two of which are derived from the chiral pool (d-mannitol and d-gluconolactone) and the other two by chiral catalysis (Sharpless epoxidation and Keck allylation). Alkylation and metathesis were used to knit the blocks in an excellent display of a modular convergent eight-step synthesis. The modular excess will enable rapid analogue generation as revealed by the convenient synthesis of 4-epi-mycalol similarly in an eight-step sequence.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Priyanka Choudhary
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Gulenur N Khatun
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
15
|
Kim Y, Yun HJ, Choi KH, Kim CW, Lee JH, Weicker R, Kim SM, Park KC. Discovery of New Anti-Cancer Agents against Patient-Derived Sorafenib-Resistant Papillary Thyroid Cancer. Int J Mol Sci 2023; 24:16413. [PMID: 38003602 PMCID: PMC10671409 DOI: 10.3390/ijms242216413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Thyroid cancer is the most well-known type of endocrine cancer that is easily treatable and can be completely cured in most cases. Nonetheless, anti-cancer drug-resistant metastasis or recurrence may occur and lead to the failure of cancer therapy, which eventually leads to the death of a patient with cancer. This study aimed to detect novel thyroid cancer target candidates based on validating and identifying one of many anti-cancer drug-resistant targets in patient-derived sorafenib-resistant papillary thyroid cancer (PTC). We focused on targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA) in patient-derived sorafenib-resistant PTC cells compared with patient-derived sorafenib-sensitive PTC cells. We discovered novel SERCA inhibitors (candidates 33 and 36) by virtual screening. These candidates are novel SERCA inhibitors that lead to remarkable tumor shrinkage in a xenograft tumor model of sorafenib-resistant patient-derived PTC cells. These results are clinically valuable for the progression of novel combinatorial strategies that facultatively and efficiently target extremely malignant cancer cells, such as anti-cancer drug-resistant PTC cells.
Collapse
Affiliation(s)
- Yuna Kim
- Department of Internal Medicine, Institute of Gastroenterology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 06273, Republic of Korea;
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Kyung Hwa Choi
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea;
| | - Chan Wung Kim
- CKP Therapeutics, Inc., 110 Canal Street, Lowell, MA 01852, USA; (C.W.K.); (J.H.L.)
| | - Jae Ha Lee
- CKP Therapeutics, Inc., 110 Canal Street, Lowell, MA 01852, USA; (C.W.K.); (J.H.L.)
| | - Raymond Weicker
- CKP Therapeutics, Inc., 110 Canal Street, Lowell, MA 01852, USA; (C.W.K.); (J.H.L.)
| | - Seok-Mo Kim
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Pita JM, Raspé E, Coulonval K, Decaussin-Petrucci M, Tarabichi M, Dom G, Libert F, Craciun L, Andry G, Wicquart L, Leteurtre E, Trésallet C, Marlow LA, Copland JA, Durante C, Maenhaut C, Cavaco BM, Dumont JE, Costante G, Roger PP. CDK4 phosphorylation status and rational use for combining CDK4/6 and BRAF/MEK inhibition in advanced thyroid carcinomas. Front Endocrinol (Lausanne) 2023; 14:1247542. [PMID: 37964967 PMCID: PMC10641312 DOI: 10.3389/fendo.2023.1247542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Background CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.
Collapse
Affiliation(s)
- Jaime M. Pita
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Katia Coulonval
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Geneviève Dom
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- BRIGHTCore, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Tumor Bank of the Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Andry
- Department of Head & Neck and Thoracic Surgery, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Wicquart
- Tumorothèque du Groupement de Coopération Sanitaire-Centre Régional de Référence en Cancérologie (C2RC) de Lille, Lille, France
| | - Emmanuelle Leteurtre
- Department of Pathology, Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Inserm, Centre Hospitalo-Universitaire (CHU) Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christophe Trésallet
- Department of General and Endocrine Surgery - Pitié-Salpêtrière Hospital, Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
- Department of Digestive, Bariatric and Endocrine Surgery - Avicenne University Hospital, Paris Nord - Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Laura A. Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Branca M. Cavaco
- Molecular Endocrinology Group, Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Costante
- Departments of Endocrinology and Medical Oncology, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
17
|
Xu Z, Feng Y, Yan Y, Jin H, Chen Y, Han Y, Huang S, Feng F, Fu H, Yin Y, Huang Y, Wang H, Cheng W. HHEX suppresses advanced thyroid cancer by interacting with TLE3. Mol Cell Endocrinol 2023; 574:111988. [PMID: 37302518 DOI: 10.1016/j.mce.2023.111988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Haematopoietically Expressed Homeobox (HHEX) gene is highly expressed in the thyroid gland and plays critical roles in the development and differentiation of the thyroid gland. While it has been indicated to be downregulated in thyroid cancer, its function and the underlying mechanism remain unclear. Herein, we observed low expression and aberrant cytoplasmic localization of HHEX in thyroid cancer cell lines. Knockdown of HHEX significantly enhanced cell proliferation, migration and invasion, while overexpression of HHEX showed the opposite effects in vitro and in vivo. These data provide evidence that HHEX is a tumor suppressor in thyroid cancer. Additionally, our results showed that HHEX overexpression upregulated the expression of sodium iodine symporter (NIS) mRNA and also enhanced NIS promoter activity, suggesting a favorable effect of HHEX in promoting thyroid cancer differentiation. Mechanistically, HHEX exerted a regulatory effect on the expression of transducin-like enhancer of split 3 (TLE3) protein, which inhibited the Wnt/β-catenin signaling pathway. Nuclear localized HHEX bound to and upregulated TLE3 expression by preventing TLE3 protein from being distributed to the cytoplasm and being ubiquitinated. In conclusion, our study suggested that restoring HHEX expression has the potential to be a new strategy in the treatment of advanced thyroid cancer.
Collapse
Affiliation(s)
- Zhongyun Xu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yiyuan Feng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yeqing Yan
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Hongfu Jin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yali Han
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Shuo Huang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Fang Feng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Hongliang Fu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yueye Huang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| |
Collapse
|
18
|
Ignjatović Jocić V, Janković Miljuš J, Išić Denčić T, Živaljević V, Tatić S, Đorić I, Šelemetjev S. Expression of pY397-FAK and Its miR Regulators Drive Dedifferentiation in the Thyroid Neoplasia Spectrum. Cells 2023; 12:1721. [PMID: 37443754 PMCID: PMC10340340 DOI: 10.3390/cells12131721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Thyroid carcinomas are growing malignancies worldwide. They encompass several diagnostic categories with varying degrees of dedifferentiation. Focal adhesion kinase is involved in cellular communication and locomotion. It is regulated on a posttranscriptional level by miR-7, miR-135a, and miR-138 and on a posttranslational level by autophosphorylation at Y397 (pY397-FAK). We related regulators of FAK with histologic dedifferentiation, clinicopathological factors, and differential diagnosis in the thyroid neoplasia spectrum. We classified 82 cases into 5 groups with increasing aggressiveness: healthy tissue, follicular and classical variants of papillary thyroid carcinoma (PTC), dedifferentiated PTC, and anaplastic carcinoma. MiRs were analyzed by RT-qPCR. Protein expression of pY397-FAK was analyzed by immunohistochemistry (separately in the membrane, cytoplasm, and nuclear compartment) and Western blot. All three miRs were upregulated in healthy tissue compared to malignant, while pY397-FAK was downregulated. MiRs and pY397-FAK were not mutually correlated. MiR-135a-5p was decreasing while membranous and cytoplasmic pY397-FAK increased with dedifferentiation. Neither miR correlated with clinicopathological factors. MiR-135a-5p, miR-138-5p, and membranous and cytoplasmic pY397-FAK discriminated the follicular from the classical variant of PTC. Disturbances of FAK regulation on different levels contribute to neoplastic dedifferentiation. pY397-FAK exerts its oncogenic role in the membrane and cytoplasm. Diagnostically, miRs-135a-5p, miR-138-5p, and membranous and cytoplasmic pY397-FAK differentiated between classical and follicular PTC.
Collapse
Affiliation(s)
- Valentina Ignjatović Jocić
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| | - Jelena Janković Miljuš
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| | - Tijana Išić Denčić
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| | - Vladan Živaljević
- Center for Endocrine Surgery, University Clinical Center of Serbia, Doktora Subotića 13, 11000 Belgrade, Serbia
| | - Svetislav Tatić
- Institute for Pathology, Faculty of Medicine, University of Belgrade, Doktora Subotića Starijeg 1, 11000 Belgrade, Serbia
| | - Ilona Đorić
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| | - Sonja Šelemetjev
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| |
Collapse
|
19
|
Chang HS, Kim Y, Lee SY, Yun HJ, Chang HJ, Park KC. Anti-Cancer SERCA Inhibitors Targeting Sorafenib-Resistant Human Papillary Thyroid Carcinoma. Int J Mol Sci 2023; 24:ijms24087069. [PMID: 37108231 PMCID: PMC10138651 DOI: 10.3390/ijms24087069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Thyroid cancer is generally curable and, in many cases, can be completely treated, although it can sometimes recur after cancer therapy. Papillary thyroid cancer (PTC) is known as one of the most general subtypes of thyroid cancer, which take up nearly 80% of whole thyroid cancer. However, PTC may develop anti-cancer drug resistance via metastasis or recurrence, making it practically incurable. In this study, we propose a clinical approach that identifies novel candidates based on target identification and validation of numerous survival-involved genes in human sorafenib-sensitive and -resistant PTC. Consequently, we recognized a sarco/endoplasmic reticulum calcium ATPase (SERCA) in human sorafenib-resistant PTC cells. Based on the present results, we detected novel SERCA inhibitor candidates 24 and 31 via virtual screening. These SERCA inhibitors showed remarkable tumor shrinkage in the sorafenib-resistant human PTC xenograft tumor model. These consequences would be clinically worthwhile for the development of a new combinatorial strategy that effectively targets incredibly refractory cancer cells, such as cancer stem cells and anti-cancer drug-resistant cells.
Collapse
Affiliation(s)
- Hang-Seok Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yonjung Kim
- EONE-DIAGNOMICS Genome Center, New Drug R&D Center, 291 Harmony-ro, Yeonsu-gu, Incheon 22014, Republic of Korea
| | - So Young Lee
- EONE-DIAGNOMICS Genome Center, New Drug R&D Center, 291 Harmony-ro, Yeonsu-gu, Incheon 22014, Republic of Korea
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Ho-Jin Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
20
|
Bueno F, Smulever A, Califano I, Guerra J, Del Grecco A, Carrera JM, Giglio R, Rizzo M, Lingua A, Voogd A, Negueruela MDC, Abelleira E, Pitoia F. Dabrafenib plus trametinib treatment in patients with anaplastic thyroid carcinoma: an Argentinian experience. Endocrine 2023; 80:134-141. [PMID: 36617605 PMCID: PMC9838471 DOI: 10.1007/s12020-022-03295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE To present our real-life experience with dabrafenib and trametinib (D-T) treatment in patients with BRAF V600E-mutated ATC in Argentina. PATIENTS Y METHODS We included five patients from four different hospitals. The median age was 70 years, and 60% were male. The performance status at diagnosis was grade 0 in 60% and grade 2 in 40% of patients. Four patients could undergo total thyroidectomy; in one of them, surgical treatment was amenable due to the indication of D-T as neoadjuvant therapy. From the total cohort, the best response to treatment was complete response in 40%, partial response in 20%, and stable disease in 20%. The median duration of response was 20 weeks, ranging from 16 to 92 weeks. All patients experienced at least one adverse event (AE). Grade ≥3 AEs were observed in two (40%) patients. They were upper gastrointestinal bleeding and subclavian vein thrombosis. The median follow-up was 20 weeks (range: 16 to 92). CONCLUSION This report contributes to illustrate the feasibility and effectiveness of D-T treatment in five patients with loco-regionally advanced and metastatic BRAF V600E-mutated ATC in a real-life setting. A multidisciplinary approach and rapid molecular-tailored testing are essential to begin this therapeutic option.
Collapse
Affiliation(s)
- Fernanda Bueno
- Hospital de Clínicas "José de San Martín" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anabella Smulever
- Hospital de Clínicas "José de San Martín" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Inés Califano
- Instituto de Oncología Angel H. Roffo, Buenos Aires, Argentina
| | | | | | | | - Raúl Giglio
- Instituto de Oncología Angel H. Roffo, Buenos Aires, Argentina
| | - Manglio Rizzo
- Hospital Universitario Austral, Buenos Aires, Argentina
| | - Alejo Lingua
- Instituto Médico de Rio Cuarto, Córdoba, Argentina
| | - Ana Voogd
- Hospital Universitario Austral, Buenos Aires, Argentina
| | | | - Erika Abelleira
- Hospital de Clínicas "José de San Martín" Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fabian Pitoia
- Hospital de Clínicas "José de San Martín" Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Wächter S, Knauff F, Roth S, Keber C, Holzer K, Manoharan J, Maurer E, Bartsch DK, Di Fazio P. Synergic Induction of Autophagic Cell Death in Anaplastic Thyroid Carcinoma. Cancer Invest 2023; 41:405-421. [PMID: 36811581 DOI: 10.1080/07357907.2023.2183027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Anaplastic thyroid carcinoma (ATC) has poor prognosis, high mortality rate and lack of effective therapy. A synergic combination of PD-L1 antibody together with cell death promoting substances like deacetylase inhibitors (DACi) and multi-kinase inhibitors (MKI) could sensitize ATC cells and promote decay by autophagic cell death. The PD-L1-inhibitor atezolizumab synergized with panobinostat (DACi) and sorafenib (MKI) leading to significant reduction of the viability, measured by real time luminescence, of three different patient-derived primary ATC cells, of C643 cells and follicular epithelial thyroid cells too. Solo administration of these compounds caused a significant over-expression of autophagy transcripts; meanwhile autophagy proteins were almost not detectable after the single administration of panobinostat, thus supporting a massive autophagy degradation process. Instead, the administration of atezolizumab caused an accumulation of autophagy proteins and the cleavage of the active caspases 8 and 3. Interestingly, only panobinostat and atezolizumab were able to exacerbate the autophagy process by increasing the synthesis, the maturation and final fusion with the lysosomes of the autophagosome vesicles. Despite ATC cells could be sensitized by atezolizumab via the cleavage of the caspases, no reduction of cell proliferation or promotion of cell death was observed. The apoptosis assay evidenced the ability of panobinostat alone and in combination with atezolizumab to induce the phosphatidil serine exposure (early apoptosis) and further the secondary necrosis. Instead, sorafenib was only able to cause necrosis. The increase of caspases activity induced by atezolizumab, the apoptosis and autophagy processes promoted by panobinostat synergize thus promoting cell death in well-established and primary anaplastic thyroid cancer cells. The combined therapy could represent a future clinical application for the treatment of such lethal and untreatable solid cancer.
Collapse
Affiliation(s)
- Sabine Wächter
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Franziska Knauff
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Silvia Roth
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Corinna Keber
- Institute for Pathology, Philipps University Marburg, Marburg, Germany
| | - Katharina Holzer
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Jerena Manoharan
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Elisabeth Maurer
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
22
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
23
|
Nikiforovich PA, Polyakov AP, Sleptsov I V, Boyko NS, Gronskaya YA, Timofeeva N I, Chernikov RA. Targeted therapy of anaplastic thyroid cancer. HEAD AND NECK TUMORS (HNT) 2023. [DOI: 10.17650/2222-1468-2022-12-4-33-38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Introduction. Anaplastic thyroid cancer (ATC) is a very rare malignant tumor of the thyroid comprising 1–2 % of all thyroid cancers. In this pathology, response rate for standard systemic therapy is less than 15 %, and long-term results remain unsatisfactory. Additionally, there are no data conclusively showing that cytotoxic chemotherapy improves survival or quality of life in patients with ATC.Aim. To improve the results of treatment of patients with ATC through evaluation of the effectiveness of targeted therapy in cases of BRAFV600E mutation.Materials and methods. The multicenter prospective study included 29 patients with ATC IVB–C, T4a–bN1a–bM0–1. The patients were divided into 2 groups. The Group 1 (control) included 15 patients with resectable / nonresectable, metastatic / nonmetastatic ATC (without BRAFV600E mutation), stages IVB–C who received standard types of treatment (surgical intervention, radiation, and chemotherapy). The Group 2 consisted of 14 patients with nonresectable or metastatic ATC, stages IVB–C, who received combination therapy (surgical intervention, radiation, and chemotherapy) with inclusion of inhibitors of BRAF dabrafenib and trametinib in neoadjuvant and adjuvant regimens.Results. The study showed the effectiveness of targeted therapy with inhibitors of BRAF mutations in treatment of locally advanced non-operable metastatic ATC with BRAFV600E mutation. Overall response (complete response + partial response) in the Group 1 was 0 %, in the Group 2 it was 64 %. Therefore, treatment scheme dabrafenib + trametinib is a prmising approach to combination targeted therapy in patients with ATC and BRAFV600E mutation. Conclusion. Dabrafenib + trametinib is a promising combination targeted therapy option for patients with ATC with a BRAFV600 mutation demonstrates a high overall response rate, a prolonged duration of response, and an increase in survival rates with controlled toxicity.
Collapse
Affiliation(s)
- P. A. Nikiforovich
- National Medical Research Center of Endocrinology, Ministry of Health of Russia; National Medical Research Center of Radiology, Ministry of Health of Russia
| | - A. P. Polyakov
- National Medical Research Center of Radiology, Ministry of Health of Russia
| | - I. V. Sleptsov
- N.I. Pirogov Clinic of High Medical Technologies of the St. Petersburg State University
| | - N. S. Boyko
- N.I. Pirogov Clinic of High Medical Technologies of the St. Petersburg State University
| | - Yu. A. Gronskaya
- N.I. Pirogov Clinic of High Medical Technologies of the St. Petersburg State University
| | - N. I. Timofeeva
- N.I. Pirogov Clinic of High Medical Technologies of the St. Petersburg State University
| | - R. A. Chernikov
- N.I. Pirogov Clinic of High Medical Technologies of the St. Petersburg State University
| |
Collapse
|
24
|
Lee JS, Shin SJ, Yun HJ, Kim SM, Chang H, Lee YS, Chang HS. Primary thyroid lymphoma: A single-center experience. Front Endocrinol (Lausanne) 2023; 14:1064050. [PMID: 36843586 PMCID: PMC9947226 DOI: 10.3389/fendo.2023.1064050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Primary thyroid lymphoma (PTL) is a very rare entity accounting for 5% of all thyroid malignancies and less than 2% of lymphomas. PTLs are classified as non-Hodgkin's B-cell lymphomas in the majority of cases, although Hodgkin's lymphoma of the thyroid has also been identified. This study aimed to identify the clinical, biochemical, and pathological features of primary thyroid lymphomas. METHODS From January 2008 to December 2020, data from patients diagnosed with PTL treated at the Gangnam Severance Hospital, including clinical, biochemical, and pathological features of thyroid lymphomas, were assessed. RESULTS Of 10 patients, nine women and one man, with a median age of 62 (range, 44-82) years were included. Fine needle aspiration biopsy was performed in nine patients and surgical resection was performed in one patient without biopsy. Excisional and surgical biopsies were performed in all patients, including five who underwent excisional biopsy and five who underwent thyroidectomy. Histological analyses revealed that all 10 lymphomas were non-Hodgkin B-cell lymphoma; six patients had diffuse large B-cell lymphoma, three had mucosa-associated lymphoid tissue lymphoma, and one had Burkitt lymphoma. Four patients received chemotherapy, two were treated with chemoradiation therapy, one received radiation therapy only, one did not require more treatment after surgery, one refused treatment, and one was transferred to another hospital. CONCLUSIONS Although PTLs are scarce, clinicians should be aware of this rare entity and evaluate and treat PTLs on an individual basis.
Collapse
MESH Headings
- Male
- Humans
- Female
- Adult
- Middle Aged
- Aged
- Aged, 80 and over
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/therapy
- Thyroid Neoplasms/pathology
- Lymphoma, B-Cell, Marginal Zone/diagnosis
- Lymphoma, B-Cell, Marginal Zone/pathology
- Lymphoma, B-Cell, Marginal Zone/therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/therapy
- Biopsy, Fine-Needle
Collapse
Affiliation(s)
- Jin Seok Lee
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok Mo Kim
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hojin Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Sang Lee
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Yong Sang Lee,
| | - Hang-Seok Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Sukrithan V, Jain P, Shah MH, Konda B. Kinase inhibitors in thyroid cancers. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2023; 3:e220062. [PMID: 37434642 PMCID: PMC10305552 DOI: 10.1530/eo-22-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 07/13/2023]
Abstract
Objective The treatment landscape for thyroid cancers has changed rapidly with the availability of kinase inhibitors against VEGFR, BRAF, MEK, NTRK, and RET. We provide an up-to-date review of the role of kinase inhibitors in thyroid cancer and discuss upcoming trials. Design & Methods A comprehensive review of the available literature describing kinase inhibitors in thyroid cancer was performed. Results and Conclusions Kinase inhibitors have become the standard of care for patients with metastatic radioactive iodine-refractory thyroid cancer. Short-term treatment can re-sensitize differentiated thyroid cancer to radioactive iodine, thereby potentially improving outcomes and sparing toxicities associated with the long-term use of kinase inhibitors. The approval of cabozantinib as salvage therapy for progressive radioactive iodine-refractory differentiated thyroid cancer following failure with sorafenib or lenvatinib adds to the available armamentarium of active agents. Vandetanib and cabozantinib have become mainstay treatments for metastatic medullary thyroid cancer regardless of RET mutation status. Selpercatinib and pralsetinib, potent and selective receptor kinase inhibitors with activity against RET, have revolutionized the treatment paradigm for medullary thyroid cancers and other cancers with driver mutations in RET. Dabrafenib plus trametinib for BRAF mutated anaplastic thyroid cancer provides an effective treatment option for this aggressive cancer with a dismal prognosis. In order to design the next generation of agents for thyroid cancer, future efforts will need to focus on developing a better understanding of the mechanisms of resistance to kinase inhibition including bypass signaling and escape mutations.
Collapse
Affiliation(s)
- Vineeth Sukrithan
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| | - Prachi Jain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| | - Manisha H Shah
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| | - Bhavana Konda
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
26
|
Abstract
Thyroid cancer is the most common malignancy of the endocrine system, and its incidence has been steadily increasing. Advances in sequencing have allowed analysis of the entire cancer genome, and has provided new information on the genetic lesions and modifications responsible for the onset, progression, dedifferentiation and metastasis of thyroid carcinomas. Moreover, integrated genomics has advanced our understanding of the development of cancer and its behavior, and has facilitated the identification of new genetic mutations and molecular pathways. The functional analysis of epigenetic modifications, such as DNA methylation, histone acetylation and non-coding RNAs, have contributed to define new regulatory mechanisms that control cell malignancy in thyroid cancer, especially aggressive forms. Here we review the most recent advances in genomics and epigenomics of thyroid cancer, which have resulted in a new classification and interpretation of the initiation and progression of thyroid tumors, providing new tools and opportunities for further investigation and for the clinical development of new treatment strategies.
Collapse
Affiliation(s)
- Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
27
|
Saljooghi S, Heidari Z, Saravani M, Rezaei M, Salimi S. Association of AXIN1 rs12921862 C/A and rs1805105 G/A and CTSB rs12898 G/A polymorphisms with papillary thyroid carcinoma: A case-control study. J Clin Lab Anal 2022; 37:e24804. [PMID: 36510340 PMCID: PMC9833985 DOI: 10.1002/jcla.24804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most common type of thyroid cancer which its precise etiology remains unknown. However, environmental and genetic factors contribute to the etiology of PTC. Axis inhibition protein 1 (Axin1) is a scaffold protein that exerts its role as a tumor suppressor. In addition, Cathepsin B (Ctsb) is a cysteine protease with higher expression in several types of tumors. Therefore, the aim of this study was to investigate the possible association of AXIN1 rs12921862 C/A and rs1805105 G/A and CTSB rs12898 G/A polymorphisms with PTC susceptibility. MATERIALS & METHODS In total, 156 PTC patients and 158 sex-, age-, and BMI-matched control subjects were enrolled in the study. AXIN1 rs12921862 C/A and rs1805105 G/A and CTSB rs12898 G/A polymorphisms were genotyped using the PCR-RFLP method. RESULTS There was a relationship between AXIN1 rs12921862 C/A polymorphism and an increased risk of PTC in all genetic models except the overdominant model. The AXIN1 rs1805105 G/A polymorphism was associated with an increased PTC risk only in codominant and overdominant models. The frequency of AXIN1 Ars12921862 Ars1805105 haplotype was higher in the PTC group and also this haplotype was associated with an increased risk of PTC. Moreover, the AXIN1 rs12921862 C/A polymorphism was not associated with PTC clinical and pathological findings, but AXIN1 rs1805105 G/A polymorphism was associated with almost three folds of larger tumor size (≥1 cm). There was no association between CTSB rs12898 G/A polymorphism and PTC and its findings. CONCLUSION The AXIN1 rs12921862 C/A and rs1805105 G/A polymorphisms were associated with PTC. AXIN1 rs1805105 G/A polymorphism was associated with higher tumor size.
Collapse
Affiliation(s)
- Shaghayegh Saljooghi
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Zahra Heidari
- Department of Internal MedicineZahedan University of Medical SciencesZahedanIran
| | - Mohsen Saravani
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran,Cellular and Molecular Research CenterResistant Tuberculosis Institute, Zahedan University of Medical SciencesZahedanIran
| | - Mahnaz Rezaei
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran,Cellular and Molecular Research CenterResistant Tuberculosis Institute, Zahedan University of Medical SciencesZahedanIran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
28
|
Samimi H, Tavakoli R, Fallah P, Naderi Sohi A, Amini Shirkouhi M, Naderi M, Haghpanah V. BI-847325, a selective dual MEK and Aurora kinases inhibitor, reduces aggressive behavior of anaplastic thyroid carcinoma on an in vitro three-dimensional culture. Cancer Cell Int 2022; 22:388. [PMID: 36482411 PMCID: PMC9730667 DOI: 10.1186/s12935-022-02813-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is the most aggressive subtype of thyroid cancer. In this study, we used a three-dimensional in vitro system to evaluate the effect of a dual MEK/Aurora kinase inhibitor, BI-847325 anticancer drug, on several cellular and molecular processes involved in cancer progression. METHODS Human ATC cell lines, C643 and SW1736, were grown in alginate hydrogel and treated with IC50 values of BI-847325. The effect of BI-847325 on inhibition of kinases function of MEK1/2 and Aurora kinase B (AURKB) was evaluated via Western blot analysis of phospho-ERK1/2 and phospho-Histone H3 levels. Sodium/iodide symporter (NIS) and thyroglobulin (Tg), as two thyroid-specific differentiation markers, were measured by qRT-PCR as well as flow cytometry and immunoradiometric assay. Apoptosis was assessed by Annexin V/PI flow cytometry and BIM, NFκB1, and NFκB2 expressions. Cell cycle distribution and proliferation were determined via P16, AURKA, and AURKB expressions as well as PI and CFSE flow cytometry assays. Multidrug resistance was evaluated by examining the expression of MDR1 and MRP1. Angiogenesis and invasion were investigated by VEGF expression and F-actin labeling with Alexa Fluor 549 Phalloidin. RESULTS Western blot results showed that BI-847325 inhibits MEK1/2 and AURKB functions by decreasing phospho-ERK1/2 and phospho-Histone H3 levels. BI-847325 induced thyroid differentiation markers and apoptosis in ATC cell lines. Inversely, BI-847325 intervention decreased multidrug resistance, cell cycle progression, proliferation, angiogenesis, and invasion at the molecular and/or cellular levels. CONCLUSION The results of the present study suggest that BI-857,325 might be an effective multi-targeted anticancer drug for ATC treatment.
Collapse
Affiliation(s)
- Hilda Samimi
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran ,grid.411463.50000 0001 0706 2472Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rezvan Tavakoli
- grid.420169.80000 0000 9562 2611Hepatitis and HIV Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Fallah
- grid.411705.60000 0001 0166 0922Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Naderi Sohi
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amini Shirkouhi
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Naderi
- grid.411705.60000 0001 0166 0922Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Haghpanah
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Asghar MY, Knuutinen T, Holm E, Nordström T, Nguyen VD, Zhou Y, Törnquist K. Suppression of Calcium Entry Modulates the Expression of TRβ1 and Runx2 in Thyroid Cancer Cells, Two Transcription Factors That Regulate Invasion, Proliferation and Thyroid-Specific Protein Levels. Cancers (Basel) 2022; 14:cancers14235838. [PMID: 36497320 PMCID: PMC9740761 DOI: 10.3390/cancers14235838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The thyroid hormone receptor beta 1 (TRβ1) is downregulated in several human cancer cell types, which has been associated with development of an aggressive tumor phenotype and the upregulation of Runt-related transcription factor 2 (Runx2). In this study, we show that the expression of TRβ1 protein is downregulated in human thyroid cancer tissues and cell lines compared with the normal thyroid tissues and primary cell line, whilst Runx2 is upregulated under the same conditions. In contrast, the expression of TRβ1 is upregulated, whereas Runx2 is downregulated, in STIM1, Orai1 and TRPC1 knockdown cells, compared to mock transfected cells. To study the functional significance of Runx2 in follicular thyroid cancer ML-1 cells, we downregulated it by siRNA. This increased store-operated calcium entry (SOCE), but decreased cell proliferation and invasion. Moreover, restoring TRβ1 expression in ML-1 cells decreased SOCE, basal and sphingosine 1-phosphate (S1P)-evoked invasion, the expression of the promigratory S1P3 receptor and pERK1/2, and at the same time increased the expression of the thyroid specific proteins thyroglobulin, thyroperoxidase, and thyroid transcription factor-1. In conclusion, we show that TRβ1 is downregulated in thyroid cancer cells and that restoration of its expression can reverse the cancer cell phenotype towards a normal thyroid cell phenotype.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
- Correspondence: (M.Y.A.); (K.T.)
| | - Taru Knuutinen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Emilia Holm
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
- Correspondence: (M.Y.A.); (K.T.)
| |
Collapse
|
30
|
Marotta V, Cennamo M, La Civita E, Vitale M, Terracciano D. Cell-Free DNA Analysis within the Challenges of Thyroid Cancer Management. Cancers (Basel) 2022; 14:cancers14215370. [PMID: 36358788 PMCID: PMC9654679 DOI: 10.3390/cancers14215370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Liquid biopsy is a minimally invasive method that emerged as a new promising tool for improving diagnosis, risk stratification, follow-up, and treatment of cancer patients. To date, the majority of the research in the area of liquid biopsy has focused on plasma-based cell-free DNA as a potential surrogate for tumor DNA obtained from a tissue biopsy. In the last decades, breakthrough advancements have been performed in the knowledge of thyroid cancer genetics, and the role of molecular characterization in clinical decision-making is continuously rising, from diagnosis completion to the personalization of treatment approach. Hence, it is expectable for cell-free DNA to be applicable in thyroid cancer management. This review aims to investigate the cell-free DNA utility for thyroid cancer patients’ care. Abstract Thyroid cancer is the most frequent endocrine malignancy with an increasing incidence trend during the past forty years and a concomitant rise in cancer-related mortality. The circulating cell-free DNA (cfDNA) analysis is a patient’s friendly and repeatable procedure allowing to obtain surrogate information about the genetics and epigenetics of the tumor. The aim of the present review was to address the suitability of cfDNA testing in different forms of thyroid cancer, and the potential clinical applications, as referred to the clinical weaknesses. Despite being limited by the absence of standardization and by reproducibility and validity issues, cfDNA assessment has great potential for the improvement of thyroid cancer management. cfDNA may support the pre-surgical definition of thyroid nodules by complementing invasive thyroid fine needle aspiration cytology. In addition, it may empower risk stratification and could be used as a biomarker for monitoring the post-surgical disease status, both during active surveillance and in the case of anti-tumor treatment.
Collapse
Affiliation(s)
- Vincenzo Marotta
- UOC Clinica Endocrinologica e Diabetologica, AOU San Giovanni di Dio e Ruggi d’Aragona, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-333-852-1005
| | - Michele Cennamo
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Mario Vitale
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università di Salerno, 84081 Baronissi, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| |
Collapse
|
31
|
Zaballos MA, Acuña-Ruiz A, Morante M, Riesco-Eizaguirre G, Crespo P, Santisteban P. Inhibiting ERK dimerization ameliorates BRAF-driven anaplastic thyroid cancer. Cell Mol Life Sci 2022; 79:504. [PMID: 36056964 PMCID: PMC9440884 DOI: 10.1007/s00018-022-04530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Background RAS-to-ERK signaling is crucial for the onset and progression of advanced thyroid carcinoma, and blocking ERK dimerization provides a therapeutic benefit in several human carcinomas. Here we analyzed the effects of DEL-22379, a relatively specific ERK dimerization inhibitor, on the activation of the RAS-to-ERK signaling cascade and on tumor-related processes in vitro and in vivo. Methods We used a panel of four human anaplastic thyroid carcinoma (ATC) cell lines harboring BRAF or RAS mutations to analyze ERK dynamics and tumor-specific characteristics. We also assessed the impact of DEL-22379 on the transcriptional landscape of ATC cell lines using RNA-sequencing and evaluated its therapeutic efficacy in an orthotopic mouse model of ATC. Results DEL-22379 impaired upstream ERK activation in BRAF- but not RAS-mutant cells. Cell viability and metastasis-related processes were attenuated by DEL-22379 treatment, but mostly in BRAF-mutant cells, whereas in vivo tumor growth and dissemination were strongly reduced for BRAF-mutant cells and mildly reduced for RAS-mutant cells. Transcriptomics analyses indicated that DEL-22379 modulated the transcriptional landscape of BRAF- and RAS-mutant cells in opposite directions. Conclusions Our findings establish that BRAF- and RAS-mutant thyroid cells respond differentially to DEL-22379, which cannot be explained by the previously described mechanism of action of the inhibitor. Nonetheless, DEL-22379 demonstrated significant anti-tumor effects against BRAF-mutant cells in vivo with an apparent lack of toxicity, making it an interesting candidate for the development of combinatorial treatments. Our data underscore the differences elicited by the specific driver mutation for thyroid cancer onset and progression, which should be considered for experimental and clinical approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s00018-022-04530-9.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain.,Departamento de Endocrinología y Nutrición, Hospital Universitario de Móstoles, 28935, Madrid, Spain
| | - Marta Morante
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, 39011, Cantabria, Spain
| | - Garcilaso Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Departamento de Endocrinología y Nutrición, Hospital Universitario de Móstoles, 28935, Madrid, Spain.,Grupo de Endocrinología Molecular, Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Madrid, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria. Santander, 39011, Cantabria, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
32
|
Haddad RI, Bischoff L, Ball D, Bernet V, Blomain E, Busaidy NL, Campbell M, Dickson P, Duh QY, Ehya H, Goldner WS, Guo T, Haymart M, Holt S, Hunt JP, Iagaru A, Kandeel F, Lamonica DM, Mandel S, Markovina S, McIver B, Raeburn CD, Rezaee R, Ridge JA, Roth MY, Scheri RP, Shah JP, Sipos JA, Sippel R, Sturgeon C, Wang TN, Wirth LJ, Wong RJ, Yeh M, Cassara CJ, Darlow S. Thyroid Carcinoma, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022; 20:925-951. [PMID: 35948029 DOI: 10.6004/jnccn.2022.0040] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Differentiated thyroid carcinomas is associated with an excellent prognosis. The treatment of choice for differentiated thyroid carcinoma is surgery, followed by radioactive iodine ablation (iodine-131) in select patients and thyroxine therapy in most patients. Surgery is also the main treatment for medullary thyroid carcinoma, and kinase inhibitors may be appropriate for select patients with recurrent or persistent disease that is not resectable. Anaplastic thyroid carcinoma is almost uniformly lethal, and iodine-131 imaging and radioactive iodine cannot be used. When systemic therapy is indicated, targeted therapy options are preferred. This article describes NCCN recommendations regarding management of medullary thyroid carcinoma and anaplastic thyroid carcinoma, and surgical management of differentiated thyroid carcinoma (papillary, follicular, Hürthle cell carcinoma).
Collapse
Affiliation(s)
| | | | - Douglas Ball
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | - Paxton Dickson
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | - Quan-Yang Duh
- UCSF Helen Diller Family Comprehensive Cancer Center
| | | | | | | | | | - Shelby Holt
- UT Southwestern Simmons Comprehensive Cancer Center
| | - Jason P Hunt
- Huntsman Cancer Institute at the University of Utah
| | | | | | | | - Susan Mandel
- Abramson Cancer Center at the University of Pennsylvania
| | - Stephanie Markovina
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Rod Rezaee
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | - Mara Y Roth
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | | | - Jennifer A Sipos
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | - Cord Sturgeon
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | - Michael Yeh
- UCLA Jonsson Comprehensive Cancer Center; and
| | | | | |
Collapse
|
33
|
Chai L, Qiu Z, Zhang X, Li R, Wang K. A novel self-assemble peptide drug design of AKT1 for anaplastic thyroid cancer therapy. Biochem Biophys Res Commun 2022; 611:19-22. [PMID: 35472606 DOI: 10.1016/j.bbrc.2022.04.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
Anaplastic thyroid cancer (ATC) is an undifferentiated subtype of thyroid cancer with a markedly poor survival prognosis, estimated to occur 3-5 months after diagnosis. Akt activation is reportedly involved in tumorigenesis during ATC and represents a new therapeutic target. Based on the Akt1/bisubstrate complex structure and artificial intelligence-assisted peptide drug screening, we designed a self-assemble Akt1-targeting peptide drug exhibiting a 0.89-nm structure and potential killing ability in ATC cells. The developed self-assemble Akt1-targeting peptide drug presented IC50 values of 18.2 μM and 12.4 μM in 8303C and 8505C cells, respectively, after 72 h of incubation.
Collapse
Affiliation(s)
- Linyan Chai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Zhengguo Qiu
- Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xi'an, 712000, Shaanxi, PR China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Rong Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Kefeng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China; Department of Endocrinology, Shaanxi Kang Fu Hospital, Xi'an, 710065, Shaanxi, PR China.
| |
Collapse
|
34
|
Mahmood T, Ved A, Siddiqui MH, Ahsan F, Shamim A, Ansari VA, Ahmad A, Kashyap MK. An in-Depth Analysis of Ovarian Cancer: Pathogenesis and Clinical Manifestation. Drug Res (Stuttg) 2022; 72:424-434. [PMID: 35760337 DOI: 10.1055/a-1867-4654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Ovarian cancer is characterized by the establishment of tolerance, the recurrence of disease, as well as a poor prognosis. Gene signatures in ovarian cancer cells enable cancer medicine research, therapy, prevention, & management problematic. Notwithstanding advances in tumor puncture surgery, novel combinations regimens, and abdominal radiation, which can provide outstanding reaction times, the bulk of gynecological tumor patients suffer from side effects & relapse. As a consequence, more therapy alternatives for individuals with ovarian cancer must always be studied to minimize side effects and improve progression-free and total response rates. The development of cancer medications is presently undergoing a renaissance in the quest for descriptive and prognostic ovarian cancer biomarkers. Nevertheless, abnormalities in the BRCA2 or BRCA1 genes, a variety of hereditary predispositions, unexplained onset and progression, molecular tumor diversity, and illness staging can all compromise the responsiveness and accuracy of such indicators. As a result, current ovarian cancer treatments must be supplemented with broad-spectrum & customized targeted therapeutic approaches. The objective of this review is to highlight recent contributions to the knowledge of the interrelations between selected ovarian tumor markers, various perception signs, and biochemical and molecular signaling processes, as well as one's interpretation of much more targeted and effective treatment interventions.
Collapse
Affiliation(s)
- Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Lucknow, India
| | - Akash Ved
- Department of Pharmacy, Goel Institute of Pharmaceutical Sciences, Lucknow, India
| | | | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Lucknow, India
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Lucknow, India
| | | | - Afroz Ahmad
- Department of Pharmacy, Integral University, Dasauli, Lucknow, India
| | - Monu Kumar Kashyap
- Department of Pharmacy, Goel Institute of Pharmaceutical Sciences, Lucknow, India
| |
Collapse
|
35
|
Lao L, Bourdeau I, Gagliardi L, He X, Shi W, Hao B, Tan M, Hu Y, Peng J, Coulombe B, Torpy D, Scott H, Lacroix A, Luo H, Wu J. ARMC5 is part of an RPB1-specific ubiquitin ligase implicated in adrenal hyperplasia. Nucleic Acids Res 2022; 50:6343-6367. [PMID: 35687106 PMCID: PMC9226510 DOI: 10.1093/nar/gkac483] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
ARMC5 is implicated in several pathological conditions, but its function remains unknown. We have previously identified CUL3 and RPB1 (the largest subunit of RNA polymerase II (Pol II) as potential ARMC5-interacting proteins. Here, we show that ARMC5, CUL3 and RBX1 form an active E3 ligase complex specific for RPB1. ARMC5, CUL3, and RBX1 formed an active E3 specific for RPB1. Armc5 deletion caused a significant reduction in RPB1 ubiquitination and an increase in an accumulation of RPB1, and hence an enlarged Pol II pool in normal tissues and organs. The compromised RPB1 degradation did not cause generalized Pol II stalling nor depressed transcription in the adrenal glands but did result in dysregulation of a subset of genes, with most upregulated. We found RPB1 to be highly expressed in the adrenal nodules from patients with primary bilateral macronodular adrenal hyperplasia (PBMAH) harboring germline ARMC5 mutations. Mutant ARMC5 had altered binding with RPB1. In summary, we discovered that wildtype ARMC5 was part of a novel RPB1-specific E3. ARMC5 mutations resulted in an enlarged Pol II pool, which dysregulated a subset of effector genes. Such an enlarged Pol II pool and gene dysregulation was correlated to adrenal hyperplasia in humans and KO mice.
Collapse
Affiliation(s)
- Linjiang Lao
- Centre de recherché, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
| | - Isabelle Bourdeau
- Centre de recherché, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
- Endocrinology Division, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
| | - Lucia Gagliardi
- Adelaide Medical School, University of Adelaide, Adelaide, SA5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA5000, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA5006, Australia
- Endocrine and Diabetes Unit, Queen Elizabeth Hospital, Adelaide, SA5011, Australia
| | - Xiao He
- Centre de recherché, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
| | - Wei Shi
- Centre de recherché, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
| | - Bingbing Hao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjia Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Hu
- Centre de recherché, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
| | - Junzheng Peng
- Centre de recherché, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - David J Torpy
- Adelaide Medical School, University of Adelaide, Adelaide, SA5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA5000, Australia
| | - Hamish S Scott
- Adelaide Medical School, University of Adelaide, Adelaide, SA5000, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA5006, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide, SA5001, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA5001, Australia
| | - Andre Lacroix
- Centre de recherché, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
- Endocrinology Division, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
| | - Hongyu Luo
- Centre de recherché, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
| | - Jiangping Wu
- Centre de recherché, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
- Nephrology Division, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec H2X 0A9, Canada
| |
Collapse
|
36
|
Shonka DC, Ho A, Chintakuntlawar AV, Geiger JL, Park JC, Seetharamu N, Jasim S, Abdelhamid Ahmed AH, Bible KC, Brose MS, Cabanillas ME, Dabekaussen K, Davies L, Dias-Santagata D, Fagin JA, Faquin WC, Ghossein RA, Gopal RK, Miyauchi A, Nikiforov YE, Ringel MD, Robinson B, Ryder MM, Sherman EJ, Sadow PM, Shin JJ, Stack BC, Tuttle RM, Wirth LJ, Zafereo ME, Randolph GW. American Head and Neck Society Endocrine Surgery Section and International Thyroid Oncology Group consensus statement on mutational testing in thyroid cancer: Defining advanced thyroid cancer and its targeted treatment. Head Neck 2022; 44:1277-1300. [PMID: 35274388 DOI: 10.1002/hed.27025] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The development of systemic treatment options leveraging the molecular landscape of advanced thyroid cancer is a burgeoning field. This is a multidisciplinary evidence-based statement on the definition of advanced thyroid cancer and its targeted systemic treatment. METHODS An expert panel was assembled, a literature review was conducted, and best practice statements were developed. The modified Delphi method was applied to assess the degree of consensus for the statements developed by the author panel. RESULTS A review of the current understanding of thyroid oncogenesis at a molecular level is presented and characteristics of advanced thyroid cancer are defined. Twenty statements in topics including the multidisciplinary management, molecular evaluation, and targeted systemic treatment of advanced thyroid cancer are provided. CONCLUSIONS With the growth in targeted treatment options for thyroid cancer, a consensus definition of advanced disease and statements regarding the utility of molecular testing and available targeted systemic therapy is warranted.
Collapse
Affiliation(s)
- David C Shonka
- Department of Otolaryngology - Head and Neck Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Alan Ho
- Department of Hematology and Medical Oncology, Solid Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Jessica L Geiger
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Jong C Park
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nagashree Seetharamu
- Division of Hematology-Oncology, Donald and Barbara Zucker School of Medicine at Hofstra University, New Hyde Park, New York, USA
| | - Sina Jasim
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, School of Medicine, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Amr H Abdelhamid Ahmed
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Keith C Bible
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marcia S Brose
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Kirsten Dabekaussen
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Louise Davies
- Department of Surgery, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Dora Dias-Santagata
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James A Fagin
- Endocrinology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raj K Gopal
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Bruce Robinson
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mabel M Ryder
- Division of Endocrinology, Diabetes, Metabolism, & Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric J Sherman
- Head and Neck Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer J Shin
- Department of Otolaryngology - Head and Neck Surgery, Center for Surgery and Public Health, Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan C Stack
- Department of Otolaryngology - Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - R Michael Tuttle
- Endocrinology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lori J Wirth
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark E Zafereo
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Gregory W Randolph
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Maniakas A, Zafereo M, Cabanillas ME. Anaplastic Thyroid Cancer: New Horizons and Challenges. Endocrinol Metab Clin North Am 2022; 51:391-401. [PMID: 35662448 DOI: 10.1016/j.ecl.2021.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anaplastic thyroid cancer (ATC) remains one of the most aggressive and deadliest malignancies. Traditionally, treatment consisted of cytotoxic chemotherapy and radiation therapy, with or without surgery, although a large proportion of patients were often directed toward palliative/hospice care. In the past decade, significant advances have been made through the advent of targeted therapies and immunotherapy. For patients with targetable disease and considerable treatment response, surgery and other multidisciplinary adjuvant therapies can now be considered. Overall, the era of untreatable ATC is progressively being replaced by highly personalized multidisciplinary therapies, actively shifting the treatment pendulum of this disease.
Collapse
Affiliation(s)
- Anastasios Maniakas
- Division of Otolaryngology-Head and Neck Surgery, Hôpital Maisonneuve-Rosemont, Université de Montréal, 5415 Boul, Assomption, Montreal, QC H1T 2M4, Canada; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler Road, Unit 1465, Houston, TX 77030, USA
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler Road, Unit 1465, Houston, TX 77030, USA
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Road, Unit 1461, Houston, TX 77030, USA.
| |
Collapse
|
38
|
The effects of Epigallocatechin-3-gallate and Dabrafenib combination on apoptosis and the genes involved in epigenetic events in anaplastic thyroid cancer cells. Med Oncol 2022; 39:98. [DOI: 10.1007/s12032-022-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
|
39
|
Ragusa F, Ferrari SM, Elia G, Paparo SR, Balestri E, Botrini C, Patrizio A, Mazzi V, Guglielmi G, Foddis R, Spinelli C, Ulisse S, Antonelli A, Fallahi P. Combination Strategies Involving Immune Checkpoint Inhibitors and Tyrosine Kinase or BRAF Inhibitors in Aggressive Thyroid Cancer. Int J Mol Sci 2022; 23:ijms23105731. [PMID: 35628540 PMCID: PMC9144613 DOI: 10.3390/ijms23105731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Thyroid cancer is the most common (~90%) type of endocrine-system tumor, accounting for 70% of the deaths from endocrine cancers. In the last years, the high-throughput genomics has been able to identify pathways/molecular targets involved in survival and tumor progression. Targeted therapy and immunotherapy individually have many limitations. Regarding the first one, although it greatly reduces the size of the cancer, clinical responses are generally transient and often lead to cancer relapse after initial treatment. For the second one, although it induces longer-lasting responses in cancer patients than targeted therapy, its response rate is lower. The individual limitations of these two different types of therapies can be overcome by combining them. Here, we discuss MAPK pathway inhibitors, i.e., BRAF and MEK inhibitors, combined with checkpoint inhibitors targeting PD-1, PD-L1, and CTLA-4. Several mutations make tumors resistant to treatments. Therefore, more studies are needed to investigate the patient's individual tumor mutation burden in order to overcome the problem of resistance to therapy and to develop new combination therapies.
Collapse
Affiliation(s)
- Francesca Ragusa
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Sabrina Rosaria Paparo
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Eugenia Balestri
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Chiara Botrini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy;
| | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Giovanni Guglielmi
- U.O. Medicina Preventiva Del Lavoro, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy;
| | - Rudy Foddis
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (R.F.); (P.F.)
| | - Claudio Spinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
| | - Salvatore Ulisse
- Department of Surgical Sciences, ‘Sapienza’ University of Rome, 00161 Rome, Italy;
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy; (F.R.); (G.E.); (S.R.P.); (E.B.); (C.B.); (V.M.); (C.S.)
- Correspondence: ; Tel.: +39-050-992318
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (R.F.); (P.F.)
| |
Collapse
|
40
|
Kanai T, Ito T, Morikawa H, Amitani M, Shimizu T, Ohno K, Ono M, Oba T, Maeno K, Ito KI. Surgical resection of the primary tumor prevents an undesirable locoregional condition and improves the quality of life in patients with anaplastic thyroid cancer. Surg Today 2022; 52:1620-1626. [DOI: 10.1007/s00595-022-02494-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/27/2022] [Indexed: 12/28/2022]
|
41
|
Utilizing Three-Dimensional Culture Methods to Improve High-Throughput Drug Screening in Anaplastic Thyroid Carcinoma. Cancers (Basel) 2022; 14:cancers14081855. [PMID: 35454763 PMCID: PMC9031362 DOI: 10.3390/cancers14081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive endocrine neoplasm, with a median survival of just four to six months post-diagnosis. Even with surgical and chemotherapeutic interventions, the five-year survival rate is less than 5%. Although combination dabrafenib/trametinib therapy was recently approved for treatment of the ~25% of ATCs harboring BRAFV600E mutations, there are no approved, effective treatments for BRAF-wildtype disease. Herein, we perform a screen of 1525 drugs and evaluate therapeutic candidates using monolayer cell lines and four corresponding spheroid models of anaplastic thyroid carcinoma. We utilize three-dimensional culture methods, as they have been shown to more accurately recapitulate tumor responses in vivo. These three-dimensional cultures include four distinct ATC spheroid lines representing unique morphology and mutational drivers to provide drug prioritization that will be more readily translatable to the clinic. Using this screen, we identify three exceptionally potent compounds (bortezomib, cabazitaxel, and YM155) that have established safety profiles and could potentially be moved into clinical trial for the treatment of anaplastic thyroid carcinoma, a disease with few treatment options.
Collapse
|
42
|
Elia G, Ferrari SM, Ragusa F, Paparo SR, Mazzi V, Ulisse S, Benvenga S, Antonelli A, Fallahi P. Advances in pharmacotherapy for advanced thyroid cancer of follicular origin (PTC, FTC). New approved drugs and future therapies. Expert Opin Pharmacother 2022; 23:599-610. [PMID: 35038965 DOI: 10.1080/14656566.2022.2030704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The most common altered signaling found in aggressive iodine-refractory Thyroid cancer derived from follicular cells (RAI-TC) are RTK, MAPK, PI3K, WNT, BRAF, RAS, RET, and TP53. Tyrosine Kinase Inhibitors (TKI) are multi-kinase inhibitors able to act against different pathways, that elicit an anti-neoplastic activity. AREAS COVERED The aim of this paper is to review recent novel molecular therapies of RAI-TC. Recently, sorafenib and lenvatinib, have been approved for the treatment of aggressive RAI-TC. Other studies are evaluating vandetanib and selumetinib in RAI-TC. Furthermore, preliminary studies have evaluated dabrafenib, and vemurafenib in BRAF mutated RAI-TC patients to re-induce 131-iodine uptake. The interplay between cells of the immune system and cancer cells can be altered by immune checkpoints inhibitors. The expression of PDL1 in RAI-TC was related to tumor recurrence and poor survival. Several clinical trials are investigating a combination of different therapies, such as lenvatinib and pembrolizumab. EXPERT OPINION Mechanisms of resistance to TKIs inhibitors can be of intrinsic or acquired origin. An acquired resistance to lenvatinib, or sorafenib can be due to upregulation of FGFR; therefore anti-FGFR agents are evaluated. A new strategy is to combine TKIs with immunotherapy. Several studies are evaluating lenvatinib and pembrolizumab in RAI-TC patients.
Collapse
Affiliation(s)
- Giusy Elia
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | | | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Valeria Mazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Salvatore Ulisse
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular and Clinical Endocrinology and Women's Endocrine Health, Azienda Ospedaliera Universitaria Policlinico 'G. Martino', I-98125, Messina, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Effects of Anti-Cancer Drug Sensitivity-Related Genetic Differences on Therapeutic Approaches in Refractory Papillary Thyroid Cancer. Int J Mol Sci 2022; 23:ijms23020699. [PMID: 35054884 PMCID: PMC8776099 DOI: 10.3390/ijms23020699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) includes tumors of follicular cells; it ranges from well differentiated TC (WDTC) with generally favorable prognosis to clinically aggressive poorly differentiated TC (PDTC) and undifferentiated TC (UTC). Papillary thyroid cancer (PTC) is a WDTC and the most common type of thyroid cancer that comprises almost 70–80% of all TC. PTC can present as a solid, cystic, or uneven mass that originates from normal thyroid tissue. Prognosis of PTC is excellent, with an overall 10-year survival rate >90%. However, more than 30% of patients with PTC advance to recurrence or metastasis despite anti-cancer therapy; consequently, systemic therapy is limited, which necessitates expansion of improved clinical approaches. We strived to elucidate genetic distinctions due to patient-derived anti-cancer drug-sensitive or -resistant PTC, which can support in progress novel therapies. Patients with histologically proven PTC were evaluated. PTC cells were gained from drug-sensitive and -resistant patients and were compared using mRNA-Seq. We aimed to assess the in vitro and in vivo synergistic anti-cancer effects of a novel combination therapy in patient-derived refractory PTC. This combination therapy acts synergistically to promote tumor suppression compared with either agent alone. Therefore, genetically altered combination therapy might be a novel therapeutic approach for refractory PTC.
Collapse
|
44
|
Ngo TNM, Le TTB, Le T, Bychkov A, Oishi N, Jung CK, Hassell L, Kakudo K, Vuong HG. Primary Versus Secondary Anaplastic Thyroid Carcinoma: Perspectives from Multi-institutional and Population-Level Data. Endocr Pathol 2021; 32:489-500. [PMID: 34559383 DOI: 10.1007/s12022-021-09692-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/23/2022]
Abstract
Primary (or de novo) anaplastic thyroid carcinoma (ATC) is ATC without pre-existing history of differentiated thyroid carcinoma (DTC) and no co-existing DTC foci at the time of diagnosis. Secondary ATC is diagnosed if the patient had a history of DTC or co-existing DTC components at time of diagnosis. This study aimed to investigate the incidence, clinical presentations, outcomes, and genetic backgrounds of primary versus secondary ATCs. We searched for ATCs in our institutional databases and the Surveillance, Epidemiology, and End Result (SEER) database. We also performed a systematic review and meta-analysis to analyze the genetic alterations of primary and secondary ATCs. From our multi-institutional database, 22 primary and 23 secondary ATCs were retrieved. We also identified 620 and 24 primary and secondary ATCs in the SEER database, respectively. Compared to primary ATCs, secondary ATCs were not statistically different in terms of demographic, clinical manifestations, and patient survival. The only clinical discrepancy between the two groups was a significantly larger tumor diameter of the primary ATCs. The prevalence of TERT promoter, PIK3CA, and TP53 mutations was comparable between the two subtypes. In comparison to primary ATCs, however, BRAF mutations were more prevalent (OR = 4.70; 95% CI = 2.84-7.78) whereas RAS mutations were less frequent (OR = 0.43; 95% CI = 0.21-0.85) in secondary tumors. In summary, our results indicated that de novo and secondary ATCs might share many potential developmental steps, but there are other factors that suggest distinct developmental pathways.
Collapse
Affiliation(s)
- Tam N M Ngo
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700-000, Vietnam
| | - Trang T B Le
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700-000, Vietnam
| | - Thoa Le
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700-000, Vietnam
| | - Andrey Bychkov
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pathology, Kameda Medical Center, Kamogawa, Chiba, 296-8602, Japan
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Lewis Hassell
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kennichi Kakudo
- Department of Pathology and Thyroid Disease Center, Izumi City General Hospital, Wake-cho 4-5-1, Izumi-city, 594-0073, Japan
| | - Huy Gia Vuong
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Neurosurgery, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
45
|
Bueno F, Abelleira E, von Stecher F, de Lima AP, Pitoia F. Dramatic clinical response to dabrafenib plus trametinib in anaplastic thyroid carcinoma and the challenges faced during the COVID-19 pandemic. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:242-247. [PMID: 33587835 PMCID: PMC10065318 DOI: 10.20945/2359-3997000000325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
Anaplastic thyroid carcinoma is the rarest tumor of the thyroid gland, representing less than 2% of clinically recognized thyroid cancers. Typically, it has an extremely rapid onset, fatal outcomes in most cases, and a median overall survival of 3 to 10 months despite aggressive multidisciplinary management. The presence of targetable mutations in anaplastic thyroid carcinoma patients is an opportunity for treatment when conventional therapeutics approaches are not effective, a frequent situation in the majority of patients. We present our experience in the management of a patient with unresectable anaplastic thyroid cancer who had a remarkable and rapid response to treatment with dabrafenib and trametinib during the COVID-19 pandemic. After four weeks of dabrafenib 150 mg twice daily plus trametinib 2 mg daily, he showed a dramatic reduction of the cervical mass around 90%. Nearly eight weeks under treatment with dabrafenib plus trametinib, the patient remains with minimal locoregional disease without distant metastases.
Collapse
Affiliation(s)
- Fernanda Bueno
- Division of Endocrinology, University of Buenos Aires, Buenos Aires, Argentina
| | - Erika Abelleira
- Division of Endocrinology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Andrea Paes de Lima
- Department of Pathology, University of Buenos Aires, Buenos Aires, Argentina
| | - Fabián Pitoia
- Division of Endocrinology, University of Buenos Aires, Buenos Aires, Argentina,
| |
Collapse
|
46
|
Synergistic effect of metformin and vemurufenib (PLX4032) as a molecular targeted therapy in anaplastic thyroid cancer: an in vitro study. Mol Biol Rep 2021; 48:7443-7456. [PMID: 34716862 DOI: 10.1007/s11033-021-06762-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Survival rate of patients affected with anaplastic thyroid carcinoma (ATC) is less than 5% with current treatment. In ATC, BRAFV600E mutation is the major mutation that results in the transformation of normal cells in to an undifferentiated cancer cells via aberrant molecular signaling mechanisms. Although vemurufenib is a selective oral drug for the BRAFV600E mutant kinase with a response rate of nearly 50% in metastatic melanoma, our study has showed resistance to this drug in ATC. Hence the rationale of the study is to explore combinational therapeutic effect to improve the efficacy of vemurafenib along with metformin. Metformin, a diabetic drug is an AMPK activator and has recently proved to be involved in preventing or treating several types of cancer. METHODS AND RESULTS Using iGEMDock software, a protein-ligand interaction was successful between Metformin and TSHR (receptor present in the thyroid follicular cells). Our study demonstrates that combination of vemurufenib with metformin has synergistic anti-cancer effects which was evaluated through MTT assay (cytotoxicity), colony formation assay (antiproliferation evaluation) and suppressed the progression of ATC cells growth by inducing significant apoptosis, proven by Annexin V-FITC assay (Early Apoptosis Detection). Downregulation of ERK signaling, upregulation of AMPK pathway and precision in epithelial-mesenchymal transition (EMT) pathway which were assessed by RT-PCR and Western blot provide the evidence that the combination of drugs involved in the precision of altered molecular signaling Further our results suggest that Metformin act as a demethylating agent in anaplastic thyroid cancer cells by inducing the expression of NIS and TSHR. Our study for the first time explored cAMP signaling in ATC wherein cAMP signaling is downregulated due to decrease in intracellular cAMP level upon metformin treatment. CONCLUSION To conclude, our findings demonstrate novel therapeutic targets and treatment strategies for undifferentiated ATC.
Collapse
|
47
|
Gao RW, Foote RL, Garces YI, Ma DJ, Neben-Wittich M, Routman DM, Patel SH, Ko SJ, McGee LA, Bible KC, Chintakuntlawar AV, Ryder M, Morris JC, Van Abel KM, Rivera M, Abraha F, Lester SC. Outcomes and Patterns of Recurrence for Anaplastic Thyroid Cancer Treated with Comprehensive Chemoradiotherapy. Pract Radiat Oncol 2021; 12:113-119. [PMID: 34715395 DOI: 10.1016/j.prro.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE/OBJECTIVES Radiotherapy (RT) plays an important role in locoregional tumor control for anaplastic thyroid cancer (ATC). Due to its rarity, RT guidelines for ATC are lacking. We describe ATC patterns of nodal disease at presentation and progression and propose corresponding RT target volumes. MATERIALS/METHODS We identified all patients with ATC treated at our institution with definitive or adjuvant IMRT and concomitant chemotherapy from 2006 to 2020. We identified in-field, marginal, and out-of-field sites of locoregional recurrence and progression (LRR). RESULTS Forty-seven patients met inclusion. Median follow-up was 6.6 months (IQR: 1.9-19.6). Nodal levels involved at presentation included: IB (2.1%), II (23.4%), III (21.3%), IV (21.3%), V (12.8%), VI (34%), and mediastinal (6.4%). All patients received elective nodal RT to levels II-IV and VI. RT volumes also included: IA (23.4%), IB (44.7%), V (87.2%), retropharyngeal/retrostyloid (RP/RS) (27.7%), and mediastinal 1-6 (53.2%). Cumulative incidence of LRR at 3- and 12-months was 26.1% (95% CI: 15.9-42.8) and 35.7% (23.9-53.4). Isolated LRR risk at 3- and 12-months was 6.5% (2.2-19.8) and 8.9% (3.4-22.9). Fourteen (29.8%) patients experienced in-field LRR in the thyroid gland or postoperative tumor bed, II-IV, VI, and mediastinal 1 and 3A. Four (8.5%) patients had marginal LRRs, 3 of whom progressed in the mediastinum at 2, 3P, 4, and 6. Two (4.3%) patients experienced out-of-field LRRs. Throughout the pre-treatment and follow-up period, no patients had disease at IA and 1 (2.1%) patient each had disease at IB and RP/RS. No baseline or treatment characteristics, including RT dose (stratified by < or ≥66 Gy), were significant predictors of LRR on univariate analysis. CONCLUSIONS Isolated LRR risk in patients with ATC treated with comprehensive RT and chemotherapy is low. Aggressive multimodality therapy should be reserved for willing, fit patients with no or limited distant disease burden. When treating comprehensively, complete inclusion of mediastinal levels 1-6 may be warranted to avoid marginal disease progression. Omission of levels I and RP/RS can be considered.
Collapse
Affiliation(s)
- Robert W Gao
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Yolanda I Garces
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Daniel J Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - David M Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Stephen J Ko
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Lisa A McGee
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | | | | | | | | | | | | | - Feven Abraha
- Biostatistics & Information, Mayo Clinic, Rochester, Minnesota
| | - Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
48
|
Jung HW, Hwang JH. Anticancer Effects of Ursi Fel Extract and Its Active Compound, Ursodeoxycholic Acid, in FRO Anaplastic Thyroid Cancer Cells. Molecules 2021; 26:molecules26175309. [PMID: 34500742 PMCID: PMC8434085 DOI: 10.3390/molecules26175309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is one of the most fatal human malignancies. Ursi Fel (UF) is the bile of a brown bear that has been traditionally used for heat clearance and toxin relief in Korean and Chinese medicines. In this study, we determined the anticancer effects of a UF extract and its active compound, ursodeoxycholic acid (UDCA), in FRO human ATC cells. FRO cells were treated with UF extract and UDCA at different concentrations for various durations. Cell viability was measured using an MTT assay. Cell apoptosis was investigated by flow cytometric analysis following Annexin V and propidium iodide (PI) staining, and Hoechst staining was used to observe nuclear fragmentation. The expression of pro-apoptotic (Bax, caspase-3, cytochrome c, and PARP), anti-apoptotic (Bcl-2), and angiogenetic (TGF-β, VEGF, N-cadherin, and sirtuin-1) proteins and the phosphorylation of Akt and mechanistic target of rapamycin (mTOR) were determined by western blot analysis. Treatment with UF extract at 10, 25, and 50 μg/mL and UDCA at 25, 50, and 100 μM/mL significantly inhibited the growth of FRO cells in a dose-dependent manner. Flow cytometry and Hoechst staining revealed an increase in the apoptosis of FRO cells mediated by UF extract and UDCA in a dose-dependent manner. UF extract (25 and 50 μg) and UDCA (50 and 100 μM) significantly increased the expression of Bax, caspase-3, cytochrome c, and PARP and inhibited the expression of Bcl-2, TGF-β, VEGF, N-cadherin, and sirtuin-1 in FRO cells. Furthermore, UF extract and UDCA treatment stimulated Akt phosphorylation and inhibited mTOR phosphorylation in these cells. These results indicate that UF extract and UDCA exert anticancer properties in FRO cells by inducing apoptosis and inhibiting angiogenesis via regulating the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Dongdae-ro 123, Gyeongju 38066, Korea;
| | - Ji Hye Hwang
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Korea
- Correspondence: ; Tel.: +82-32-770-1300
| |
Collapse
|
49
|
Qin AC, Qian Y, Ma YY, Jiang Y, Qian WF. Long Non-coding RNA RP11-395G23.3 Acts as a Competing Endogenous RNA of miR-124-3p to Regulate ROR1 in Anaplastic Thyroid Carcinoma. Front Genet 2021; 12:673242. [PMID: 34421987 PMCID: PMC8375390 DOI: 10.3389/fgene.2021.673242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human malignancies with poor prognosis. However, the underlying mechanisms of ATC remain to be elucidated. Recently, increasing studies have focused on competitive endogenous RNA (ceRNA) to discover valuable biomarkers for the diagnosis of ATC. The present study identified 705 differentially expressed mRNAs and 47 differentially expressed lncRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were also conducted. Additionally, an lncRNA/miRNA/mRNA network was constructed which included 1103 regulatory relations. The upregulation of RP11-395G23.3 in ATC cells was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In the loss of function assays, results suggested silencing of RP11-395G23.3 inhibited cell proliferation and induced cell apoptosis. Mechanically, RP11-395G23.3 could increase ROR1 via sponging miR-124-3p as a ceRNA. Moreover, ROR1 expression was decreased with the downregulation of RP11-395G23.3, but was rescued by the co-transfection of the miR-124-3p inhibitor in ATC cells. Our research suggested that the RP11-395G23.3/miR-124-3p/ROR1 axis potentially acted as a potential target for the diagnosis of ATC.
Collapse
Affiliation(s)
- An-Cheng Qin
- The Third Affiliated Hospital of Soochow University, Changzhou, China.,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yi Qian
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yu-Yuan Ma
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yong Jiang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei-Feng Qian
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
50
|
Asghar MY, Lassila T, Paatero I, Nguyen VD, Kronqvist P, Zhang J, Slita A, Löf C, Zhou Y, Rosenholm J, Törnquist K. Stromal interaction molecule 1 (STIM1) knock down attenuates invasion and proliferation and enhances the expression of thyroid-specific proteins in human follicular thyroid cancer cells. Cell Mol Life Sci 2021; 78:5827-5846. [PMID: 34155535 PMCID: PMC8316191 DOI: 10.1007/s00018-021-03880-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Stromal interaction molecule 1 (STIM1) and the ORAI1 calcium channel mediate store-operated calcium entry (SOCE) and regulate a multitude of cellular functions. The identity and function of these proteins in thyroid cancer remain elusive. We show that STIM1 and ORAI1 expression is elevated in thyroid cancer cell lines, compared to primary thyroid cells. Knock-down of STIM1 or ORAI1 attenuated SOCE, reduced invasion, and the expression of promigratory sphingosine 1-phosphate and vascular endothelial growth factor-2 receptors in thyroid cancer ML-1 cells. Cell proliferation was attenuated in these knock-down cells due to increased G1 phase of the cell cycle and enhanced expression of cyclin-dependent kinase inhibitory proteins p21 and p27. STIM1 protein was upregulated in thyroid cancer tissue, compared to normal tissue. Downregulation of STIM1 restored expression of thyroid stimulating hormone receptor, thyroid specific proteins and increased iodine uptake. STIM1 knockdown ML-1 cells were more susceptible to chemotherapeutic drugs, and significantly reduced tumor growth in Zebrafish. Furthermore, STIM1-siRNA-loaded mesoporous polydopamine nanoparticles attenuated invasion and proliferation of ML-1 cells. Taken together, our data suggest that STIM1 is a potential diagnostic and therapeutic target for treatment of thyroid cancer.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland.
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Taru Lassila
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | | | - Jixi Zhang
- College of Bioengineering, Chongqing University, No. 174 Shizheng Road, Chongqing, 400044, China
| | - Anna Slita
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan 6A, 20520, Turku, Finland
| | - Christoffer Löf
- Research Centre for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Jessica Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan 6A, 20520, Turku, Finland
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland.
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|