1
|
Njeim R, Fornoni A. Protecting Podocytes in Glomerular Diseases Beyond Glucocorticoids. J Am Soc Nephrol 2024; 35:1627-1629. [PMID: 39621416 PMCID: PMC11617475 DOI: 10.1681/asn.0000000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida; and Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida
| | | |
Collapse
|
2
|
Zhu Q, Yang S, Wei C, Lu G, Lee K, He JC, Liu R, Zhong Y. Puerarin attenuates diabetic kidney injury through interaction with Guanidine nucleotide-binding protein Gi subunit alpha-1 (Gnai1) subunit. J Cell Mol Med 2022; 26:3816-3827. [PMID: 35678269 PMCID: PMC9279604 DOI: 10.1111/jcmm.17414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 01/05/2023] Open
Abstract
Radix puerariae, a traditional Chinese herbal medication, has been used to treat patients with diabetic kidney disease (DKD). Our previous studies demonstrated that puerarin, the active compound of radix puerariae, improves podocyte injury in type 1 DKD mice. However, the direct molecular target of puerarin and its underlying mechanisms in DKD remain unknown. In this study, we confirmed that puerarin also improved DKD in type 2 diabetic db/db mice. Through RNA-sequencing odf isolated glomeruli, we found that differentially expressed genes (DEGs) that were altered in the glomeruli of these diabetic mice but reversed by puerarin treatment were involved mostly in oxidative stress, inflammatory and fibrosis. Further analysis of these reversed DEGs revealed protein kinase A (PKA) was among the top pathways. By utilizing the drug affinity responsive target stability method combined with mass spectrometry analysis, we identified guanine nucleotide-binding protein Gi alpha-1 (Gnai1) as the direct binding partner of puerarin. Gnai1 is an inhibitor of cAMP production which is known to have protection against podocyte injury. In vitro, we showed that puerarin not only interacted with Gnai1 but also increased cAMP production in human podocytes and mouse diabetic kidney in vivo. Puerarin also enhanced CREB phosphorylation, a downstream transcription factor of cAMP/PKA. Overexpression of CREB reduced high glucose-induced podocyte apoptosis. Inhibition of PKA by Rp-cAMP also diminished the effects of puerarin on high glucose-induced podocyte apoptosis. We conclude that the renal protective effects of puerarin are likely through inhibiting Gnai1 to activate cAMP/PKA/CREB pathway in podocytes.
Collapse
Affiliation(s)
- Qingqing Zhu
- Division of NephrologyLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shumin Yang
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chengguo Wei
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Geming Lu
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount SinaiDiabetes, Obesity and Metabolism InstituteNew YorkNew YorkUSA,Icahn School of Medicine at Mount SinaiMindich Child Health and Development InstituteNew YorkNew YorkUSA
| | - Kyung Lee
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John Cijiang He
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruijie Liu
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yifei Zhong
- Division of NephrologyLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
3
|
Rojo-Trejo MH, Robles-Osorio ML, Sabath E. Liposoluble vitamins A and E in kidney disease. World J Nephrol 2022; 11:96-104. [PMID: 35733655 PMCID: PMC9160709 DOI: 10.5527/wjn.v11.i3.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/15/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Kidney disease (KD) is characterized by the presence of elevated oxidative stress, and this is postulated as contributing to the high cardiovascular morbidity and mortality in these individuals. Chronic KD (CKD) is related to high grade inflammatory condition and pro-oxidative state that aggravates the progression of the disease by damaging primary podocytes. Liposoluble vitamins (vitamin A and E) are potent dietary antioxidants that have also anti-inflammatory and antiapoptotic functions. Vitamin deficits in CKD patients are a common issue, and multiple causes are related to them: Anorexia, dietary restrictions, food cooking methods, dialysis losses, gastrointestinal malabsorption, etc. The potential benefit of retinoic acid (RA) and α-tocopherol have been described in animal models and in some human clinical trials. This review provides an overview of RA and α tocopherol in KD.
Collapse
Affiliation(s)
| | | | - Ernesto Sabath
- Department of Renal Medicine, Nutrition School, Universidad Autónoma de Querétaro, Querétaro 76090, Mexico
| |
Collapse
|
4
|
Sierra B, Magalhães AC, Soares D, Cavadas B, Perez AB, Alvarez M, Aguirre E, Bracho C, Pereira L, Guzman MG. Multi-Tissue Transcriptomic-Informed In Silico Investigation of Drugs for the Treatment of Dengue Fever Disease. Viruses 2021; 13:v13081540. [PMID: 34452405 PMCID: PMC8402662 DOI: 10.3390/v13081540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022] Open
Abstract
Transcriptomics, proteomics and pathogen-host interactomics data are being explored for the in silico–informed selection of drugs, prior to their functional evaluation. The effectiveness of this kind of strategy has been put to the test in the current COVID-19 pandemic, and it has been paying off, leading to a few drugs being rapidly repurposed as treatment against SARS-CoV-2 infection. Several neglected tropical diseases, for which treatment remains unavailable, would benefit from informed in silico investigations of drugs, as performed in this work for Dengue fever disease. We analyzed transcriptomic data in the key tissues of liver, spleen and blood profiles and verified that despite transcriptomic differences due to tissue specialization, the common mechanisms of action, “Adrenergic receptor antagonist”, “ATPase inhibitor”, “NF-kB pathway inhibitor” and “Serotonin receptor antagonist”, were identified as druggable (e.g., oxprenolol, digoxin, auranofin and palonosetron, respectively) to oppose the effects of severe Dengue infection in these tissues. These are good candidates for future functional evaluation and clinical trials.
Collapse
Affiliation(s)
- Beatriz Sierra
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Ana Cristina Magalhães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniel Soares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bruno Cavadas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana B. Perez
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Mayling Alvarez
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Eglis Aguirre
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Claudia Bracho
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| | - Luisa Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.C.M.); (D.S.); (B.C.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| | - Maria G. Guzman
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Institute of Tropical Medicine (IPK), Havana 11400, Cuba; (B.S.); (A.B.P.); (M.A.); (E.A.); (C.B.); (M.G.G.)
| |
Collapse
|
5
|
Chen A, Liu Y, Lu Y, Lee K, He JC. Disparate roles of retinoid acid signaling molecules in kidney disease. Am J Physiol Renal Physiol 2021; 320:F683-F692. [PMID: 33645319 PMCID: PMC8174805 DOI: 10.1152/ajprenal.00045.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retinoid acid (RA) is synthesized mainly in the liver and has multiple functions in development, cell differentiation and proliferation, and regulation of inflammation. RA has been used to treat multiple diseases, such as cancer and skin disorders. The kidney is a major organ for RA metabolism, which is altered in the diseased condition. RA is known to have renal-protective effects in multiple animal models of kidney disease. RA has been shown to ameliorate podocyte injury through induction of expression of differentiation markers and regeneration of podocytes from its progenitor cells in animal models of kidney disease. The effects of RA in podocytes are mediated mainly by activation of the cAMP/PKA pathway via RA receptor-α (RARα) and activation of its downstream transcription factor, Kruppel-like factor 15. Screening of RA signaling molecules in human kidney disease has revealed RAR responder protein 1 (RARRES1) as a risk gene for glomerular disease progression. RARRES1, a podocyte-specific growth arrest gene, is regulated by high doses of both RA and TNF-α. Mechanistically, RARRES1 is cleaved by matrix metalloproteinases to generate soluble RARRES1, which then induces podocyte apoptosis through interaction with intracellular RIO kinase 1. Therefore, a high dose of RA may induce podocyte toxicity through upregulation of RARRES1. Based on the current findings, to avoid potential side effects, we propose three strategies to develop future therapies of RA for glomerular disease: 1) develop RARα- and Kruppel-like factor 15-specific agonists, 2) use the combination of a low dose of RAR-α agonist with phosphodiesterase 4 inhibitors, and 3) use a combination of RARα agonist with RARRES1 inhibitors.NEW & NOTEWORTHY Retinoic acid (RA) exerts pleotropic cellular effects, including induction of cell differentiation while inhibiting proliferation and inflammation. These effects are mediated by both RA responsive element-dependent or -independent pathways. In kidneys, RA confers renoprotection by signaling through podocyte RA receptor (RAR)α and activation of cAMP/PKA/Kruppel-like factor 15 pathway to promote podocyte differentiation. Nevertheless, in kidney disease settings, RA can also promote podocyte apoptosis and loss through downstream expression of RAR responder protein 1, a recently described risk factor for glomerular disease progression. These disparate roles of RA underscore the complexity of its effects in kidney homeostasis and disease, and a need to target specific RA-mediated pathways for effective therapeutic treatments against kidney disease progression.
Collapse
Affiliation(s)
- Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Lu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
- Department of Health Sciences, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, Massachusetts
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Renal Program, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
6
|
Sidhom EH, Kim C, Kost-Alimova M, Ting MT, Keller K, Avila-Pacheco J, Watts AJ, Vernon KA, Marshall JL, Reyes-Bricio E, Racette M, Wieder N, Kleiner G, Grinkevich EJ, Chen F, Weins A, Clish CB, Shaw JL, Quinzii CM, Greka A. Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ-deficiency kidney disease. J Clin Invest 2021; 131:141380. [PMID: 33444290 DOI: 10.1172/jci141380] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Mutations affecting mitochondrial coenzyme Q (CoQ) biosynthesis lead to kidney failure due to selective loss of podocytes, essential cells of the kidney filter. Curiously, neighboring tubular epithelial cells are spared early in disease despite higher mitochondrial content. We sought to illuminate noncanonical, cell-specific roles for CoQ, independently of the electron transport chain (ETC). Here, we demonstrate that CoQ depletion caused by Pdss2 enzyme deficiency in podocytes results in perturbations in polyunsaturated fatty acid (PUFA) metabolism and the Braf/Mapk pathway rather than ETC dysfunction. Single-nucleus RNA-Seq from kidneys of Pdss2kd/kd mice with nephrotic syndrome and global CoQ deficiency identified a podocyte-specific perturbation of the Braf/Mapk pathway. Treatment with GDC-0879, a Braf/Mapk-targeting compound, ameliorated kidney disease in Pdss2kd/kd mice. Mechanistic studies in Pdss2-depleted podocytes revealed a previously unknown perturbation in PUFA metabolism that was confirmed in vivo. Gpx4, an enzyme that protects against PUFA-mediated lipid peroxidation, was elevated in disease and restored after GDC-0879 treatment. We demonstrate broader human disease relevance by uncovering patterns of GPX4 and Braf/Mapk pathway gene expression in tissue from patients with kidney diseases. Our studies reveal ETC-independent roles for CoQ in podocytes and point to Braf/Mapk as a candidate pathway for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Eriene-Heidi Sidhom
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Choah Kim
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - May Theng Ting
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Keith Keller
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Andrew Jb Watts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katherine A Vernon
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jamie L Marshall
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Matthew Racette
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicolas Wieder
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jillian L Shaw
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Wei Q, Dong Z. The yin and yang of retinoic acid signaling in kidney diseases. J Clin Invest 2021; 130:5124-5126. [PMID: 32925167 DOI: 10.1172/jci141712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) signaling is involved in various physiological and pathological conditions, including development, tumorigenesis, inflammation, and tissue damage and repair. In kidneys, the beneficial effect of RA has been reported in multiple disease models, such as glomerulosclerosis, renal fibrosis, and acute kidney injury. In this issue of the JCI, Chen et al. report a pathway activated by RA signaling that is mediated by the retinoic acid receptor responder protein 1 (RARRES1). Specifically, RARRES1, which is proteolytically cleaved to release the extracellular domain, was endocytosed by podocytes to induce apoptosis and glomerular dysfunction kidney disease. These findings unveil the contrasting aspects, a Janus face, of RA signaling that may guide its therapeutic use.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
8
|
Chen A, Feng Y, Lai H, Ju W, Li Z, Li Y, Wang A, Hong Q, Zhong F, Wei C, Fu J, Guan T, Liu B, Kretzler M, Lee K, He JC. Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. J Clin Invest 2020; 130:5523-5535. [PMID: 32634130 PMCID: PMC7524479 DOI: 10.1172/jci140155] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Using the Nephrotic Syndrome Study Network Consortium data set and other publicly available transcriptomic data sets, we identified retinoic acid receptor responder protein 1 (RARRES1) as a gene whose expression positively correlated with renal function decline in human glomerular disease. The glomerular expression of RARRES1, which is largely restricted to podocytes, increased in focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). TNF-α was a potent inducer of RARRES1 expression in cultured podocytes, and transcriptomic analysis showed the enrichment of cell death pathway genes with RARRES1 overexpression. The overexpression of RARRES1 indeed induced podocyte apoptosis in vitro. Notably, this effect was dependent on its cleavage in the extracellular domain, as the mutation of its cleavage site abolished the apoptotic effect. Mechanistically, the soluble RARRES1 was endocytosed and interacted with and inhibited RIO kinase 1 (RIOK1), resulting in p53 activation and podocyte apoptosis. In mice, podocyte-specific overexpression of RARRES1 resulted in marked glomerular injury and albuminuria, while the overexpression of RARRES1 cleavage mutant had no effect. Conversely, podocyte-specific knockdown of Rarres1 in mice ameliorated glomerular injury in the setting of adriamycin-induced nephropathy. Our study demonstrates an important role and the mechanism of RARRES1 in podocyte injury in glomerular disease.
Collapse
Affiliation(s)
- Anqun Chen
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ye Feng
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Han Lai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yu Li
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Andrew Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Quan Hong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tianjun Guan
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Bichen Liu
- Department of Nephrology, Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Renal Section, James J. Peters VA Medical Center, Bronx, New York, USA
| |
Collapse
|
9
|
Abstract
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Collapse
|
10
|
Yuan Q, Miao J, Yang Q, Fang L, Fang Y, Ding H, Zhou Y, Jiang L, Dai C, Zen K, Sun Q, Yang J. Role of pyruvate kinase M2-mediated metabolic reprogramming during podocyte differentiation. Cell Death Dis 2020; 11:355. [PMID: 32393782 PMCID: PMC7214446 DOI: 10.1038/s41419-020-2481-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/17/2023]
Abstract
Podocytes, a type of highly specialized epithelial cells, require substantial levels of energy to maintain glomerular integrity and function, but little is known on the regulation of podocytes’ energetics. Lack of metabolic analysis during podocyte development led us to explore the distribution of mitochondrial oxidative phosphorylation and glycolysis, the two major pathways of cell metabolism, in cultured podocytes during in vitro differentiation. Unexpectedly, we observed a stronger glycolytic profile, accompanied by an increased mitochondrial complexity in differentiated podocytes, indicating that mature podocytes boost both glycolysis and mitochondrial metabolism to meet their augmented energy demands. In addition, we found a shift of predominant energy source from anaerobic glycolysis in immature podocyte to oxidative phosphorylation during the differentiation process. Furthermore, we identified a crucial metabolic regulator for podocyte development, pyruvate kinase M2. Pkm2-knockdown podocytes showed dramatic reduction of energy metabolism, resulting in defects of cell differentiation. Meanwhile, podocyte-specific Pkm2-knockout (KO) mice developed worse albuminuria and podocyte injury after adriamycin treatment. We identified mammalian target of rapamycin (mTOR) as a critical regulator of PKM2 during podocyte development. Pharmacological inhibition of mTOR potently abrogated PKM2 expression and disrupted cell differentiation, indicating the existence of metabolic checkpoint that need to be satisfied in order to allow podocyte differentiation.
Collapse
Affiliation(s)
- Qi Yuan
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Jiao Miao
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Qianqian Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Li Fang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Yi Fang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Hao Ding
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Yang Zhou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Lei Jiang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Science, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Qi Sun
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| | - Junwei Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
11
|
Morigi M, Perico L, Corna D, Locatelli M, Cassis P, Carminati CE, Bolognini S, Zoja C, Remuzzi G, Benigni A, Buelli S. C3a receptor blockade protects podocytes from injury in diabetic nephropathy. JCI Insight 2020; 5:131849. [PMID: 32161193 DOI: 10.1172/jci.insight.131849] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Renal activation of the complement system has been described in patients with diabetic nephropathy (DN), although its pathological relevance is still ill-defined. Here, we studied whether glomerular C3a, generated by uncontrolled complement activation, promotes podocyte damage, leading to proteinuria and renal injury in mice with type 2 diabetes. BTBR ob/ob mice exhibited podocyte loss, albuminuria, and glomerular injury accompanied by C3 deposits and increased C3a and C3a receptor (C3aR) levels. Decreased glomerular nephrin and α-actinin4 expression, coupled with integrin-linked kinase induction, were also observed. Treatment of DN mice with a C3aR antagonist enhanced podocyte density and preserved their phenotype, limiting proteinuria and glomerular injury. Mechanistically, ultrastructural and functional mitochondrial alterations, accompanied by downregulation of antioxidant superoxide dismutase 2 (SOD2) and increased protein oxidation, occurred in podocytes and were normalized by C3aR blockade. In cultured podocytes, C3a induced cAMP-dependent mitochondrial fragmentation. Alterations of mitochondrial membrane potential, SOD2 expression, and energetic metabolism were also found in response to C3a. Notably, C3a-induced podocyte motility was inhibited by SS-31, a peptide with mitochondrial protective effects. These data indicate that C3a blockade represents a potentially novel therapeutic strategy in DN for preserving podocyte integrity through the maintenance of mitochondrial functions.
Collapse
Affiliation(s)
- Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Paola Cassis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Claudia Elisa Carminati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Silvia Bolognini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,"L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Simona Buelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
12
|
Fan Y, Yi Z, D'Agati VD, Sun Z, Zhong F, Zhang W, Wen J, Zhou T, Li Z, He L, Zhang Q, Lee K, He JC, Wang N. Comparison of Kidney Transcriptomic Profiles of Early and Advanced Diabetic Nephropathy Reveals Potential New Mechanisms for Disease Progression. Diabetes 2019; 68:2301-2314. [PMID: 31578193 PMCID: PMC6868471 DOI: 10.2337/db19-0204] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
To identify the factors mediating the progression of diabetic nephropathy (DN), we performed RNA sequencing of kidney biopsy samples from patients with early DN, advanced DN, and normal kidney tissue from nephrectomy samples. A set of genes that were upregulated at early but downregulated in late DN were shown to be largely renoprotective, which included genes in the retinoic acid pathway and glucagon-like peptide 1 receptor. Another group of genes that were downregulated at early but highly upregulated in advanced DN consisted mostly of genes associated with kidney disease pathogenesis, such as those related to immune response and fibrosis. Correlation with estimated glomerular filtration rate (eGFR) identified genes in the pathways of iron transport and cell differentiation to be positively associated with eGFR, while those in the immune response and fibrosis pathways were negatively associated. Correlation with various histopathological features also identified the association with the distinct gene ontological pathways. Deconvolution analysis of the RNA sequencing data set indicated a significant increase in monocytes, fibroblasts, and myofibroblasts in advanced DN kidneys. Our study thus provides potential molecular mechanisms for DN progression and association of differential gene expression with the functional and structural changes observed in patients with early and advanced DN.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vivette D D'Agati
- Department of Pathology, Columbia University Medical Center, New York, NY
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiejun Wen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Zhou
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ze Li
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li He
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qunzi Zhang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Kidney Center at James J. Peters VA Medical Center, Bronx, NY
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Tamaki M, Tominaga T, Fujita Y, Koezuka Y, Ichien G, Murakami T, Kishi S, Yamamoto K, Abe H, Nagai K, Doi T. All-trans retinoic acid suppresses bone morphogenetic protein 4 in mouse diabetic nephropathy through a unique retinoic acid response element. Am J Physiol Endocrinol Metab 2019; 316:E418-E431. [PMID: 30601699 DOI: 10.1152/ajpendo.00218.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) causes mesangial matrix expansion, which results in glomerulosclerosis and renal failure. Collagen IV (COL4) is a major component of the mesangial matrix that is positively regulated by bone morphogenetic protein 4 (BMP4)/suppressor of mothers against decapentaplegic (Smad1) signaling. Because previous studies showed that retinoids treatment had a beneficial effect on kidney disease, we investigated the therapeutic potential of retinoids in DN, focusing especially on the regulatory mechanism of BMP4. Diabetes was induced with streptozotocin in 12-wk-old male Crl:CD1(ICR) mice, and, 1 mo later, we initiated intraperitoneal injection of all-trans retinoic acid (ATRA) three times weekly. Glomerular matrix expansion, which was associated with increased BMP4, phosphorylated Smad1, and COL4 expression, worsened in diabetic mice at 24 wk of age. ATRA administration alleviated DN and downregulated BMP4, phosopho-Smad1, and COL4. In cultured mouse mesangial cells, treatment with ATRA or a retinoic acid receptor-α (RARα) agonist significantly decreased BMP4 and COL4 expression. Genomic analysis suggested two putative retinoic acid response elements (RAREs) for the mouse Bmp4 gene. Chromatin immunoprecipitation analysis and reporter assays indicated a putative RARE of the Bmp4 gene, located 11,488-11,501 bp upstream of exon 1A and bound to RARα and retinoid X receptor (RXR), which suppressed BMP4 expression after ATRA addition. ATRA suppressed BMP4 via binding of a RARα/RXR heterodimer to a unique RARE, alleviating glomerular matrix expansion in diabetic mice. These findings provide a novel regulatory mechanism for treatment of DN.
Collapse
Affiliation(s)
- Masanori Tamaki
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Tatsuya Tominaga
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Yui Fujita
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | | | | | - Taichi Murakami
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Seiji Kishi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | | | - Hideharu Abe
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Kojiro Nagai
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Toshio Doi
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
- Research Institute for Production Development , Kyoto , Japan
| |
Collapse
|
14
|
Horne SJ, Vasquez JM, Guo Y, Ly V, Piret SE, Leonardo AR, Ling J, Revelo MP, Bogenhagen D, Yang VW, He JC, Mallipattu SK. Podocyte-Specific Loss of Krüppel-Like Factor 6 Increases Mitochondrial Injury in Diabetic Kidney Disease. Diabetes 2018; 67:2420-2433. [PMID: 30115650 PMCID: PMC6198342 DOI: 10.2337/db17-0958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/03/2018] [Indexed: 12/25/2022]
Abstract
Mitochondrial injury is uniformly observed in several murine models as well as in individuals with diabetic kidney disease (DKD). Although emerging evidence has highlighted the role of key transcriptional regulators in mitochondrial biogenesis, little is known about the regulation of mitochondrial cytochrome c oxidase assembly in the podocyte under diabetic conditions. We recently reported a critical role of the zinc finger Krüppel-like factor 6 (KLF6) in maintaining mitochondrial function and preventing apoptosis in a proteinuric murine model. In this study, we report that podocyte-specific knockdown of Klf6 increased the susceptibility to streptozotocin-induced DKD in the resistant C57BL/6 mouse strain. We observed that the loss of KLF6 in podocytes reduced the expression of synthesis of cytochrome c oxidase 2 with resultant increased mitochondrial injury, leading to activation of the intrinsic apoptotic pathway under diabetic conditions. Conversely, mitochondrial injury and apoptosis were significantly attenuated with overexpression of KLF6 in cultured human podocytes under hyperglycemic conditions. Finally, we observed a significant reduction in glomerular and podocyte-specific expression of KLF6 in human kidney biopsies with progression of DKD. Collectively, these data suggest that podocyte-specific KLF6 is critical to preventing mitochondrial injury and apoptosis under diabetic conditions.
Collapse
Affiliation(s)
- Sylvia J Horne
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Jessica M Vasquez
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Victoria Ly
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Sian E Piret
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Alexandra R Leonardo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Jason Ling
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Daniel Bogenhagen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - John C He
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Renal Section, James J. Peters VA Medical Center, New York, NY
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
- Renal Section, Northport VA Medical Center, Northport, NY
| |
Collapse
|
15
|
Guo Y, Pace J, Li Z, Ma'ayan A, Wang Z, Revelo MP, Chen E, Gu X, Attalah A, Yang Y, Estrada C, Yang VW, He JC, Mallipattu SK. Podocyte-Specific Induction of Krüppel-Like Factor 15 Restores Differentiation Markers and Attenuates Kidney Injury in Proteinuric Kidney Disease. J Am Soc Nephrol 2018; 29:2529-2545. [PMID: 30143559 PMCID: PMC6171275 DOI: 10.1681/asn.2018030324] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/02/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Podocyte injury is the hallmark of proteinuric kidney diseases, such as FSGS and minimal change disease, and destabilization of the podocyte's actin cytoskeleton contributes to podocyte dysfunction in many of these conditions. Although agents, such as glucocorticoids and cyclosporin, stabilize the actin cytoskeleton, systemic toxicity hinders chronic use. We previously showed that loss of the kidney-enriched zinc finger transcription factor Krüppel-like factor 15 (KLF15) increases susceptibility to proteinuric kidney disease and attenuates the salutary effects of retinoic acid and glucocorticoids in the podocyte. METHODS We induced podocyte-specific KLF15 in two proteinuric murine models, HIV-1 transgenic (Tg26) mice and adriamycin (ADR)-induced nephropathy, and used RNA sequencing of isolated glomeruli and subsequent enrichment analysis to investigate pathways mediated by podocyte-specific KLF15 in Tg26 mice. We also explored in cultured human podocytes the potential mediating role of Wilms Tumor 1 (WT1), a transcription factor critical for podocyte differentiation. RESULTS In Tg26 mice, inducing podocyte-specific KLF15 attenuated podocyte injury, glomerulosclerosis, tubulointerstitial fibrosis, and inflammation, while improving renal function and overall survival; it also attenuated podocyte injury in ADR-treated mice. Enrichment analysis of RNA sequencing from the Tg26 mouse model shows that KLF15 induction activates pathways involved in stabilization of actin cytoskeleton, focal adhesion, and podocyte differentiation. Transcription factor enrichment analysis, with further experimental validation, suggests that KLF15 activity is in part mediated by WT1. CONCLUSIONS Inducing podocyte-specific KLF15 attenuates kidney injury by directly and indirectly upregulating genes critical for podocyte differentiation, suggesting that KLF15 induction might be a potential strategy for treating proteinuric kidney disease.
Collapse
Affiliation(s)
| | | | - Zhengzhe Li
- Division of Nephrology, Department of Medicine and
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Edward Chen
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | - Vincent W Yang
- Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C He
- Division of Nephrology, Department of Medicine and
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York
- Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York; and
| | - Sandeep K Mallipattu
- Divisions of Nephrology and
- Renal Section, Northport Veterans Affairs Medical Center, Northport, New York
| |
Collapse
|
16
|
Yu SMW, Nissaisorakarn P, Husain I, Jim B. Proteinuric Kidney Diseases: A Podocyte's Slit Diaphragm and Cytoskeleton Approach. Front Med (Lausanne) 2018; 5:221. [PMID: 30255020 PMCID: PMC6141722 DOI: 10.3389/fmed.2018.00221] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 01/19/2023] Open
Abstract
Proteinuric kidney diseases are a group of disorders with diverse pathological mechanisms associated with significant losses of protein in the urine. The glomerular filtration barrier (GFB), comprised of the three important layers, the fenestrated glomerular endothelium, the glomerular basement membrane (GBM), and the podocyte, dictates that disruption of any one of these structures should lead to proteinuric disease. Podocytes, in particular, have long been considered as the final gatekeeper of the GFB. This specialized visceral epithelial cell contains a complex framework of cytoskeletons forming foot processes and mediate important cell signaling to maintain podocyte health. In this review, we will focus on slit diaphragm proteins such as nephrin, podocin, TRPC6/5, as well as cytoskeletal proteins Rho/small GTPases and synaptopodin and their respective roles in participating in the pathogenesis of proteinuric kidney diseases. Furthermore, we will summarize the potential therapeutic options targeting the podocyte to treat this group of kidney diseases.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States
| | | | - Irma Husain
- Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Belinda Jim
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States.,Renal Division, Jacobi Medical Center, Bronx, NY, United States
| |
Collapse
|
17
|
All-trans retinoic acid ameliorates inflammatory response mediated by TLR4/NF-κB during initiation of diabetic nephropathy. J Nutr Biochem 2018; 60:47-60. [PMID: 30193155 DOI: 10.1016/j.jnutbio.2018.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023]
Abstract
Diabetic nephropathy (DN) is the leading cause of renal failure worldwide and its complications have become a public health problem. Inflammation, oxidative stress and fibrosis play central roles in the progression of DN that lead to renal failure. Potential deleterious effect of inflammation in early evolution of DN is not fully disclosed. Therefore, it is relevant to explore therapies that might modulate this process in order to reduce DN progression. We explored the beneficial effect of all-trans retinoic acid (ATRA) in early inflammation in glomeruli, proximal and distal tubules in streptozotocin (STZ)-induced diabetes. ATRA was administered (1 mg/kg daily by gavage) on days 3 to 21 after STZ administration. It was found that 21 days after STZ injection, diabetic rats exhibited proteinuria, increased natriuresis and loss of body weight. Besides, diabetes induced an increase in interleukins [IL-1β, IL-1α, IL-16, IL-13, IL-2; tumor necrosis factor alpha (TNF-α)] and transforming growth factor-beta 1 (TGF-β1), chemokines (CCL2, CCL20, CXCL5 and CXCL7), adhesion molecules (ICAM-1 and L-selectin) and growth factors (GM-CSF, VEGF, PDGF) in glomeruli and proximal tubules, whereas ATRA treatment remarkably ameliorated these alterations. To further explore the mechanisms through which ATRA decreased inflammatory response, the NF-κB/p65 signaling mediated by TLR4 was studied. We found that ATRA administration attenuates the TLR4/NF-κB inflammatory signaling and prevents NF-κB nuclear translocation in glomeruli and proximal tubules.
Collapse
|
18
|
Gong L, Jiang L, Qin Y, Jiang X, Song K, Yu X. Protective effect of retinoic acid receptor α on hypoxia-induced epithelial to mesenchymal transition of renal tubular epithelial cells associated with TGF-β/MMP-9 pathway. Cell Biol Int 2018; 42:1050-1059. [PMID: 29719094 DOI: 10.1002/cbin.10982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022]
Abstract
Retinoic acid receptor α (RARα), a member of family of the nuclear retinoic acid receptors (RARs), plays an essential role in various chronic kidney diseases (CKD). Renal tubular epithelial to mesenchymal transition (EMT) is a common mechanism of progression of renal interstitial fibrosis (RIF). Hypoxia has been extensively considered as one of major inducers of renal tubular EMT. However, the effects of RARα on hypoxia-induced EMT have not yet been described so far. The aim of the present study was to explore the roles and potential mechanisms of RARα in hypoxia-induced EMT of renal tubular epithelial cells (RTECs). Our results showed that expression of RARα in RTECs subjected to hypoxia significantly was reduced, accompanied by decreased expression level of the epithelial marker E-cadherin, and increased expression levels of the mesenchymal markers α-smooth muscle actin (α-SMA) and vimentin, in accord with EMT. Meanwhile, hypoxia could cause RTECs to obviously express TGF-β and matrix metalloproteinase-9 (MMP-9). Furthermore, using lentivirus-based delivery vectors to overexpress RARα in RTECs, we demonstrated that RARα alleviated hypoxia-induced EMT of RTECs and downregulated the expression levels of TGF-β and MMP-9. In a word, RARα protects RTECs against EMT induced by hypoxia associated with TGF-β/MMP-9 pathway.
Collapse
Affiliation(s)
- Ling Gong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ling Jiang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuanhan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xingbo Jiang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Kunling Song
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xueyun Yu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
19
|
Dai Y, Chen A, Liu R, Gu L, Sharma S, Cai W, Salem F, Salant DJ, Pippin JW, Shankland SJ, Moeller MJ, Ghyselinck NB, Ding X, Chuang PY, Lee K, He JC. Retinoic acid improves nephrotoxic serum-induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney Int 2017; 92:1444-1457. [PMID: 28756872 PMCID: PMC5696080 DOI: 10.1016/j.kint.2017.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 04/06/2017] [Accepted: 04/27/2017] [Indexed: 11/24/2022]
Abstract
Proliferation of glomerular epithelial cells, including podocytes, is a key histologic feature of crescentic glomerulonephritis. We previously found that retinoic acid (RA) inhibits proliferation and induces differentiation of podocytes by activating RA receptor-α (RARα) in a murine model of HIV-associated nephropathy. Here, we examined whether RA would similarly protect podocytes against nephrotoxic serum-induced crescentic glomerulonephritis and whether this effect was mediated by podocyte RARα. RA treatment markedly improved renal function and reduced the number of crescentic lesions in nephritic wild-type mice, while this protection was largely lost in mice with podocyte-specific ablation of Rara (Pod-Rara knockout). At a cellular level, RA significantly restored the expression of podocyte differentiation markers in nephritic wild-type mice, but not in nephritic Pod-Rara knockout mice. Furthermore, RA suppressed the expression of cell injury, proliferation, and parietal epithelial cell markers in nephritic wild-type mice, all of which were significantly dampened in nephritic Pod-Rara knockout mice. Interestingly, RA treatment led to the coexpression of podocyte and parietal epithelial cell markers in a small subset of glomerular cells in nephritic mice, suggesting that RA may induce transdifferentiation of parietal epithelial cells toward a podocyte phenotype. In vitro, RA directly inhibited the proliferation of parietal epithelial cells and enhanced the expression of podocyte markers. In vivo lineage tracing of labeled parietal epithelial cells confirmed that RA increased the number of parietal epithelial cells expressing podocyte markers in nephritic glomeruli. Thus, RA attenuates crescentic glomerulonephritis primarily through RARα-mediated protection of podocytes and in part through the inhibition of parietal epithelial cell proliferation and induction of their transdifferentiation into podocytes.
Collapse
Affiliation(s)
- Yan Dai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anqun Chen
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Ruijie Liu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Leyi Gu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Nephrology, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shuchita Sharma
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Weijing Cai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - David J Salant
- Department of Medicine/Nephrology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Jeffrey W Pippin
- Department of Medicine, Division of Nephrology, University of Washington Medical Center, Seattle, Washington, USA
| | - Stuart J Shankland
- Department of Medicine, Division of Nephrology, University of Washington Medical Center, Seattle, Washington, USA
| | - Marcus J Moeller
- Department of Internal Medicine II, Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peter Y Chuang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Section, James J Peters VAMC, Bronx, New York, USA.
| |
Collapse
|
20
|
Chen X, Qin Y, Zhou T, Jiang L, Lei F, Qin H, Zhang L, Zhou Z. The potential role of retinoic acid receptor α on glomerulosclerosis in rats and podocytes injury is associated with the induction of MMP2 and MMP9. Acta Biochim Biophys Sin (Shanghai) 2017; 49:669-679. [PMID: 28645189 DOI: 10.1093/abbs/gmx066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Indexed: 02/05/2023] Open
Abstract
Retinoic acid receptor α (RARα) plays a crucial role in kidney disease. However, the underlying mechanisms in glomerulosclerosis (GS) is still not clear. The roles of RARα in an adriamycin (ADR)-induced GS rat model and in ADR-induced podocyte injury in vitro were investigated. RARα was over-expressed in GS rats, and serum, urine and kidney samples were collected to detect the induction of the expression of the receptor. RARα expression was inhibited and/or over-expressed in cultured podocytes following injury, as demonstrated by morphometric assays, cell toxicity, and matrix metalloproteinase (MMP) enzymatic activity. RARα displayed a renoprotective role in GS rats, resulting in a lower GS index, podocyte foot process fusion, and proteinuria, reduced serum creatinine and blood urea nitrogen. Further experiments indicated that RARα inhibited the accumulation of TGF-β1, α-smooth muscle actin, collagen IV, and fibronectin, while it induced MMP2 and MMP9 excessive expression in podocytes in vitro. RARα improved the renal function and attenuated the progression of GS that was associated with the over-expression of MMP2 and MMP9.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Pediatrics Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuanhan Qin
- Department of Pediatrics Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Ling Jiang
- Department of Pediatrics Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Fengying Lei
- Department of Pediatrics Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - He Qin
- Department of Pediatrics Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lei Zhang
- Department of Pediatrics Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhiqiang Zhou
- Department of Pediatrics Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
21
|
Chen XP, Qin YH. [Research advances in the protective effect of all-trans retinoic acid against podocyte injury]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:719-723. [PMID: 28606243 PMCID: PMC7390304 DOI: 10.7499/j.issn.1008-8830.2017.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/18/2017] [Indexed: 06/07/2023]
Abstract
All-trans retinoic acid (ATRA) is a vitamin A derivative and plays an important role in the regulation of cell aggregation, differentiation, apoptosis, proliferation, and inflammatory response. In recent years, some progress has been made in the role of ATRA in renal diseases, especially its protective effect on podocytes. This article reviews the research advances in podocyte injury, characteristics of ATRA, podocyte differentiation and regeneration induced by ATRA, and the protective effect of ATRA against proliferation, deposition of fibers, and apoptosis.
Collapse
Affiliation(s)
- Xiu-Ping Chen
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | | |
Collapse
|
22
|
Protein kinase A activation by retinoic acid in the nuclei of HL60 cells. Biochim Biophys Acta Gen Subj 2017; 1861:276-285. [DOI: 10.1016/j.bbagen.2016.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/21/2016] [Accepted: 11/28/2016] [Indexed: 11/23/2022]
|
23
|
Suwa H, Kishi H, Imai F, Nakao K, Hirakawa T, Minegishi T. Retinoic acid enhances progesterone production via the cAMP/PKA signaling pathway in immature rat granulosa cells. Biochem Biophys Rep 2016. [PMID: 29541688 PMCID: PMC5616100 DOI: 10.1016/j.bbrep.2016.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Retinoic acid (RA) is a metabolite of vitamin A and has important roles in development, differentiation, and reproduction. Activin has been shown to regulate the RA pathway and affect granulosa cell (GC) proliferation, suggesting that RA is important for early follicle development. However, little is known about the effects of RA on GC functions, particularly steroidogenesis, during the early follicle stage. The aim of this study was to investigate the effects of all-trans-RA (atRA) on progesterone production in immature rat GCs cultured without gonadotropin. Our results demonstrated that atRA enhanced progesterone production by upregulating the levels of steroidogenic acute regulatory protein (StAR) and cytochrome P450scc (Cyp11a1) mRNAs, but not 3β-hydroxysteroid dehydrogenase mRNA in immature rat GCs. Additionally, analysis of the mechanisms through which atRA upregulated StAR and Cyp11a1 mRNAs revealed that atRA enhanced intracellular cAMP accumulation and phosphorylation of cAMP response-element binding protein (CREB). In addition, H-89, an inhibitor of protein kinase A (PKA), abolished the stimulatory effects of atRA, indicating that atRA enhanced progesterone synthesis through cAMP/PKA signaling. In conclusion, our data demonstrated that atRA has a crucial role in progesterone synthesis in rat GCs during the early follicle stage. atRA upregulated StAR and Cyp11a1 and enhanced progesterone production. atRA enhanced intracellular cAMP accumulation and phosphorylation of CREB. Inhibition of PKA abolished the stimulatory effects of atRA. atRA mediated progesterone synthesis in rat GCs during the early follicle stage.
Collapse
|
24
|
Mallipattu SK, Guo Y, Revelo MP, Roa-Peña L, Miller T, Ling J, Shankland SJ, Bialkowska AB, Ly V, Estrada C, Jain MK, Lu Y, Ma'ayan A, Mehrotra A, Yacoub R, Nord EP, Woroniecki RP, Yang VW, He JC. Krüppel-Like Factor 15 Mediates Glucocorticoid-Induced Restoration of Podocyte Differentiation Markers. J Am Soc Nephrol 2016; 28:166-184. [PMID: 27288011 DOI: 10.1681/asn.2015060672] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 04/05/2016] [Indexed: 12/18/2022] Open
Abstract
Podocyte injury is the inciting event in primary glomerulopathies, such as minimal change disease and primary FSGS, and glucocorticoids remain the initial and often, the primary treatment of choice for these glomerulopathies. Because inflammation is not readily apparent in these diseases, understanding the direct effects of glucocorticoids on the podocyte, independent of the immunomodulatory effects, may lead to the identification of targets downstream of glucocorticoids that minimize toxicity without compromising efficacy. Several studies showed that treatment with glucocorticoids restores podocyte differentiation markers and normal ultrastructure and improves cell survival in murine podocytes. We previously determined that Krüppel-like factor 15 (KLF15), a kidney-enriched zinc finger transcription factor, is required for restoring podocyte differentiation markers in mice and human podocytes under cell stress. Here, we show that in vitro treatment with dexamethasone induced a rapid increase of KLF15 expression in human and murine podocytes and enhanced the affinity of glucocorticoid receptor binding to the promoter region of KLF15 In three independent proteinuric murine models, podocyte-specific loss of Klf15 abrogated dexamethasone-induced podocyte recovery. Furthermore, knockdown of KLF15 reduced cell survival and destabilized the actin cytoskeleton in differentiated human podocytes. Conversely, overexpression of KLF15 stabilized the actin cytoskeleton under cell stress in human podocytes. Finally, the level of KLF15 expression in the podocytes and glomeruli from human biopsy specimens correlated with glucocorticoid responsiveness in 35 patients with minimal change disease or primary FSGS. Thus, these studies identify the critical role of KLF15 in mediating the salutary effects of glucocorticoids in the podocyte.
Collapse
Affiliation(s)
| | - Yiqing Guo
- Division of Nephrology, Departments of Medicine and
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | | | - Jason Ling
- Division of Nephrology, Departments of Medicine and
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Victoria Ly
- Division of Nephrology, Departments of Medicine and
| | | | - Mukesh K Jain
- Case Cardiovascular Institute Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yuan Lu
- Case Cardiovascular Institute Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics and
| | - Anita Mehrotra
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Rabi Yacoub
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | | | | | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C He
- Department of Pharmacology and Systems Therapeutics and.,Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and.,Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York
| |
Collapse
|
25
|
Mallipattu SK, He JC. The podocyte as a direct target for treatment of glomerular disease? Am J Physiol Renal Physiol 2016; 311:F46-51. [PMID: 27097894 DOI: 10.1152/ajprenal.00184.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
The Centers for Disease Control and Prevention estimates more than 10% of adults in the United States, over 20 million Americans, have chronic kidney disease (CKD). A failure to maintain the glomerular filtration barrier directly contributes to the onset of CKD. The visceral epithelial cells, podocytes, are integral to the maintenance of this renal filtration barrier. Direct podocyte injury contributes to the onset and progression of glomerular diseases such as minimal change disease (MCD), focal segmental glomerular sclerosis (FSGS), diabetic nephropathy, and HIV-associated nephropathy (HIVAN). Since podocytes are terminally differentiated with minimal capacity to self-replicate, they are extremely sensitive to cellular injury. In the past two decades, our understanding of the mechanism(s) by which podocyte injury occurs has greatly expanded. With this newfound knowledge, therapeutic strategies have shifted to identifying targets directed specifically at the podocyte. Although the systemic effects of these agents are important, their direct effect on the podocyte proves to be essential in ameliorating glomerular disease. In this review, we highlight the mechanisms by which these agents directly target the podocyte independent of its systemic effects.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and Renal Section, James J. Peters VA Medical Center, New York, New York
| |
Collapse
|
26
|
Elsayed AM, Abdelghany TM, Akool ES, Abdel-Aziz AAH, Abdel-Bakky MS. All-trans retinoic acid potentiates cisplatin-induced kidney injury in rats: impact of retinoic acid signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:327-37. [PMID: 26659823 DOI: 10.1007/s00210-015-1193-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/15/2015] [Indexed: 12/18/2022]
Abstract
Cisplatin (cis-diammine dichloroplatinum (II), CDDP) is a widely used drug for treatment of various types of cancers. However, CDDP-induced nephrotoxicity remains the main dose-limiting side effect. Retinoids are a group of vitamin A-related compounds that exert their effects through retinoid receptors activation. In this study, we investigated the effect of CDDP treatment on retinoic acid receptor-α (RAR-α) and retinoid X receptor-α (RXR-α) expression. In addition, we investigated the possible modulatory effects of RAR agonist, all-trans retinoic acid (ATRA), on CDDP-induced nephrotoxicity. Rats were treated with saline, DMSO, CDDP, ATRA, or CDDP/ATRA. Twenty-four hours after the last ATRA injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CDDP treatment significantly increased serum levels of creatinine and urea, with concomitant decrease in serum albumin. Moreover, reduced glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities were significantly reduced with concurrent increase in kidney malondialdehyde (MDA) content following CDDP treatment. Furthermore, CDDP markedly upregulated tubular RAR-α, RXR-α, fibrin, and inducible nitric oxide synthase (iNOS) protein expression. Although administration of ATRA to control rats did not produce marked alterations in kidney function parameters, administration of ATRA to CDDP-treated rats significantly exacerbated CDDP-induced nephrotoxicity. In addition, CDDP/ATRA co-treatment significantly increased RAR-α, RXR-α, fibrin, and iNOS protein expression compared to CDDP alone. In conclusion, we report, for the first time, the crucial role of retinoid receptors in CDDP-induced nephrotoxicity. Moreover, our findings indicate that co-administration of ATRA with CDDP, although beneficial on the therapeutic effects, their deleterious effects on the kidney may limit their clinical use.
Collapse
Affiliation(s)
| | | | | | | | - Mohamed S Abdel-Bakky
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,College of Pharmacy, Aljouf University, Sakaka, Aljouf, 2014, Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Fan X, Wei J, Xiong H, Liu X, Benichou S, Gao X, Liu L. A homogeneous time-resolved fluorescence-based high-throughput screening for discovery of inhibitors of Nef-sdAb19 interaction. Int J Oncol 2015; 47:1485-93. [PMID: 26315450 DOI: 10.3892/ijo.2015.3132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/28/2015] [Indexed: 11/05/2022] Open
Abstract
The human immunodeficiency virus (HIV) protein negative factor (Nef) is important for AIDS pathogenesis. An anti-Nef single-domain antibody (sdAb19) derived from camelids has been previously generated and shown to effectively block the physiological functions of Nef in vitro and in vivo in nef-transgenic mice. However, sdAb19 must be ectopically expressed within the target cell to be able to exert its neutralizing effect on Nef, while the extra-cellular administration method turned out to be ineffective. This might suggest a default of the stability or/and deliverability of sdAb19. The identification of small molecule compounds capable of inhibiting the Nef-sdAb19 interaction and mimicking the neutralizing activity of sdAb19 in vivo would therefore be the means of circumventing the problem encountered with sdAb19. Here we describe the development of a high-throughput screening method combining the homogeneous time-resolved fluorescence (HTRF) and the microscale thermophoresis (MST) techniques for the identification of small-molecule compounds inhibiting the Nef-sdAb19 interaction by binding to Nef protein. Eight small-molecule compounds have been selected for their ability to significantly inhibit the Nef-sdAb19 interaction and to bind to Nef. These molecules could be further assessed for their potential of being the Nef-neutralizing agents in the future.
Collapse
Affiliation(s)
- Xiaoqin Fan
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, P.R. China
| | - Jinmei Wei
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, P.R. China
| | - Haiting Xiong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, P.R. China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, P.R. China
| | - Serge Benichou
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes, Paris, France
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, P.R. China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, P.R. China
| |
Collapse
|
28
|
Brosius FC, He JC. JAK inhibition and progressive kidney disease. Curr Opin Nephrol Hypertens 2015; 24:88-95. [PMID: 25415616 DOI: 10.1097/mnh.0000000000000079] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW To review the role of Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling in the progression of chronic kidney diseases. RECENT FINDINGS The JAK-STAT pathway transmits signals from extracellular ligands, including many cytokines and chemokines. While these responses are best characterized in lymphoid cells, they also occur in kidney cells such as podocytes, mesangial cells, and tubular cells. JAK-STAT expression and signaling abnormalities occur in humans and animal models of different chronic kidney diseases. Enhanced expression and augmented activity of JAK1, JAK2, and STAT3 promote diabetic nephropathy and their inhibition appears to reduce the disease. Activation of JAK-STAT signaling in autosomal dominant polycystic kidney disease may play an important role in cyst growth. Activation of JAK-STAT signaling promotes HIV-associated nephropathy and may also participate in the tubular responses to chronic obstructive uropathy. On the basis of data from experimental models, inhibition of JAK-STAT signaling, via increased expression of the suppressors of cytokine signaling proteins or pharmacologic inhibition of JAK and STAT proteins, could play a therapeutic role in multiple chronic kidney diseases. SUMMARY Activation of the JAK-STAT pathway appears to play a role in the progression of some chronic kidney diseases. More work is needed to determine the specific role the pathway plays in individual diseases.
Collapse
Affiliation(s)
- Frank C Brosius
- aDepartments of Internal Medicine and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA bDepartment of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
29
|
Mallipattu SK, He JC. The beneficial role of retinoids in glomerular disease. Front Med (Lausanne) 2015; 2:16. [PMID: 25853135 PMCID: PMC4370041 DOI: 10.3389/fmed.2015.00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/08/2015] [Indexed: 12/12/2022] Open
Abstract
The primary etiology of CKD is a direct consequence of initial dysfunction and injury of the glomerulus, the main filtration system. Podocytes are terminally differentiated epithelial cells in the glomerulus, whose major function is the maintenance of this renal filtration barrier. Podocyte injury is implicated in many glomerular diseases including focal segmental glomerular sclerosis and HIV-associated nephropathy. In many of these diseased conditions, the podocyte can either undergo dedifferentiation and proliferation, apoptosis, or cell detachment. Regardless of the initial type of injury, the podocyte ultimately loses its functional capacity to maintain the glomerular filtration barrier. Significant injury resulting in a loss of the podocytes and failure to maintain the renal filtration barrier contributes to progressive kidney disease. Consequently, therapies that prevent podocyte injury and promote their regeneration will have a major clinical impact on glomerular disease. Retinoic acid (RA), which is a derivative of vitamin A, has many cellular functions including induction of cell differentiation, regulation of apoptosis, and inhibition of inflammation and proliferation. RA is required for kidney development and is essential for cellular differentiation in the setting of podocyte injury. The mechanism by which RA directs its beneficial effects is multifactorial, ranging from its anti-inflammatory and anti-fibrotic effects to a direct effect of upregulating podocyte differentiation markers in the podocyte. The focus of this review is to provide an overview of RA in kidney development and glomerular disease. We also highlight the key mechanism(s) by which RA restores podocyte differentiation markers and ameliorates glomerular disease.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University , New York, NY , USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Renal Section, James J. Peters VA Medical Center , New York, NY , USA
| |
Collapse
|
30
|
Mallipattu SK, Horne SJ, D'Agati V, Narla G, Liu R, Frohman MA, Dickman K, Chen EY, Ma'ayan A, Bialkowska AB, Ghaleb AM, Nandan MO, Jain MK, Daehn I, Chuang PY, Yang VW, He JC. Krüppel-like factor 6 regulates mitochondrial function in the kidney. J Clin Invest 2015; 125:1347-61. [PMID: 25689250 DOI: 10.1172/jci77084] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022] Open
Abstract
Maintenance of mitochondrial structure and function is critical for preventing podocyte apoptosis and eventual glomerulosclerosis in the kidney; however, the transcription factors that regulate mitochondrial function in podocyte injury remain to be identified. Here, we identified Krüppel-like factor 6 (KLF6), a zinc finger domain transcription factor, as an essential regulator of mitochondrial function in podocyte apoptosis. We observed that podocyte-specific deletion of Klf6 increased the susceptibility of a resistant mouse strain to adriamycin-induced (ADR-induced) focal segmental glomerulosclerosis (FSGS). KLF6 expression was induced early in response to ADR in mice and cultured human podocytes, and prevented mitochondrial dysfunction and activation of intrinsic apoptotic pathways in these podocytes. Promoter analysis and chromatin immunoprecipitation studies revealed that putative KLF6 transcriptional binding sites are present in the promoter of the mitochondrial cytochrome c oxidase assembly gene (SCO2), which is critical for preventing cytochrome c release and activation of the intrinsic apoptotic pathway. Additionally, KLF6 expression was reduced in podocytes from HIV-1 transgenic mice as well as in renal biopsies from patients with HIV-associated nephropathy (HIVAN) and FSGS. Together, these findings indicate that KLF6-dependent regulation of the cytochrome c oxidase assembly gene is critical for maintaining mitochondrial function and preventing podocyte apoptosis.
Collapse
|
31
|
Choi R, Park HC, Lee K, Lee MG, Kim JW, Ki CS, Hwang YH, Ahn C. Identification of novel PKD1 and PKD2 mutations in Korean patients with autosomal dominant polycystic kidney disease. BMC MEDICAL GENETICS 2014; 15:129. [PMID: 25491204 PMCID: PMC4411869 DOI: 10.1186/s12881-014-0129-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 01/23/2023]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder. It is caused by mutations in the PKD1 and PKD2 genes, and manifests as progressive cyst growth and renal enlargement, resulting in renal failure. Although there have been a few studies on the frequency and spectrum of mutations in PKD1 and PKD2 in Korean patients with ADPKD, only exons 36–46, excluding the duplicated region, were analyzed, which makes it difficult to determine accurate mutation frequencies and mutation spectra. Methods We performed sequence analysis of 20 consecutive unrelated ADPKD patients using long-range polymerase chain reaction (PCR) to avoid pseudogene amplification, followed by exon-specific PCR and sequencing of the all exons of these two genes. Multiplex ligation-dependent probe amplification was performed in patients in whom pathogenic mutations in PKD1 or PKD2 were not identified by LR-PCR and direct sequencing to detect large genomic rearrangements. Results All patients met the diagnostic criteria of ADPKD, and pathogenic mutations were found in 18 patients (90.0%), comprising 15 mutations in PKD1 and three in PKD2. Among 10 novel mutations, eight mutations were found in the PKD1 gene while two mutations were found in the PKD2 gene. Eight of 14 PKD1 mutations (57.1%) were located in the duplicated region. Conclusions This study expands the spectra of mutations in the PKD1 and PKD2 genes and shows that the mutation frequencies of these genes in Korean ADPKD patients are similar to those reported in other ethnicities. Sequence analysis, including analysis of the duplicated region, is essential for molecular diagnosis of ADPKD.
Collapse
Affiliation(s)
- Rihwa Choi
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (135-710) 81 Irwon-Ro Gangnam-gu, Seoul, South Korea.
| | - Hayne Cho Park
- Department of Internal Medicine, Seoul National University College of Medicine, (110-744) 28 Yeongeon-dong, Jongno-gu, Seoul, South Korea.
| | - Kyunghoon Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (135-710) 81 Irwon-Ro Gangnam-gu, Seoul, South Korea.
| | - Myoung-Gun Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (135-710) 81 Irwon-Ro Gangnam-gu, Seoul, South Korea.
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (135-710) 81 Irwon-Ro Gangnam-gu, Seoul, South Korea.
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (135-710) 81 Irwon-Ro Gangnam-gu, Seoul, South Korea.
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, (139-872), 1306 Dunsan 2(i)-dong, Seo-gu, Daejeon, Seoul, South Korea.
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, (110-744) 28 Yeongeon-dong, Jongno-gu, Seoul, South Korea.
| |
Collapse
|
32
|
Chen XP, Lei FY, Qin YH, Zhou TB, Jiang L, Zhao YJ, Huang WF, Peng QL. The role of retinoic acid receptors in the signal pathway of all-trans retinoic acid-induced differentiation in adriamycin-induced podocyte injury. J Recept Signal Transduct Res 2014; 34:484-492. [PMID: 24846581 DOI: 10.3109/10799893.2014.920394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
All-trans retinoic acid (ATRA) plays an essential role in cell survival and differentiation by binding to retinoic acid receptors (RARs), including RAR-α, RAR-β, and RAR-γ. Injury to podocytes is the most frequent cause of glomerulosclerosis (GS). This study was performed to investigate which of the RAR subtypes is involved in the signal pathway of ATRA-induced differentiation of injured podocytes. ATRA (0.1 μM) was administered to Adriamycin (ADR)-induced, injured podocytes, in vitro. Morphological changes were observed. The protein/mRNA expression of podocin, nephrin, transforming growth factor β1(TGF-β1), and the RARs (RAR-α,β,γ) was measured by RT-PCR and Western blotting. ATRA treatment ameliorated cell hypertrophy and reduced the shedding of the cytoplasm which was observed under light microscope and the extension of the foot processes was observed under scan electron microscope. Compared with the injured podocytes, ATRA exposure significantly increased the protein/mRNA expression of nephrin and podocin and it markedly reduced TGF-β1 (all p < 0.05). Compared with the injured podocytes, the protein/mRNA expression of RAR-α and RAR-γ was significantly increased after ATRA exposure; however, the expression level of RAR-β was not significantly different. The RAR-α/γ protein expression level was positively correlated with nephrin and podocin (-α, r = 0.637, 0.663; -γ, r = 0.882, 0.878; all p < 0.05), and negatively correlated with TGF-β1 (-α, r = -0.650; -γ, r = -0.739; all p < 0.05). The RAR-β protein expression level was not correlated with nephrin, podocin and TGF-β1 (r = -0.312, 0.079, -0.279; all p > 0.05). In conclusion, RAR-α/γ (and RAR-β to a lesser degree) may be involved in the signal pathway of ATRA-induced differentiation in injured podocytes.
Collapse
Affiliation(s)
- Xiu-Ping Chen
- Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University , Nanning , China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lei FY, Zhou TB, Qin YH, Chen XP, Li ZY. Potential signal pathway of all-trans retinoic acid for MMP-2 and MMP-9 expression in injury podocyte induced by adriamycin. J Recept Signal Transduct Res 2014; 34:378-385. [PMID: 24694005 DOI: 10.3109/10799893.2014.904873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All-trans-retinoic acid (ATRA) can regulate some specific genes expression in various tissue and cells via nuclear retinoic acid receptors (RARs), including three subtypes: retinoic acid receptor-alpha (RAR-α), retinoic acid receptor-beta (RAR-β) and retinoic acid receptor-gamma (RAR-γ). Podocyte injury plays a pivotal role in the progression of glomerulosclerosis (GS). This study was performed to study the potential signal pathway of ATRA in the expression of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9) in injury podocyte. Cells were divided into three groups: group of negative control (NC), group of injury podocyte induced by adriamycin (ADR) (AI) and group of ADR inducing podocyte injury model treated with ATRA (AA). The cells morphology changes were detected using microscope and scanning electron microscopy. MMP-2 and MMP-9 enzymic activity was detected using the gelatin zymography method. Protein and mRNA expressions of MMP-2, MMP-9, RAR-α, RAR-β and RAR-γ were measured by western-blot and real-time RT-PCR. Enzymatic activity of MMP-2 and MMP-9 in group AA was significantly enhanced compared to AI group after ATRA-treated 24 h (p < 0.05). The protein and mRNA expressions of MMP-2/MMP-9 in group AA were significantly increased than those in group AI at both 12 and 24 h time points (p < 0.05). Compared to group AI, RAR-α and RAR-γ protein/mRNA expressions of group AA were significantly increased at both 12 and 24 h time points (p < 0.05). There was no difference for the expression of RAR-β between group AI and group AA (p > 0.05). RAR-α protein level was positively correlated with MMP-2 or MMP-9 protein expression (p < 0.05), and RAR-γ protein level was also positively correlated with MMP-2 or MMP-9 protein expression (p < 0.05). In conclusion, ATRA may increase expression of MMP-2 and MMP-9 by the potential signal pathway of RAR-α and RAR-γ in injury podocyte induced by adriamycin, but not RAR-β.
Collapse
Affiliation(s)
- Feng-Ying Lei
- Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University , NanNing , China and
| | | | | | | | | |
Collapse
|
34
|
Abstract
Retinoids are essential in the development and function of several organs, exerting potent effects on stem cell systems. All-trans retinoic acid, through binding to the retinoic acid response elements, alters transcription of numerous genes in stem cells, leading to an exit from the self-renewing state and promoting differentiation. In the kidney, retinoids protect against injury and ameliorate function in multiple experimental models of disease. Recent evidence suggests that retinoids act on renal progenitors by promoting their differentiation into mature podocytes and retinoic acid-induced podocyte differentiation is impaired by proteinuria because of sequestration of retinoic acid by albumin. However, retinoic acid administration can revert renal progenitor differentiation and promote podocyte regeneration. A more complete understanding of retinoid-dependent renal progenitor differentiation into podocytes should reward us with new insights into the mechanisms of progression toward glomerulosclerosis.
Collapse
Affiliation(s)
- Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the Development of de novo Therapies, University of Florence, Florence, Italy.
| | - Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the Development of de novo Therapies, University of Florence, Florence, Italy; Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the Development of de novo Therapies, University of Florence, Florence, Italy
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of de novo Therapies, University of Florence, Florence, Italy; Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy; Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
35
|
Advances in the pathogenesis of HIV-associated kidney diseases. Kidney Int 2014; 86:266-74. [PMID: 24827777 DOI: 10.1038/ki.2014.167] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/17/2022]
Abstract
Despite improved outcomes among persons living with HIV who are treated with antiretroviral therapy, they remain at increased risk for acute and chronic kidney diseases. Moreover, since HIV can infect renal epithelial cells, the kidney might serve as a viral reservoir that would need to be eradicated when attempting to achieve full virologic cure. In recent years, much progress has been made in elucidating the mechanism by which HIV infects renal epithelial cells and the viral and host factors that promote development of kidney disease. Polymorphisms in APOL1 confer markedly increased risk of HIV-associated nephropathy; however, the mechanism by which ApoL1 variants may promote kidney disease remains unclear. HIV-positive persons are at increased risk of acute kidney injury, which may be a result of a high burden of subclinical kidney disease and/or viral factors and frequent exposure to nephrotoxins. Despite the beneficial effect of antiretroviral therapy in preventing and treating HIVAN, and possibly other forms of kidney disease in persons living with HIV, some of these medications, including tenofovir, indinavir, and atazanavir can induce acute and/or chronic kidney injury via mitochondrial toxicity or intratubular crystallization. Further research is needed to better understand factors that contribute to acute and chronic kidney injury in HIV-positive patients and to develop more effective strategies to prevent and treat kidney disease in this vulnerable population.
Collapse
|
36
|
Li X, Dai Y, Chuang PY, He JC. Induction of retinol dehydrogenase 9 expression in podocytes attenuates kidney injury. J Am Soc Nephrol 2014; 25:1933-41. [PMID: 24652806 DOI: 10.1681/asn.2013111150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The intracellular concentration of retinoic acid is determined by two sequential oxidation reactions that convert retinol to retinoic acid. We recently demonstrated that retinoic acid synthesis is significantly impaired in glomeruli of HIV-1 transgenic mice (Tg26), a murine model of HIV-associated nephropathy. This impaired retinoic acid synthesis correlates with reduced renal expression of retinol dehydrogenase 9, which catalyzes the rate-limiting step of retinoic acid synthesis by converting retinol to retinal. Because retinoic acid has renal protective effects and can induce podocyte differentiation, we hypothesized that restoration of retinoic acid synthesis could slow the progression of renal disease. Herein, we demonstrate that overexpression of retinol dehydrogenase 9 in cultured podocytes induces the expression of podocyte differentiation markers. Furthermore, we confirm that podocyte-specific overexpression of retinol dehydrogenase 9 in mice with established kidney disease due to either HIV-associated nephropathy or adriamycin-induced nephropathy decreases proteinuria, attenuates kidney injury, and restores podocyte differentiation markers. Our data suggest that restoration of retinoic acid synthesis could be a new approach to treat kidney disease.
Collapse
Affiliation(s)
- Xuezhu Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and
| | - Yan Dai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Peter Y Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
37
|
Li X, Tao H, Xie K, Ni Z, Yan Y, Wei K, Chuang PY, He JC, Gu L. cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion. PLoS One 2014; 9:e92003. [PMID: 24642777 PMCID: PMC3958405 DOI: 10.1371/journal.pone.0092003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/15/2014] [Indexed: 11/28/2022] Open
Abstract
Our previous in vitro studies suggested that cyclic AMP (cAMP) signaling prevents adriamycin (ADR) and puromycin aminonucleoside (PAN)-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac) pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator), PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.
Collapse
Affiliation(s)
- Xiaoying Li
- Renal Division and Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hua Tao
- Renal Division and Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kewei Xie
- Renal Division and Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhaohui Ni
- Renal Division and Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yucheng Yan
- Renal Division and Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kai Wei
- Renal Division and Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peter Y. Chuang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - John Cijiang He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Renal Section, James J Peter Veterans Affairs Medical Center, Bronx, New York, United States of America
| | - Leyi Gu
- Renal Division and Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| |
Collapse
|
38
|
Azeloglu EU, Hardy SV, Eungdamrong NJ, Chen Y, Jayaraman G, Chuang PY, Fang W, Xiong H, Neves SR, Jain MR, Li H, Ma’ayan A, Gordon RE, He JC, Iyengar R. Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 2014; 7:ra12. [PMID: 24497609 PMCID: PMC4220789 DOI: 10.1126/scisignal.2004621] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Collapse
Affiliation(s)
- Evren U. Azeloglu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Simon V. Hardy
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Narat John Eungdamrong
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Yibang Chen
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Gomathi Jayaraman
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Peter Y. Chuang
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Wei Fang
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Susana R. Neves
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Mohit R. Jain
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey–New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey–New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ronald E. Gordon
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - John Cijiang He
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
39
|
Iyengar R, He JC, VanHook AM. Science Signaling
Podcast: 4 February 2014. Sci Signal 2014. [DOI: 10.1126/scisignal.2005106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteomic analysis and computational methods identify potential targets for reversing kidney damage.
Collapse
Affiliation(s)
- Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - John Cijiang He
- Department of Pharmacology and Systems Therapeutics, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005, USA
| |
Collapse
|
40
|
Manna PR, Slominski AT, King SR, Stetson CL, Stocco DM. Synergistic activation of steroidogenic acute regulatory protein expression and steroid biosynthesis by retinoids: involvement of cAMP/PKA signaling. Endocrinology 2014; 155:576-91. [PMID: 24265455 PMCID: PMC3891939 DOI: 10.1210/en.2013-1694] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both retinoic acid receptors (RARs) and retinoid X receptors (RXRs) mediate the action of retinoids that play important roles in reproductive development and function, as well as steroidogenesis. Regulation of steroid biosynthesis is principally mediated by the steroidogenic acute regulatory protein (StAR); however, the modes of action of retinoids in the regulation of steroidogenesis remain obscure. In this study we demonstrate that all-trans retinoic acid (atRA) enhances StAR expression, but not its phosphorylation (P-StAR), and progesterone production in MA-10 mouse Leydig cells. Activation of the protein kinase A (PKA) cascade, by dibutyrl-cAMP or type I/II PKA analogs, markedly increased retinoid-responsive StAR, P-StAR, and steroid levels. Targeted silencing of endogenous RARα and RXRα, with small interfering RNAs, resulted in decreases in 9-cis RA-stimulated StAR and progesterone levels. Truncation of and mutational alterations in the 5'-flanking region of the StAR gene demonstrated the importance of the -254/-1-bp region in retinoid responsiveness. An oligonucleotide probe encompassing an RXR/liver X receptor recognition motif, located within the -254/-1-bp region, specifically bound MA-10 nuclear proteins and in vitro transcribed/translated RXRα and RARα in EMSAs. Transcription of the StAR gene in response to atRA and dibutyrl-cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of cAMP response-element binding protein (CREB). Chromatin immunoprecipitation studies revealed the association of phosphorylation of CREB, CREB binding protein, RXRα, and RARα to the StAR promoter. Further studies elucidated that hormone-sensitive lipase plays an important role in atRA-mediated regulation of the steroidogenic response that involves liver X receptor signaling. These findings delineate the molecular events by which retinoids influence cAMP/PKA signaling and provide additional and novel insight into the regulation of StAR expression and steroidogenesis in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry (P.R.M., S.R.K., D.M.S.), Department of Dermatology and Pathology (C.L.S.), Texas Tech University Health Sciences Center, Lubbock, Texas 79430; and Department of Pathology and Laboratory Medicine (A.T.S.), University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | | | | | | |
Collapse
|
41
|
Atta MG, Lucas GM, Fine DM. HIV-associated nephropathy: epidemiology, pathogenesis, diagnosis and management. Expert Rev Anti Infect Ther 2014; 6:365-71. [DOI: 10.1586/14787210.6.3.365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Zhou TB, Drummen GPC, Jiang ZP, Long YB, Qin YH. Association of peroxisome proliferator-activated receptors/retinoic acid receptors with renal diseases. J Recept Signal Transduct Res 2013; 33:349-352. [PMID: 24050824 DOI: 10.3109/10799893.2013.838786] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ), belongs to the nuclear receptor superfamily, and is a nuclear transcription receptor involving in the regulation of several biochemical pathways, such as cell growth, differentiation, and apoptosis. The nuclear retinoic acid receptors (RARs) are transcriptional transregulators that control the expression of specific subsets of genes in a ligand-dependent manner, and include three subtypes (RARα, RARβ, and RARγ). These control the expression of specific gene subsets subsequent to ligand binding and to strictly control phosphorylation processes. The current status of knowledge indicates that there might be inter- or overlapping actions between PPARγ and RARs, and there might be an association of PPARγ/RARs with renal diseases. Various agonists of both receptor families seem to prevent or retard the progression of renal disease. Herein, we review if causal relationships can be established between PPARγ/RARs and renal diseases and its manifestations.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | | | | | | | |
Collapse
|
43
|
Zhou TB, Wu WF, Qin YH, Yin SS. Association of all-trans retinoic acid treatment with the renin-angiotensin aldosterone system expression in glomerulosclerosis rats. J Renin Angiotensin Aldosterone Syst 2013; 14:299-307. [PMID: 23144044 DOI: 10.1177/1470320312465220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVE All-trans retinoic acid (ATRA), a promising therapeutic agent, has been confirmed in animal experiments as playing a protective role against renal diseases. The renin-angiotensin aldosterone system (RAAS) plays a key role in the pathogenesis of renal diseases, and RAAS inhibitors can prevent the progression of kidney diseases. In our previous study, we found that ATRA could play a protective role against glomerulosclerosis (GS) lesions in rats, and its effect was similar to RAAS inhibitors. However, whether ATRA treatment was associated with RAAS expression was not clear. METHODS Six-week-old male Wistar rats were divided into three groups: sham operation group (SHO), glomerulosclerosis model group without treatment (GS) and GS model group treated with ATRA (GA). At the end of 13 weeks, the relevant samples were collected and analyzed. RESULTS The mRNA and protein expression of angiotensin-converting enzyme 1 (ACE1) in the GS group was notably higher when compared with the SHO group. However, mRNA and protein expression of ACE1 in the ATRA treatment group was markedly down-regulated when compared with the GS group. Angiotensin-converting enzyme 2 (ACE2) expression (mRNA or protein) in the GS group was reduced compared with that in the SHO group, and ATRA markedly increased the mRNA and protein expression of ACE2 compared with the GS group. The levels of protein expression of angiotensin I and angiotensin II were significantly up-regulated in the GS group compared with those in the SHO group, and ATRA reduced their expression in the GA group when compared with the GS group. CONCLUSION ATRA is associated with RAAS expression in GS rats, but its detailed mechanism needs to be elucidated by further research.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- 1Department of Pediatric Nephrology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, China
| | | | | | | |
Collapse
|
44
|
Mallipattu SK, He JC. A new mechanism for albuminuria-induced podocyte injury. J Am Soc Nephrol 2013; 24:1709-11. [PMID: 23990672 DOI: 10.1681/asn.2013070714] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York
| | | |
Collapse
|
45
|
|
46
|
Zhou TB, Drummen GPC, Qin YH. The controversial role of retinoic acid in fibrotic diseases: analysis of involved signaling pathways. Int J Mol Sci 2012; 14:226-243. [PMID: 23344030 PMCID: PMC3565260 DOI: 10.3390/ijms14010226] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/03/2012] [Accepted: 12/10/2012] [Indexed: 02/02/2023] Open
Abstract
Fibrotic diseases, such as liver, pulmonary and renal fibrosis, are common end-stage conditions and represent a major global health problem. Furthermore, effective therapeutic measures are presently unavailable. Extracellular matrix accumulation is the most prominent characteristic in the pathogenesis of fibrotic disease. Retinoic acid, including all-trans retinoic acid, 9-cis and 13-cis retinoic acid, play important roles in various physiological processes, such as in embryonic development, reproduction, vision, cell growth, differentiation, apoptosis and inflammation. Present studies report that retinoic acid treatment may affect various processes involved in the onset and progression of fibrotic disease. However, the therapeutic effects of retinoic acid in such diseases remain controversial. Several reports indicate that retinoic acid positively affects the progression of fibrosis and alleviates the accumulation of the extracellular matrix, whereas other studies report the opposite; that retinoic acid exacerbates fibrosis and induces extracellular matrix accumulation. Signaling pathways might be an important influencing factor and differences in signaling events might be responsible for the contradictory role of retinoic acid in fibrotic diseases. Since there was no review available that investigated the role of retinoic acid and the signaling pathways involved, we retrospectively studied the literature and provide a comprehensive analysis of retinoic acid's role in fibrotic diseases, and provide an overview of the signal transduction pathways involved in its pathogenesis.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Pediatric Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; E-Mail:
| | - Gregor P. C. Drummen
- Cellular Stress and Ageing Program, Bionanoscience and Bio-Imaging Program, Bio & Nano-Solutions, Helmutstr. 3A, Düsseldorf 40472, Germany; E-Mail:
| | - Yuan-Han Qin
- Department of Pediatric Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; E-Mail:
| |
Collapse
|
47
|
Long YB, Qin YH, Zhou TB, Lei FY. Association of retinoic acid receptors with extracellular matrix accumulation in rats with renal interstitial fibrosis disease. Int J Mol Sci 2012; 13:14073-14085. [PMID: 23203050 PMCID: PMC3509566 DOI: 10.3390/ijms131114073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 11/29/2022] Open
Abstract
The nuclear retinoic acid receptors (RARs) function as ligand-dependent transcriptional regulators and include three subtypes (RARα, RARβ and RARγ), which control the expression of specific gene subsets subsequent to ligand binding and to strictly controlled phosphorylation processes. Extracellular matrix (ECM) accumulation is the most important characteristic of renal interstitial fibrosis (RIF). This study was performed to investigate whether RARs were associated with ECM accumulation in the progression of RIF in rats. Eighty Wistar male rats were divided into a sham operation group (SHO) and a model group subjected to unilateral ureteral obstruction (GU) at random; n = 40, respectively. The RIF disease in GU group was established by left ureteral ligation. The renal tissues were collected at two weeks and four weeks after surgery. Protein expressions of RARα, RARβ, RARγ, transforming growth factor-βl (TGF-β1), collagen-IV (Col-IV) and fibronectin (FN) were detected using immunohistochemical analysis, and mRNA expressions of RARα, RARβ, RARγ and TGF-β1 in renal tissue were detected by real time reverse transcription polymerase chain reaction. RIF index in renal interstitium was also calculated. When compared with those in SHO group, expressions of RARα and RARβ (protein and mRNA) were markedly reduced in the GU group (each p < 0.01). There was no marked difference for the expression of RARγ (protein and mRNA) between the SHO group and the GU group. The expressions of TGF-β1, Col-IV, FN and the RIF index in the GU group were markedly increased when compared with those in the SHO group (each p < 0.01). The protein expression of RARα/RARβ was negatively correlated with protein expression of TGF-β1, Col-IV or FN and the RIF index (all p < 0.01). In conclusion, the low expression of RARα/RARβ is associated with ECM accumulation in the progression of RIF in rats, suggesting that RARα/RARβ is a potentially therapeutic target for prevention of RIF.
Collapse
Affiliation(s)
- Yao-Bin Long
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; E-Mails: (Y.-B.L.); (T.-B.Z.); (F.-Y.L.)
| | - Yuan-Han Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; E-Mails: (Y.-B.L.); (T.-B.Z.); (F.-Y.L.)
| | - Tian-Biao Zhou
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; E-Mails: (Y.-B.L.); (T.-B.Z.); (F.-Y.L.)
| | - Feng-Ying Lei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; E-Mails: (Y.-B.L.); (T.-B.Z.); (F.-Y.L.)
| |
Collapse
|
48
|
Zhang J, Pippin JW, Vaughan MR, Krofft RD, Taniguchi Y, Romagnani P, Nelson PJ, Liu ZH, Shankland SJ. Retinoids augment the expression of podocyte proteins by glomerular parietal epithelial cells in experimental glomerular disease. Nephron Clin Pract 2012; 121:e23-37. [PMID: 23107969 DOI: 10.1159/000342808] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS A decrease in glomerular podocyte number in membranous nephropathy and focal segmental glomerulosclerosis (FSGS) ultimately underlines glomerulosclerosis and the decrease in kidney function. Recent studies have shown that in these diseases, glomerular parietal epithelial cells begin to express proteins considered unique to podocytes, and that these glomerular epithelial transition cells might serve as podocyte progenitors. Because retinoids improve many forms of experimental glomerular disease characterized by podocyte injury and loss, we asked if all-trans retinoic acid (ATRA) induces parietal epithelial cells to express podocyte proteins. METHODS ATRA or vehicle was administered to rats with experimental membranous nephropathy (passive Heymann nephritis model) and mice with experimental FSGS (anti-glomerular antibody model) following the onset of proteinuria. Immunohistochemistry staining of PAX2 (parietal epithelial cell marker), WT-1 (podocyte cell marker), and Ki-67 (proliferation marker) were performed on kidney tissues. RESULTS Compared to diseased animals receiving vehicle, ATRA statistically significantly increased the number of glomerular transition cells, defined as cells double-staining for PAX2 and WT-1, in membranous nephropathy at weeks 2, 5 and 16, and in FSGS at weeks 1 and 2. This was accompanied by an increase in the number of podocytes compared to diseased controls receiving vehicle. CONCLUSION ATRA increases the number of glomerular epithelial transition cells in experimental proteinuric glomerular diseases. Thus, ATRA may provide a useful pharmacologic approach to decipher the mechanisms underlying the possible progenitor role of parietal epithelial cells.
Collapse
Affiliation(s)
- Jiong Zhang
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Wash 98195-6521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
OBJECTIVES We aim to pharmacologically downregulate heat shock protein 27 (HSP27) through triptolide (TPL) to improve the drug sensitivity of pancreatic cancer to cisplatin (DDP). METHODS In vitro, we assessed cell viability and apoptosis by the combination of TPL and DDP in gemcitabine-resistant human pancreatic carcinoma PANC-1 and MIA PaCa-2 cell lines and examined the effect of silencing HSP27 by a small interfering RNA on cytotoxicity induced by TPL or DDP. In vivo, we apply TPL with DDP in a xenograft model to test the synergic action. RESULTS Triptolide cooperates with DDP to decrease cell viability and to induce apoptosis via the mitochondrial pathway, which is accompanied by a sharp decline in HSP27. Knocking down endogenous HSP27 can sensitize cancer cells to cytotoxicity with TPL or DDP, indicating the critical role of HSP27 down-regulation in the synergic effect. Meanwhile, TPL acts in synergy with DDP to cause tumor regression in vivo. CONCLUSIONS The combined therapy of TPL and DDP triggers a synergic apoptosis via inhibiting HSP27 in human gemcitabine-resistant pancreatic carcinoma and has a strong potential to be developed into a new effective regimen for pancreatic cancer treatment.
Collapse
|
50
|
Khurana S, Bruggeman LA, Kao HY. Nuclear hormone receptors in podocytes. Cell Biosci 2012; 2:33. [PMID: 22995171 PMCID: PMC3543367 DOI: 10.1186/2045-3701-2-33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/10/2012] [Indexed: 11/14/2022] Open
Abstract
Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses.
Collapse
Affiliation(s)
- Simran Khurana
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU) and the Comprehensive Cancer Center of CWRU, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|