1
|
Byun JH, Lebeau PF, Trink J, Uppal N, Lanktree MB, Krepinsky JC, Austin RC. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat Rev Nephrol 2025; 21:299-313. [PMID: 39988577 DOI: 10.1038/s41581-025-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
The endoplasmic reticulum (ER) has crucial roles in metabolically active cells, including protein translation, protein folding and quality control, lipid biosynthesis, and calcium homeostasis. Adverse metabolic conditions or pathogenic genetic variants that cause misfolding and accumulation of proteins within the ER of kidney cells initiate an injurious process known as ER stress that contributes to kidney disease and its cardiovascular complications. Initiation of ER stress activates the unfolded protein response (UPR), a cellular defence mechanism that functions to restore ER homeostasis. However, severe or chronic ER stress rewires the UPR to activate deleterious pathways that exacerbate inflammation, apoptosis and fibrosis, resulting in kidney injury. This insidious crosstalk between ER stress, UPR activation, oxidative stress and inflammation forms a vicious cycle that drives kidney disease and vascular damage. Furthermore, genetic variants that disrupt protein-folding mechanisms trigger ER stress, as evidenced in autosomal-dominant tubulointerstitial kidney disease and Fabry disease. Emerging therapeutic strategies that enhance protein-folding capacity and reduce the burden of ER stress have shown promising results in kidney diseases. Thus, integrating knowledge of how genetic variants cause protein misfolding and ER stress into clinical practice will enhance treatment strategies and potentially improve outcomes for various kidney diseases and their vascular complications.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Paul F Lebeau
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Jackie Trink
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Nikhil Uppal
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Cui B, Tu S, Li H, Zeng Z, Xiao R, Guo J, Liang X, Liu C, Pan L, Chen W, Ge M, Zhong X, Ye L, Chen H, Zhang Q, Xu Y. METTL3 knockout accelerates hepatocarcinogenesis via inhibiting endoplasmic reticulum stress response. FEBS Open Bio 2025. [PMID: 40103332 DOI: 10.1002/2211-5463.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common causes of cancer-related deaths worldwide. Previous studies showed that N6-methyladenosine (m6A), the most abundant chemical modification in eukaryotic RNAs, is implicated in HCC progression. Using liver-specific conditional knockout mice, we found that the loss of METTL3, the core catalytic subunit of m6A methyltransferase, significantly promoted hepatic tumor initiation under various oncogenic challenges, contrary to the previously reported oncogenic role of METTL3 in liver cancer cell lines or xenograft models. Mechanistically, we hypothesized that METTL3 deficiency accelerated HCC initiation by inhibiting m6A deposition on MANF transcripts, impairing nuclear export and thus MANF protein levels, which led to insufficient endoplasmic reticulum (ER) stress response pathway activation. Our findings suggest a tumor-suppressive role for METTL3 in the early stages of HCC, emphasizing the importance of understanding the dynamic role of epigenetic regulation in tumorigenesis and targeted therapy.
Collapse
Affiliation(s)
- Bo Cui
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Silin Tu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haibo Li
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhancheng Zeng
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiqi Xiao
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Guo
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqi Liang
- Cell-Gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijie Pan
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-Gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mian Ge
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofen Zhong
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaxin Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-Gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Yu M, Li D, Zhang L, Wang K. Identification and validation of a prognostic model based on immune-related genes in ovarian carcinoma. PeerJ 2024; 12:e18235. [PMID: 39494284 PMCID: PMC11531744 DOI: 10.7717/peerj.18235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/15/2024] [Indexed: 11/05/2024] Open
Abstract
Background A novel valuable prognostic model has been developed on the basis of immune-related genes (IRGs), which could be used to estimate overall survival (OS) in ovarian cancer (OC) patients in The Cancer Genome Atlas (TCGA) dataset and the International Cancer Genome Consortium (ICGC) dataset. Methods This prognostic model was engineered by employing LASSO regression in training cohort (TCGA dataset). The corresponding growth predictive values of this model for individualized survival was evaluated using survival analysis, receiver operating characteristic curve (ROC curve), and risk curve analysis. Combined with clinical characteristics, a model risk score nomogram for OS was well built. Thereafter, depended on the model risk score, patients were divided into high and low risk subgroups. The survival difference between these subgroups was measured using Kaplan-Meier survival method. In addition, correlations containing pathway enrichment, treatment, immune cell infiltration and the prognostic model were also analyzed. We established the ovarian cancer cell line W038 for this study and identified the performances of GBP1P1 knockdown on a series of activities including cellular proliferation, apoptosis, migration, and invasion of W038 cells in vitro. Results We constructed a 25-genes prognostic model (TNFAIP8L3, PI3, TMEM181, GBP1P1 (LOC400759), STX18, KIF26B, MRPS11, CACNA1C, PACSIN3, GMPR, MANF, PYGB, SNRPA1, ST7L, ZBP1, BMPR1B-DT, STAC2, LINC02585, LYPD6, NSG1, ACOT13, FAM120B, LEFTY1, SULT1A2, FZD3). The areas under the curves (AUC) of 1, 2 and 3 years were 0.806, 0.773 and 0.762, in the TCGA cohort, respectively. Besides, the effectiveness of the model was verified using ICGC testing data. Univariate and multivariate Cox regression analysis exposes the risk score as an independent prognosis predictor for OS both in the TCGA and ICGC cohort. In summary, we utilized comprehensive bioinformatics analysis to build an effective prognostic gene model for OC patients. These bioinformatic results suggested that GBP1P1 could act as a novel biomarker for OC. GBP1P1 knockdown substantially inhibited the proliferation, migration, and invasion of W038 cells in vitro, and increased the percentage of apoptotic W038 cells. Conclusions The analyses of genetic status of patients with 25-genes model might improve the ability to predict the prognosis of patients with OC and help to select patients suit able to therapies. Immune-related gene GBP1P1 might serve as prognostic biomarker for OC.
Collapse
Affiliation(s)
- Min Yu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Dan Li
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Zhang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ke Wang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
4
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
5
|
Wang J, Zhou N, Shen P, Li F, Zhao Q, Zang D, Zhang L, Lu W, Tian W, Jing L, Chen Y. Human milk-derived MANF, as an immuno-nutritional factor, maintains the intestinal epithelial barrier and protects against necrotizing enterocolitis. J Nutr Biochem 2023; 121:109431. [PMID: 37652307 DOI: 10.1016/j.jnutbio.2023.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of death in preterm infants. Compared to formula milk, breastfeeding protects against NEC. However, the composition of breast milk is quite complicated, and many immunological compositions remain unknown. In this study, we aimed to investigate the concentration of a secreted protein, Mesencephalic astrocyte-derived neurotrophic factor (MANF), in breastmilk and evaluate its immune-regulatory function in protecting the intestinal epithelial barrier. Our data indicated that MANF was secreted in human milk but could not be detected in infant formulas. More importantly, the amount of MANF in colostrum was higher than that in mature milk. We also clarified that MANF was mainly expressed in intestinal macrophages and was capable of inducing apoptosis and decreasing the inflammation of pro-inflammatory macrophages in both NEC intestinal tissues and BMDMs. Mechanismly, MANF protein significantly inhibited the apoptosis of intestinal epithelial cells and protected epithelial tight junctions through downregulation of the NF-κB pathway in pro-inflammatory macrophages. These results reveal the crucial function of human milk-derived MANF in intestinal macrophages, which contributes to downregulating the intestinal inflammatory response and protecting the homeostasis of intestinal epithelial cells. Our study not only demonstrates a potential mechanism underlying breastfeeding protective effects in NEC but also, more importantly, enables clinical translation, facilitating new strategies for the development of nutritional interventions in the prevention of NEC.
Collapse
Affiliation(s)
- Jie Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Nan Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Peijun Shen
- Anhui Maternal and Child Health Hospital, Hefei, China
| | - Fangmin Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qian Zhao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dandan Zang
- Center for Scientific Research, Anhui Medical University, Hefei, China
| | - Liu Zhang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Wen Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ling Jing
- Anhui Maternal and Child Health Hospital, Hefei, China
| | - Ying Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; School of Nursing, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Zhang C, Zhang M, Cao X, Jiao B, Zhang W, Yu S, Zhang X. Navigating the Landscape of MANF Research: A Scientometric Journey with CiteSpace Analysis. Cell Mol Neurobiol 2023; 43:3897-3913. [PMID: 37751132 PMCID: PMC10661837 DOI: 10.1007/s10571-023-01412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
This study employs bibliometric analysis through CiteSpace to comprehensively evaluate the status and trends of MANF (mesencephalic astrocyte-derived neurotrophic factor) research spanning 25 years (1997-2022). It aims to fill the gap in objective and comprehensive reviews of MANF research. MANF-related studies were extracted from the Web of Science database. MANF publications were quantitatively and qualitatively analyzed for various factors by CiteSpace, including publication volume, journals, countries/regions, institutions, and authors. Keywords and references were visually analyzed to unveil research evolution and hotspot. Analysis of 353 MANF-related articles revealed escalating annual publications, indicating growing recognition of MANF's importance. High-impact journals such as the International Journal of Molecular Sciences and Journal of Biological Chemistry underscored MANF's interdisciplinary significance. Collaborative networks highlighted China and the USA's pivotal roles, while influential figures and partnerships drove understanding of MANF's mechanisms. Co-word analysis of MANF-related keywords exposed key evolutionary hotspots, encompassing neurotrophic effects, cytoprotective roles, MANF-related diseases, and the CDNF/MANF family. This progression from basic understanding to clinical potential showcased MANF's versatility from cellular protection to therapy. Bibliometric analysis reveals MANF's diverse research trends and pathways, from basics to clinical applications, driving medical progress. This comprehensive assessment enriches understanding and empowers researchers for dynamic evolution, advancing innovation, and benefiting patients. Bibliometric analysis of MANF research. The graphical abstract depicts the bibliometric analysis of MANF research, highlighting its aims, methods, and key results.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Mi Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xueqin Cao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Shangchen Yu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Kim Y, Li C, Gu C, Fang Y, Tycksen E, Puri A, Pietka TA, Sivapackiam J, Kidd K, Park SJ, Johnson BG, Kmoch S, Duffield JS, Bleyer AJ, Jackrel ME, Urano F, Sharma V, Lindahl M, Chen YM. MANF stimulates autophagy and restores mitochondrial homeostasis to treat autosomal dominant tubulointerstitial kidney disease in mice. Nat Commun 2023; 14:6493. [PMID: 37838725 PMCID: PMC10576802 DOI: 10.1038/s41467-023-42154-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/25/2023] [Indexed: 10/16/2023] Open
Abstract
Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD-UMOD), a leading hereditary kidney disease. There are no targeted therapies. In our generated mouse model recapitulating human ADTKD-UMOD carrying a leading UMOD mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are impaired, leading to cGAS-STING activation and tubular injury. Moreover, we demonstrate that inducible tubular overexpression of mesencephalic astrocyte-derived neurotrophic factor (MANF), a secreted endoplasmic reticulum protein, after the onset of disease stimulates autophagy/mitophagy, clears mutant UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, thus protecting kidney function in our ADTKD mouse model. Conversely, genetic ablation of MANF in the mutant thick ascending limb tubular cells worsens autophagy suppression and kidney fibrosis. Together, we have discovered MANF as a biotherapeutic protein and elucidated previously unknown mechanisms of MANF in the regulation of organelle homeostasis, which may have broad therapeutic applications to treat various proteinopathies.
Collapse
Affiliation(s)
- Yeawon Kim
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chuang Li
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chenjian Gu
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yili Fang
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Anuradhika Puri
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Terri A Pietka
- Nutrition and Geriatrics Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kendrah Kidd
- Section of Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Sun-Ji Park
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bryce G Johnson
- Pfizer Worldwide Research and Development, Inflammation & Immunology, Cambridge, MA, USA
| | - Stanislav Kmoch
- Section of Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Anthony J Bleyer
- Section of Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Fumihiko Urano
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, MO, USA
| | - Maria Lindahl
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Wen W, Wang Y, Li H, Hu D, Zhang Z, Lin H, Luo J. Upregulation of mesencephalic astrocyte-derived neurotrophic factor (MANF) expression offers protection against alcohol neurotoxicity. J Neurochem 2023; 166:943-959. [PMID: 37507360 PMCID: PMC10906989 DOI: 10.1111/jnc.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Alcohol exposure has detrimental effects on both the developing and mature brain. Endoplasmic reticulum (ER) stress is one of the mechanisms that contributes to alcohol-induced neuronal damages. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress-responsive protein and is neuroprotective in multiple neuronal injury and neurodegenerative disease models. MANF deficiency has been shown to exacerbate alcohol-induced ER stress and neurodegeneration. However, it is unknown whether MANF supplement is sufficient to protect against alcohol neurotoxicity. Alcohol alters MANF expression in the brain, but the mechanisms underlying alcohol modulation of MANF expression remain unclear. This study was designed to determine how alcohol alters MANF expression in neuronal cells and whether exogeneous MANF can alleviate alcohol neurotoxicity. We showed that alcohol increased MANF transcription and secretion without affecting MANF mRNA stability and protein degradation. ER stress was necessary for alcohol-induced MANF upregulation, as pharmacological inhibition of ER stress by 4-PBA diminished alcohol-induced MANF expression. In addition, the presence of ER stress response element II (ERSE-II) was required for alcohol-stimulated MANF transcription. Mutations or deletion of this sequence abolished alcohol-regulated transcriptional activity. We generated MANF knockout (KO) neuronal cells using CRISPR/Cas9. MANF KO cells exhibited increased unfolded protein response (UPR) and were more susceptible to alcohol-induced cell death. On the other hand, MANF upregulation by the addition of recombinant MANF protein or adenovirus gene transduction protected neuronal cells against alcohol-induced cell death. Further studies using early postnatal mouse pups demonstrated that enhanced MANF expression in the brain by intracerebroventricular (ICV) injection of MANF adeno-associated viruses ameliorated alcohol-induced cell death. Thus, alcohol increased MANF expression through inducing ER stress, which could be a protective response. Exogenous MANF was able to protect against alcohol-induced neurodegeneration.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yongchao Wang
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37372, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Di Hu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zuohui Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hong Lin
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- VA Iowa City Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|
9
|
Wu D, Huang LF, Chen XC, Huang XR, Li HY, An N, Tang JX, Liu HF, Yang C. Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis 2023; 14:473. [PMID: 37500613 PMCID: PMC10374544 DOI: 10.1038/s41419-023-05905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The endoplasmic reticulum (ER) plays important roles in biosynthetic and metabolic processes, including protein and lipid synthesis, Ca2+ homeostasis regulation, and subcellular organelle crosstalk. Dysregulation of ER homeostasis can cause toxic protein accumulation, lipid accumulation, and Ca2+ homeostasis disturbance, leading to cell injury and even death. Accumulating evidence indicates that the dysregulation of ER homeostasis promotes the onset and progression of kidney diseases. However, maintaining ER homeostasis through unfolded protein response, ER-associated protein degradation, autophagy or ER-phagy, and crosstalk with other organelles may be potential therapeutic strategies for kidney disorders. In this review, we summarize the recent research progress on the relationship and molecular mechanisms of ER dysfunction in kidney pathologies. In addition, the endogenous protective strategies for ER homeostasis and their potential application for kidney diseases have been discussed.
Collapse
Affiliation(s)
- Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| |
Collapse
|
10
|
Sivakumar B, Krishnan A. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF): An Emerging Therapeutic Target for Neurodegenerative Disorders. Cells 2023; 12:cells12071032. [PMID: 37048105 PMCID: PMC10093115 DOI: 10.3390/cells12071032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a member of the new family of neurotrophic factors (NTFs) with a unique structure and functions compared to other conventionally known NTFs. MANF is broadly expressed in developing and mature tissues, including the central nervous system and peripheral nervous system tissues. Growing research demonstrated that MANF protects neurons from endoplasmic reticulum (ER) stress-associated complications by restoring ER homeostasis and regulating unfolded protein response. This review discusses MANF signaling in neurodegenerative conditions with specific emphasis given to its overall effect and mechanisms of action in experimental models of Parkinson’s disease, Alzheimer’s disease, and stroke. Additional perspectives on its potential unexplored roles in other neurodegenerative conditions are also given.
Collapse
Affiliation(s)
- Bhadrapriya Sivakumar
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Cameco MS Neuroscience Research Centre (CMSNRC), Saskatoon, SK S7K 0M7, Canada
| | - Anand Krishnan
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Cameco MS Neuroscience Research Centre (CMSNRC), Saskatoon, SK S7K 0M7, Canada
- Correspondence: ; Tel.: +1-306-655-8711
| |
Collapse
|
11
|
Chung CF, Papillon J, Navarro-Betancourt JR, Guillemette J, Bhope A, Emad A, Cybulsky AV. Analysis of gene expression and use of connectivity mapping to identify drugs for treatment of human glomerulopathies. Front Med (Lausanne) 2023; 10:1122328. [PMID: 36993805 PMCID: PMC10042326 DOI: 10.3389/fmed.2023.1122328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Background Human glomerulonephritis (GN)-membranous nephropathy (MN), focal segmental glomerulosclerosis (FSGS) and IgA nephropathy (IgAN), as well as diabetic nephropathy (DN) are leading causes of chronic kidney disease. In these glomerulopathies, distinct stimuli disrupt metabolic pathways in glomerular cells. Other pathways, including the endoplasmic reticulum (ER) unfolded protein response (UPR) and autophagy, are activated in parallel to attenuate cell injury or promote repair. Methods We used publicly available datasets to examine gene transcriptional pathways in glomeruli of human GN and DN and to identify drugs. Results We demonstrate that there are many common genes upregulated in MN, FSGS, IgAN, and DN. Furthermore, these glomerulopathies were associated with increased expression of ER/UPR and autophagy genes, a significant number of which were shared. Several candidate drugs for treatment of glomerulopathies were identified by relating gene expression signatures of distinct drugs in cell culture with the ER/UPR and autophagy genes upregulated in the glomerulopathies ("connectivity mapping"). Using a glomerular cell culture assay that correlates with glomerular damage in vivo, we showed that one candidate drug - neratinib (an epidermal growth factor receptor inhibitor) is cytoprotective. Conclusion The UPR and autophagy are activated in multiple types of glomerular injury. Connectivity mapping identified candidate drugs that shared common signatures with ER/UPR and autophagy genes upregulated in glomerulopathies, and one of these drugs attenuated injury of glomerular cells. The present study opens the possibility for modulating the UPR or autophagy pharmacologically as therapy for GN.
Collapse
Affiliation(s)
- Chen-Fang Chung
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | | | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Ameya Bhope
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
12
|
Tsai YC, Kuo MC, Hung WW, Wu PH, Chang WA, Wu LY, Lee SC, Hsu YL. Proximal tubule-derived exosomes contribute to mesangial cell injury in diabetic nephropathy via miR-92a-1-5p transfer. Cell Commun Signal 2023; 21:10. [PMID: 36639674 PMCID: PMC9838003 DOI: 10.1186/s12964-022-00997-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/21/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is an increasing threat to human health and regarded to be the leading cause of end-stage renal disease worldwide. Exosomes delivery may play a key role in cross-talk among kidney cells and the progression of DN. However, the mechanisms underlying exosomes in DN remain unclear. METHODS The cross-disciplinary study, including in vivo, in vitro, and human studies was conducted to explore the cross-talk between proximal tubular epithelial cells (PTECs) and mesangial cells (MCs) in DN. We purified exosome from PTECs treated with high glucose and db/db mice and assessed their influences in the pathologic change of MCs and downstream signal pathway. Healthy individuals and type 2 diabetic patients were enrolled to examine the role of exosomes in clinical applications. RESULTS High glucose stimulated PTECs to secrete exosomal miR-92a-1-5p, which was taken-up by glomerular MCs, inducing myofibroblast transdifferentiation (MFT) in vitro and in vivo. PTEC-released exosomal 92a-1-5p decreased reticulocalbin-3 expression, leading to endoplasmic reticulum (ER) stress by downregulating genes essential for ER homeostasis including calreticulin and mesencephalic astrocyte-derived neurotrophic factor. Treatment with miR-92a-1-5p inhibitor ameliorated kidney damage in db/db mice with DN. Urinary miR-92a-1-5p could predict kidney injury in type 2 diabetic patients. CONCLUSIONS PTEC-derived exosomal miR-92a-1-5p modulated the kidney microenvironment in vivo and in vitro models, which altered ER stress and MFT in MCs resulting in DN progression. Further blocking miR-92a-1-5p epigenetic regulatory network could be a potential therapeutic strategy to prevent the progression of DN. Video Abstract.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- grid.412019.f0000 0000 9476 5696School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Mei-Chuan Kuo
- grid.412019.f0000 0000 9476 5696Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Wen Hung
- grid.412019.f0000 0000 9476 5696Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Hsun Wu
- grid.412019.f0000 0000 9476 5696School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-An Chang
- grid.412019.f0000 0000 9476 5696Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Yu Wu
- grid.412019.f0000 0000 9476 5696Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Chu Lee
- grid.412019.f0000 0000 9476 5696Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- grid.412019.f0000 0000 9476 5696Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807 Taiwan ,grid.412019.f0000 0000 9476 5696Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 TzYou 1st Road, Kaohsiung, 807 Taiwan
| |
Collapse
|
13
|
Kim Y, Li C, Gu C, Tycksen E, Puri A, Pietka TA, Sivapackiam J, Fang Y, Kidd K, Park SJ, Johnson BG, Kmoch S, Duffield JS, Bleyer AJ, Jackrel ME, Urano F, Sharma V, Lindahl M, Chen YM. MANF stimulates autophagy and restores mitochondrial homeostasis to treat toxic proteinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523171. [PMID: 36711449 PMCID: PMC9882049 DOI: 10.1101/2023.01.10.523171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD- UMOD ), one of the leading hereditary kidney diseases, and Alzheimer’s disease etc. There are no targeted therapies. ADTKD is also a genetic form of renal fibrosis and chronic kidney disease, which affects 500 million people worldwide. For the first time, in our newly generated mouse model recapitulating human ADTKD- UMOD carrying a leading UMOD deletion mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are severely impaired, leading to cGAS- STING activation and tubular injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel endoplasmic reticulum stress-regulated secreted protein. We provide the first study that inducible tubular overexpression of MANF after the onset of disease stimulates autophagy/mitophagy and clearance of the misfolded UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, resulting in protection of kidney function. Conversely, genetic ablation of endogenous MANF upregulated in the mutant mouse and human tubular cells worsens autophagy suppression and kidney fibrosis. Together, we discover MANF as a novel biotherapeutic protein and elucidate previously unknown mechanisms of MANF in regulating organelle homeostasis to treat ADTKD, which may have broad therapeutic application to treat various proteinopathies.
Collapse
|
14
|
Cheng L, Liang Z, You X, Jia C, Liu Z, Sun F. The Role of the Mesencephalic Astrocyte-Derived Neurotrophic Factor in Patients in Intensive Care Units Receiving Voriconazole Therapy. J Clin Pharmacol 2023; 63:604-612. [PMID: 36609957 DOI: 10.1002/jcph.2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Recent publications regarding the role of mesencephalic astrocyte-derived neurotrophic factor (MANF) in various metabolic and degenerative disorders suggest that MANF is both a marker of disease and a possible therapeutic agent. We investigate the role of plasma MANF levels in patients in intensive care units (ICUs) receiving voriconazole (VCZ) therapy while also comparing MANF levels in healthy individuals. A single-center prospective study was conducted. The plasma MANF level in patients in ICU was found to have high interindividual variability and was significantly higher than that in healthy controls (P < .01). Compared with patients using VCZ only, patients using both VCZ and amikacin had 3-fold lower MANF concentrations (P < .05). The MANF concentrations also decreased when alkaline phosphatase (ALP) and serum creatinine levels were above the upper limits of the normal range (P < .05) and the estimated glomerular filtration rate (eGFR) was below the lower limit of the normal range (P < .01). Receiver operating characteristic curve analysis indicated that low MANF levels were associated with high ALP levels, high creatinine levels, and low eGFR. The cut-off value of MANF for ALP levels higher than 126 U/L was 0.35 ng/mL (area under curve, AUC = 0.62, 95%CI = 0.50-0.74, P = .044); for serum creatinine levels higher than 104 μmol/L, the cut-off value was 0.41 ng/mL (AUC = 0.74, 95%CI = 0.62-0.87, P = .001); and for eGFR below 80 mL/min, the cut-off value was 0.75 ng/mL (AUC = 0.70, 95%CI = 0.59-0.81, P = .002). Monitoring plasma MANF levels may be of value for clinical decision-making regarding the choice of antibiotics and the prediction of impaired liver function and renal function in patients admitted to an ICU.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Zaiming Liang
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi You
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Changsheng Jia
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhirui Liu
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengjun Sun
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
15
|
Chen S, Hao X, Chen G, Liu G, Yuan X, Shen P, Guo D. Effects of mesencephalic astrocyte-derived neurotrophic factor on sepsis-associated acute kidney injury. World J Emerg Med 2023; 14:386-392. [PMID: 37908790 PMCID: PMC10613790 DOI: 10.5847/wjem.j.1920-8642.2023.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND To determine the protective role of mesencephalic astrocyte-derived neurotrophic factor (MANF) in regulating sepsis-associated acute kidney injury (S-AKI). METHODS A total of 96 mice were randomly divided into the control group, control+MANF group, S-AKI group, and S-AKI+MANF group. The S-AKI model was established by injecting lipopolysaccharide (LPS) at 10 mg/kg intraperitoneally. MANF (200 μg/kg) was administered to the control+MANF and S-AKI+MANF groups. An equal dose of normal saline was administered daily intraperitoneally in the control and S-AKI groups. Serum and kidney tissue samples were obtained for biochemical analysis. Western blotting was used to detect the protein expression of MANF in the kidney, and enzyme-linked immunosorbent assay (ELISA) was used to determine expression of MANF in the serum, pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]). Serum creatinine (SCr), and blood urea nitrogen (BUN) were examined using an automatic biochemical analyzer. In addition, the kidney tissue was observed for pathological changes by hematoxylin-eosin staining. The comparison between two groups was performed by unpaired Student's t-test, and statistics among multiple groups were carried out using Tukey's post hoc test following one-way analysis of variance (ANOVA). A P-value <0.05 was considered statistically significant. RESULTS At the early stage of S-AKI, MANF in the kidney tissue was up-regulated, but with the development of the disease, it was down-regulated. Renal function was worsened in the S-AKI group, and TNF-α and IL-6 were elevated. The administration of MANF significantly alleviated the elevated levels of SCr and BUN and inhibited the expression of TNF-α and IL-6 in the kidney. The pathological changes were more extensive in the S-AKI group than in the S-AKI+MANF group. CONCLUSION MANF treatment may significantly alleviate renal injury, reduce the inflammatory response, and alleviate or reverse kidney tissue damage. MANF may have a protective effect on S-AKI, suggesting a potential treatment for S-AKI.
Collapse
Affiliation(s)
- Saifeng Chen
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical College, Shanghai 200135, China
- Department of Emergency Medicine, Shanghai Gongli Hospital, Shanghai 200135, China
| | - Xuewei Hao
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical College, Shanghai 200135, China
| | - Guo Chen
- Department of Emergency Medicine, Shanghai Gongli Hospital, Shanghai 200135, China
| | - Guorong Liu
- Department of Emergency Medicine, Shanghai Gongli Hospital, Shanghai 200135, China
| | - Xiaoyan Yuan
- Department of Emergency Medicine, Shanghai Gongli Hospital, Shanghai 200135, China
| | - Peiling Shen
- Department of Emergency Medicine, Shanghai Gongli Hospital, Shanghai 200135, China
| | - Dongfeng Guo
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical College, Shanghai 200135, China
- Department of Emergency Medicine, Shanghai Gongli Hospital, Shanghai 200135, China
| |
Collapse
|
16
|
Deng H, Zhang P, Gao X, Chen W, Li J, Wang F, Gu Y, Hou X. Emerging trophic activities of mesencephalic astrocyte-derived neurotrophic factor in tissue repair and regeneration. Int Immunopharmacol 2023; 114:109598. [PMID: 36538855 DOI: 10.1016/j.intimp.2022.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a soluble endoplasmic reticulum (ER) luminal protein and its expression and secretion can be induced by ER stress. Despite initially being classified as a neurotrophic factor, MANF has been demonstrated to have restorative and protective effects in many different cell types such as neurons, liver cells, retinal cells, cardiac myocytes, and pancreatic β cells. However, underlying molecular mechanisms are complex and remain incompletely understood. The aims of this review are to highlight the latest advances in the understanding of the trophic activities of MANF in tissue repair and regeneration as well as underlying molecular mechanisms. The structural motifs and immune modulation of MANF are also described. We therefore propose that MANF might be a promising therapeutic target for tissue repair.
Collapse
Affiliation(s)
- Haiyan Deng
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Pingping Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, PR China
| | - Xianxian Gao
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Weiyi Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jianing Li
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Fuyan Wang
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, 266000, PR China
| | - Yiyue Gu
- Department of Cardiology, Xuzhou No.1 Peoples Hospital, Xuzhou, PR China
| | - Xin Hou
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; The Affiliated Hospital of Medical School, Ningbo University, Ningbo, PR China.
| |
Collapse
|
17
|
Liu YY, Huo D, Zeng LT, Fan GQ, Shen T, Zhang TM, Cai JP, Cui J. Mesencephalic astrocyte-derived neurotrophic factor (MANF): Structure, functions and therapeutic potential. Ageing Res Rev 2022; 82:101763. [PMID: 36272696 DOI: 10.1016/j.arr.2022.101763] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/18/2022] [Accepted: 10/15/2022] [Indexed: 01/31/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel evolutionarily conserved protein present in both vertebrate and invertebrate species. MANF shows distinct structural and functional properties than the traditional neurotrophic factors (NTF). MANF is composed of an N-terminal saposin-like lipid-binding domain and a C-terminal SAF-A/B, Acinus and PIAS (SAP) domain connected by a short linker. The two well-described activities of MANF include (1) role as a neurotrophic factor that plays direct neuroprotective effects in the nervous system and (2) cell protective effects in the animal models of non-neuronal diseases, including retinal damage, diabetes mellitus, liver injury, myocardial infarction, nephrotic syndrome, etc. The main objective of the current review is to provide up-to-date insights regarding the structure of MANF, mechanisms regulating its expression and secretion, physiological functions in various tissues and organs, protective effects during aging, and potential clinical applications. Together, this review highlights the importance of MANF in reversing age-related dysfunction and geroprotection.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Da Huo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Guo-Qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Tie-Mei Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China.
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China.
| |
Collapse
|
18
|
Navarro-Betancourt JR, Cybulsky AV. The IRE1α pathway in glomerular diseases: The unfolded protein response and beyond. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:971247. [PMID: 39086958 PMCID: PMC11285563 DOI: 10.3389/fmmed.2022.971247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 08/02/2024]
Abstract
Endoplasmic reticulum (ER) function is vital for protein homeostasis ("proteostasis"). Protein misfolding in the ER of podocytes (glomerular visceral epithelial cells) is an important contributor to the pathogenesis of human glomerular diseases. ER protein misfolding causes ER stress and activates a compensatory signaling network called the unfolded protein response (UPR). Disruption of the UPR, in particular deletion of the UPR transducer, inositol-requiring enzyme 1α (IRE1α) in mouse podocytes leads to podocyte injury and albuminuria in aging, and exacerbates injury in glomerulonephritis. The UPR may interact in a coordinated manner with autophagy to relieve protein misfolding and its consequences. Recent studies have identified novel downstream targets of IRE1α, which provide new mechanistic insights into proteostatic pathways. Novel pathways of IRE1α signaling involve reticulophagy, mitochondria, metabolism, vesicular trafficking, microRNAs, and others. Mechanism-based therapies for glomerulopathies are limited, and development of non-invasive ER stress biomarkers, as well as targeting ER stress with pharmacological compounds may represent a therapeutic opportunity for preventing or attenuating progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Li C, Krothapalli S, Chen YM. Targeting Endoplasmic Reticulum for Novel Therapeutics and Monitoring in Acute Kidney Injury. Nephron Clin Pract 2022; 147:21-24. [PMID: 36116429 PMCID: PMC9928598 DOI: 10.1159/000526050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress response is a conservative mechanism involving a complex network of different molecular branches to determine cell fate through specific transcription factors and downstream executors. Emerging evidence shows that ER stress is implicated in the occurrence and progression of acute kidney injury (AKI) in different animal models and human patients. However, there is still a lack of therapeutics targeting the ER in AKI. SUMMARY Several therapeutic chemicals, including a compound that induces activating transcription factor 6 (ATF6) and chemical chaperones, have been developed to target the ER in the treatment of AKI. Meanwhile, ER stress-inducible secreted proteins, mesencephalic astrocyte-derived neurotrophic factor (MANF), and cysteine-rich with EGF-like domains 2 (CRELD2) could serve as potential ER stress biomarkers in the early diagnosis and treatment response monitoring of human patients with AKI. KEY MESSAGES Experimental and clinical evidence suggests the critical role of ER in the pathogenesis and progression of AKI, and ER is a novel target in AKI therapy.
Collapse
Affiliation(s)
- Chuang Li
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis MO, USA
| | - Siva Krothapalli
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis MO, USA
- Saint Louis University, St. Louis MO, USA
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis MO, USA
| |
Collapse
|
20
|
Rinaldi A, Lazareth H, Poindessous V, Nemazanyy I, Sampaio JL, Malpetti D, Bignon Y, Naesens M, Rabant M, Anglicheau D, Cippà PE, Pallet N. Impaired fatty acid metabolism perpetuates lipotoxicity along the transition to chronic kidney injury. JCI Insight 2022; 7:161783. [PMID: 35998043 DOI: 10.1172/jci.insight.161783] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Energy metabolism failure in proximal tubule cells (PTC) is a hallmark of chronic kidney injury. We combined transcriptomic, metabolomic and lipidomic approaches in experimental models and patient cohorts to investigate the molecular bases of the progression to chronic kidney allograft injury initiated by ischemia-reperfusion injury (IRI). The urinary metabolome of kidney transplant recipients with chronic allograft injury and who experienced severe IRI was significantly enriched with long chain fatty acids (FA). We identified a renal FA-related gene signature with low levels of Cpt2 and Acsm5 and high levels of Acsl4 and Acsm5 associated with IRI, transition to chronic injury, and established CKD in mouse models and kidney transplant recipients. The findings were consistent with the presence of Cpt2-, Acsl4+, Acsl5+, Acsm5- PTC failing to recover from IRI as identified by snRNAseq. In vitro experiments indicated that endoplasmic reticulum (ER) stress contributes to CPT2 repression, which, in turn, promotes lipids accumulation, drives profibrogenic epithelial phenotypic changes, and activates the unfolded protein response. ER stress through CPT2 inhibition and lipid accumulation, engages an auto-amplification loop leading to lipotoxicity and self-sustained cellular stress. Thus, IRI imprints a persistent FA metabolism disturbance in the proximal tubule sustaining the progression to chronic kidney allograft injury.
Collapse
Affiliation(s)
- Anna Rinaldi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Hélène Lazareth
- Centre de Recherche des Cordeliers, INSERM U1138, Paris, France
| | | | - Ivan Nemazanyy
- PMM: The Metabolism-Metabolome Platform, Necker Federative Research Structu, INSERM US24/CNRS, UMS3633, Paris, France
| | - Julio L Sampaio
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Paris, France
| | - Daniele Malpetti
- Instituto Dalle Molle di Studi sull'Intelligenza Artificiale, Lugano, Switzerland
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marion Rabant
- Department of Pathology, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Dany Anglicheau
- Department of Kidney Transplantation, Necker Hospital, Paris, France
| | - Pietro E Cippà
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Nicolas Pallet
- Centre de Recherche des Cordeliers, INSERM U1138, Paris, France
| |
Collapse
|
21
|
Eesmaa A, Yu LY, Göös H, Danilova T, Nõges K, Pakarinen E, Varjosalo M, Lindahl M, Lindholm P, Saarma M. CDNF Interacts with ER Chaperones and Requires UPR Sensors to Promote Neuronal Survival. Int J Mol Sci 2022; 23:ijms23169489. [PMID: 36012764 PMCID: PMC9408947 DOI: 10.3390/ijms23169489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is a neurotrophic factor that has beneficial effects on dopamine neurons in both in vitro and in vivo models of Parkinson's disease (PD). CDNF was recently tested in phase I-II clinical trials for the treatment of PD, but the mechanisms underlying its neuroprotective properties are still poorly understood, although studies have suggested its role in the regulation of endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR). The aim of this study was to investigate the mechanism of action of CDNF through analyzing the involvement of UPR signaling in its anti-apoptotic function. We used tunicamycin to induce ER stress in mice in vivo and used cultured primary neurons and found that CDNF expression is regulated by ER stress in vivo and that the involvement of UPR pathways is important for the neuroprotective function of CDNF. Moreover, we used AP-MS and BiFC to perform the first interactome screening for CDNF and report novel binding partners of CDNF. These findings allowed us to hypothesize that CDNF protects neurons from ER-stress-inducing agents by modulating UPR signaling towards cell survival outcomes.
Collapse
|
22
|
Wen W, Li H, Luo J. Potential Role of MANF, an ER Stress Responsive Neurotrophic Factor, in Protecting Against Alcohol Neurotoxicity. Mol Neurobiol 2022; 59:2992-3015. [PMID: 35254650 PMCID: PMC10928853 DOI: 10.1007/s12035-022-02786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Alcohol exposure during pregnancy is harmful to the fetus and causes a wide range of long-lasting physiological and neurocognitive impairments, collectively referred to as fetal alcohol spectrum disorders (FASD). The neurobehavioral deficits observed in FASD result from structural and functional damages in the brain, with neurodegeneration being the most destructive consequence. Currently, there are no therapies for FASD. It is exigent to delineate the underlying mechanisms of alcohol neurotoxicity and develop an effective strategy of treatment. ER stress, caused by the accumulation of unfolded/misfolded proteins in the ER, is the hallmark of many neurodegenerative diseases, including alcohol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly discovered endoplasmic reticulum (ER) stress responsive neurotrophic factor that regulates diverse neuronal functions. This review summarizes the recent findings revealing the effects of MANF on the CNS and its protective role against neurodegeneration. Particularly, we focus the role of MANF on alcohol-induced ER stress and neurodegeneration and discuss the therapeutic potential of MANF in treating alcohol neurotoxicity such as FASD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Iowa City VA Health Care System, Iowa City, IA, 52246, USA.
| |
Collapse
|
23
|
Tang Q, Li Y, He J. MANF: an emerging therapeutic target for metabolic diseases. Trends Endocrinol Metab 2022; 33:236-246. [PMID: 35135706 DOI: 10.1016/j.tem.2022.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum-resident protein and a secretory factor and has beneficial effects in multiple diseases. Recent evidence shows that its circulating levels in humans are dynamically regulated under various metabolic diseases, including diabetes, obesity, fatty liver, and cardiovascular diseases, suggesting that MANF may play a role in these pathological states. Also, its downregulation in mice impairs glucose homeostasis, promotes lipid accumulation in the liver, reduces energy expenditure, and induces inflammation. Conversely, MANF overexpression prevents or mitigates some of these metabolic disturbances. In particular, systemic MANF administration alleviates dietary obesity and related metabolic disorders in obese mice. We therefore propose that MANF might be a promising target for treating chronic metabolic diseases.
Collapse
Affiliation(s)
- Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
24
|
MANF: A Novel Endoplasmic Reticulum Stress Response Protein-The Role in Neurological and Metabolic Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6467679. [PMID: 34745419 PMCID: PMC8568515 DOI: 10.1155/2021/6467679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
The mesencephalic astrocyte-derived neurotrophic factor (MANF), also named as arginine-rich protein (ARP) or arginine-rich mutated in early-stage tumors (ARMET), is a novel evolutionary conserved protein related to unfolded protein response. Growing evidence suggests that MANF critically involves in many ER stress-related diseases with a protective effect. Here, we review the function of MANF based on its structure in neurological and metabolic disorders and summarize its potential applications in disease diagnosis and therapies.
Collapse
|
25
|
Kim Y, Wang Z, Li C, Kidd K, Wang Y, Johnson BG, Kmoch S, Morrissey JJ, Bleyer AJ, Duffield JS, Singamaneni S, Chen YM. Ultrabright plasmonic fluor nanolabel-enabled detection of a urinary ER stress biomarker in autosomal dominant tubulointerstitial kidney disease. Am J Physiol Renal Physiol 2021; 321:F236-F244. [PMID: 34251273 PMCID: PMC8424663 DOI: 10.1152/ajprenal.00231.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is the most common nonpolycystic genetic kidney disease, but it remains unrecognized due to its clinical heterogeneity and lack of screening test. Moreover, the fact that the clinical feature is a poor predictor of disease outcome further highlights the need for the development of mechanistic biomarkers in ADTKD. However, low abundant urinary proteins secreted by thick ascending limb cells, where UMOD is synthesized, have posed a challenge for the detection of biomarkers in ADTKD-UMOD. In the CRISPR/Cas9-generated murine model and patients with ADTKD-UMOD, we found that immunoglobulin heavy chain-binding protein (BiP), an endoplasmic reticulum chaperone, was exclusively upregulated by mutant UMOD in the thick ascending limb and easily detected by Western blot analysis in the urine at an early stage of disease. However, even the most sensitive ELISA failed to detect urinary BiP in affected individuals. We therefore developed an ultrasensitive, plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA) to quantify urinary BiP concentration by harnessing the newly invented ultrabright fluorescent nanoconstruct, termed "plasmonic Fluor." p-FLISA demonstrated that urinary BiP excretion was significantly elevated in patients with ADTKD-UMOD compared with unaffected controls, which may have potential utility in risk stratification, disease activity monitoring, disease progression prediction, and guidance of endoplasmic reticulum-targeted therapies in ADTKD.NEW & NOTEWORTHY Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is an underdiagnosed cause of chronic kidney disease (CKD). Lack of ultrasensitive bioanalytical tools has hindered the discovery of low abundant urinary biomarkers in ADTKD. Here, we developed an ultrasensitive plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA). p-FLISA demonstrated that secreted immunoglobulin heavy chain-binding protein is an early urinary endoplasmic reticulum stress biomarker in ADTKD-UMOD, which will be valuable in monitoring disease progression and the treatment response in ADTKD.
Collapse
Affiliation(s)
- Yeawon Kim
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Chuang Li
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kendrah Kidd
- Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Research Unit of Rare Diseases, Department of Pediatric and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Yixuan Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Bryce G Johnson
- Pfizer Worldwide Research and Development, Inflammation & Immunology, Cambridge, Massachusetts
| | - Stanislav Kmoch
- Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Research Unit of Rare Diseases, Department of Pediatric and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jeremiah J Morrissey
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Anthony J Bleyer
- Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
26
|
Zhang J, Zhang J, Ni H, Wang Y, Katwal G, Zhao Y, Sun K, Wang M, Li Q, Chen G, Miao Y, Gong N. Downregulation of XBP1 protects kidney against ischemia-reperfusion injury via suppressing HRD1-mediated NRF2 ubiquitylation. Cell Death Discov 2021; 7:44. [PMID: 33654072 PMCID: PMC7925512 DOI: 10.1038/s41420-021-00425-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Ischemia-reperfusion (IR) injury to the renal epithelia is associated with endoplasmic reticulum stress (ERS) and mitochondria dysfunction, which lead to oxidative stress-induced acute kidney injury (AKI). X-box binding protein 1 (XBP1), an ERS response protein, could play a prominent role in IR-induced AKI. In this study, we revealed that XBP1 and its downstream target HRD1 participated in the crosstalk between ERS and mitochondrial dysfunction via regulation of NRF2/HO-1-mediated reactive oxidative stress (ROS) signaling. Mice with reduced expression of XBP1 (heterozygous Xbp1±) were resistant to IR-induced AKI due to the enhanced expression of NRF2/HO-1 and diminished ROS in the kidney. Downregulation of XBP1 in renal epithelial cells resulted in reduced HRD1 expression and increased NRF2/HO-1 function, accompanied with enhanced antioxidant response. Furthermore, HRD1 served as an E3-ligase to facilitate the downregulation of NRF2 through ubiquitination-degradation pathway, and the QSLVPDI motif on NRF2 constituted an active site for its interaction with HRD1. Thus, our findings unveil an important physiological role for XBP1/HRD1 in modulating the antioxidant function of NRF2/HO-1 in the kidney under stress conditions. Molecular therapeutic approaches that target XBP1-HRD1-NRF2 pathway may represent potential effective means to treat renal IR injury.
Collapse
Affiliation(s)
- Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Jiasi Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Haiqiang Ni
- Organ Transplant Department, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yanfeng Wang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, 430071, Wuhan, Hubei, China
| | - Gaurav Katwal
- Chitwan Medical College Teaching Hospital, Department of Surgery, Bharatpur, Chitwan, 44200, Nepal
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Kailun Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Mengqin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Gen Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yun Miao
- Organ Transplant Department, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Li C, Chen YM. Endoplasmic Reticulum-Associated Biomarkers for Molecular Phenotyping of Rare Kidney Disease. Int J Mol Sci 2021; 22:2161. [PMID: 33671535 PMCID: PMC7926397 DOI: 10.3390/ijms22042161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is the central site for folding, post-translational modifications, and transport of secretory and membrane proteins. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and an unfolded protein response. Emerging evidence has shown that ER stress or the derangement of ER proteostasis contributes to the development and progression of a variety of glomerular and tubular diseases. This review gives a comprehensive summary of studies that have elucidated the role of the three ER stress signaling pathways, including inositol-requiring enzyme 1 (IRE1), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 (ATF6) signaling in the pathogenesis of kidney disease. In addition, we highlight the recent discovery of ER-associated biomarkers, including MANF, ERdj3, ERdj4, CRELD2, PDIA3, and angiogenin. The implementation of these novel biomarkers may accelerate early diagnosis and therapeutic intervention in rare kidney disease.
Collapse
Affiliation(s)
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
28
|
Eesmaa A, Yu LY, Göös H, Nõges K, Kovaleva V, Hellman M, Zimmermann R, Jung M, Permi P, Varjosalo M, Lindholm P, Saarma M. The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor. J Biol Chem 2021; 296:100295. [PMID: 33460650 PMCID: PMC7949057 DOI: 10.1016/j.jbc.2021.100295] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of ER-stressed neurons in vitro as a general unfolded protein response (UPR) regulator, affecting several UPR pathways simultaneously. Interestingly, MANF does not affect naïve neurons. We hypothesize that MANF regulates UPR signaling toward a mode more compatible with neuronal survival. Screening of MANF interacting proteins from two mammalian cell lines revealed a conserved interactome of 15 proteins including several ER chaperones such as GRP78, GRP170, protein disulfide isomerase family A member 1, and protein disulfide isomerase family A member 6. Further characterization confirmed previously published finding that MANF is a cofactor of GRP78 interacting with its nucleotide binding domain. Using microscale thermophoresis and nuclear magnetic resonance spectroscopy, we discovered that MANF is an ATP binding protein and that ATP blocks the MANF-GRP78 interaction. Interestingly, functional analysis of the antiapoptotic properties of MANF mutants in cultured neurons revealed divergent roles of MANF as a GRP78 cofactor and as an antiapoptotic regulator of UPR. We conclude that the co-factor type interaction with GRP78 is dispensable for the survival-promoting activity of MANF in neurons.
Collapse
Affiliation(s)
- Ave Eesmaa
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Li-Ying Yu
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Helka Göös
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kristofer Nõges
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Vera Kovaleva
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maarit Hellman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Perttu Permi
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland; Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
29
|
Hou C, Mei Q, Song X, Bao Q, Li X, Wang D, Shen Y. Mono-macrophage-Derived MANF Protects Against Lipopolysaccharide-Induced Acute Kidney Injury via Inhibiting Inflammation and Renal M1 Macrophages. Inflammation 2020; 44:693-703. [PMID: 33145627 DOI: 10.1007/s10753-020-01368-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 01/07/2023]
Abstract
The outburst of renal inflammatory response has been found to be a crucial cause of acute kidney injury (AKI). Attenuating the renal inflammation is an effective way for AKI treatment. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been proven to be an anti-inflammatory factor. However, the effect of MANF on renal inflammation induced by AKI is unknown. In this study, we have investigated the effect of mono-macrophage-derived MANF on AKI. We constructed the mono-macrophage-specific MANF knockout (Mø MANF-/-) mouse and used lipopolysaccharide (LPS) to induce AKI in wild-type (WT) and Mø MANF-/- mice. With mono-macrophage-specific MANF deficiency, Mø MANF-/- mice had a lower survival rate, more severe renal injury, and higher serum level of pro-inflammatory TNF-α after AKI was induced by LPS. Also, compared with WT mice, there were more M1 macrophages in renal tissues of Mø MANF-/- mice with LPS treatment, which might be attributed to the enhanced NF-κB activation in the renal microenvironment. Our study indicates the immunoregulatory role of mono-macrophage-derived MANF in the pathophysiological process of AKI, as well as the potential clinical application of MANF for AKI treatment.
Collapse
Affiliation(s)
- Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuegang Song
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qin Bao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiang Li
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
30
|
Jӓntti M, Harvey BK. Trophic activities of endoplasmic reticulum proteins CDNF and MANF. Cell Tissue Res 2020; 382:83-100. [PMID: 32845431 DOI: 10.1007/s00441-020-03263-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) are endoplasmic reticulum (ER) luminal proteins that confer trophic activities in a wide range of tissues under diverse pathological conditions. Despite initially being classified as neurotrophic factors, neither protein structurally nor functionally resembles bona fide neurotrophic factors. Their highly homologous structures comprise a unique globular, saposin-like domain within the N-terminus joined by a flexible linker to a C-terminus containing a SAP-like domain, CXXC motif and an ER retention sequence. Neurotrophic factors exert effects by binding to cognate receptors in the plasma membrane; however, no cell surface receptors have been identified for MANF and CDNF. Both can act as unfolded protein response (UPR) genes that modulate the UPR and inflammatory processes. The trophic activity of MANF and CDNF extends beyond the central nervous system with MANF being crucial for the development of pancreatic β cells and both have trophic effects in a variety of diseases related to the liver, heart, skeletal tissue, kidney and peripheral nervous system. In this article, the unique features of MANF and CDNF, such as their structure and mechanisms of action related to ER stress and inflammation, will be reviewed. Recently identified interactions with lipids and membrane trafficking will also be described. Lastly, their function and therapeutic potential in different diseases including a recent clinical trial using CDNF to treat Parkinson's disease will be discussed. Collectively, this review will highlight MANF and CDNF as broad-acting trophic factors that regulate functions of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Maria Jӓntti
- Molecular Mechanisms of Cellular Stress and Inflammation Lab, Intramural Research Program, National Institute on Drug Abuse, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Lab, Intramural Research Program, National Institute on Drug Abuse, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
31
|
Tousson-Abouelazm N, Papillon J, Guillemette J, Cybulsky AV. Urinary ERdj3 and mesencephalic astrocyte-derived neutrophic factor identify endoplasmic reticulum stress in glomerular disease. J Transl Med 2020; 100:945-958. [PMID: 32203149 DOI: 10.1038/s41374-020-0416-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/09/2022] Open
Abstract
Podocyte injury and endoplasmic reticulum (ER) stress have been implicated in the pathogenesis of various glomerular diseases. ERdj3 (DNAJB11) and mesencephalic astrocyte-derived neurotrophic factor (MANF) are ER chaperones lacking the KDEL motif, and may be secreted extracellularly. Since podocytes reside in the urinary space, we examined if podocyte injury is associated with secretion of KDEL-free ER chaperones from these cells into the urine, and if chaperones in the urine reflect ER stress in glomerulonephritis. In cultured podocytes, ER stress increased ERdj3 and MANF intracellularly and in culture medium, whereas GRP94 (KDEL chaperone) increased only intracellularly. ERdj3 and MANF secretion was blocked by the secretory trafficking inhibitor, brefeldin A. Urinary ERdj3 and MANF increased in rats injected with tunicamycin (in the absence of proteinuria). After induction of passive Heymann nephritis (PHN) and puromycin aminonucleoside nephrosis (PAN), there was an increase in glomerular ER stress, and appearance of ERdj3 and MANF in the urine, coinciding with the onset of proteinuria. Rats with PHN were treated with the chemical chaperone, 4-phenyl butyrate (PBA), starting at the time of disease induction, or after disease was established. In both protocols, 4-PBA reduced proteinuria and urinary ER chaperone secretion, compared with PHN rats treated with saline (control). In conclusion, urinary ERdj3 and MANF reflect glomerular ER stress. 4-PBA protected against complement-mediated podocyte injury and the therapeutic response could be monitored by urinary ERdj3 and MANF.
Collapse
Affiliation(s)
- Nihad Tousson-Abouelazm
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada.,Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
32
|
Diagnostic and Prognostic Values of MANF Expression in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1936385. [PMID: 32382531 PMCID: PMC7193290 DOI: 10.1155/2020/1936385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and its prognosis is still poor. Mesencephalic astrocyte-derived neurotrophic factor (MANF) plays a key role in endoplasmic reticulum stress. ER stress plays a key role in HCC carcinogenesis. To confirm the clinical and prognostic value of MANF in HCC, we investigated the expression level of MANF in HCC as recorded in databases, and the results were verified by experiment. Survival analysis was probed by the Kaplan–Meier method. Cox regression models were used to ascertain the prognostic value of MANF in HCC tissue microarray. The diagnostic value of MANF in HCC was evaluated by receiver operating characteristic curve analysis. Potential correlation between MANF and selected genes was also analyzed. Results showed that MANF was overexpressed in HCC. Patients with high MANF expression levels had a worse prognosis and higher risk of tumor recurrence. Furthermore, the expression level of MANF had good diagnostic power. Correlation analysis revealed potential regulatory networks of MANF in HCC, laying a foundation for further study of the role of MANF in tumorigenesis. In conclusion, MANF was overexpressed in HCC and related to the occurrence and development of HCC. It is a potential diagnostic and prognostic indicator of HCC.
Collapse
|
33
|
The cellular prion protein is a stress protein secreted by renal tubular cells and a urinary marker of kidney injury. Cell Death Dis 2020; 11:243. [PMID: 32303684 PMCID: PMC7165184 DOI: 10.1038/s41419-020-2430-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Endoplasmic Reticulum (ER) stress underlies the pathogenesis of numerous kidney diseases. A better care of patients with kidney disease involves the identification and validation of ER stress biomarkers in the early stages of kidney disease. For the first time to our knowledge, we demonstrate that the prion protein PrPC is secreted in a conventional manner by ER-stressed renal epithelial cell under the control of the transcription factor x-box binding protein 1 (XBP1) and can serve as a sensitive urinary biomarker for detecting tubular ER stress. Urinary PrPC elevation occurs in patients with chronic kidney disease. In addition, in patients undergoing cardiac surgery, detectable urine levels of PrPC significantly increase after cardiopulmonary bypass, a condition associated with activation of the IRE1-XBP1 pathway in the kidney. In conclusion, our study has identified PrPC as a novel urinary ER stress biomarker with potential utility in early diagnosis of ongoing acute or chronic kidney injury.
Collapse
|
34
|
Funk SD, Bayer RH, McKee KK, Okada K, Nishimune H, Yurchenco PD, Miner JH. A deletion in the N-terminal polymerizing domain of laminin β2 is a new mouse model of chronic nephrotic syndrome. Kidney Int 2020; 98:133-146. [PMID: 32456966 DOI: 10.1016/j.kint.2020.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
The importance of the glomerular basement membrane (GBM) in glomerular filtration is underscored by the manifestations of Alport and Pierson syndromes, caused by defects in type IV collagen α3α4α5 and the laminin β2 chain, respectively. Lamb2 null mice, which model the most severe form of Pierson syndrome, exhibit proteinuria prior to podocyte foot process effacement and are therefore useful for studying GBM permselectivity. We hypothesize that some LAMB2 missense mutations that cause mild forms of Pierson syndrome induce GBM destabilization with delayed effects on podocytes. While generating a CRISPR/Cas9-mediated analogue of a human LAMB2 missense mutation in mice, we identified a 44-amino acid deletion (LAMB2-Del44) within the laminin N-terminal domain, a domain mediating laminin polymerization. Laminin heterotrimers containing LAMB2-Del44 exhibited a 90% reduction in polymerization in vitro that was partially rescued by type IV collagen and nidogen. Del44 mice showed albuminuria at 1.8-6.0 g/g creatinine (ACR) at one to two months, plateauing at an average 200 g/g ACR at 3.7 months, when GBM thickening and hallmarks of nephrotic syndrome were first observed. Despite the massive albuminuria, some Del44 mice survived for up to 15 months. Blood urea nitrogen was modestly elevated at seven-nine months. Eight to nine-month-old Del44 mice exhibited glomerulosclerosis and interstitial fibrosis. Similar to Lamb2-/- mice, proteinuria preceded foot process effacement. Foot processes were widened but not effaced at one-two months despite the high ACRs. At three months some individual foot processes were still observed amid widespread effacement. Thus, our chronic model of nephrotic syndrome may prove useful to study filtration mechanisms, long-term proteinuria with preserved kidney function, and to test therapeutics.
Collapse
Affiliation(s)
- Steven D Funk
- Department of Internal Medicine, Division of Nephrology, Washington University, St. Louis, Missouri, USA
| | - Raymond H Bayer
- Department of Internal Medicine, Division of Nephrology, Washington University, St. Louis, Missouri, USA
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Kazushi Okada
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Jeffrey H Miner
- Department of Internal Medicine, Division of Nephrology, Washington University, St. Louis, Missouri, USA.
| |
Collapse
|
35
|
Galli E, Rossi J, Neumann T, Andressoo JO, Drinda S, Lindholm P. Mesencephalic Astrocyte-Derived Neurotrophic Factor Is Upregulated with Therapeutic Fasting in Humans and Diet Fat Withdrawal in Obese Mice. Sci Rep 2019; 9:14318. [PMID: 31586115 PMCID: PMC6778185 DOI: 10.1038/s41598-019-50841-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
Dietary restriction induces beneficial metabolic changes and prevents age-related deterioration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) shows protective effects on cells in various models of degenerative diseases. Here we studied whether circulating concentrations of MANF are associated with fasting-induced positive effects. We quantified the levels of circulating MANF from 40 human subjects before and after therapeutic fasting. As measured by an enzyme-linked immunosorbent assay (ELISA), the mean concentration of plasma MANF increased after an average fasting of 15 days. Plasma MANF levels correlated inversely with adiponectin, a hormone that regulates metabolism, thus suggesting that MANF levels are related to metabolic homeostasis. To study the effects of dietary intervention on MANF concentrations in mice, we developed an ELISA for mouse MANF and verified its specificity using MANF knock-out (KO) tissue. A switch from high-fat to normal diet increased MANF levels and downregulated the expression of unfolded protein response (UPR) genes in the liver, indicating decreased endoplasmic reticulum (ER) stress. Liver MANF and serum adiponectin concentrations correlated inversely in mice. Our findings demonstrate that MANF expression and secretion increases with dietary intervention. The MANF correlation to adiponectin and its possible involvement in metabolic regulation and overall health warrants further studies.
Collapse
Affiliation(s)
- Emilia Galli
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Rossi
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Neumann
- Department of Internal Medicine III, Friedrich Schiller University Jena, Jena, Germany.,Department of Rheumatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Drinda
- Hospital Buchinger-Wilhelmi, Überlingen, Germany.,Department for Rheumatology, Clinic St. Katharinental, Diessenhofen, Switzerland
| | - Päivi Lindholm
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
36
|
Park SJ, Kim Y, Chen YM. Endoplasmic reticulum stress and monogenic kidney diseases in precision nephrology. Pediatr Nephrol 2019; 34:1493-1500. [PMID: 30099615 PMCID: PMC6370526 DOI: 10.1007/s00467-018-4031-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
The advent of next-generation sequencing (NGS) in recent years has led to a rapid discovery of novel or rare genetic variants in human kidney cell genes, which is transforming the risk assessment, diagnosis, and treatment of kidney disease. Mutations may lead to protein misfolding, disruption of protein trafficking, and endoplasmic reticulum (ER) retention. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and unfolded protein response. Mutations in nephrin (NPHS1), podocin (NPHS2), laminin β2 (LAMB2), and α-actinin-4 (ACTN4) have been shown to induce ER stress in HEK293 cells and podocytes in hereditary nephrotic syndromes; various founder mutations in collagen IV α chains (COL4A) have been demonstrated to activate podocyte ER stress in collagen IV nephropathies; and mutations in uromodulin (UMOD) have been reported to trigger tubular ER stress in autosomal dominant tubulointerstitial kidney disease. Meanwhile, ER resident protein SEC63 may modify disease severity in autosomal dominant polycystic kidney disease. These findings underscore the importance of ER stress in the pathogenesis of monogenic kidney disease. Recently, we have identified mesencephalic astrocyte-derived neurotrophic factor (MANF) and cysteine-rich with EGF-like domains 2 (CRELD2) as urinary ER stress biomarkers in ER stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Sun-Ji Park
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8126, St. Louis, MO, 63110, USA
| | - Yeawon Kim
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8126, St. Louis, MO, 63110, USA
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8126, St. Louis, MO, 63110, USA.
| |
Collapse
|
37
|
Park SJ, Kim Y, Yang SM, Henderson MJ, Yang W, Lindahl M, Urano F, Chen YM. Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome. Proc Natl Acad Sci U S A 2019; 116:14154-14163. [PMID: 31235574 PMCID: PMC6628787 DOI: 10.1073/pnas.1813580116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Emerging evidence has established primary nephrotic syndrome (NS), including focal segmental glomerulosclerosis (FSGS), as a primary podocytopathy. Despite the underlying importance of podocyte endoplasmic reticulum (ER) stress in the pathogenesis of NS, no treatment currently targets the podocyte ER. In our monogenic podocyte ER stress-induced NS/FSGS mouse model, the podocyte type 2 ryanodine receptor (RyR2)/calcium release channel on the ER was phosphorylated, resulting in ER calcium leak and cytosolic calcium elevation. The altered intracellular calcium homeostasis led to activation of calcium-dependent cytosolic protease calpain 2 and cleavage of its important downstream substrates, including the apoptotic molecule procaspase 12 and podocyte cytoskeletal protein talin 1. Importantly, a chemical compound, K201, can block RyR2-Ser2808 phosphorylation-mediated ER calcium depletion and podocyte injury in ER-stressed podocytes, as well as inhibit albuminuria in our NS model. In addition, we discovered that mesencephalic astrocyte-derived neurotrophic factor (MANF) can revert defective RyR2-induced ER calcium leak, a bioactivity for this ER stress-responsive protein. Thus, podocyte RyR2 remodeling contributes to ER stress-induced podocyte injury. K201 and MANF could be promising therapies for the treatment of podocyte ER stress-induced NS/FSGS.
Collapse
Affiliation(s)
- Sun-Ji Park
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yeawon Kim
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Maria Lindahl
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland 00014
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
38
|
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz‐Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 2019; 286:241-278. [PMID: 30027602 PMCID: PMC7379631 DOI: 10.1111/febs.14608] [Citation(s) in RCA: 650] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.
Collapse
Affiliation(s)
- Aitor Almanza
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Antonio Carlesso
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Chetan Chintha
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | | | - Dimitrios Doultsinos
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Brian Leuzzi
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Nicole McCarthy
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | - Luigi Montibeller
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Sanket More
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Alexandra Papaioannou
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Franziska Püschel
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Maria Livia Sassano
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Josip Skoko
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Patrizia Agostinis
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Jackie de Belleroche
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Leif A. Eriksson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Simone Fulda
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | | | - Sandra Healy
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Cristina Muñoz‐Pinedo
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Markus Rehm
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Eric Chevet
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Afshin Samali
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| |
Collapse
|
39
|
Danilova T, Lindahl M. Emerging Roles for Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) in Pancreatic Beta Cells and Diabetes. Front Physiol 2018; 9:1457. [PMID: 30386256 PMCID: PMC6198132 DOI: 10.3389/fphys.2018.01457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) was originally identified as a secreted trophic factor for dopamine neurons in vitro. It protects and restores damaged cells in rodent models of Parkinson's disease, brain and heart ischemia, spinocerebellar ataxia and retina in vivo. However, its exact mechanism of action is not known. MANF is widely expressed in most human and mouse organs with high levels in secretory tissues. Intracellularly, MANF localizes to the endoplasmic reticulum (ER) and ER stress increases it's expression in cells and tissues. Furthermore, increased MANF levels has been detected in the sera of young children with newly diagnosed Type 1 (T1D) diabetes and Type 2 (T2D) diabetic patients. ER stress is caused by the accumulation of misfolded and aggregated proteins in the ER. It activates a cellular defense mechanism, the unfolded protein response (UPR), a signaling cascade trying to restore ER homeostasis. However, if prolonged, unresolved ER stress leads to apoptosis. Unresolved ER stress contributes to the progressive death of pancreatic insulin-producing beta cells in both T1D and T2D. Diabetes mellitus is characterized by hyperglycemia, caused by the inability of the beta cells to maintain sufficient levels of circulating insulin. The current medications, insulin and antidiabetic drugs, alleviate diabetic symptoms but cannot reconstitute physiological insulin secretion which increases the risk of devastating vascular complications of the disease. Thus, one of the main strategies in improving current diabetes therapy is to define and validate novel approaches to protect beta cells from stress as well as activate their regeneration. Embryonic deletion of the Manf gene in mice led to gradual postnatal development of insulin-deficient diabetes caused by reduced beta cell proliferation and increased beta cell death due to increased and sustained ER stress. In vitro, recombinant MANF partly protected mouse and human beta cells from ER stress-induced beta cell death and potentiated mouse and human beta cell proliferation. Importantly, in vivo overexpression of MANF in the pancreas of T1D mice led to increased beta cell proliferation and decreased beta cell death, suggesting that MANF could be a new therapeutic candidate for beta cell protection and regeneration in diabetes.
Collapse
Affiliation(s)
- Tatiana Danilova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Hakonen E, Chandra V, Fogarty CL, Yu NYL, Ustinov J, Katayama S, Galli E, Danilova T, Lindholm P, Vartiainen A, Einarsdottir E, Krjutškov K, Kere J, Saarma M, Lindahl M, Otonkoski T. MANF protects human pancreatic beta cells against stress-induced cell death. Diabetologia 2018; 61:2202-2214. [PMID: 30032427 PMCID: PMC6133171 DOI: 10.1007/s00125-018-4687-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS There is a great need to identify factors that could protect pancreatic beta cells against apoptosis or stimulate their replication and thus prevent or reverse the development of diabetes. One potential candidate is mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum (ER) stress inducible protein. Manf knockout mice used as a model of diabetes develop the condition because of increased apoptosis and reduced proliferation of beta cells, apparently related to ER stress. Given this novel association between MANF and beta cell death, we studied the potential of MANF to protect human beta cells against experimentally induced ER stress. METHODS Primary human islets were challenged with proinflammatory cytokines, with or without MANF. Cell viability was analysed and global transcriptomic analysis performed. Results were further validated using the human beta cell line EndoC-βH1. RESULTS There was increased expression and secretion of MANF in human beta cells in response to cytokines. Addition of recombinant human MANF reduced cytokine-induced cell death by 38% in human islets (p < 0.05). MANF knockdown in EndoC-βH1 cells led to increased ER stress after cytokine challenge. Mechanistic studies showed that the protective effect of MANF was associated with repression of the NF-κB signalling pathway and amelioration of ER stress. MANF also increased the proliferation of primary human beta cells twofold when TGF-β signalling was inhibited (p < 0.01). CONCLUSIONS/INTERPRETATION Our studies show that exogenous MANF protein can provide protection to human beta cells against death induced by inflammatory stress. The antiapoptotic and mitogenic properties of MANF make it a potential therapeutic agent for beta cell protection.
Collapse
Affiliation(s)
- Elina Hakonen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, PO Box 63, (Haartmaninkatu 8), 00014, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Vikash Chandra
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, PO Box 63, (Haartmaninkatu 8), 00014, Helsinki, Finland.
| | | | - Nancy Yiu-Lin Yu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jarkko Ustinov
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, PO Box 63, (Haartmaninkatu 8), 00014, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Emilia Galli
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tatiana Danilova
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Päivi Lindholm
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Aki Vartiainen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, PO Box 63, (Haartmaninkatu 8), 00014, Helsinki, Finland
| | - Elisabet Einarsdottir
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Kaarel Krjutškov
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- The Folkhälsan Institute of Genetics, Helsinki, Finland
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Juha Kere
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, PO Box 63, (Haartmaninkatu 8), 00014, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- The Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Mart Saarma
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, PO Box 63, (Haartmaninkatu 8), 00014, Helsinki, Finland.
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| |
Collapse
|
41
|
Trychta KA, Heathward EJ, Sulima A, Bäck S, Farokhnia M, Richie CT, Leggio L, Rice KC, Harvey BK. Extracellular esterase activity as an indicator of endoplasmic reticulum calcium depletion. Biomarkers 2018; 23:756-765. [PMID: 30095301 DOI: 10.1080/1354750x.2018.1490968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CONTEXT Endoplasmic reticulum (ER) calcium depletion is associated with diverse diseases, including cardiac, hepatic, and neurologic diseases. OBJECTIVE The aim of the present study was to identify and characterize an endogenous protein that could be used to monitor ER calcium depletion comparably to a previously described exogenous reporter protein. MATERIALS AND METHODS The use of a selective esterase-fluorescein diester pair allowed for carboxylesterase activity in extracellular fluid to be measured using a fluorescent readout. Cell culture media from three different cell lines, rat plasma, and human serum all possess quantifiable amounts of esterase activity. RESULTS Fluorescence produced by the interaction of carboxylesterases with a fluorescein diester substrate tracks with pharmacological and physiological inducers of ER calcium depletion. The fluorescence measured for in vitro and in vivo samples were consistent with ER calcium depletion being the trigger for increased esterase activity. DISCUSSION Decreased luminal ER calcium causes ER resident esterases to be released from the cell, and, when assessed concurrently with other disease biomarkers, these esterases may provide insight into the role of ER calcium homeostasis in human diseases. CONCLUSION Our results indicate that carboxylesterases are putative markers of ER calcium dysfunction.
Collapse
Affiliation(s)
- Kathleen A Trychta
- a Molecular Mechanisms of Cellular Stress and Inflammation , Intramural Research Program, National Institute on Drug Abuse , Baltimore , MD , USA
| | - Emily J Heathward
- a Molecular Mechanisms of Cellular Stress and Inflammation , Intramural Research Program, National Institute on Drug Abuse , Baltimore , MD , USA
| | - Agnieszka Sulima
- b Section on Drug Design and Synthesis, Molecular Targets and Medications Branch , National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , Bethesda , MD , USA
| | - Susanne Bäck
- a Molecular Mechanisms of Cellular Stress and Inflammation , Intramural Research Program, National Institute on Drug Abuse , Baltimore , MD , USA
| | - Mehdi Farokhnia
- c Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology , National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health , Bethesda , MD , USA
| | - Christopher T Richie
- a Molecular Mechanisms of Cellular Stress and Inflammation , Intramural Research Program, National Institute on Drug Abuse , Baltimore , MD , USA
| | - Lorenzo Leggio
- c Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology , National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health , Bethesda , MD , USA.,d Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences , Brown University , Providence , RI , USA
| | - Kenner C Rice
- b Section on Drug Design and Synthesis, Molecular Targets and Medications Branch , National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health , Bethesda , MD , USA
| | - Brandon K Harvey
- a Molecular Mechanisms of Cellular Stress and Inflammation , Intramural Research Program, National Institute on Drug Abuse , Baltimore , MD , USA
| |
Collapse
|
42
|
Gallazzini M, Pallet N. Endoplasmic reticulum stress and kidney dysfunction. Biol Cell 2018; 110:205-216. [DOI: 10.1111/boc.201800019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Morgan Gallazzini
- INSERM U1151 - CNRS UMR 8253; Institut Necker Enfants Malades; Paris France
- INSERM U1147; Centre Universitaire des Saints Pères; Paris France
| | - Nicolas Pallet
- INSERM U1151 - CNRS UMR 8253; Institut Necker Enfants Malades; Paris France
- INSERM U1147; Centre Universitaire des Saints Pères; Paris France
- Université Paris Descartes; Paris France
- Service de Néphrologie; Hôpital Européen Georges Pompidou; Paris
- Service de Biochimie; Hôpital Européen Gorges Pompidou; Paris France
| |
Collapse
|
43
|
Kim Y, Park SJ, Manson SR, Molina CA, Kidd K, Thiessen-Philbrook H, Perry RJ, Liapis H, Kmoch S, Parikh CR, Bleyer AJ, Chen YM. Elevated urinary CRELD2 is associated with endoplasmic reticulum stress-mediated kidney disease. JCI Insight 2017; 2:92896. [PMID: 29212948 DOI: 10.1172/jci.insight.92896] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023] Open
Abstract
ER stress has emerged as a signaling platform underlying the pathogenesis of various kidney diseases. Thus, there is an urgent need to develop ER stress biomarkers in the incipient stages of ER stress-mediated kidney disease, when a kidney biopsy is not yet clinically indicated, for early therapeutic intervention. Cysteine-rich with EGF-like domains 2 (CRELD2) is a newly identified protein that is induced and secreted under ER stress. For the first time to our knowledge, we demonstrate that CRELD2 can serve as a sensitive urinary biomarker for detecting ER stress in podocytes or renal tubular cells in murine models of podocyte ER stress-induced nephrotic syndrome and tunicamycin- or ischemia-reperfusion-induced acute kidney injury (AKI), respectively. Most importantly, urinary CRELD2 elevation occurs in patients with autosomal dominant tubulointerstitial kidney disease caused by UMOD mutations, a prototypical tubular ER stress disease. In addition, in pediatric patients undergoing cardiac surgery, detectable urine levels of CRELD2 within postoperative 6 hours strongly associate with severe AKI after surgery. In conclusion, our study has identified CRELD2 as a potentially novel urinary ER stress biomarker with potential utility in early diagnosis, risk stratification, treatment response monitoring, and directing of ER-targeted therapies in selected patient subgroups in the emerging era of precision nephrology.
Collapse
Affiliation(s)
- Yeawon Kim
- Division of Nephrology, Department of Internal Medicine
| | - Sun-Ji Park
- Division of Nephrology, Department of Internal Medicine
| | - Scott R Manson
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carlos Af Molina
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Urology, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Kendrah Kidd
- Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Rebecca J Perry
- Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Helen Liapis
- RTE Professor of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.,Arkana Laboratories, Little Rock, Arkansas, USA
| | - Stanislav Kmoch
- Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Institute for Inherited Metabolic Disorders, Charles University in Prague, Prague, Czech Republic
| | - Chirag R Parikh
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,Clinical Epidemiology Research Center, Veterans Affairs Medical Center, West Haven, Connecticut, USA
| | - Anthony J Bleyer
- Section of Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
44
|
High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver. J Hepatol 2017; 67:1009-1017. [PMID: 28596111 PMCID: PMC6122848 DOI: 10.1016/j.jhep.2017.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. METHODS A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. RESULTS Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. CONCLUSIONS Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during administration of dantrolene, a drug that stabilizes ER calcium. The study describes a novel technique for liver research and provides insight into cellular processes that may contribute to the pathogenesis of obesity and fatty liver disease.
Collapse
|
45
|
Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 2017; 13:681-696. [DOI: 10.1038/nrneph.2017.129] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Kim Y, Park SJ, Chen YM. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a new player in endoplasmic reticulum diseases: structure, biology, and therapeutic roles. Transl Res 2017; 188:1-9. [PMID: 28719799 PMCID: PMC5601018 DOI: 10.1016/j.trsl.2017.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 02/06/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly identified 18-kDa soluble protein, localizes to the luminal endoplasmic reticulum (ER), whose stress can stimulate MANF expression and secretion. In Drosophila and zebrafish, MANF regulates dopaminergic neuron development. In contrast, in mice, MANF deficiency leads to diabetes and activation of the unfolded protein response. Recent studies in rodent models have demonstrated that MANF mitigates diabetes, exerts neurotrophic function in neurodegenerative disease, protects cardiomyocytes and neurons in myocardial infarction and cerebral ischemia, respectively, and promotes immune cell phenotype switch from proinflammatory macrophages to prorepair anti-inflammatory macrophages. The cytoprotective mechanisms of MANF on ER stress are currently under active investigation. In addition, for the first time, we have discovered that MANF can potentially serve as a urinary ER stress biomarker in ER stress-mediated kidney disease. These studies have underscored the diagnostic and therapeutic importance of MANF in ER diseases.
Collapse
Affiliation(s)
- Yeawon Kim
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo
| | - Sun-Ji Park
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo.
| |
Collapse
|
47
|
Ke B, Zhu N, Luo F, Xu Y, Fang X. Targeted inhibition of endoplasmic reticulum stress: New hope for renal fibrosis (Review). Mol Med Rep 2017. [PMID: 28627612 PMCID: PMC5562070 DOI: 10.3892/mmr.2017.6762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) has a very high mortality rate and remains a global health challenge. Inhibiting renal fibrosis is one of the most promising therapeutic strategies for CKD. Recent studies have indicated that endoplasmic reticulum stress (ERS) serves an active role in the development of acute and chronic kidney disease, especially with regards to renal fibrosis. In the current review, the authors summarize the latest understanding of the role of ERS during the onset of renal fibrosis. ERS promotes renal fibrosis through multiple signaling pathways, such as transforming growth factor-β, epithelial-mesenchymal transition and oxidative stress. In addition, ERS also causes podocyte damage, leading to increased proteinuria and the development of renal fibrosis in rat models. In conclusion, targeted inhibition of ERS may become a promising therapeutic strategy for renal fibrosis.
Collapse
Affiliation(s)
- Ben Ke
- Department of Nephrology, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, P.R. China
| | - Na Zhu
- Nanchang University School of Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Fuli Luo
- Department of Nephrology, Chinese Medicine Hospital in Jiangxi Province, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Xu
- Department of Nephrology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
48
|
Cerebral dopamine neurotrophic factor protects H9c2 cardiomyocytes from apoptosis. Herz 2017; 43:346-351. [PMID: 28444413 DOI: 10.1007/s00059-017-4564-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cerebral dopamine neurotrophic factor (CDNF) has been studied in animal models of Parkinson's disease, where it was shown to repair and protect dopamine neurons. Alongside its neurotrophic activity, it can also localize in the endoplasmic reticulum (ER) acting as an ER stress response (ERSR) protein to maintain ER homeostasis. Since ER stress plays a major role in the development and progression of cardiovascular diseases, we investigated the role of CDNF in cardiomyocytes during ER stress. MATERIAL AND METHODS Initially, the expression of CDNF was tested by treating H9c2 cells with various concentrations of tunicamycin (TM) and performing reverse-transcriptase polymerase chain reaction and Western blotting. To evaluate the overexpression of CDNF in cardiomyocytes, H9c2 cells were transfected with pcDNA-CDNF and analyzed by Western blotting and indirect immunofluorescence microscopy. The effects of CDNF on cardiomyocytes during ER stress were analyzed with CCK-8 method and TUNEL staining using cells transfected with pcDNA-CDNF or pcDNA3.1. The percentage of TUNEL-positive cells was quantified as the apoptotic level. RESULTS Our results showed that CDNF protein expression can be induced by activation of ER stress in cultured cardiomyocytes. Moreover, overexpression of CDNF improved cell viability and protected cardiomyocytes from apoptosis induced by ER stress. CONCLUSION The findings presented here contribute toward identifying the physiological functions of CDNF in cardiovascular diseases.
Collapse
|
49
|
Schaeffer C, Merella S, Pasqualetto E, Lazarevic D, Rampoldi L. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS One 2017; 12:e0175970. [PMID: 28437467 PMCID: PMC5402980 DOI: 10.1371/journal.pone.0175970] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
Uromodulin is the most abundant urinary protein in physiological conditions. It is exclusively produced by renal epithelial cells lining the thick ascending limb of Henle's loop (TAL) and it plays key roles in kidney function and disease. Mutations in UMOD, the gene encoding uromodulin, cause autosomal dominant tubulointerstitial kidney disease uromodulin-related (ADTKD-UMOD), characterised by hyperuricemia, gout and progressive loss of renal function. While the primary effect of UMOD mutations, retention in the endoplasmic reticulum (ER), is well established, its downstream effects are still largely unknown. To gain insight into ADTKD-UMOD pathogenesis, we performed transcriptional profiling and biochemical characterisation of cellular models (immortalised mouse TAL cells) of robust expression of wild type or mutant GFP-tagged uromodulin. In this model mutant uromodulin accumulation in the ER does not impact on cell viability and proliferation. Transcriptional profiling identified 109 genes that are differentially expressed in mutant cells relative to wild type ones. Up-regulated genes include several ER resident chaperones and protein disulphide isomerases. Consistently, pathway enrichment analysis indicates that mutant uromodulin expression affects ER function and protein homeostasis. Interestingly, mutant uromodulin expression induces the Unfolded Protein Response (UPR), and specifically the IRE1 branch, as shown by an increased splicing of XBP1. Consistent with UPR induction, we show increased interaction of mutant uromodulin with ER chaperones Bip, calnexin and PDI. Using metabolic labelling, we also demonstrate that while autophagy plays no role, mutant protein is partially degraded by the proteasome through ER-associated degradation. Our work demonstrates that ER stress could play a central role in ADTKD-UMOD pathogenesis. This sets the bases for future work to develop novel therapeutic strategies through modulation of ER homeostasis and associated protein degradation pathways.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Merella
- Center of Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Pasqualetto
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center of Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
50
|
Lindahl M, Saarma M, Lindholm P. Unconventional neurotrophic factors CDNF and MANF: Structure, physiological functions and therapeutic potential. Neurobiol Dis 2016; 97:90-102. [PMID: 27425895 DOI: 10.1016/j.nbd.2016.07.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) promote the survival of midbrain dopaminergic neurons which degenerate in Parkinson's disease (PD). However, CDNF and MANF are structurally and functionally clearly distinct from the classical, target-derived neurotrophic factors (NTFs) that are solely secreted proteins. In cells, CDNF and MANF localize in the endoplasmic reticulum (ER) and evidence suggests that MANF, and possibly CDNF, is important for the maintenance of ER homeostasis. MANF expression is particularly high in secretory tissues with extensive protein production and thus a high ER protein folding load. Deletion of MANF in mice results in a diabetic phenotype and the activation of unfolded protein response (UPR) in the pancreatic islets. However, information about the intracellular and extracellular mechanisms of MANF and CDNF action is still limited. Here we will discuss the structural motifs and physiological functions of CDNF and MANF as well as their therapeutic potential for the treatment of neurodegenerative diseases and diabetes. Currently available knockout models of MANF and CDNF in mice, zebrafish and fruit fly will increase information about the biology of these interesting proteins.
Collapse
Affiliation(s)
- Maria Lindahl
- Institute of Biotechnology, P.O.Box 56, Viikinkaari 5, FI-00014, University of Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, P.O.Box 56, Viikinkaari 5, FI-00014, University of Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, P.O.Box 56, Viikinkaari 5, FI-00014, University of Helsinki, Finland.
| |
Collapse
|