1
|
Li N, Li G. Sphingolipid signaling in kidney diseases. Am J Physiol Renal Physiol 2025; 328:F431-F443. [PMID: 39933715 DOI: 10.1152/ajprenal.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Sphingolipids are a family of bioactive lipids. The key components include ceramides, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate. Sphingolipids were originally considered to be primarily structural elements of cell membranes but were later recognized as bioactive signaling molecules that play diverse roles in cellular behaviors such as cell differentiation, migration, proliferation, and death. Studies have demonstrated changes in key components of sphingolipids in the kidneys under different conditions and their important roles in the renal function and the pathogenesis of various kidney diseases. This review summarizes the most recent advances in the role of sphingolipid signaling in kidney diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
2
|
Hackl A, Weber LT. The Ca 2+-actin-cytoskeleton axis in podocytes is an important, non-immunologic target of immunosuppressive therapy in proteinuric kidney diseases. Pediatr Nephrol 2025:10.1007/s00467-025-06670-z. [PMID: 39856247 DOI: 10.1007/s00467-025-06670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
The integrity of the filtration barrier of the kidney relies on the proper composition of podocyte interdigitating foot processes. Their architecture is supported by a complex actin-cytoskeleton. Following podocyte stress or injury, podocytes encounter structural changes, including rearrangement of the actin network and subsequent effacement of the foot processes. Immunosuppressive drugs, which are currently used as treatment in proteinuric kidney diseases, have been shown to exert not only immune-mediated effects. This review will focus on the direct effects of glucocorticoids, cyclosporine A, tacrolimus, mycophenolate mofetil, and rituximab on podocytes by regulation of Ca2+ ion channels and consecutive downstream signaling which prevent cytoskeletal rearrangements and ultimately proteinuria. In addition, the efficacy of these drugs in genetic nephrotic syndrome will be discussed.
Collapse
Affiliation(s)
- Agnes Hackl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.
| | - Lutz T Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany
| |
Collapse
|
3
|
Kim JJ, Yang EJ, Molina David J, Cho S, Ficarella M, Pape N, Schiffer JE, Njeim R, Kim SS, Lo Re C, Fontanella A, Kaber M, Sloan A, Merscher S, Fornoni A. Ezetimibe Enhances Lipid Droplet and Mitochondria Contact Formation, Improving Fatty Acid Transfer and Reducing Lipotoxicity in Alport Syndrome Podocytes. Int J Mol Sci 2024; 25:13134. [PMID: 39684843 DOI: 10.3390/ijms252313134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Mitochondrial dysfunction is a critical factor in the pathogenesis of Alport syndrome (AS), contributing to podocyte injury and disease progression. Ezetimibe, a lipid-lowering drug, is known to inhibit cholesterol and fatty acid uptake and to reduce triglyceride content in the kidney cortex of mice with AS. However, its effects on lipid droplet (LD) utilization by mitochondria have not been explored. Transmission electron microscopy (TEM) and mitochondrial functional assays (ATP production, mitochondrial membrane potential, and citrate synthase activity) were used to investigate the impact of ezetimibe on LD-mitochondria contact formation and mitochondrial function in Col4a3KO (AS) and wildtype (WT) podocytes. TEM analysis revealed significant mitochondrial abnormalities in AS podocytes, including swollen mitochondria and reduced cristae density, while mitochondrial function assays showed decreased ATP production and lowered mitochondrial membrane potential. AS podocytes also demonstrated a higher content of LD but with reduced LD-mitochondria contact sites. Ezetimibe treatment significantly increased the number of LD-mitochondria contact sites, enhanced fatty acid transfer efficiency, and reduced intracellular lipid accumulation. These changes were associated with a marked reduction in the markers of lipotoxicity, such as apoptosis and oxidative stress. Mitochondrial function was significantly improved, evidenced by increased basal respiration, ATP production, maximal respiration capacity, and the restoration of mitochondrial membrane potential. Additionally, mitochondrial swelling was significantly reduced in ezetimibe-treated AS podocytes. Our findings reveal a novel role for ezetimibe in enhancing LD-mitochondria contact formation, leading to more efficient fatty acid transfer, reduced lipotoxicity, and improved mitochondrial function in AS podocytes. These results suggest that ezetimibe could be a promising therapeutic agent for treating mitochondrial dysfunction and lipid metabolism abnormalities in AS.
Collapse
Affiliation(s)
- Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eun-Jeong Yang
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Judith Molina David
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sunjoo Cho
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Ficarella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nils Pape
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Josephin Elizabeth Schiffer
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephanie S Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claudia Lo Re
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U "G. Martino", University of Messina, 98122 Messina, Italy
| | - Antonio Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Kaber
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Wu M, Yoon CY, Park J, Kim G, Nam BY, Kim S, Park JT, Han SH, Kang SW, Yoo TH. The role of PCSK9 in glomerular lipid accumulation and renal injury in diabetic kidney disease. Diabetologia 2024; 67:1980-1997. [PMID: 38879617 DOI: 10.1007/s00125-024-06191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/25/2024] [Indexed: 09/19/2024]
Abstract
AIMS/HYPOTHESIS Glomerular lipid accumulation is a defining feature of diabetic kidney disease (DKD); however, the precise underlying mechanism requires further elucidation. Recent evidence suggests a role for proprotein convertase subtilisin/kexin type 9 (PCSK9) in intracellular lipid homeostasis. Although PCSK9 is present in kidneys, its role within kidney cells and relevance to renal diseases remain largely unexplored. Therefore, we investigated the role of intracellular PCSK9 in regulating lipid accumulation and homeostasis in the glomeruli and podocytes under diabetic conditions. Furthermore, we aimed to identify the pathophysiological mechanisms responsible for the podocyte injury that is associated with intracellular PCSK9-induced lipid accumulation in DKD. METHODS In this study, glomeruli were isolated from human kidney biopsy tissues, and glomerular gene-expression analysis was performed. Also, db/db and db/m mice were used to perform glomerular gene-expression profiling. We generated DKD models using a high-fat diet and low-dose intraperitoneal streptozocin injection in C57BL/6 and Pcsk9 knockout (KO) mice. We analysed cholesterol and triacylglycerol levels within the kidney cortex. Lipid droplets were evaluated using BODIPY staining. We induced upregulation and downregulation of PCSK9 expression in conditionally immortalised mouse podocytes using lentivirus and siRNA transfection techniques, respectively, under diabetic conditions. RESULTS A significant reduction in transcription level of PCSK9 was observed in glomeruli of individuals with DKD. PCSK9 expression was also reduced in podocytes of animals under diabetic conditions. We observed significantly higher lipid accumulation in kidney tissues of Pcsk9 KO DKD mice compared with wild-type (WT) DKD mice. Additionally, Pcsk9 KO mouse models of DKD exhibited a significant reduction in mitochondria number vs WT models, coupled with a significant increase in mitochondrial size. Moreover, albuminuria and podocyte foot process effacement were observed in WT and Pcsk9 KO DKD mice, with KO DKD mice displaying more pronounced manifestations. Immortalised mouse podocytes exposed to diabetic stimuli exhibited heightened intracellular lipid accumulation, mitochondrial injury and apoptosis, which were ameliorated by Pcsk9 overexpression and aggravated by Pcsk9 knockdown in mouse podocytes. CONCLUSIONS/INTERPRETATION The downregulation of PCSK9 in podocytes is associated with lipid accumulation, which leads to mitochondrial dysfunction, cell apoptosis and renal injury. This study sheds new light on the potential involvement of PCSK9 in the pathophysiology of glomerular lipid accumulation and podocyte injury in DKD.
Collapse
Affiliation(s)
- Meiyan Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Chang-Yun Yoon
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Gyuri Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Seonghun Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea.
| |
Collapse
|
5
|
Šakić Z, Atić A, Potočki S, Bašić-Jukić N. Sphingolipids and Chronic Kidney Disease. J Clin Med 2024; 13:5050. [PMID: 39274263 PMCID: PMC11396415 DOI: 10.3390/jcm13175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Sphingolipids (SLs) are bioactive signaling molecules essential for various cellular processes, including cell survival, proliferation, migration, and apoptosis. Key SLs such as ceramides, sphingosine, and their phosphorylated forms play critical roles in cellular integrity. Dysregulation of SL levels is implicated in numerous diseases, notably chronic kidney disease (CKD). This review focuses on the role of SLs in CKD, highlighting their potential as biomarkers for early detection and prognosis. SLs maintain renal function by modulating the glomerular filtration barrier, primarily through the activity of podocytes. An imbalance in SLs can lead to podocyte damage, contributing to CKD progression. SL metabolism involves complex enzyme-catalyzed pathways, with ceramide serving as a central molecule in de novo and salvage pathways. Ceramides induce apoptosis and are implicated in oxidative stress and inflammation, while sphingosine-1-phosphate (S1P) promotes cell survival and vascular health. Studies have shown that SL metabolism disorders are linked to CKD progression, diabetic kidney disease, and glomerular diseases. Targeting SL pathways could offer novel therapeutic approaches for CKD. This review synthesizes recent research on SL signaling regulation in kidney diseases, emphasizing the importance of maintaining SL balance for renal health and the potential therapeutic benefits of modulating SL pathways.
Collapse
Affiliation(s)
- Zrinka Šakić
- Vuk Vrhovac University Clinic, Dugi dol 4a, 10000 Zagreb, Croatia
| | - Armin Atić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavica Potočki
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Bašić-Jukić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Hou S, Yang B, Chen Q, Xu Y, Li H. Potential biomarkers of recurrent FSGS: a review. BMC Nephrol 2024; 25:258. [PMID: 39134955 PMCID: PMC11318291 DOI: 10.1186/s12882-024-03695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS), a clinicopathological condition characterized by nephrotic-range proteinuria, has a high risk of progression to end-stage renal disease (ESRD). Meanwhile, the recurrence of FSGS after renal transplantation is one of the main causes of graft loss. The diagnosis of recurrent FSGS is mainly based on renal puncture biopsy transplants, an approach not widely consented by patients with early mild disease. Therefore, there is an urgent need to find definitive diagnostic markers that can act as a target for early diagnosis and intervention in the treatment of patients. In this review, we summarize the domestic and international studies on the pathophysiology, pathogenesis and earliest screening methods of FSGS and describe the functions and roles of specific circulating factors in the progression of early FSGS, in order to provide a new theoretical basis for early diagnosis of FSGS recurrence, as well as aid the exploration of therapeutic targets.
Collapse
Affiliation(s)
- Shuang Hou
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Bo Yang
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Qian Chen
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Yuan Xu
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| | - Haiyang Li
- Hepatological surgery department, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| |
Collapse
|
7
|
Le Berre L, Tilly G, Pilet P, Brouard S, Dantal J. The Immunosuppressive Drug LF15-0195 Acts Also on Glomerular Lesions, by a Change in Cytoskeleton Distribution in Podocyte. Am J Nephrol 2024; 55:583-596. [PMID: 39074452 DOI: 10.1159/000539965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Buffalo/Mna rats spontaneously develop nephrotic syndrome (NS) which recurs after renal transplantation. The immunosuppressive drug LF15-0195 can promote regression of the initial and post-transplantation nephropathy via induction of regulatory T cells. We investigate if this drug has an additional effect on the expression and localization of podocyte specific proteins. METHODS Buffalo/Mna kidney samples were collected before and after the occurrence of proteinuria, and after the remission of proteinuria induced by LF15-0195 treatment and compared by quantitative RT-PCR, Western blot, electron, and confocal microscopy to kidney samples of age-matched healthy rats. Cytoskeleton changes were assessed in culture by stress fibers induction by TNFα. RESULTS We observed, by electron microscopy, a restoration of foot process architecture in the LF15-0195-treated Buff/Mna kidneys, consistent with proteinuria remission. Nephrin, podocin, CD2AP, and α-actinin-4 mRNA levels remained low during the active disease in the Buff/Mna, in comparison with healthy rats which increase, while podocalyxin and synaptopodin transcripts were elevated before the occurrence of the disease but did not differ from healthy animals after. No difference in the mRNA and protein expression between the untreated and the LF15-0195-treated proteinuric Buff/Mna were seen for these 6 proteins. No changes were observed by confocal microscopy in the protein distribution at a cellular level, but a more homogenous distribution similar to healthy rats, was observed within the glomeruli of LF15-0195-treated rats. In addition, LF15-0195 could partially restore actin cytoskeleton of endothelial cells in TNFα-induced-cell stress experiment. CONCLUSION The effect of LF15-0195 treatment appears to be mediated by 2 mechanisms: an immunomodulatory effect via regulatory T cells induction, described in our previous work and which can act on immune cell involved in the disease pathogenesis, and an effect on the restoration of podocyte cytoskeleton, independent of expression levels of the proteins involved in the slit diaphragm and podocyte function, showed in this article.
Collapse
Affiliation(s)
- Ludmilla Le Berre
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| | - Gaëlle Tilly
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| | - Paul Pilet
- Regenerative Medicine and Skeleton, RMeS, UMR 1229, Oniris, Nantes Université, INSERM, Nantes, France
| | - Sophie Brouard
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| | - Jacques Dantal
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, CHU Nantes, Nantes Université, INSERM, Nantes, France
| |
Collapse
|
8
|
Wang Y, Liu T, Wu Y, Wang L, Ding S, Hou B, Zhao H, Liu W, Li P. Lipid homeostasis in diabetic kidney disease. Int J Biol Sci 2024; 20:3710-3724. [PMID: 39113692 PMCID: PMC11302873 DOI: 10.7150/ijbs.95216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Lipid homeostasis is crucial for proper cellular and systemic functions. A growing number of studies confirm the importance of lipid homeostasis in diabetic kidney disease (DKD). Lipotoxicity caused by imbalance in renal lipid homeostasis can further exasperate renal injury. Large lipid deposits and lipid droplet accumulation are present in the kidneys of DKD patients. Autophagy plays a critical role in DKD lipid homeostasis and is involved in the regulation of lipid content. Inhibition or reduction of autophagy can lead to lipid accumulation, which in turn further affects autophagy. Lipophagy selectively recognizes and degrades lipids and helps to regulate cellular lipid metabolism and maintain intracellular lipid homeostasis. Therefore, we provide a systematic review of fatty acid, cholesterol, and sphingolipid metabolism, and discuss the responses of different renal intrinsic cells to imbalances in lipid homeostasis. Finally, we discuss the mechanism by which autophagy, especially lipophagy, maintains lipid homeostasis to support the development of new DKD drugs targeting lipid homeostasis.
Collapse
Affiliation(s)
- Ying Wang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Shaowei Ding
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baoluo Hou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
9
|
Tolerico M, Merscher S, Fornoni A. Normal and Dysregulated Sphingolipid Metabolism: Contributions to Podocyte Injury and Beyond. Cells 2024; 13:890. [PMID: 38891023 PMCID: PMC11171506 DOI: 10.3390/cells13110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Podocyte health is vital for maintaining proper glomerular filtration in the kidney. Interdigitating foot processes from podocytes form slit diaphragms which regulate the filtration of molecules through size and charge selectivity. The abundance of lipid rafts, which are ordered membrane domains rich in cholesterol and sphingolipids, near the slit diaphragm highlights the importance of lipid metabolism in podocyte health. Emerging research shows the importance of sphingolipid metabolism to podocyte health through structural and signaling roles. Dysregulation in sphingolipid metabolism has been shown to cause podocyte injury and drive glomerular disease progression. In this review, we discuss the structure and metabolism of sphingolipids, as well as their role in proper podocyte function and how alterations in sphingolipid metabolism contributes to podocyte injury and drives glomerular disease progression.
Collapse
Affiliation(s)
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
10
|
Song B, Jiang Y, Lin Y, Liu J, Jiang Y. Contribution of sphingomyelin phosphodiesterase acid-like 3B to the proliferation, migration, and invasion of ovarian cancer cells. Transl Cancer Res 2024; 13:1954-1968. [PMID: 38737677 PMCID: PMC11082662 DOI: 10.21037/tcr-24-309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Background Cancer has the highest mortality rate among gynecological cancers and poses a serious threat to women's lives. However, the treatment options for ovarian cancer are still limited, and exploring effective targeted biomarkers is particularly important for predicting and treating ovarian cancer. Therefore, it is necessary to explore the molecular mechanisms of the occurrence and development of ovarian cancer. Methods This investigation encompassed the analysis of gene expression profiles, measurement of transcription levels of potential target genes in peripheral blood samples from ovarian cancer patients and characterization of the ovarian cancer-related secretory protein sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Through bioinformatics analysis, potential target genes were identified, and their association with overall survival (OS) and progression-free survival (PFS) in ovarian cancer patients was assessed utilizing relevant databases. Subsequently, differences in target gene expression in ovarian cancer tissue samples were validated through protein blotting and quantitative real-time PCR (qRT-qPCR). Cell proliferation assays using the cell count kit-8 (CCK-8) method, as well as transwell chamber assay and pre coated matrix gel chamber assay were employed to elucidate the role of SMPDL3B in ovarian cancer cell migration and invasion. Results This study revealed a substantial upregulation of SMPDL3B in the serum of ovarian cancer patients, correlating with an unfavorable prognosis. High SMPDL3B expression was linked not only to increased proliferation of ovarian cancer cells, but also enhanced migration and invasion. Remarkably, the knockdown the human alkaline ceramidase 2 (ACER2) gene in cancer cells with heightened SMPDL3B expression significantly inhibited cell proliferation, migration, and invasion induced by SMPDL3B activation (P<0.05), highlighting the functional interplay between ACER2 and SMPDL3B in ovarian cancer. Conclusions In summary, this study proposes SMPDL3B as a prognostic marker for ovarian cancer, with implications for potential therapeutic intervention targeting the ACER2-SMPDL3B axis.
Collapse
Affiliation(s)
- Baozhi Song
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Yu Jiang
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Ying Lin
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Jiahua Liu
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Yatao Jiang
- Department of Obstetrics, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
11
|
Han YZ, Du BX, Zhu XY, Wang YZY, Zheng HJ, Liu WJ. Lipid metabolism disorder in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1336402. [PMID: 38742197 PMCID: PMC11089115 DOI: 10.3389/fendo.2024.1336402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.
Collapse
Affiliation(s)
- Yi-Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang-Zhi-Yuan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Zhong D, Chen J, Qiao R, Song C, Hao C, Zou Y, Bai M, Su W, Yang B, Sun D, Jia Z, Sun Y. Genetic or pharmacologic blockade of mPGES-2 attenuates renal lipotoxicity and diabetic kidney disease by targeting Rev-Erbα/FABP5 signaling. Cell Rep 2024; 43:114075. [PMID: 38583151 DOI: 10.1016/j.celrep.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and no specific drugs are clinically available. We have previously demonstrated that inhibiting microsomal prostaglandin E synthase-2 (mPGES-2) alleviated type 2 diabetes by enhancing β cell function and promoting insulin production. However, the involvement of mPGES-2 in DKD remains unclear. Here, we aimed to analyze the association of enhanced mPGES-2 expression with impaired metabolic homeostasis of renal lipids and subsequent renal damage. Notably, global knockout or pharmacological blockage of mPGES-2 attenuated diabetic podocyte injury and tubulointerstitial fibrosis, thereby ameliorating lipid accumulation and lipotoxicity. These findings were further confirmed in podocyte- or tubule-specific mPGES-2-deficient mice. Mechanistically, mPGES-2 and Rev-Erbα competed for heme binding to regulate fatty acid binding protein 5 expression and lipid metabolism in the diabetic kidney. Our findings suggest a potential strategy for treating DKD via mPGES-2 inhibition.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jingshuo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Ranran Qiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chang Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yingying Zou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mi Bai
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wen Su
- Department of Pathophysiology, Shenzhen University, Shenzhen 518060, China; Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, China.
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.
| |
Collapse
|
13
|
Kaya M, Girişgen İ, Yalçın N, Becerir T, Şenol H, Gülten G, Yüksel S. The Importance of Sphingomyelin Phosphodiesterase Acid-Like 3b (SMPDL-3b) Levels in Kidney Biopsy Specimens of Children With Nephrotic Syndrome. Fetal Pediatr Pathol 2023; 42:936-949. [PMID: 37818552 DOI: 10.1080/15513815.2023.2267683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE It remains unclear whether the low amount of SMPDL-3b required for rituximab binding is the cause of treatment resistance in patients with treatment-resistant nephrotic syndrome with advanced podocyte injury. Given the limited number of studies on the relationship between rituximab and SMPDL-3b, this study was conducted to assess whether SMPDL-3b levels in pretreatment renal biopsy specimens can be used to predict the clinical effectiveness of immunosuppressive drugs, especially rituximab, in children with nephrotic syndrome. METHODS Kidney biopsy specimens from 44 patients diagnosed with idiopatic nephrotic syndrome were analyzed using immunohistochemical staining with an anti-SMPDL-3b antibody and real-time polymerase chain reaction (PCR) for SMPDL-3b mRNA expression. RESULTS We showed that SMPDL-3b mRNA expression and anti-SMPDL-3b antibody staining did not differ significantly between the patient groups with different responses to immunosuppressive therapies. CONCLUSION Our results suggest that SMPDL-3b may actually be an indicator of disease progression rather than a marker for predicting response to a particular immunosuppressive agent.
Collapse
Affiliation(s)
- Muhammet Kaya
- Department of Pediatric Nephrology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - İlknur Girişgen
- Department of Pediatric Nephrology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Nagihan Yalçın
- Department of Pathology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Tülay Becerir
- Department of Pediatric Nephrology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Hande Şenol
- Department of Biostatistics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gülsün Gülten
- Department of Pathology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Selcuk Yüksel
- Department of Pediatric Nephrology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
14
|
Wang Y, Liu T, Cai Y, Liu W, Guo J. SIRT6's function in controlling the metabolism of lipids and glucose in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1244705. [PMID: 37876546 PMCID: PMC10591331 DOI: 10.3389/fendo.2023.1244705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes mellitus (DM) and the main cause of excess mortality in patients with type 2 DM. The pathogenesis and progression of DN are closely associated with disorders of glucose and lipid metabolism. As a member of the sirtuin family, SIRT6 has deacetylation, defatty-acylation, and adenosine diphosphate-ribosylation enzyme activities as well as anti-aging and anticancer activities. SIRT6 plays an important role in glucose and lipid metabolism and signaling, especially in DN. SIRT6 improves glucose and lipid metabolism by controlling glycolysis and gluconeogenesis, affecting insulin secretion and transmission and regulating lipid decomposition, transport, and synthesis. Targeting SIRT6 may provide a new therapeutic strategy for DN by improving glucose and lipid metabolism. This review elaborates on the important role of SIRT6 in glucose and lipid metabolism, discusses the potential of SIRT6 as a therapeutic target to improve glucose and lipid metabolism and alleviate DN occurrence and progression of DN, and describes the prospects for future research.
Collapse
Affiliation(s)
- Ying Wang
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzi Cai
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
SU L, HAO J, ZHANG N, WU S, WU X, WEI W. SMPDL3B contributes to gastric adenocarcinoma cells progression by promoting the infiltration of M2 macrophages. Turk J Med Sci 2023; 53:1635-1647. [PMID: 38813495 PMCID: PMC10760593 DOI: 10.55730/1300-0144.5732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/12/2023] [Accepted: 10/04/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim The common disease gastric adenocarcinoma (GAC) has a high morbidity and mortality, so there is an urgent need for research to explore new diagnostic markers and therapeutic targets. This investigation was carried out to investigate the expression of sphingomyelin phosphodiesterase acid-like 3b (SMPDL3B) in GAC and its effects on tumor progression. Materials and methods Samples were collected from patients who underwent radical gastrectomy from January 2021 to December 2022. Along with the normal gastric epithelial cell lines GES-1 and SGC-7901, the AGS, MGC-803, and MSN-45 human gastric cancer cell lines were used to confirm SMPDL3B expression. RT-qPCR, Western blot, immunohistochemical, cell proliferation, assay of wound healing, transwell migration assay, invasion assay, flow cytometry, and immune evaluation experiments were carried out. Results SMPDL3B was found to be substantially expressed in GAC, and this condition has a bad prognosis. By establishing SMPDL3B knockdown and overexpression of GAC cell lines, this study confirmed that SMPDL3B promoted tumor cell proliferation, migration, and invasion. Additional bioinformatics research revealed a connection between SMPDL3B and immune cell infiltration in the GAC immunological microenvironment, which enhanced tumor cell proliferation by promoting the infiltration content of M2 macrophages. Conclusion This study determined the function of SMPDL3B for the clinical diagnosis, prediction, and novel management of GAC.
Collapse
Affiliation(s)
- Li SU
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin,
China
| | - Jian HAO
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin,
China
| | - Na ZHANG
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin,
China
| | - Shan WU
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin,
China
| | - Xiuhua WU
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin,
China
| | - Wei WEI
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin,
China
| |
Collapse
|
16
|
Ye S, Hu YP, Zhou Q, Zhang H, Xia ZZ, Zhao SZ, Wang Z, Wang SY, Wang XY, Zhang YK, Chen ZD, Mao GY, Zheng C. Lipidomics Profiling Reveals Serum Phospholipids Associated with Albuminuria in Early Type 2 Diabetic Kidney Disease. ACS OMEGA 2023; 8:36543-36552. [PMID: 37810655 PMCID: PMC10552467 DOI: 10.1021/acsomega.3c05504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
Early screening and administration of DKD are beneficial for renal outcomes of type 2 diabetic patients. However, the current early diagnosis using the albuminuria/creatine ratio (ACR) contains limitations. This study aimed to compare serum lipidome variation between type 2 diabetes and early DKD patients with increased albuminuria through an untargeted lipidomics method to explore the potential lipid biomarkers for DKD identification. 92 type 2 diabetic patients were enrolled and divided into two groups: DM group (ACR < 3 mg/mmol, n = 49) and early DKD group (3 mg/mmol ≤ ACR < 30 mg/mmol, n = 43). Fasting serum was analyzed through an ultraperformance liquid mass spectrometry tandem chromatography system (LC-MS). Orthogonal partial least-squares discriminant analysis (OPLS-DA) and univariate and multivariate analysis were performed to filter differentially depressed lipids. Receiver operating characteristic (ROC) curves were used to estimate the diagnostic capability of potential lipid biomarkers. We found that serum phospholipids including phosphatidylserine (PS), sphingomyelin (SM), and phosphatidylcholine (PC) were significantly upregulated in the DKD group and were highly correlated with the ACR. In addition, a panel of two phospholipids including PS(27:0)-H and PS(30:2e)-H showed good performance to help clinical lipids in early DKD identification, which increased the area under the curve (AUC) from 0.568 to 0.954. The study exhibited the serum lipidome variation in early DKD patients, and the increased phospholipids might participate in the development of albuminuria. The panel of PS(27:0)-H and PS(30:2e)-H could be a potential biomarker for DKD diagnosis.
Collapse
Affiliation(s)
- Shu Ye
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Ye-peng Hu
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Qiao Zhou
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Hang Zhang
- Diabetes
Center and Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital
of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhe-zheng Xia
- Center
on Evidence-Based Medicine & Clinical Epidemiological Research,
School of Public Health, Wenzhou Medical
University, Wenzhou 325035, China
| | - Shu-zhen Zhao
- Center
on Evidence-Based Medicine & Clinical Epidemiological Research,
School of Public Health, Wenzhou Medical
University, Wenzhou 325035, China
| | - Zhe Wang
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Sheng-yao Wang
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Xin-yi Wang
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Yi-kai Zhang
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Zhi-da Chen
- Department
of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Guang-yun Mao
- Center
on Evidence-Based Medicine & Clinical Epidemiological Research,
School of Public Health, Wenzhou Medical
University, Wenzhou 325035, China
| | - Chao Zheng
- Department
of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
- Diabetes
Center and Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital
of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
17
|
Shen HH, Zhao Q, Wen YP, Wu R, Du SY, Huang XB, Wen XT, Cao SJ, Zeng L, Yan QG. Porcine reproductive and respiratory syndrome virus upregulates SMPDL3B to promote viral replication by modulating lipid metabolism. iScience 2023; 26:107450. [PMID: 37583552 PMCID: PMC10424083 DOI: 10.1016/j.isci.2023.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a severe threat to the health of pigs globally. Host factors play a critical role in PRRSV replication. Using PRRSV as a model for genome-scale CRISPR knockout (KO) screening, we identified a host factor critical to PRRSV infection: sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Our findings show that SMPDL3B restricted PRRSV attachment, entry, replication, and secretion and that its depletion significantly inhibited PRRSV proliferation, indicating that SMPDL3B plays a positive role in PRRSV replication. Our data also show that SMPDL3B deficiency resulted in an accumulation of intracellular lipid droplets (LDs). The expression level of key genes (ACC, SCD-1, and FASN) involved in lipogenesis was increased, whereas the fundamental lipolysis gene, ATGL, was inhibited when SMPDL3B was knocked down. Overall, our findings suggest that SMPDL3B deficiency can effectively inhibit viral infection through the modulation of lipid metabolism.
Collapse
Affiliation(s)
- Huan-Huan Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Yi-Ping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Sen-Yan Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Xiao-Bo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Xin-Tian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
18
|
Burke GW, Mitrofanova A, Fontanella A, Ciancio G, Roth D, Ruiz P, Abitbol C, Chandar J, Merscher S, Fornoni A. The podocyte: glomerular sentinel at the crossroads of innate and adaptive immunity. Front Immunol 2023; 14:1201619. [PMID: 37564655 PMCID: PMC10410139 DOI: 10.3389/fimmu.2023.1201619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common glomerular disorder that manifests clinically with the nephrotic syndrome and has a propensity to recur following kidney transplantation. The pathophysiology and therapies available to treat FSGS currently remain elusive. Since the podocyte appears to be the target of apparent circulating factor(s) that lead to recurrence of proteinuria following kidney transplantation, this article is focused on the podocyte. In the context of kidney transplantation, the performance of pre- and post-reperfusion biopsies, and the establishment of in vitro podocyte liquid biopsies/assays allow for the development of clinically relevant studies of podocyte biology. This has given insight into new pathways, involving novel targets in innate and adaptive immunity, such as SMPDL3b, cGAS-STING, and B7-1. Elegant experimental studies suggest that the successful clinical use of rituximab and abatacept, two immunomodulating agents, in our case series, may be due to direct effects on the podocyte, in addition to, or perhaps distinct from their immunosuppressive functions. Thus, tissue biomarker-directed therapy may provide a rational approach to validate the mechanism of disease and allow for the development of new therapeutics for FSGS. This report highlights recent progress in the field and emphasizes the importance of kidney transplantation and recurrent FSGS (rFSGS) as a platform for the study of primary FSGS.
Collapse
Affiliation(s)
- George W. Burke
- Division of Kidney−Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alla Mitrofanova
- Research, Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Antonio Fontanella
- Research, Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gaetano Ciancio
- Division of Kidney−Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David Roth
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Phil Ruiz
- Transplant Pathology, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carolyn Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jayanthi Chandar
- Division of Pediatric Kidney Transplantation, Department of Pediatrics, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
19
|
Li Q, Li J, Wang K, Liao L, Li Y, Liang H, Huang C, Gan J, Dong X, Hu Y, Cheng J, Ji H, Liu C, Zeng M, Yu S, Wang B, Qian J, Tang Z, Peng Y, Tang S, Li M, Zhou J, Yan J, Li C. Activation of Sphingomyelin Phosphodiesterase 3 in Liver Regeneration Impedes the Progression of Colorectal Cancer Liver Metastasis Via Exosome-Bound Intercellular Transfer of Ceramides. Cell Mol Gastroenterol Hepatol 2023; 16:385-410. [PMID: 37245564 PMCID: PMC10372907 DOI: 10.1016/j.jcmgh.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND & AIMS The machinery that prevents colorectal cancer liver metastasis (CRLM) in the context of liver regeneration (LR) remains elusive. Ceramide (CER) is a potent anti-cancer lipid involved in intercellular interaction. Here, we investigated the role of CER metabolism in mediating the interaction between hepatocytes and metastatic colorectal cancer (CRC) cells to regulate CRLM in the context of LR. METHODS Mice were intrasplenically injected with CRC cells. LR was induced by 2/3 partial hepatectomy (PH) to mimic the CRLM in the context of LR. The alteration of corresponding CER-metabolizing genes was examined. The biological roles of CER metabolism in vitro and in vivo were examined by performing a series of functional experiments. RESULTS Induction of LR augmented apoptosis but promoted matrix metalloproteinase 2 (MMP2) expression and epithelial-mesenchymal transition (EMT) to increase the invasiveness of metastatic CRC cells, resulting in aggressive CRLM. Up-regulation of sphingomyelin phosphodiesterase 3 (SMPD3) was determined in the regenerating hepatocytes after LR induction and persisted in the CRLM-adjacent hepatocytes after CRLM formation. Hepatic Smpd3 knockdown was found to further promote CRLM in the context of LR by abolishing mitochondrial apoptosis and augmenting the invasiveness in metastatic CRC cells by up-regulating MMP2 and EMT through promoting the nuclear translocation of β-catenin. Mechanistically, we found that hepatic SMPD3 controlled the generation of exosomal CER in the regenerating hepatocytes and the CRLM-adjacent hepatocytes. The SMPD3-produced exosomal CER critically conducted the intercellular transfer of CER from the hepatocytes to metastatic CRC cells and impeded CRLM by inducing mitochondrial apoptosis and restricting the invasiveness in metastatic CRC cells. The administration of nanoliposomal CER was found to suppress CRLM in the context of LR substantially. CONCLUSIONS SMPD3-produced exosomal CER constitutes a critical anti-CRLM mechanism in LR to impede CRLM, offering the promise of using CER as a therapeutic agent to prevent the recurrence of CRLM after PH.
Collapse
Affiliation(s)
- Qingping Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyuan Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Can Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Gan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongli Ji
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Minghui Zeng
- Institute of Scientific Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongshun Tang
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonghong Peng
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanhua Tang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengxuan Li
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Ge M, Molina J, Kim JJ, Mallela SK, Ahmad A, Varona Santos J, Al-Ali H, Mitrofanova A, Sharma K, Fontanesi F, Merscher S, Fornoni A. Empagliflozin reduces podocyte lipotoxicity in experimental Alport syndrome. eLife 2023; 12:e83353. [PMID: 37129368 PMCID: PMC10185338 DOI: 10.7554/elife.83353] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/26/2023] [Indexed: 05/03/2023] Open
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are anti-hyperglycemic agents that prevent glucose reabsorption in proximal tubular cells. SGLT2i improves renal outcomes in both diabetic and non-diabetic patients, indicating it may have beneficial effects beyond glycemic control. Here, we demonstrate that SGLT2i affects energy metabolism and podocyte lipotoxicity in experimental Alport syndrome (AS). In vitro, we found that the SGLT2 protein was expressed in human and mouse podocytes to a similar extent in tubular cells. Newly established immortalized podocytes from Col4a3 knockout mice (AS podocytes) accumulate lipid droplets along with increased apoptosis when compared to wild-type podocytes. Treatment with SGLT2i empagliflozin reduces lipid droplet accumulation and apoptosis in AS podocytes. Empagliflozin inhibits the utilization of glucose/pyruvate as a metabolic substrate in AS podocytes but not in AS tubular cells. In vivo, we demonstrate that empagliflozin reduces albuminuria and prolongs the survival of AS mice. Empagliflozin-treated AS mice show decreased serum blood urea nitrogen and creatinine levels in association with reduced triglyceride and cholesterol ester content in kidney cortices when compared to AS mice. Lipid accumulation in kidney cortices correlates with a decline in renal function. In summary, empagliflozin reduces podocyte lipotoxicity and improves kidney function in experimental AS in association with the energy substrates switch from glucose to fatty acids in podocytes.
Collapse
Affiliation(s)
- Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Shamroop K Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Anis Ahmad
- Department of Radiation Oncology, University of Miami Miller School of MedicineMiamiUnited States
| | - Javier Varona Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Hassan Al-Ali
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Kumar Sharma
- Center for Precision Medicine, School of Medicine, University of Texas Health San AntonioSan AntonioUnited States
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of MiamiMiamiUnited States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of MedicineMiamiUnited States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of MedicineMiamiUnited States
| |
Collapse
|
21
|
Njeim R, Alkhansa S, Fornoni A. Unraveling the Crosstalk between Lipids and NADPH Oxidases in Diabetic Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15051360. [PMID: 37242602 DOI: 10.3390/pharmaceutics15051360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids have been shown to be strongly correlated with the development and progression of diabetic kidney disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays a critical role in the development of DKD. Several types of lipids have been found to be tightly linked to NADPH oxidase-induced ROS production. This review aims to explore the interplay between lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and identify more effective targeted therapies for the disease.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
22
|
Burke GW, Chandar J, Sageshima J, Ortigosa-Goggins M, Amarapurkar P, Mitrofanova A, Defreitas MJ, Katsoufis CP, Seeherunvong W, Centeno A, Pagan J, Mendez-Castaner LA, Mattiazzi AD, Kupin WL, Guerra G, Chen LJ, Morsi M, Figueiro JMG, Vianna R, Abitbol CL, Roth D, Fornoni A, Ruiz P, Ciancio G, Garin EH. Benefit of B7-1 staining and abatacept for treatment-resistant post-transplant focal segmental glomerulosclerosis in a predominantly pediatric cohort: time for a reappraisal. Pediatr Nephrol 2023; 38:145-159. [PMID: 35507150 PMCID: PMC9747833 DOI: 10.1007/s00467-022-05549-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Primary FSGS manifests with nephrotic syndrome and may recur following KT. Failure to respond to conventional therapy after recurrence results in poor outcomes. Evaluation of podocyte B7-1 expression and treatment with abatacept (a B7-1 antagonist) has shown promise but remains controversial. METHODS From 2012 to 2020, twelve patients developed post-KT FSGS with nephrotic range proteinuria, failed conventional therapy, and were treated with abatacept. Nine/twelve (< 21 years old) experienced recurrent FSGS; three adults developed de novo FSGS, occurring from immediately, up to 8 years after KT. KT biopsies were stained for B7-1. RESULTS Nine KTRs (75%) responded to abatacept. Seven of nine KTRs were B7-1 positive and responded with improvement/resolution of proteinuria. Two patients with rFSGS without biopsies resolved proteinuria after abatacept. Pre-treatment UPCR was 27.0 ± 20.4 (median 13, range 8-56); follow-up UPCR was 0.8 ± 1.3 (median 0.2, range 0.07-3.9, p < 0.004). Two patients who were B7-1 negative on multiple KT biopsies did not respond to abatacept and lost graft function. One patient developed proteinuria while receiving belatacept, stained B7-1 positive, but did not respond to abatacept. CONCLUSIONS Podocyte B7-1 staining in biopsies of KTRs with post-transplant FSGS identifies a subset of patients who may benefit from abatacept. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- George W. Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA
| | - Jayanthi Chandar
- Division of Pediatric Kidney Transplantation, Department of Pediatrics, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Junichiro Sageshima
- Division of Transplant Surgery, Department of Surgery, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Mariella Ortigosa-Goggins
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Pooja Amarapurkar
- Division of Nephrology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30309 USA
| | - Alla Mitrofanova
- Research, Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Marissa J. Defreitas
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Chryso P. Katsoufis
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Wacharee Seeherunvong
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Alexandra Centeno
- Transplant Clinical Pharmacy Services, Miami Transplant Institute, Jackson Memorial Hospital, Miami, FL 33136 USA
| | - Javier Pagan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Lumen A. Mendez-Castaner
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Adela D. Mattiazzi
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Warren L. Kupin
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Giselle Guerra
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Linda J. Chen
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA
| | - Mahmoud Morsi
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA
| | - Jose M. G. Figueiro
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA
| | - Rodrigo Vianna
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA ,Division of Liver and GI Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Carolyn L. Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - David Roth
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Phillip Ruiz
- Transplant Pathology, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Gaetano Ciancio
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA
| | - Eduardo H. Garin
- Division of Nephrology, Department of Pediatrics, University of Florida School of Medicine, Gainesville, FL 32610 USA
| |
Collapse
|
23
|
The Contribution of Lipotoxicity to Diabetic Kidney Disease. Cells 2022; 11:cells11203236. [PMID: 36291104 PMCID: PMC9601125 DOI: 10.3390/cells11203236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Lipotoxicity is a fundamental pathophysiologic mechanism in diabetes and non-alcoholic fatty liver disease and is now increasingly recognized in diabetic kidney disease (DKD) pathogenesis. This review highlights lipotoxicity pathways in the podocyte and proximal tubule cell, which are arguably the two most critical sites in the nephron for DKD. The discussion focuses on membrane transporters and lipid droplets, which represent potential therapeutic targets, as well as current and developing pharmacologic approaches to reduce renal lipotoxicity.
Collapse
|
24
|
Lv Q, Han X, Ni J, Ma Q, Dai R, Liu J, Liu J, Zhai Y, Shen Q, Sun L, Liu H, Rao J, Xu H. Anti-ANGPTL3-FLD monoclonal antibody treatment ameliorates podocyte lesions through attenuating mitochondrial damage. Cell Death Dis 2022; 13:867. [PMID: 36229446 PMCID: PMC9562403 DOI: 10.1038/s41419-022-05313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Proteinuria, an indication of kidney disease, is caused by the malfunction of podocytes, which play a key role in maintaining glomerular filtration. Angiopoietin-like 3 (ANGPTL3) has been documented to have a cell-autonomous involvement in podocytes, and deletion of Angptl3 in podocytes reduced proteinuria in adriamycin-induced nephropathy. Here, we developed a monoclonal antibody (mAb) against ANGPTL3 to investigate its effects on podocyte injury in an ADR nephropathy mouse model and puromycin (PAN) induced podocyte damage in vitro. The mAb against the human ANGPTL3-FLD sequence (5E5F6) inhibited the binding of ANGPTL3-FLD to integrin β3. Treatment with the 5E5F6 mAb in ADR nephropathy mice mitigated proteinuria and led to a significant decline in podocyte apoptosis, reactive oxygen species (ROS) generation and mitochondrial fragmentation. In PAN-induced podocyte damage in vitro, the 5E5F6 mAb blocked the ANPGPLT3-mediated activation of integrin αvβ3 and Rac1, which regulated the mitochondrial homeostasis. Altogether, anti-ANGPLT3-FLD mAb attenuates proteinuria and podocyte lesions in ADR mice models, as well as PAN-induced podocyte damage, in part through regulating mitochondrial functions. Our study provides a therapeutic approach for targeting ANGPTL3 in proteinuric kidney disease.
Collapse
Affiliation(s)
- Qianying Lv
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xinli Han
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jiajia Ni
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qianqian Ma
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Rufeng Dai
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jiaojiao Liu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jialu Liu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Yihui Zhai
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Li Sun
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China ,grid.411333.70000 0004 0407 2968Department of Rheumatology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China
| | - Haimei Liu
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China ,grid.411333.70000 0004 0407 2968Department of Rheumatology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China
| | - Jia Rao
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Hong Xu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, Shanghai, China ,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| |
Collapse
|
25
|
Francis M, Ahmad A, Bodgi L, Azzam P, Youssef T, Daher AA, Eid AA, Fornoni A, Pollack A, Marples B, Zeidan YH. SMPDL3b modulates radiation-induced DNA damage response in renal podocytes. FASEB J 2022; 36:e22545. [PMID: 36094323 PMCID: PMC11934431 DOI: 10.1096/fj.202100186rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2024]
Abstract
The kidneys are radiosensitive and dose-limiting organs for radiotherapy (RT) targeting abdominal and paraspinal tumors. Excessive radiation doses to the kidneys ultimately lead to radiation nephropathy. Our prior work unmasked a novel role for the lipid-modifying enzyme, sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b), in regulating the response of renal podocytes to radiation injury. In this study, we investigated the role of SMPDL3b in DNA double-strand breaks (DSBs) repair in vitro and in vivo. We assessed the kinetics of DSBs recognition and repair along with the ATM pathway and nuclear sphingolipid metabolism in wild-type (WT) and SMPDL3b overexpressing (OE) human podocytes. We also assessed the extent of DNA damage repair in SMPDL3b knock-down (KD) human podocytes, and C57BL6 WT and podocyte-specific SMPDL3b-knock out (KO) mice after radiation injury. We found that SMPDL3b overexpression enhanced DSBs recognition and repair through modulating ATM nuclear shuttling. OE podocytes were protected against radiation-induced apoptosis by increasing the phosphorylation of p53 at serine 15 and attenuating subsequent caspase-3 cleavage. SMPDL3b overexpression prevented radiation-induced alterations in nuclear ceramide-1-phosphate (C1P) and ceramide levels. Interestingly, exogenous C1P pretreatment radiosensitized OE podocytes by delaying ATM nuclear foci formation and DSBs repair. On the other hand, SMPDL3b knock-down, in vitro and in vivo, induced a significant delay in DSBs repair. Additionally, increased activation of apoptosis was induced in podocytes of SMPDL3b-KO mice compared to WT mice at 24 h post-irradiation. Together, our results unravel a novel role for SMPDL3b in radiation-induced DNA damage response. The current work suggests that SMPDL3b modulates nuclear sphingolipid metabolism, ATM nuclear shuttling, and DSBs repair.
Collapse
Affiliation(s)
- Marina Francis
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Anis Ahmad
- Department of Radiation Oncology, Miller School of Medicine/Sylvester Cancer Center, University of Miami, Miami, Florida, USA
| | - Larry Bodgi
- Department of Radiation Oncology, American University of Beirut, Beirut, Lebanon
| | - Patrick Azzam
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tarek Youssef
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alaa Abou Daher
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, Florida, USA
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine/Sylvester Cancer Center, University of Miami, Miami, Florida, USA
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, New York, USA
| | - Youssef H. Zeidan
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Radiation Oncology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
26
|
Liao TH, Wu HC, Liao MT, Hu WC, Tsai KW, Lin CC, Lu KC. The Perspective of Vitamin D on suPAR-Related AKI in COVID-19. Int J Mol Sci 2022; 23:10725. [PMID: 36142634 PMCID: PMC9500944 DOI: 10.3390/ijms231810725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of millions of people around the world. Severe vitamin D deficiency can increase the risk of death in people with COVID-19. There is growing evidence that acute kidney injury (AKI) is common in COVID-19 patients and is associated with poorer clinical outcomes. The kidney effects of SARS-CoV-2 are directly mediated by angiotensin 2-converting enzyme (ACE2) receptors. AKI is also caused by indirect causes such as the hypercoagulable state and microvascular thrombosis. The increased release of soluble urokinase-type plasminogen activator receptor (suPAR) from immature myeloid cells reduces plasminogen activation by the competitive inhibition of urokinase-type plasminogen activator, which results in low plasmin levels and a fibrinolytic state in COVID-19. Frequent hypercoagulability in critically ill patients with COVID-19 may exacerbate the severity of thrombosis. Versican expression in proximal tubular cells leads to the proliferation of interstitial fibroblasts through the C3a and suPAR pathways. Vitamin D attenuates the local expression of podocyte uPAR and decreases elevated circulating suPAR levels caused by systemic inflammation. This decrease preserves the function and structure of the glomerular barrier, thereby maintaining renal function. The attenuated hyperinflammatory state reduces complement activation, resulting in lower serum C3a levels. Vitamin D can also protect against COVID-19 by modulating innate and adaptive immunity, increasing ACE2 expression, and inhibiting the renin-angiotensin-aldosterone system. We hypothesized that by reducing suPAR levels, appropriate vitamin D supplementation could prevent the progression and reduce the severity of AKI in COVID-19 patients, although the data available require further elucidation.
Collapse
Affiliation(s)
- Tzu-Hsien Liao
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Hsien-Chang Wu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology and Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Ching-Chieh Lin
- Department of Chest Medicine, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
27
|
Early, Noninvasive Clinical Indicators of Kidney Prognosis in Primary Nephrotic Syndrome: A Retrospective Exploratory Study. Int J Nephrol 2022; 2022:2718810. [PMID: 35983504 PMCID: PMC9381284 DOI: 10.1155/2022/2718810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
This retrospective exploratory study aimed to identify early clinical indicators of kidney prognosis in primary nephrotic syndrome (NS). Univariate Cox proportional hazards regression analysis identified clinical parameters in the 2-month period after initiating immunosuppressive therapy (IST); it predicted 40% reduction in the estimated glomerular filtration rate (eGFR) in 36 patients with primary NS. Time-dependent receiver operating characteristic curve analysis was used to evaluate the performance of the predictors for the cumulative incidence of 40% reduction in the eGFR up to 8 years after initiating IST. The mean follow-up period was 71.9 months. The eGFR was reduced by 40% in four patients. Significant predictors for time to 40% reduction in the eGFR were as follows: an increase in the serum soluble urokinase plasminogen activator receptor (s-suPAR) 2 months after initiating IST (Δs-suPAR (2M); hazard ratio (HR) for every 500 pg/mL increase: 1.36, P=0.006), s-suPAR at 2 months after initiating IST (s-suPAR (2M); HR for every 500 pg/mL increase: 1.13, P=0.015), urinary protein-to-creatinine ratio (u-PCR) (u-PCR (2M); HR for every 1.0 g/gCr increase: 2.94, P=0.003), and urinary liver-type fatty acid-binding protein (u-L-FABP) (u-L-FABP (2M); HR for every 1.0 μg/gCr increase: 1.14, P=0.006). All four factors exhibited high predictive accuracy for cumulative incidence of 40% reduction in the eGFR up to 8 years after initiating IST, with areas under the receiver operating characteristic curve of 0.92 for Δs-suPAR (2M), 0.87 for s-suPAR (2M), 0.93 for u-PCR (2M), and 0.93 for u-L-FABP (2M). These findings suggest that Δs-suPAR (2M), s-suPAR (2M), u-PCR (2M), and u-L-FABP (2M) could be useful indicators of initial therapeutic response for predicting kidney prognosis in primary NS.
Collapse
|
28
|
Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 2022; 136:493-520. [PMID: 35415751 PMCID: PMC9008595 DOI: 10.1042/cs20210625] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies. The metabolic insult of hyperglycemia is of paramount importance in the pathogenesis of DN, while insults leading to podocyte damage are poorly defined in other proteinuric glomerulopathies. However, shared mechanisms of podocyte damage have been identified. Herein, we will review the role of haemodynamic and oxidative stress, inflammation, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte repair may open the way to podocyte regenerative medicine.
Collapse
|
29
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
30
|
Skalec T, Adamik B, Kobylinska K, Gozdzik W. Soluble Urokinase-Type Plasminogen Activator Receptor Levels as a Predictor of Kidney Replacement Therapy in Septic Patients with Acute Kidney Injury: An Observational Study. J Clin Med 2022; 11:1717. [PMID: 35330042 PMCID: PMC8954771 DOI: 10.3390/jcm11061717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
The soluble urokinase-type plasminogen activator receptor (suPAR) is involved in the pathogenesis of acute kidney injury (AKI). Our goal was to establish the optimal suPAR cut-off point for predicting the need for kidney replacement therapy (KRT) use in sepsis patients and to analyze survival rates based on the suPAR level, AKI diagnosis, and the requirement for KRT. In total, 51 septic patients were included (82% septic shock; 96% mechanically ventilated, 35% KRT). Patients were stratified according to the AKI diagnosis and the need for KRT into three groups: AKI(+)/KRT(+), AKI(+)/KRT(−), and AKI(−)/KRT(−). A control group (N = 20) without sepsis and kidney failure was included. Sepsis patients had higher levels of the suPAR than control (13.01 vs. 4.05 ng/mL, p < 0.001). On ICU admission, the suPAR level was significantly higher in the AKI(+)/KRT(+) group than in the AKI(+)/KRT(−) and AKI(−)/KRT(−) groups (18.5 vs. 10.6 and 9.5 ng/mL, respectively; p = 0.001). The optimal suPAR cut-off point for predicting the need for KRT was established at 10.422 ng/mL (area under the curve 0.801, sensitivity 0.889, specificity 0.636). Moreover, patients AKI(+)/KRT(+) had the lowest probability of survival compared to patients AKI(+)/KRT(−) and AKI(−)/KRT(−) (p = 0.0003). The results indicate that the suPAR measurements may constitute an important element in the diagnosis of a patient with sepsis.
Collapse
Affiliation(s)
- Tomasz Skalec
- Clinical Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska St. 213, 50-556 Wroclaw, Poland; (T.S.); (W.G.)
| | - Barbara Adamik
- Clinical Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska St. 213, 50-556 Wroclaw, Poland; (T.S.); (W.G.)
| | - Katarzyna Kobylinska
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland;
| | - Waldemar Gozdzik
- Clinical Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska St. 213, 50-556 Wroclaw, Poland; (T.S.); (W.G.)
| |
Collapse
|
31
|
Veron D, Aggarwal PK, Li Q, Moeckel G, Kashgarian M, Tufro A. Podocyte VEGF-A Knockdown Induces Diffuse Glomerulosclerosis in Diabetic and in eNOS Knockout Mice. Front Pharmacol 2022; 12:788886. [PMID: 35280251 PMCID: PMC8906751 DOI: 10.3389/fphar.2021.788886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor-a (VEGF-A) and nitric oxide (NO) are essential for glomerular filtration barrier homeostasis, and are dysregulated in diabetic kidney disease (DKD). While NO availability is consistently low in diabetes, both high and low VEGF-A have been reported in patients with DKD. Here we examined the effect of inducible podocyte VEGF-A knockdown (VEGFKD) in diabetic mice and in endothelial nitric oxide synthase knockout mice (eNOS−/−). Diabetes was induced with streptozotocin using the Animal Models of Diabetic Complications Consortium (AMDCC) protocol. Induction of podocyte VEGFKD led to diffuse glomerulosclerosis, foot process effacement, and GBM thickening in both diabetic mice with intact eNOS and in non-diabetic eNOS−/−:VEGFKD mice. VEGFKD diabetic mice developed mild proteinuria and maintained normal glomerular filtration rate (GFR), associated with extremely high NO and thiol urinary excretion. In eNOS−/−:VEGFKD (+dox) mice severe diffuse glomerulosclerosis was associated with microaneurisms, arteriolar hyalinosis, massive proteinuria, and renal failure. Collectively, data indicate that combined podocyte VEGF-A and eNOS deficiency result in diffuse glomerulosclerosis in mice; compensatory NO and thiol generation prevents severe proteinuria and GFR loss in VEGFKD diabetic mice with intact eNOS, whereas VEGFKD induction in eNOS−/−:VEGFKD mice causes massive proteinuria and renal failure mimicking DKD in the absence of diabetes. Mechanistically, we identify VEGFKD-induced abnormal S-nitrosylation of specific proteins, including β3-integrin, laminin, and S-nitrosoglutathione reductase (GSNOR), as targetable molecular mechanisms involved in the development of advanced diffuse glomerulosclerosis and renal failure.
Collapse
Affiliation(s)
- Delma Veron
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States
| | - Pardeep K Aggarwal
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States
| | - Qi Li
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States.,Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Alda Tufro
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States.,Department of Cell and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
32
|
Watanabe S, Hidenori U, Hashimoto S, Riko S, Aizawa T, Tsugawa K, Imaizumi T, Tanaka H. Sphingomyelin Phosphodiesterase Acid-Like 3b is Essential for Toll-Like Receptor 3 Signaling in Human Podocytes. J Membr Biol 2022; 255:117-122. [PMID: 34739556 DOI: 10.1007/s00232-021-00206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022]
Abstract
Recent studies have revealed the importance of cell membrane stability in normal cell function. Sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b), a lipid modifying enzyme that converts sphingomyelin to ceramide in the cell membrane, is expressed in macrophages and regulates Toll-like receptor (TLR) 4 signaling by altering cell membrane fluidity. SMPDL3b is also expressed in human podocytes, which are involved in the pathogenesis of several glomerular diseases such as diabetic kidney disease, focal segmental glomerulosclerosis, and idiopathic nephrotic syndrome in children; however, the role of SMPDL3b in podocyte innate immunity is unclear. As podocytes are equipped with innate immune systems including TLR3, and viral infections often exacerbate proteinuria in children with idiopathic nephrotic syndrome, we hypothesized that changes in SMPDL3b expression levels could affect anti-viral responses via TLR3 signaling in podocytes, consequently impairing normal podocyte function. To examine the role of SMPDL3b in TLR3 signaling in podocytes, we treated conditionally immortalized human podocytes with polyinosinic-polycytidylic acid (poly IC), to activate TLR3 signaling. The cells were then transfected with small interfering RNA against SMPDL3b. Poly IC activated the TLR3 pathway, whereas knockdown of SMPDL3b attenuated poly IC-induced interferon-β/chemokine C-X-C ligand 10 expression in podocytes. To our knowledge, this is the first report demonstrating SMPDL3b involvement in podocyte innate immunity; these results suggest that SMPDL3b is essential for adequate anti-viral responses in podocytes, possibly by modulating lipid metabolism in the cell membrane.
Collapse
Affiliation(s)
- Shojiro Watanabe
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan.
- Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, 7910295, Japan.
| | - Umetsu Hidenori
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Shun Hashimoto
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Sato Riko
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
- Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
33
|
Ying C, Zhou Z, Dai J, Wang M, Xiang J, Sun D, Zhou X. Activation of the NLRP3 inflammasome by RAC1 mediates a new mechanism in diabetic nephropathy. Inflamm Res 2022; 71:191-204. [PMID: 35028708 DOI: 10.1007/s00011-021-01532-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Inflammation is central to the development and progression of diabetic nephropathy (DN). Although the exact mechanisms of inflammation in the kidney have not been well elucidated, pyrin domain containing 3 (NLRP3) inflammasome activation is involved in the onset and progression of DN. Here, we investigated the underlying regulatory mechanisms of hyperglycaemia-induced NLRP3 inflammasome activation in the kidney. METHODS HEK293T cells received high glucose, and the cell proliferation and apoptosis were detected. Biochemical indicators in db/db mice were tested by kits, and the morphological changes in the kidney were observed using staining methods and transmission electron microscopy. The interaction of Ras-related C3 botulinum toxin substrate 1 (RAC1) and NLRP3 inflammasome in cells and in mice was assessed by co-immunoprecipitation (Co-IP) and immunofluorescence. Expression of all proteins was examined by western blotting and immunohistochemistry. In additional, the directly combination of RAC1 and NLRP3 was evaluated by GST Pulldown. RESULTS High-glucose and hyperglycaemia conditions resulted in Ras-related C3 botulinum toxin substrate 1 (RAC1) and NLRP3 inflammasome interactions in cells and in mice. Additionally, RAC1 promoted NLRP3 inflammasome activation and then induced cell damage, and morphological and functional abnormalities in the kidney. We also observed that RAC1 activates the NLRP3 inflammasome by directly binding to NLRP3. CONCLUSION In the present study, we confirmed that RAC1 binding to NLRP3 is sufficient to activate the NLRP3 inflammasome in the kidney and accelerate DN pathological processes. These results elucidate the upstream cellular and molecular mechanisms of NLRP3 inflammasome activation and provide new therapeutic strategies for the treatment of DN.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Zhongyuan Zhou
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jiao Dai
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Meng Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jie Xiang
- Department of Rehabilitation, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.
| | - Xiaoyan Zhou
- Department of Genetics, School of Life Sciences, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Baek J, He C, Afshinnia F, Michailidis G, Pennathur S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 2022; 18:38-55. [PMID: 34616096 PMCID: PMC9146017 DOI: 10.1038/s41581-021-00488-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Dyslipidaemia is a hallmark of chronic kidney disease (CKD). The severity of dyslipidaemia not only correlates with CKD stage but is also associated with CKD-associated cardiovascular disease and mortality. Understanding how lipids are dysregulated in CKD is, however, challenging owing to the incredible diversity of lipid structures. CKD-associated dyslipidaemia occurs as a consequence of complex interactions between genetic, environmental and kidney-specific factors, which to understand, requires an appreciation of perturbations in the underlying network of genes, proteins and lipids. Modern lipidomic technologies attempt to systematically identify and quantify lipid species from biological systems. The rapid development of a variety of analytical platforms based on mass spectrometry has enabled the identification of complex lipids at great precision and depth. Insights from lipidomics studies to date suggest that the overall architecture of free fatty acid partitioning between fatty acid oxidation and complex lipid fatty acid composition is an important driver of CKD progression. Available evidence suggests that CKD progression is associated with metabolic inflexibility, reflecting a diminished capacity to utilize free fatty acids through β-oxidation, and resulting in the diversion of accumulating fatty acids to complex lipids such as triglycerides. This effect is reversed with interventions that improve kidney health, suggesting that targeting of lipid abnormalities could be beneficial in preventing CKD progression.
Collapse
Affiliation(s)
- Judy Baek
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chenchen He
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Subramaniam Pennathur
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Chang D, Gong M, Liu C, Zhang Q, Hu Z, Li Z. Efficacy and safety of rituximab for childhood refractory nephrotic syndrome: A meta-analysis of randomized controlled trials. Med Clin (Barc) 2021; 157:418-426. [PMID: 33070945 DOI: 10.1016/j.medcli.2020.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Idiopathic nephrotic syndrome is the most common glomerular disease in children, but there are still some difficulties in treating childhood steroid-dependent or steroid-resistant nephrotic syndrome (SDNS/SRNS). Rituximab (RTX) might be an effective and safe choice. METHODS Studies were searched from PubMed, Web of Science, Cochrane library and some Chinese databases up to April 2020. Only randomized controlled trials (RCT) were included. RESULTS Of 1383 screened articles, 6 RCTs with 334 participants were included. RTX was better than the control group at improving relapse-free rate in the short term [RR (risk ratio) (95% CI (confidence interval)), 1.84(1.41, 2.39)]. As for long-term, RTX did not show significant improvement [RR (95% CI), 4.43(.57, 34.67)]; but in subgroup analysis, RTX was still better than conventional drugs and tacrolimus [RR (95% CI), 9.91(1.95, 50.52) and 1.42(1.15, 1.75), respectively]. And there was a difference between the two groups of prednisolone dose after treatment [MD (mean difference) (95% CI), -.22(-.36, -.09) mg/kg/d)]. However, RTX did not significantly improve serum albumin and creatinine [MD (95% CI), 3.46(-1.40, 8.32)g/L and -3.66(-11.79, 4.48)μmol/L, respectively]. No significant differences between the RTX and the control group were found in total adverse events (AEs) or serious AEs. CONCLUSION Childhood SDNS/SRNS patients appear to benefit from RTX in relapse-free rate and dose of prednisolone use. Also, RTX did not significantly increase the incidence of AEs. But RTX did not show improvements in biological indicators, more studies are required to explain the effect of RTX.
Collapse
Affiliation(s)
- Dan Chang
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan China
| | - Minmin Gong
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chaofan Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Quan Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ziwei Hu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoguang Li
- Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen 518038, China.
| |
Collapse
|
36
|
Sun Y, Cui S, Hou Y, Yi F. The Updates of Podocyte Lipid Metabolism in Proteinuric Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:438-451. [PMID: 34901191 DOI: 10.1159/000518132] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Podocytes, functionally specialized and terminally differentiated glomerular visceral epithelial cells, are critical for maintaining the structure and function of the glomerular filtration barrier. Podocyte injury is considered as the most important early event contributing to proteinuric kidney diseases such as obesity-related renal disease, diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. Although considerable advances have been made in the understanding of mechanisms that trigger podocyte injury, cell-specific and effective treatments are not clinically available. SUMMARY Emerging evidence has indicated that the disorder of podocyte lipid metabolism is closely associated with various proteinuric kidney diseases. Excessive lipid accumulation in podocytes leads to cellular dysfunction which is defined as lipotoxicity, a phenomenon characterized by mitochondrial oxidative stress, actin cytoskeleton remodeling, insulin resistance, and inflammatory response that can eventually result in podocyte hypertrophy, detachment, and death. In this review, we summarize recent advances in the understanding of lipids in podocyte biological function and the regulatory mechanisms leading to podocyte lipid accumulation in proteinuric kidney disease. KEY MESSAGES Targeting podocyte lipid metabolism may represent a novel therapeutic strategy for patients with proteinuric kidney disease.
Collapse
Affiliation(s)
- Yu Sun
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Sijia Cui
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yunfeng Hou
- Intensive Care Unit, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
37
|
Qin Y, Qiao Y, Wang D, Yan G, Tang C, Ma G. The Predictive Value of Soluble Urokinase-Type Plasminogen Activator Receptor in Contrast-Induced Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention. Int J Gen Med 2021; 14:6497-6504. [PMID: 34675617 PMCID: PMC8504866 DOI: 10.2147/ijgm.s339075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Soluble urokinase-type plasminogen activator receptor (SuPAR) is a circulating protein and a novel identified promising biomarker for various renal diseases and kidney injury. However, it remains unknown on the predictive value of suPAR in contrast induced acute kidney injury (CI-AKI) in patients undergoing percutaneous coronary intervention (PCI). Methods A total of 399 patients undergoing PCI were enrolled in the research from June 2020 to June 2021 in Zhongda Hospital. Patients were divided into CI-AKI and non-CI-AKI groups according to the preoperative and postoperative serum creatinine levels. Plasma suPAR level was detected through enzyme-linked immunosorbent assay on admission. Demographic data, hematological parameters, coronary angiography data and medications were recorded and compared between CI-AKI and non-CI-AKI groups. Logistic regression analysis and receiver operator characteristic (ROC) curve analysis were performed for identifying the independent risk factors of CI-AKI and assessment of the predictive value of suPAR for CI-AKI. Results CI-AKI occurred in 65 (16.3%) patients undergoing PCI. The level of suPAR in CI-AKI group was significantly higher than that in the non-CI-AKI group. Multivariate logistic regression indicated diabetes, lower LVEF, lower hydration rate, lower baseline eGFR, higher plasma suPAR (OR = 2.875, 95% CI = 2.038–3.672, P < 0.001) and volume of contrast media were all independent risk factors for CI-AKI after adjustment of the confounding factors. ROC analysis illustrated that the optimal area under the curve was 0.765, indicating plasma suPAR was a splendid predictor for CI-AKI. The corresponding cut-off value was 3.305 ng/mL, and the sensitivity and specificity were 63.1% and 82.3%, respectively. Conclusion Increased suPAR level is independently associated with elevated risk of suffering CI-AKI, and suPAR is a strong predictor for CI-AKI in patients undergoing PCI. SuPAR might act as a novel biomarker for CI-AKI in clinical practice.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
38
|
Azzam P, Francis M, Youssef T, Mroueh M, Daher AA, Eid AA, Fornoni A, Marples B, Zeidan YH. Crosstalk Between SMPDL3b and NADPH Oxidases Mediates Radiation-Induced Damage of Renal Podocytes. Front Med (Lausanne) 2021; 8:732528. [PMID: 34660640 PMCID: PMC8511442 DOI: 10.3389/fmed.2021.732528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Patients undergoing radiotherapy (RT) for various tumors localized in the abdomen or pelvis often suffer from radiation nephrotoxicity as collateral damage. Renal podocytes are vulnerable targets for ionizing radiation and contribute to radiation-induced nephropathies. Our prior work previously highlighted the importance of the lipid-modifying enzyme sphingomyelinase acid phosphodiesterase like 3b (SMPDL3b) in modulating the radiation response in podocytes and glomerular endothelial cells. Hereby, we investigated the interplay between SMPDL3b and oxidative stress in mediating radiation injury in podocytes. We demonstrated that the overexpression of SMPDL3b in cultured podocytes (OE) reduced superoxide anion generation and NADPH oxidase activity compared to wild-type cells (WT) post-irradiation. Furthermore, OE podocytes showed downregulated levels of NOX1 and NOX4 after RT. On the other hand, treatment with the NOX inhibitor GKT improved WTs' survival post-RT and restored SMPDL3b to basal levels. in vivo, the administration of GKT restored glomerular morphology and decreased proteinuria in 26-weeks irradiated mice. Taken together, these results suggest a novel role for NOX-derived reactive oxygen species (ROS) upstream of SMPDL3b in modulating the response of renal podocytes to radiation.
Collapse
Affiliation(s)
- Patrick Azzam
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marina Francis
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tarek Youssef
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Manal Mroueh
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alaa Abou Daher
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, United States
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, NY, United States
| | - Youssef H. Zeidan
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Baptist Health, Lynn Cancer Institute, Boca Raton, FL, United States
| |
Collapse
|
39
|
Qu H, Zhu Y. SMPDL3B Predicts Poor Prognosis and Contributes to Development of Acute Myeloid Leukemia. Front Mol Biosci 2021; 8:695601. [PMID: 34504869 PMCID: PMC8421532 DOI: 10.3389/fmolb.2021.695601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 01/20/2023] Open
Abstract
Background: Acute myeloid leukemia (AML), characterized by the low cure rate and high relapse, urgently needs novel diagnostic or prognostic biomarkers and potential therapeutic targets. Sphingomyelin Phosphodiesterase Acid Like 3B (SMPDL3B) is a negative regulator of Toll-like receptor signaling that plays important roles in the interface of membrane biology and innate immunity. However, the potential role of SMPDL3B in human cancer, especially in AML, is still unknown. Methods: The expression of SMPDL3B in AML samples was investigated through data collected from Gene Expression Omnibus (GEO). Association between SMPDL3B expression and clinicopathologic characteristics was analyzed with the chi-square test. Survival curves were calculated by the Kaplan–Meier method. Cox univariate and multivariate analyses were used to detect risk factors for overall survival. The biological functions of SMPDL3B in human AML were investigated both in vitro and in vivo. Results: Expression of SMPDL3B mRNA was significantly upregulated in human AML samples and closely correlated to cytogenetics risk and karyotypes. Elevated expression of SMPDL3B was associated with poor overall survival and emerged as an independent predictor for poor overall survival in human AML. Blocked SMPDL3B expression inhibited AML cells growth both in vitro and in vivo via promoting cell apoptosis. Conclusion: Taken together, our results demonstrate that SMPDL3B could be used as an efficient prognostic biomarker and represent a potential therapeutic target for human AML.
Collapse
Affiliation(s)
- Huiqing Qu
- Department of Blood Transfusion, Binzhou Medical University Hospital, Binzhou, China
| | - Ye Zhu
- Department of Internal Medicine, People's Fifth Hospital of Jinan City Affiliated to Weifang Medical University, Jinan, China
| |
Collapse
|
40
|
Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging Targets in Type 2 Diabetes and Diabetic Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100275. [PMID: 34319011 PMCID: PMC8456215 DOI: 10.1002/advs.202100275] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/07/2021] [Indexed: 05/06/2023]
Abstract
Type 2 diabetes is a metabolic, chronic disorder characterized by insulin resistance and elevated blood glucose levels. Although a large drug portfolio exists to keep the blood glucose levels under control, these medications are not without side effects. More importantly, once diagnosed diabetes is rarely reversible. Dysfunctions in the kidney, retina, cardiovascular system, neurons, and liver represent the common complications of diabetes, which again lack effective therapies that can reverse organ injury. Overall, the molecular mechanisms of how type 2 diabetes develops and leads to irreparable organ damage remain elusive. This review particularly focuses on novel targets that may play role in pathogenesis of type 2 diabetes. Further research on these targets may eventually pave the way to novel therapies for the treatment-or even the prevention-of type 2 diabetes along with its complications.
Collapse
Affiliation(s)
- Sevgican Demir
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Peter P. Nawroth
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| |
Collapse
|
41
|
Li G, Kidd J, Gehr TWB, Li PL. Podocyte Sphingolipid Signaling in Nephrotic Syndrome. Cell Physiol Biochem 2021; 55:13-34. [PMID: 33861526 PMCID: PMC8193717 DOI: 10.33594/000000356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Podocytes play a vital role in the pathogenesis of nephrotic syndrome (NS), which is clinically characterized by heavy proteinuria, hypoalbuminemia, hyperlipidemia, and peripheral edema. The pathogenesis of NS has evolved through several hypotheses ranging from immune dysregulation theory and increased glomerular permeability theory to the current concept of podocytopathy. Podocytopathy is characterized by dysfunction or depletion of podocytes, which may be caused by unknown permeability factor, genetic disorders, drugs, infections, systemic disorders, and hyperfiltration. Over the last two decades, numerous studies have been done to explore the molecular mechanisms of podocyte injuries or NS and to develop the novel therapeutic strategies targeting podocytopathy for treatment of NS. Recent studies have shown that normal sphingolipid metabolism is essential for structural and functional integrity of podocytes. As a basic component of the plasma membrane, sphingolipids not only support the assembly of signaling molecules and interaction of receptors and effectors, but also mediate various cellular activities, such as apoptosis, proliferation, stress responses, necrosis, inflammation, autophagy, senescence, and differentiation. This review briefly summarizes current evidence demonstrating the regulation of sphingolipid metabolism in podocytes and the canonical or noncanonical roles of podocyte sphingolipid signaling in the pathogenesis of NS and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,
| |
Collapse
|
42
|
Kim SJ, Lee JH, Park WJ, Kim S. Bioinformatic Exploration for Prognostic Significance of Sphingolipid Metabolism-Related Genes in Invasive Ductal Carcinoma Using the Cancer Genome Atlas Cohort. Int J Gen Med 2021; 14:4423-4434. [PMID: 34413672 PMCID: PMC8370849 DOI: 10.2147/ijgm.s328376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Sphingolipid metabolism is a highly controlled process that is involved in regulating bioactive lipid signaling pathways and serves important roles in several cellular processes in breast cancer. Invasive ductal carcinoma (IDC), which is characterized by the malignant proliferation of the ductal epithelium and stromal invasion, is the most common type of breast cancer. Recent advances in genetic research have accelerated the discovery of novel prognostic factors and therapeutic targets for the disease. The aim of the present study was to investigate the expression and prognostic significance of sphingolipid metabolism-related genes in female IDC. METHODS The present study used gene expression RNAseq data obtained from The Cancer Genome Atlas breast invasive carcinoma (TCGA BRCA) datasets. RESULTS Sphingolipid metabolism-related genes exhibited dysregulated mRNA expression levels in IDC. The Student's t-test revealed that SMPDL3B, B4GALNT1, LPAR2, and LASS2 were significantly upregulated, while LASS3, LPAR1, B4GALT6, GAL3ST1, HPGD, ST8SIA1, UGT8, and S1PR1 were significantly downregulated in female IDC tissues compared with normal solid tissues. Kaplan-Meier survival analyses revealed that high SMPDL3B mRNA expression levels were associated with good prognosis in female IDC, suggesting that SMPDL3B plays a tumor suppressor role. To the best of our knowledge, the present study was the first to report that dysregulated expressions of SMPDL3B are significantly associated with age, estrogen receptor status, progesterone receptor status, and histological subtype. CONCLUSION Taken together, our study indicated that SMPDL3B may have a pathophysiological role and serve as a novel prognostic biomarker in IDC.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Yeonsu-gu, Incheon, 21999, Republic of Korea
| | - Jae-Ho Lee
- Department of Anatomy, School of Medicine, Keimyung University, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Yeonsu-gu, Incheon, 21999, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Dalseo-gu, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
| |
Collapse
|
43
|
Mitrofanova A, Burke G, Merscher S, Fornoni A. New insights into renal lipid dysmetabolism in diabetic kidney disease. World J Diabetes 2021; 12:524-540. [PMID: 33995842 PMCID: PMC8107981 DOI: 10.4239/wjd.v12.i5.524] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Lipid dysmetabolism is one of the main features of diabetes mellitus and manifests by dyslipidemia as well as the ectopic accumulation of lipids in various tissues and organs, including the kidney. Research suggests that impaired cholesterol metabolism, increased lipid uptake or synthesis, increased fatty acid oxidation, lipid droplet accumulation and an imbalance in biologically active sphingolipids (such as ceramide, ceramide-1-phosphate and sphingosine-1-phosphate) contribute to the development of diabetic kidney disease (DKD). Currently, the literature suggests that both quality and quantity of lipids are associated with DKD and contribute to increased reactive oxygen species production, oxidative stress, inflammation, or cell death. Therefore, control of renal lipid dysmetabolism is a very important therapeutic goal, which needs to be archived. This article will review some of the recent advances leading to a better understanding of the mechanisms of dyslipidemia and the role of particular lipids and sphingolipids in DKD.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - George Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
44
|
Role of Rho GTPase Interacting Proteins in Subcellular Compartments of Podocytes. Int J Mol Sci 2021; 22:ijms22073656. [PMID: 33915776 PMCID: PMC8037304 DOI: 10.3390/ijms22073656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
The first step of urine formation is the selective filtration of the plasma into the urinary space at the kidney structure called the glomerulus. The filtration barrier of the glomerulus allows blood cells and large proteins such as albumin to be retained while eliminating the waste products of the body. The filtration barrier consists of three layers: fenestrated endothelial cells, glomerular basement membrane, and podocytes. Podocytes are specialized epithelial cells featured by numerous, actin-based projections called foot processes. Proteins on the foot process membrane are connected to the well-organized intracellular actin network. The Rho family of small GTPases (Rho GTPases) act as intracellular molecular switches. They tightly regulate actin dynamics and subsequent diverse cellular functions such as adhesion, migration, and spreading. Previous studies using podocyte-specific transgenic or knockout animal models have established that Rho GTPases are crucial for the podocyte health and barrier function. However, little attention has been paid regarding subcellular locations where distinct Rho GTPases contribute to specific functions. In the current review, we discuss cellular events involving the prototypical Rho GTPases (RhoA, Rac1, and Cdc42) in podocytes, with particular focus on the subcellular compartments where the signaling events occur. We also provide our synthesized views of the current understanding and propose future research directions.
Collapse
|
45
|
Kim JJ, Wilbon SS, Fornoni A. Podocyte Lipotoxicity in CKD. KIDNEY360 2021; 2:755-762. [PMID: 35373048 PMCID: PMC8791311 DOI: 10.34067/kid.0006152020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
CKD represents the ninth most common cause of death in the United States but, despite this large health burden, treatment options for affected patients remain limited. To remedy this, several relevant pathways have been identified that may lead to novel therapeutic options. Among them, altered renal lipid metabolism, first described in 1982, has been recognized as a common pathway in clinical and experimental CKD of both metabolic and nonmetabolic origin. This observation has led many researchers to investigate the cause of this renal parenchyma lipid accumulation and its downstream effect on renal structure and function. Among key cellular components of the kidney parenchyma, podocytes are terminally differentiated cells that cannot be easily replaced when lost. Clinical and experimental evidence supports a role of reduced podocyte number in the progression of CKD. Given the importance of the podocytes in the maintenance of the glomerular filtration barrier and the accumulation of TG and cholesterol-rich lipid droplets in the podocyte and glomerulus in kidney diseases that cause CKD, understanding the upstream cause and downstream consequences of lipid accumulation in podocytes may lead to novel therapeutic opportunities. In this review, we hope to consolidate our understanding of the causes and consequences of dysregulated renal lipid metabolism in CKD development and progression, with a major focus on podocytes.
Collapse
|
46
|
Jehn U, Schütte-Nütgen K, Henke U, Pavenstädt H, Suwelack B, Reuter S. Soluble urokinase-type plasminogen activator receptor (suPAR) is a risk indicator for eGFR loss in kidney transplant recipients. Sci Rep 2021; 11:3713. [PMID: 33580120 PMCID: PMC7880993 DOI: 10.1038/s41598-021-83333-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/02/2021] [Indexed: 12/03/2022] Open
Abstract
The prognostic significance of suPAR in various kidney diseases has recently been demonstrated. Its role in transplantation-specific outcomes is still largely unknown. Therefore, we prospectively investigated the prognostic relevance of suPAR in patients before and one year after kidney transplantation (KTx). We included 100 patients who had received a kidney transplantation between 2013 and 2015. The plasma concentration of suPAR was measured by ELISA assay. In recipients of living donations (LD), pre-transplant suPAR levels were significantly lower than those of recipients of deceased donations (DD). After KTx, suPAR levels significantly declined in LD and DD recipients, without a detectable difference between both groups any more. Higher suPAR levels in recipients one year after KTx were associated with a more severe eGFR loss in the following three years in multivariable cox-regression (n = 82, p = 0.021). suPAR-levels above 6212 pg/ml one year after KTx are associated with eGFR loss > 30%, which occurred almost twice as fast as in patients with suPAR ≤ 6212 pg/ml (p < 0.001). Hence, suPAR level at one year mark might be a risk indicator of increased eGFR loss.
Collapse
Affiliation(s)
- Ulrich Jehn
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, 48149, Muenster, Germany.
| | - Katharina Schütte-Nütgen
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, 48149, Muenster, Germany
| | - Ute Henke
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, 48149, Muenster, Germany
| | - Hermann Pavenstädt
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, 48149, Muenster, Germany
| | - Barbara Suwelack
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, 48149, Muenster, Germany
| | - Stefan Reuter
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Muenster, 48149, Muenster, Germany
| |
Collapse
|
47
|
Mandal N, Grambergs R, Mondal K, Basu SK, Tahia F, Dagogo-Jack S. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J Diabetes Complications 2021; 35:107734. [PMID: 33268241 PMCID: PMC8663915 DOI: 10.1016/j.jdiacomp.2020.107734] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease that affects 463 million adults worldwide and is a leading cause of cardiovascular disease, blindness, nephropathy, peripheral neuropathy, and lower-limb amputation. Lipids have long been recognized as contributors to the pathogenesis and pathophysiology of DM and its complications, but recent discoveries have highlighted ceramides, a class of bioactive sphingolipids with cell signaling and second messenger capabilities, as particularly important contributors to insulin resistance and the underlying mechanisms of DM complications. Besides their association with insulin resistance and pathophysiology of type 2 diabetes, evidence is emerging that certain species of ceramides are mediators of cellular mechanisms involved in the initiation and progression of microvascular and macrovascular complications of DM. Advances in our understanding of these associations provide unique opportunities for exploring ceramide species as potential novel therapeutic targets and biomarkers. This review discusses the links between ceramides and the pathogenesis of DM and diabetic complications and identifies opportunities for novel discoveries and applications.
Collapse
Affiliation(s)
- Nawajes Mandal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN 38163, USA..
| | - Richard Grambergs
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Koushik Mondal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Sandip K Basu
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Faiza Tahia
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, College of Pharmacy, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- The University of Tennessee Health Science Center, Division of Endocrinology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Clinical Research Center, Memphis, TN 38163, USA..
| |
Collapse
|
48
|
Li G, Huang D, Bhat OM, Poklis JL, Zhang A, Zou Y, Kidd J, Gehr TWB, Li PL. Abnormal podocyte TRPML1 channel activity and exosome release in mice with podocyte-specific Asah1 gene deletion. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158856. [PMID: 33221496 PMCID: PMC7770122 DOI: 10.1016/j.bbalip.2020.158856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Podocytopathy and associated nephrotic syndrome (NS) have been reported in a knockout mouse strain (Asah1fl/fl/PodoCre) with a podocyte-specific deletion of α subunit (the main catalytic subunit) of acid ceramidase (Ac). However, the pathogenesis of podocytopathy of these mice remains unknown. The present study tested whether exosome release from podocytes is enhanced due to Asah1 gene knockout, which may serve as a pathogenic mechanism switching on podocytopathy and associated NS in Asah1fl/fl/PodoCre mice. We first demonstrated the remarkable elevation of urinary exosome excretion in Asah1fl/fl/PodoCre mice compared with WT/WT mice, which was accompanied by significant Annexin-II (an exosome marker) accumulation in glomeruli of Asah1fl/fl/PodoCre mice, as detected by immunohistochemistry. In cell studies, we also confirmed that Asah1 gene knockout enhanced exosome release in the primary cultures of podocyte isolated from Asah1fl/fl/PodoCre mice compared to WT/WT mice. In the podocytes from Asah1fl/fl/PodoCre mice, the interactions of lysosome and multivesicular body (MVB) were demonstrated to be decreased in comparison with those from their control littermates, suggesting reduced MVB degradation that may lead to increase in exosome release. Given the critical role of transient receptor potential mucolipin 1 (TRPML1) channel in Ca2+-dependent lysosome trafficking and consequent lysosome-MVB interaction, we tested whether lysosomal Ca2+ release through TRPML1 channels is inhibited in the podocytes of Asah1fl/fl/PodoCre mice. By GCaMP3 Ca2+ imaging, it was found that lysosomal Ca2+ release through TRPML1 channels was substantially suppressed in podocytes with Asah1 gene deletion. As an Ac product, sphingosine was found to rescue TRPML1 channel activity and thereby recover lysosome-MVB interaction and reduce exosome release of podocytes from Asah1fl/fl/PodoCre mice. Combination of N, N-dimethylsphingosine (DMS), a potent sphingosine kinase inhibitor, and sphingosine significantly inhibited urinary exosome excretion of Asah1fl/fl/PodoCre mice. Moreover, rescue of Aash1 gene expression in podocytes of Asah1fl/fl/PodoCre mice showed normal ceramide metabolism and exosome secretion. Based on these results, we conclude that the normal expression of Ac importantly contributes to the control of TRPML1 channel activity, lysosome-MVB interaction, and consequent exosome release from podocytes. Asah1 gene defect inhibits TRPML1 channel activity and thereby enhances exosome release, which may contribute to the development of podocytopathy and associated NS.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Aolin Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yao Zou
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
49
|
van den Broek M, Smeets B, Schreuder MF, Jansen J. The podocyte as a direct target of glucocorticoids in nephrotic syndrome. Nephrol Dial Transplant 2021; 37:1808-1815. [PMID: 33515261 DOI: 10.1093/ndt/gfab016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Nephrotic syndrome (NS) is characterized by massive proteinuria; podocyte loss or altered function is a central event in its pathophysiology. Treatment with glucocorticoids is the mainstay of therapy. However, many patients experience one or multiple relapses and prolonged use may be associated with severe adverse effects. Recently, the beneficial effects of glucocorticoids have been attributed to a direct effect on podocytes in addition to the well-known immunosuppressive effects. The molecular effects of glucocorticoid action have been studied using animal and cell models of NS. This review provides a comprehensive overview of different molecular mediators regulated by glucocorticoids including an overview of the model systems that were used to study them. Glucocorticoids are described to stimulate podocyte recovery by restoring pro-survival signaling of slit diaphragm related proteins and limiting inflammatory responses. Of special interest is the effect of glucocorticoids on stabilizing the cytoskeleton of podocytes, since these effects are also described for other therapeutic agents used in NS, such as cyclosporin. Current models provide much insight, but do not fully recapitulate the human condition since the pathophysiology underlying NS is poorly understood. New and promising models include the glomerulus-on-a-chip and kidney organoids, which have the potential to be further developed into functional NS models in the future.
Collapse
Affiliation(s)
- Martijn van den Broek
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Amalia Children's Hospital, Nijmegen, The Netherlands
| |
Collapse
|
50
|
Nicholson RJ, Pezzolesi MG, Summers SA. Rotten to the Cortex: Ceramide-Mediated Lipotoxicity in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 11:622692. [PMID: 33584550 PMCID: PMC7876379 DOI: 10.3389/fendo.2020.622692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and progressive comorbidity of diabetes mellitus that increases one's risk of developing renal failure. Progress toward development of better DKD therapeutics is limited by an incomplete understanding of forces driving and connecting the various features of DKD, which include renal steatosis, fibrosis, and microvascular dysfunction. Herein we review the literature supporting roles for bioactive ceramides as inducers of local and systemic DKD pathology. In rodent models of DKD, renal ceramides are elevated, and genetic and pharmacological ceramide-lowering interventions improve kidney function and ameliorate DKD histopathology. In humans, circulating sphingolipid profiles distinguish human DKD patients from diabetic controls. These studies highlight the potential for ceramide to serve as a central and therapeutically tractable lipid mediator of DKD.
Collapse
Affiliation(s)
- Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Marcus G. Pezzolesi
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|