1
|
Srinivasan S, Sherwood DR. The life cycle of type IV collagen. Matrix Biol 2025:S0945-053X(25)00037-X. [PMID: 40306374 DOI: 10.1016/j.matbio.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Type IV collagen is a large triple helical molecule that forms a covalently cross-linked network within basement membranes (BMs). Type IV collagen networks play key roles in mechanically supporting tissues, shaping organs, filtering blood, and cell signaling. To ensure tissue health and function, all aspects of the type IV collagen life cycle must be carried out accurately. However, the large triple helical structure and complex life-cycle of type IV collagen, poses many challenges to cells and tissues. Type IV collagen predominantly forms heterotrimers and to ensure proper construction, expression of the distinct α-chains that comprise a heterotrimer needs tight regulation. The α-chains must also be accurately modified by several enzymes, some of which are specific to collagens, to build and stabilize the triple helical trimer. In addition, type IV collagen is exceptionally long (400nm) and thus the packaging and trafficking of the triple helical trimer from the ER to the Golgi must be modified to accommodate the large type IV collagen molecule. During ER-to-Golgi trafficking, as well as during secretion and transport in the extracellular space type IV collagen also associates with specific chaperone molecules that maintain the structure and solubility of collagen IV. Type IV collagen trimers are then delivered to BMs from local and distant sources where they are integrated into BMs by interactions with cell surface receptors and many diverse BM resident proteins. Within BMs type IV collagen self-associates into a network and is crosslinked by BM resident enzymes. Finally, homeostatic type IV collagen levels in BMs are maintained by poorly understood mechanisms involving proteolysis and endocytosis. Here, we provide an overview of the life cycle of collagen IV, highlighting unique mechanisms and poorly understood aspects of type IV collagen regulation.
Collapse
Affiliation(s)
- Sandhya Srinivasan
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2025; 21:157-174. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Yasui Y, Murata T, Tsuboi Y, Murai A, Horiba N. CH6824025, Potent and Selective Discoidin Domain Receptor 1 Inhibitor, Reduces Kidney Fibrosis in Unilateral Ureteral Obstruction Mice. J Pharmacol Exp Ther 2024; 391:450-459. [PMID: 39379147 DOI: 10.1124/jpet.124.002330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen receptor with tyrosine kinase activity, and its expression is enhanced in various disease conditions. Although previous research suggests that DDR1 contributes to renal disease progression, DDR1 inhibitors for renal fibrosis have yet to be developed. In this study, we used unilateral ureteral obstruction (UUO) mice to investigate whether CH6824025, a strong and selective DDR1 phosphorylation inhibitor, can improve renal fibrosis. Furthermore, we performed 10x Visium spatial transcriptomics (ST) analysis on the kidney. CH6824025 suppressed the phosphorylation of DDR1 in the kidney, and the amount of hydroxyproline, the Sirius red- and the F4/80-positive area, and the mRNA expression of fibrosis and inflammation-related genes in the kidney were significantly decreased. 10x Visium ST analysis suggested that DDR1 is mainly expressed in distal nephrons under normal conditions but its expression appears to increase in the injured proximal tubules in UUO mice. Comparing mRNA expression in DDR1-positive spots in the Vehicle and the CH6824025 group, oxidative phosphorylation and mitochondrial dysfunction might be improved, and pathways involved in fibrosis tended to be inhibited in the CH6824025 administration group. Downstream analysis would suggest that mRNA expression changes in the CH6824025 group contribute to the inhibition of cell movement. Taken together, our findings suggest that CH6824025 inhibited kidney fibrosis in UUO mice, which might be due to the inhibition of the migration of inflammatory cells to the injury site and the reduction of inflammation. DDR1 inhibitors are expected to be a promising treatment of renal fibrosis. SIGNIFICANCE STATEMENT: The novel discoidin domain receptor 1 inhibitor CH6824025 could ameliorate fibrosis and inflammation in unilateral ureteral obstruction (UUO) mice. CH6824025 would inhibit cell motility (e.g., migration) that prevents the progression of fibrosis and improves mitochondrial function in UUO mice. CH6824025 could provide a significant benefit to patients with kidney fibrosis.
Collapse
Affiliation(s)
- Yukari Yasui
- Research Division (Y.Y., T.M., Y.T., N.H.) and Translational Research Division (A.M.), Chugai Pharmaceutical Co., Ltd., Yokohama City, Kanagawa, Japan
| | - Takeshi Murata
- Research Division (Y.Y., T.M., Y.T., N.H.) and Translational Research Division (A.M.), Chugai Pharmaceutical Co., Ltd., Yokohama City, Kanagawa, Japan
| | - Yoshinori Tsuboi
- Research Division (Y.Y., T.M., Y.T., N.H.) and Translational Research Division (A.M.), Chugai Pharmaceutical Co., Ltd., Yokohama City, Kanagawa, Japan
| | - Atsuko Murai
- Research Division (Y.Y., T.M., Y.T., N.H.) and Translational Research Division (A.M.), Chugai Pharmaceutical Co., Ltd., Yokohama City, Kanagawa, Japan
| | - Naoshi Horiba
- Research Division (Y.Y., T.M., Y.T., N.H.) and Translational Research Division (A.M.), Chugai Pharmaceutical Co., Ltd., Yokohama City, Kanagawa, Japan
| |
Collapse
|
4
|
Wu H, Qiu Z, Wang L, Li W. Renal Fibrosis: SIRT1 Still of Value. Biomedicines 2024; 12:1942. [PMID: 39335456 PMCID: PMC11428497 DOI: 10.3390/biomedicines12091942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
Collapse
Affiliation(s)
- Huailiang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| | - Liyan Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| |
Collapse
|
5
|
Ippolito L, Duatti A, Iozzo M, Comito G, Pardella E, Lorito N, Bacci M, Pranzini E, Santi A, Sandrini G, Catapano CV, Serni S, Spatafora P, Morandi A, Giannoni E, Chiarugi P. Lactate supports cell-autonomous ECM production to sustain metastatic behavior in prostate cancer. EMBO Rep 2024; 25:3506-3531. [PMID: 38907027 PMCID: PMC11315984 DOI: 10.1038/s44319-024-00180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Extracellular matrix (ECM) is a major component of the tumor environment, promoting the establishment of a pro-invasive behavior. Such environment is supported by both tumor- and stromal-derived metabolites, particularly lactate. In prostate cancer (PCa), cancer-associated fibroblasts (CAFs) are major contributors of secreted lactate, able to impact on metabolic and transcriptional regulation in cancer cells. Here, we describe a mechanism by which CAF-secreted lactate promotes in PCa cells the expression of genes coding for the collagen family. Lactate-exploiting PCa cells rely on increased α-ketoglutarate (α-KG) which activates the α-KG-dependent collagen prolyl-4-hydroxylase (P4HA1) to support collagen hydroxylation. De novo synthetized collagen plays a signaling role by activating discoidin domain receptor 1 (DDR1), supporting stem-like and invasive features of PCa cells. Inhibition of lactate-induced collagen hydroxylation and DDR1 activation reduces the metastatic colonization of PCa cells. Overall, these results provide a new understanding of the link between collagen remodeling/signaling and the nutrient environment exploited by PCa.
Collapse
Grants
- 19515 Fondazione AIRC per la ricerca sul cancro ETS (AIRC)
- 24731 Fondazione AIRC per la ricerca sul cancro ETS (AIRC)
- 22941 Fondazione AIRC per la ricerca sul cancro ETS (AIRC)
- 26599 Fondazione AIRC per la ricerca sul cancro ETS (AIRC)
- KLS-4899-08-2019 Swiss Cancer League
- CN00000041 European Union, National Recovery and Resilience Plan, Mission 4 Component 2 - Investment 1.4 - National Center for Gene Therapy and Drugs based on RNA Technology - NextGenerationEU
- ECS_00000017 European Union, National Recovery and Resilience Plan, Mission 4 Component 2, Creation and strengthening of "innovation ecosystems", construction of "territorial R&D leaders"
- Fondazione Ticinese Ricerca sul Cancro
- European Union, National Recovery and Resilience Plan, Mission 4 Component 2, Creation and strengthening of "innovation ecosystems", construction of "territorial R&D leaders"
- Fondazione Pezcoller (Pezcoller Foundation)
Collapse
Affiliation(s)
- Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Assia Duatti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Marta Iozzo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Giada Sandrini
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Sergio Serni
- Department of Minimally Invasive and Robotic Urologic Surgery and Kidney Transplantation, University of Florence, 50134, Florence, Italy
| | - Pietro Spatafora
- Department of Minimally Invasive and Robotic Urologic Surgery and Kidney Transplantation, University of Florence, 50134, Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
6
|
Liu M, Zhang J, Li X, Wang Y. Research progress of DDR1 inhibitors in the treatment of multiple human diseases. Eur J Med Chem 2024; 268:116291. [PMID: 38452728 DOI: 10.1016/j.ejmech.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase (RTK) and plays pivotal roles in regulating cellular functions such as proliferation, differentiation, invasion, migration, and matrix remodeling. DDR1 is involved in the occurrence and progression of many human diseases, including cancer, fibrosis, and inflammation. Therefore, DDR1 represents a highly promising therapeutic target. Although no selective small-molecule inhibitors have reached clinical trials to date, many molecules have shown therapeutic effects in preclinical studies. For example, BK40143 has demonstrated significant promise in the therapy of neurodegenerative diseases. In this context, our perspective aims to provide an in-depth exploration of DDR1, encompassing its structure characteristics, biological functions, and disease relevance. Furthermore, we emphasize the importance of understanding the structure-activity relationship of DDR1 inhibitors and highlight the unique advantages of dual-target or multitarget inhibitors. We anticipate offering valuable insights into the development of more efficacious DDR1-targeted drugs.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Neuro-system and Multimorbidity Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
7
|
Chiusa M, Lee YA, Zhang MZ, Harris RC, Sherrill T, Lindner V, Brooks CR, Yu G, Fogo AB, Flynn CR, Zienkiewicz J, Hawiger J, Zent R, Pozzi A. Cytoplasmic retention of the DNA/RNA-binding protein FUS ameliorates organ fibrosis in mice. J Clin Invest 2024; 134:e175158. [PMID: 38488009 PMCID: PMC10940094 DOI: 10.1172/jci175158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Abstract
Uncontrolled accumulation of extracellular matrix leads to tissue fibrosis and loss of organ function. We previously demonstrated in vitro that the DNA/RNA-binding protein fused in sarcoma (FUS) promotes fibrotic responses by translocating to the nucleus, where it initiates collagen gene transcription. However, it is still not known whether FUS is profibrotic in vivo and whether preventing its nuclear translocation might inhibit development of fibrosis following injury. We now demonstrate that levels of nuclear FUS are significantly increased in mouse models of kidney and liver fibrosis. To evaluate the direct role of FUS nuclear translocation in fibrosis, we used mice that carry a mutation in the FUS nuclear localization sequence (FUSR521G) and the cell-penetrating peptide CP-FUS-NLS that we previously showed inhibits FUS nuclear translocation in vitro. We provide evidence that FUSR521G mice or CP-FUS-NLS-treated mice showed reduced nuclear FUS and fibrosis following injury. Finally, differential gene expression analysis and immunohistochemistry of tissues from individuals with focal segmental glomerulosclerosis or nonalcoholic steatohepatitis revealed significant upregulation of FUS and/or collagen genes and FUS protein nuclear localization in diseased organs. These results demonstrate that injury-induced nuclear translocation of FUS contributes to fibrosis and highlight CP-FUS-NLS as a promising therapeutic option for organ fibrosis.
Collapse
Affiliation(s)
- Manuel Chiusa
- Department of Medicine, Division of Nephrology and Hypertension, and
| | - Youngmin A. Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ming-Zhi Zhang
- Department of Medicine, Division of Nephrology and Hypertension, and
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology and Hypertension, and
- Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Taylor Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Health Institute for Research, Scarborough, Maine, USA
| | - Craig R. Brooks
- Department of Medicine, Division of Nephrology and Hypertension, and
| | - Gang Yu
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Agnes B. Fogo
- Department of Medicine, Division of Nephrology and Hypertension, and
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Charles R. Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jozef Zienkiewicz
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacek Hawiger
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roy Zent
- Department of Medicine, Division of Nephrology and Hypertension, and
- Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology and Hypertension, and
- Department of Veterans Affairs, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Brown BP, Stein RA, Meiler J, Mchaourab HS. Approximating Projections of Conformational Boltzmann Distributions with AlphaFold2 Predictions: Opportunities and Limitations. J Chem Theory Comput 2024; 20:1434-1447. [PMID: 38215214 PMCID: PMC10867840 DOI: 10.1021/acs.jctc.3c01081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Protein thermodynamics is intimately tied to biological function and can enable processes such as signal transduction, enzyme catalysis, and molecular recognition. The relative free energies of conformations that contribute to these functional equilibria evolved for the physiology of the organism. Despite the importance of these equilibria for understanding biological function and developing treatments for disease, computational and experimental methods capable of quantifying the energetic determinants of these equilibria are limited to systems of modest size. Recently, it has been demonstrated that the artificial intelligence system AlphaFold2 can be manipulated to produce structurally valid protein conformational ensembles. Here, we extend these studies and explore the extent to which AlphaFold2 contact distance distributions can approximate projections of the conformational Boltzmann distributions. For this purpose, we examine the joint probability distributions of inter-residue contact distances along functionally relevant collective variables of several protein systems. Our studies suggest that AlphaFold2 normalized contact distance distributions can correlate with conformation probabilities obtained with other methods but that they suffer from peak broadening. We also find that the AlphaFold2 contact distance distributions can be sensitive to point mutations. Overall, we anticipate that our findings will be valuable as the community seeks to model the thermodynamics of conformational changes in large biomolecular systems.
Collapse
Affiliation(s)
- Benjamin P. Brown
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center
for Applied AI in Protein Dynamics, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Richard A. Stein
- Center
for Applied AI in Protein Dynamics, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center
for Applied AI in Protein Dynamics, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Institute
for Drug Discovery, Leipzig University Medical
School, Leipzig, SAC 04103, Germany
| | - Hassane S. Mchaourab
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Center
for Applied AI in Protein Dynamics, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
9
|
Trono P, Ottavi F, Rosano' L. Novel insights into the role of Discoidin domain receptor 2 (DDR2) in cancer progression: a new avenue of therapeutic intervention. Matrix Biol 2024; 125:31-39. [PMID: 38081526 DOI: 10.1016/j.matbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/12/2024]
Abstract
Discoidin domain receptors (DDRs), including DDR1 and DDR2, are a unique class of receptor tyrosine kinases (RTKs) activated by collagens at the cell-matrix boundary interface. The peculiar mode of activation makes DDRs as key cellular sensors of microenvironmental changes, with a critical role in all physiological and pathological processes governed by collagen remodeling. DDRs are widely expressed in fetal and adult tissues, and experimental and clinical evidence has shown that their expression is deregulated in cancer. Strong findings supporting the role of collagens in tumor progression and metastasis have led to renewed interest in DDRs. However, despite an increasing number of studies, DDR biology remains poorly understood, particularly the less studied DDR2, whose involvement in cancer progression mechanisms is undoubted. Thus, the understanding of a wider range of DDR2 functions and related molecular mechanisms is expected. To date, several lines of evidence support DDR2 as a promising target in cancer therapy. Its involvement in key functions in the tumor microenvironment makes DDR2 inhibition particularly attractive to achieve simultaneous targeting of tumor and stromal cells, and tumor regression, which is beneficial for improving the response to different types of anti-cancer therapies, including chemo- and immunotherapy. This review summarizes current research on DDR2, focusing on its role in cancer progression through its involvement in tumor and stromal cell functions, and discusses findings that support the rationale for future development of direct clinical strategies targeting DDR2.
Collapse
Affiliation(s)
- Paola Trono
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, Via E. Ramarini, 32, Monterotondo Scalo 00015 Rome
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy
| | - Laura Rosano'
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy.
| |
Collapse
|
10
|
Dean DC, Feng W, Walker RL, Thanindratarn P, Temple HT, Trent JC, Rosenberg AE, Hornicek FJ, Duan Z. Discoidin Domain Receptor Tyrosine Kinase 1 (DDR1) Is a Novel Therapeutic Target in Liposarcoma: A Tissue Microarray Study. Clin Orthop Relat Res 2023; 481:2140-2153. [PMID: 37768856 PMCID: PMC10567009 DOI: 10.1097/corr.0000000000002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Liposarcoma is the most commonly diagnosed subtype of soft tissue sarcoma. As these tumors often arise near vital organs and neurovascular structures, complete resection can be challenging; consequently, recurrence rates are high. Additionally, available chemotherapeutic agents have shown limited benefit and substantial toxicities. There is, therefore, a clear and unmet need for novel therapeutics for liposarcoma. Discoidin domain receptor tyrosine kinase 1 (DDR1) is involved in adhesion, proliferation, differentiation, migration, and metastasis in several cancers. However, the expression and clinical importance of DDR1 in liposarcoma are unknown. QUESTIONS/PURPOSES The purposes of this study were to assess (1) the expression, (2) the association between DDR1 and survival, and (3) the functional roles of DDR1 in liposarcoma. METHODS The correlation between DDR1 expression in tumor tissues and clinicopathological features and survival was assessed via immunohistochemical staining of a liposarcoma tissue microarray. It contained 53 samples from 42 patients with liposarcoma and 11 patients with lipoma. The association between DDR1 and survival in liposarcoma was analyzed by Kaplan-Meier plots and log-rank tests. The DDR1 knockout liposarcoma cell lines were generated by CRISPR-Cas9 technology. The DDR1-specific and highly selective DDR1 inhibitor 7RH was applied to determine the impact of DDR1 expression on liposarcoma cell growth and proliferation. In addition, the effect of DDR1 inhibition on liposarcoma growth was further accessed in a three-dimensional cell culture model to mimic DDR1 effects in vivo. RESULTS The results demonstrate elevated expression of DDR1 in all liposarcoma subtypes relative to benign lipomas. Specifically, high DDR1 expression was seen in 55% (23 of 42) of liposarcomas and no benign lipomas. However, DDR1 expression was not found to be associated with poor survival in patients with liposarcoma. DDR1 knockout or treatment of 7RH showed decreased liposarcoma cell growth and proliferation. CONCLUSION DDR1 is aberrantly expressed in liposarcoma, and it contributes to several markers of oncogenesis in these tumors. CLINICAL RELEVANCE This work supports DDR1 as a promising therapeutic target in liposarcoma.
Collapse
Affiliation(s)
- Dylan C. Dean
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wenlong Feng
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Robert L. Walker
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pichaya Thanindratarn
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - H. Thomas Temple
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan C. Trent
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew E. Rosenberg
- Departments of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
11
|
Dagamajalu S, Rex DAB, Suchitha GP, Rai AB, Kumar S, Joshi S, Raju R, Prasad TSK. A network map of discoidin domain receptor 1(DDR1)-mediated signaling in pathological conditions. J Cell Commun Signal 2023; 17:1081-1088. [PMID: 36454444 PMCID: PMC10409954 DOI: 10.1007/s12079-022-00714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) is one of the receptors that belong to a family of non-integrin collagen receptors. In common, DDR1 is predominantly found in epithelial and smooth muscle cells and its mainly involved in organogenesis during embryonic development. However, it's also overexpressed in several pathological conditions, including cancer and inflammation. The DDR1 is reported in numerous cancers, including breast, prostate, pancreatic, bladder, lung, liver, pituitary, colorectal, skin, gastric, glioblastoma, and inflammation. DDR1 activates through the collagen I, IV, IGF-1/IGF1R, and IGF2/IR, regulating downstream signaling molecules such as MAPKs, PI3K/Akt, and NF-kB in diseases. Despite its biomedical importance, there is a lack of consolidated network map of the DDR1 signaling pathway, which prompted us for curation of literature data pertaining to the DDR1 system following the NetPath criteria. We present here the compiled pathway map comprises 39 activation/inhibition events, 17 catalysis events, 22 molecular associations, 65 gene regulation events, 35 types of protein expression, and two protein translocation events. The detailed DDR1 signaling pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/ Pathway: https://www.wikipathways.org/index.php/Pathway:WP5288 ).
Collapse
Affiliation(s)
- Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - D. A. B. Rex
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - G. P. Suchitha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - Akhila B. Rai
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - Shreya Kumar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - Shreya Joshi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| |
Collapse
|
12
|
Brown BP, Stein RA, Meiler J, Mchaourab H. Approximating conformational Boltzmann distributions with AlphaFold2 predictions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552168. [PMID: 37609301 PMCID: PMC10441281 DOI: 10.1101/2023.08.06.552168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Protein dynamics are intimately tied to biological function and can enable processes such as signal transduction, enzyme catalysis, and molecular recognition. The relative free energies of conformations that contribute to these functional equilibria are evolved for the physiology of the organism. Despite the importance of these equilibria for understanding biological function and developing treatments for disease, the computational and experimental methods capable of quantifying them are limited to systems of modest size. Here, we demonstrate that AlphaFold2 contact distance distributions can approximate conformational Boltzmann distributions, which we evaluate through examination of the joint probability distributions of inter-residue contact distances along functionally relevant collective variables of several protein systems. Further, we show that contact distance probability distributions generated by AlphaFold2 are sensitive to points mutations thus AF2 can predict the structural effects of mutations in some systems. We anticipate that our approach will be a valuable tool to model the thermodynamics of conformational changes in large biomolecular systems.
Collapse
Affiliation(s)
- Benjamin P. Brown
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
| | - Richard A. Stein
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA. Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
| | - Hassane Mchaourab
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Center for Applied AI in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA. Nashville, TN 37232, USA
| |
Collapse
|
13
|
Stevenson M, Varghese R, Hebron ML, Liu X, Ratliff N, Smith A, Turner RS, Moussa C. Inhibition of discoidin domain receptor (DDR)-1 with nilotinib alters CSF miRNAs and is associated with reduced inflammation and vascular fibrosis in Alzheimer's disease. J Neuroinflammation 2023; 20:116. [PMID: 37194065 PMCID: PMC10186647 DOI: 10.1186/s12974-023-02802-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
Discoidin Domain Receptor (DDR)-1 is activated by collagen. Nilotinib is a tyrosine kinase inhibitor that is FDA-approved for leukemia and potently inhibits DDR-1. Individuals diagnosed with mild-moderate Alzheimer's disease (AD) treated with nilotinib (versus placebo) for 12 months showed reduction of amyloid plaque and cerebrospinal fluid (CSF) amyloid, and attenuation of hippocampal volume loss. However, the mechanisms are unclear. Here, we explored unbiased next generation whole genome miRNA sequencing from AD patients CSF and miRNAs were matched with their corresponding mRNAs using gene ontology. Changes in CSF miRNAs were confirmed via measurement of CSF DDR1 activity and plasma levels of AD biomarkers. Approximately 1050 miRNAs are detected in the CSF but only 17 miRNAs are specifically altered between baseline and 12-month treatment with nilotinib versus placebo. Treatment with nilotinib significantly reduces collagen and DDR1 gene expression (upregulated in AD brain), in association with inhibition of CSF DDR1. Pro-inflammatory cytokines, including interleukins and chemokines are reduced along with caspase-3 gene expression. Specific genes that indicate vascular fibrosis, e.g., collagen, Transforming Growth Factors (TGFs) and Tissue Inhibitors of Metalloproteases (TIMPs) are altered by DDR1 inhibition with nilotinib. Specific changes in vesicular transport, including the neurotransmitters dopamine and acetylcholine, and autophagy genes, including ATGs, indicate facilitation of autophagic flux and cellular trafficking. Inhibition of DDR1 with nilotinib may be a safe and effective adjunct treatment strategy involving an oral drug that enters the CNS and adequately engages its target. DDR1 inhibition with nilotinib exhibits multi-modal effects not only on amyloid and tau clearance but also on anti-inflammatory markers that may reduce cerebrovascular fibrosis.
Collapse
Affiliation(s)
- Max Stevenson
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Rency Varghese
- Genomics and Epigenomics Shared Resource, Department of Oncology, Georgetown University Medical Center, Building D, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Michaeline L Hebron
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Nick Ratliff
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Amelia Smith
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - R Scott Turner
- Memory Disorders Program, Department of Neurology, Georgetown University Medical Center, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
14
|
De Martino D, Bravo-Cordero JJ. Collagens in Cancer: Structural Regulators and Guardians of Cancer Progression. Cancer Res 2023; 83:1386-1392. [PMID: 36638361 PMCID: PMC10159947 DOI: 10.1158/0008-5472.can-22-2034] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Collagen is one of the most abundant proteins in animals and a major component of the extracellular matrix (ECM) in tissues. Besides playing a role as a structural building block of tissues, collagens can modulate the behavior of cells, and their deregulation can promote diseases such as cancer. In tumors, collagens and many other ECM molecules are mainly produced by fibroblasts, and recent evidence points toward a role of tumor-derived collagens in tumor progression and metastasis. In this review, we focus on the newly discovered functions of collagens in cancer. Novel findings have revealed the role of collagens in tumor dormancy and immune evasion, as well as their interplay with cancer cell metabolism. Collagens could serve as prognostic markers for patients with cancer, and therapeutic strategies targeting the collagen ECM have the potential to prevent tumor progression and metastasis.
Collapse
Affiliation(s)
- Daniela De Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
15
|
Torun YM, Delen E, Doğanlar O, Doğanlar ZB, Delen Ö, Orakdöğen M. Effects of Expression of Matrix Metalloproteinases and Discoidin Domain Receptors in Ligamentum Flavum Fibrosis in Patients with Degenerative Lumbar Canal Stenosis. Asian Spine J 2023; 17:194-202. [PMID: 36163678 PMCID: PMC9977973 DOI: 10.31616/asj.2021.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
STUDY DESIGN This is a retrospective cohort study. PURPOSE This study aimed to clarify the role of crosstalk between discoidin domain receptors (DDRs) and matrix metalloproteinases (MMPs) in the ligamentum flavum (LF) fibrosis obtained from patients with degenerative lumbar canal stenosis (DLCS). OVERVIEW OF LITERATURE The DDRs, DDR1 and DDR2, are cell surface receptors and have an essential role in collagen fiber accumulation in several fibrotic diseases. MMPs are one of the critical factors in extracellular matrix remodeling and elastic fiber degradation in LF tissues. However, the crosstalk between DDRs and MMPs and the role of this molecular signal in LF fibrosis remain unclear. METHODS A total of 35 patients were divided into two groups in this study. Spinal surgery was performed in 23 of these patients with the diagnosis of DLCS. Twelve patients with lumbar disk herniation (LDH) were included in the control group. On axial T2-weighted magnetic resonance imaging, LF thickness was measured bilaterally at the level of the facet joint. Histology, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot analyses were performed on LF tissue samples. LF tissues were stained with hematoxylin and eosin. In addition, the grade of fibrosis was histologically assessed using Masson trichrome triple staining. DDR1 and DDR2 Western blot analyses were performed. DDR1, DDR2, MMP2, MMP3, MMP9, and MMP13 expression levels were measured using qRT-PCR analysis. RESULTS The grade of fibrosis and LF thickness were significantly higher in the DLCS patients than in the LDH patients. DDR1 and DDR2 gene expression and protein levels in LF tissues are significantly greater in DLCS samples than in control samples, according to both qRT-PCR and Western blot analyses. In addition, we detected a significant expression of the MMP3, MMP9, and MMP13, which are known to have important roles in extracellular matrix remodeling in DLCS. Furthermore, we discovered a link between DDR protein levels and LF thickness, fibrosis, and MMP3/MMP9. CONCLUSIONS Our results indicate that DDR1, DDR2, and MMP3 and MMP9 signals can be correlated with each other in LF tissues and be promoted LF fibrosis leading to spinal canal narrowing in patients with DLCS.
Collapse
Affiliation(s)
- Yusuf Mansur Torun
- Department of Neurosurgery, Trakya University School of Medicine, Edirne,
Turkey
| | - Emre Delen
- Department of Neurosurgery, Trakya University School of Medicine, Edirne,
Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Trakya University School of Medicine, Edirne,
Turkey
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Trakya University School of Medicine, Edirne,
Turkey
| | - Özlem Delen
- Department of Histology and Embryology, Trakya University School of Medicine, Edirne,
Turkey
| | - Metin Orakdöğen
- Department of Neurosurgery, Trakya University School of Medicine, Edirne,
Turkey
| |
Collapse
|
16
|
Tian Y, Bai F, Zhang D. New target DDR1: A "double-edged sword" in solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188829. [PMID: 36356724 DOI: 10.1016/j.bbcan.2022.188829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Globally, cancer is a major catastrophic disease that seriously threatens human health. Thus, there is an urgent need to find new strategies to treat cancer. Among them, identifying new targets is one of the best ways to treat cancer at present. Especially in recent years, scientists have discovered many new targets and made breakthroughs in the treatment of cancer, bringing new hope to cancer patients. As one of the novel targets for cancer treatment, DDR1 has attracted much attention due to its unique role in cancer. Hence, here, we focus on a new target, DDR1, which may be a "double-edged sword" of human solid tumors. In this review, we provide a comprehensive overview of how DDR1 acts as a "double-edged sword" in cancer. First, we briefly introduce the structure and normal physiological function of DDR1; Second, we delineate the DDR1 expression pattern in single cells; Next, we sorte out the relationship between DDR1 and cancer, including the abnormal expression of DDR1 in cancer, the mechanism of DDR1 and cancer occurrence, and the value of DDR1 on cancer prognosis. In addition, we introduced the current status of global drug and antibody research and development targeting DDR1 and its future design prospects; Finally, we summarize and look forward to designing more DDR1-targeting drugs in the future to make further progress in the treatment of solid tumors.
Collapse
Affiliation(s)
- Yonggang Tian
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Feihu Bai
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
17
|
Borza CM, Bolas G, Pozzi A. Genetic and pharmacological tools to study the role of discoidin domain receptors in kidney disease. Front Pharmacol 2022; 13:1001122. [PMID: 36249782 PMCID: PMC9554349 DOI: 10.3389/fphar.2022.1001122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Following injury the kidney undergoes a repair process, which results in replacement of the injured tissue with little evidence of damage. However, repetitive injuries or inability of the kidney to stop the repair process result in abnormal deposition of extracellular matrix (ECM) components leading to fibrosis and organ dysfunction. The synthesis/degradation of ECM components is finely regulated by several factors, including discoidin domain receptors (DDRs). These are receptor tyrosine kinases that are activated by collagens. Upon activation, DDRs control several cell functions that, when exacerbated, contribute to kidney injury and fibrosis. DDRs are undetectable in healthy kidney, but become rapidly upregulated in several kidney fibrotic conditions, thus making them attractive anti-fibrotic targets. DDRs contribute to kidney injury and fibrosis by promoting apoptosis of injured kidney cells, stimulating the production of pro-inflammatory cytokines, and regulating the production of ECM components. They achieve these effects by activating canonical intracellular molecules or by directly interacting with nuclear chromatin and promoting the transcription of pro-fibrotic genes. The goal of this review is to highlight canonical and non-canonical mechanisms whereby DDRs contribute to kidney injury/fibrosis. This review will summarize key findings obtained using cells and mice lacking DDRs and it will discuss the discovery and development of targeted DDR small molecule- and antisense-based inhibitors. Understanding the molecular mechanisms whereby DDRs control kidney injury and fibrosis might enable us to not only develop more selective and potent inhibitors, but to also determine when DDR inhibition needs to be achieved to prevent and/or halt the development of kidney fibrosis.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Gema Bolas
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Ambra Pozzi
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, TN, United States
- Veterans Affairs Hospitals, Nashville, TN, United States
| |
Collapse
|
18
|
Ko S, Jung KH, Yoon YC, Han BS, Park MS, Lee YJ, Kim SE, Cho YJ, Lee P, Lim JH, Ryu JK, Kim K, Kim TY, Hong S, Lee SH, Hong SS. A novel DDR1 inhibitor enhances the anticancer activity of gemcitabine in pancreatic cancer. Am J Cancer Res 2022; 12:4326-4342. [PMID: 36225647 PMCID: PMC9548003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extracellular matrix (ECM)-rich carcinoma, which promotes chemoresistance by inhibiting drug diffusion into the tumor. Discoidin domain receptor 1 (DDR1) increases tumor progression and drug resistance by binding to collagen, a major component of tumor ECM. Therefore, DDR1 inhibition may be helpful in cancer therapeutics by increasing drug delivery efficiency and improving drug sensitivity. In this study, we developed a novel DDR1 inhibitor, KI-301690 and investigated whether it could improve the anticancer activity of gemcitabine, a cytotoxic agent widely used for the treatment of pancreatic cancer. KI-301690 synergized with gemcitabine to suppress the growth of pancreatic cancer cells. Importantly, its combination significantly attenuated the expression of major tumor ECM components including collagen, fibronectin, and vimentin compared to gemcitabine alone. Additionally, this combination effectively decreased mitochondrial membrane potential (MMP), thereby inducing apoptosis. Further, the combination synergistically inhibited cell migration and invasion. The enhanced anticancer efficacy of the co-treatment could be explained by the inhibition of DDR1/PYK2/FAK signaling, which significantly reduced tumor growth in a pancreatic xenograft model. Our results demonstrate that KI-301690 can inhibit aberrant ECM expression by DDR1/PYK2/FAK signaling pathway blockade and attenuation of ECM-induced chemoresistance observed in desmoplastic pancreatic tumors, resulting in enhanced antitumor effect through effective induction of gemcitabine apoptosis.
Collapse
Affiliation(s)
- Soyeon Ko
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Beom Seok Han
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Min Seok Park
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Yun Ji Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Sang Eun Kim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Ye Jin Cho
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Pureunchowon Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Joo Han Lim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Ji-Kan Ryu
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Kewon Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute of Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)Daejeon 34141, Korea
| | - Tae Young Kim
- Chemical Kinomics Research Center, Korea Institute of Science and TechnologySeoul 02792, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalization, Institute of Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)Daejeon 34141, Korea
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and TechnologySeoul 02792, Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| |
Collapse
|
19
|
Madison J, Wilhelm K, Meehan DT, Delimont D, Samuelson G, Cosgrove D. Glomerular basement membrane deposition of collagen α1(III) in Alport glomeruli by mesangial filopodia injures podocytes via aberrant signaling through DDR1 and integrin α2β1. J Pathol 2022; 258:26-37. [PMID: 35607980 PMCID: PMC9378723 DOI: 10.1002/path.5969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
In Alport mice, activation of the endothelin A receptor (ETA R) in mesangial cells results in sub-endothelial invasion of glomerular capillaries by mesangial filopodia. Filopodia deposit mesangial matrix in the glomerular basement membrane (GBM), including laminin 211 which activates NF-κB, resulting in induction of inflammatory cytokines. Herein we show that collagen α1(III) is also deposited in the GBM. Collagen α1(III) localized to the mesangium in wild-type mice and was found in both the mesangium and the GBM in Alport mice. We show that collagen α1(III) activates discoidin domain receptor family, member 1 (DDR1) receptors both in vitro and in vivo. To elucidate whether collagen α1(III) might cause podocyte injury, cultured murine Alport podocytes were overlaid with recombinant collagen α1(III), or not, for 24 h and RNA was analyzed by RNA sequencing (RNA-seq). These same cells were subjected to siRNA knockdown for integrin α2 or DDR1 and the RNA was analyzed by RNA-seq. Results were validated in vivo using RNA-seq from RNA isolated from wild-type and Alport mouse glomeruli. Numerous genes associated with podocyte injury were up- or down-regulated in both Alport glomeruli and cultured podocytes treated with collagen α1(III), 18 of which have been associated previously with podocyte injury or glomerulonephritis. The data indicate α2β1 integrin/DDR1 co-receptor signaling as the dominant regulatory mechanism. This may explain earlier studies where deletion of either DDR1 or α2β1 integrin in Alport mice ameliorates renal pathology. © 2022 Boys Town National Research Hospital. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
|
20
|
Li X, Li Q, Xiong B, Chen H, Wang X, Zhang D. Discoidin domain receptor 1(DDR1) promote intestinal barrier disruption in Ulcerative Colitis through tight junction proteins degradation and epithelium apoptosis. Pharmacol Res 2022; 183:106368. [PMID: 35905891 DOI: 10.1016/j.phrs.2022.106368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Discoidin domain receptor 1 (DDR1) encodes a receptor tyrosine kinase involved in multiple physiological and pathological processes. DDR1 is expressed in the intestinal epithelium, but its role in Ulcerative Colitis (UC) is poorly understand. This study aimed to identify the function of DDR1 in maintaining the homeostasis of UC. METHODS The DDR1 expression level in non-inflamed and inflamed colon samples from IBD patients were assessed. DDR1 knock-out (DDR1-/-) and wild-type (WT) mice were administered dextran sulfate sodium (DSS) to induce colitis and assessed based on colitis symptoms. In addition, intestinal epithelial barrier injury was induced by TNF-α and IFN-γ incubation to cell monolayers transfected with PCDH-DDR1 or pLKO.1-sh-DDR1-1 plasmids. The effect of DDR1 in regulating barrier integrity, tight junctions (TJ) protein status, and cell apoptosis was investigated in vivo and in vitro. Furthermore, the activation of the NF-κB p65-MLCK-p-MLC2 pathway was also investigated. RESULTS Decreased DDR1 expression levels were observed at the inflamed sites compared with the non-inflamed. DDR1-/- mice had alleviated intestinal mucosal barrier injuries, upregulated TJ proteins, decreased epithelium apoptosis from DSS-induced colitis, and reduced proinflammatory cytokines production in the colon. These findings were further confirmed in vitro. DDR1 over-expression aggravated the TNF-α/IFN-γ-induced TJ disruption, while DDR1 shRNA prevented TJ damage even in the presence of JSH-23. DDR1 dependently destroyed the intestinal barrier via the NF-κB p65-MLCK-p-MLC2 pathway. CONCLUSION Our findings revealed that DDR1 regulated the intestinal barrier in colitis by modulating TJ proteins expression and epithelium apoptosis, making it a potential target of UC.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Qianqian Li
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Bin Xiong
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Huiling Chen
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China; Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
21
|
Sirvent A, Espie K, Papadopoulou E, Naim D, Roche S. New functions of DDR1 collagen receptor in tumor dormancy, immune exclusion and therapeutic resistance. Front Oncol 2022; 12:956926. [PMID: 35936735 PMCID: PMC9355703 DOI: 10.3389/fonc.2022.956926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 01/22/2023] Open
Abstract
The tumor microenvironment facilitates cancer progression and therapeutic resistance. Tumor collagens and their architecture play an essential role in this process. However, little is known about the mechanisms by which tumor cells sense and respond to this extracellular matrix environment. Recently, the Discoidin Domain Receptor 1 (DDR1), a collagen receptor and tyrosine kinase has emerged as an important player in this malignant process, although the underlying signaling mechanisms remain unclear. Here, we review new DDR1 functions in tumor dormancy following dissemination, immune exclusion and therapeutic resistance induced by stromal collagens deposition. We also discuss the signaling mechanisms behind these tumor activities and the therapeutic strategies aiming at targeting these collagens-dependent tumor responses.
Collapse
Affiliation(s)
| | | | | | | | - Serge Roche
- *Correspondence: Serge Roche, ; Audrey Sirvent,
| |
Collapse
|
22
|
Ngai D, Mohabeer AL, Mao A, Lino M, Bendeck MP. Stiffness-Responsive Feedback Autoregulation of DDR1 Expression is Mediated by a DDR1-YAP/TAZ Axis. Matrix Biol 2022; 110:129-140. [PMID: 35562016 DOI: 10.1016/j.matbio.2022.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Increased matrix stiffness is sensed by the collagen-binding receptor tyrosine kinase discoidin domain receptor 1 (DDR1). We have previously shown that DDR1 stimulates a positive feedback loop to increase its own expression in vascular smooth muscle cells (VSMCs). The transcriptional co-factors YAP/TAZ are stiffness sensing molecules that have not previously been investigated in DDR1 signaling. Here, we test the hypothesis that DDR1 signals through YAP/TAZ to auto-regulate its own expression. APPROACH AND RESULTS We used vascular smooth muscle cells (VSMCs) from wild-type and DDR1 knockout mice stimulated with collagen and/or substrates of different stiffness. We show that DDR1 controls YAP/TAZ nuclear localization and activity, whereas knockdown of YAP/TAZ attenuates DDR1 expression. In response to increased substrate stiffness, collagen stimulation, or RhoA activation, YAP/TAZ translocate to the nucleus and bind to chromatin. Finally, collagen stimulation promotes increased YAP/TAZ association with the Ddr1 promoter. CONCLUSIONS These findings reveal the mechanism by which DDR1 regulates YAP/TAZ activity which can then mediate positive feedback regulation of DDR1 expression by promoting transcription of the DDR1 gene.
Collapse
Affiliation(s)
- David Ngai
- Department of Laboratory Medicine and Pathobiology, University of Toronto; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto
| | - Amanda L Mohabeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto
| | - Amanda Mao
- Department of Laboratory Medicine and Pathobiology, University of Toronto; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto
| | - Marsel Lino
- Department of Laboratory Medicine and Pathobiology, University of Toronto; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto.
| |
Collapse
|
23
|
Borza CM, Bolas G, Zhang X, Browning Monroe MB, Zhang MZ, Meiler J, Skwark MJ, Harris RC, Lapierre LA, Goldenring JR, Hook M, Rivera J, Brown KL, Leitinger B, Tyska MJ, Moser M, Böttcher RT, Zent R, Pozzi A. The Collagen Receptor Discoidin Domain Receptor 1b Enhances Integrin β1-Mediated Cell Migration by Interacting With Talin and Promoting Rac1 Activation. Front Cell Dev Biol 2022; 10:836797. [PMID: 35309920 PMCID: PMC8928223 DOI: 10.3389/fcell.2022.836797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 01/17/2023] Open
Abstract
Integrins and discoidin domain receptors (DDRs) 1 and 2 promote cell adhesion and migration on both fibrillar and non fibrillar collagens. Collagen I contains DDR and integrin selective binding motifs; however, the relative contribution of these two receptors in regulating cell migration is unclear. DDR1 has five isoforms (DDR1a-e), with most cells expressing the DDR1a and DDR1b isoforms. We show that human embryonic kidney 293 cells expressing DDR1b migrate more than DDR1a expressing cells on DDR selective substrata as well as on collagen I in vitro. In addition, DDR1b expressing cells show increased lung colonization after tail vein injection in nude mice. DDR1a and DDR1b differ from each other by an extra 37 amino acids in the DDR1b cytoplasmic domain. Interestingly, these 37 amino acids contain an NPxY motif which is a central control module within the cytoplasmic domain of β integrins and acts by binding scaffold proteins, including talin. Using purified recombinant DDR1 cytoplasmic tail proteins, we show that DDR1b directly binds talin with higher affinity than DDR1a. In cells, DDR1b, but not DDR1a, colocalizes with talin and integrin β1 to focal adhesions and enhances integrin β1-mediated cell migration. Moreover, we show that DDR1b promotes cell migration by enhancing Rac1 activation. Mechanistically DDR1b interacts with the GTPase-activating protein (GAP) Breakpoint cluster region protein (BCR) thus reducing its GAP activity and enhancing Rac activation. Our study identifies DDR1b as a major driver of cell migration and talin and BCR as key players in the interplay between integrins and DDR1b in regulating cell migration.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Gema Bolas
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Xiuqi Zhang
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | | | - Ming-Zhi Zhang
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Leipzig University Medical School, Institute for Drug Discovery, Leipzig, Germany
| | - Marcin J. Skwark
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Lynne A. Lapierre
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Magnus Hook
- Texas A&M Health Science Center Institute of Biosciences and Technology, Houston, TX, United States
| | - Jose Rivera
- Texas A&M Health Science Center Institute of Biosciences and Technology, Houston, TX, United States
| | - Kyle L. Brown
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Markus Moser
- Department for Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Ralph T. Böttcher
- Department for Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Roy Zent
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
| |
Collapse
|
24
|
Borza CM, Bolas G, Bock F, Zhang X, Akabogu FC, Zhang MZ, de Caestecker M, Yang M, Yang H, Lee E, Gewin L, Fogo AB, McDonald WH, Zent R, Pozzi A. DDR1 contributes to kidney inflammation and fibrosis by promoting the phosphorylation of BCR and STAT3. JCI Insight 2022; 7:e150887. [PMID: 34941574 PMCID: PMC8855801 DOI: 10.1172/jci.insight.150887] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase activated by collagen, contributes to chronic kidney disease. However, its role in acute kidney injury and subsequent development of kidney fibrosis is not clear. Thus, we performed a model of severe ischemia/reperfusion-induced acute kidney injury that progressed to kidney fibrosis in WT and Ddr1-null mice. We showed that Ddr1-null mice had reduced acute tubular injury, inflammation, and tubulointerstitial fibrosis with overall decreased renal monocyte chemoattractant protein (MCP-1) levels and STAT3 activation. We identified breakpoint cluster region (BCR) protein as a phosphorylated target of DDR1 that controls MCP-1 production in renal proximal tubule epithelial cells. DDR1-induced BCR phosphorylation or BCR downregulation increased MCP-1 secretion, suggesting that BCR negatively regulates the levels of MCP-1. Mechanistically, phosphorylation or downregulation of BCR increased β-catenin activity and in turn MCP-1 production. Finally, we showed that DDR1-mediated STAT3 activation was required to stimulate the secretion of TGF-β. Thus, DDR1 contributes to acute and chronic kidney injury by regulating BCR and STAT3 phosphorylation and in turn the production of MCP-1 and TGF-β. These findings identify DDR1 an attractive therapeutic target for ameliorating both proinflammatory and profibrotic signaling in kidney disease.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine, Division of Nephrology and Hypertension, and
| | - Gema Bolas
- Department of Medicine, Division of Nephrology and Hypertension, and
| | - Fabian Bock
- Department of Medicine, Division of Nephrology and Hypertension, and
| | - Xiuqi Zhang
- Department of Medicine, Division of Nephrology and Hypertension, and
| | - Favour C. Akabogu
- Department of Medicine, Division of Nephrology and Hypertension, and
| | - Ming-Zhi Zhang
- Department of Medicine, Division of Nephrology and Hypertension, and
| | | | - Min Yang
- Department of Medicine, Division of Nephrology and Hypertension, and
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Leslie Gewin
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Agnes B. Fogo
- Department of Medicine, Division of Nephrology and Hypertension, and
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Department of Medicine, Division of Nephrology and Hypertension, and
- Department of Veterans Affairs, Nashville, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology and Hypertension, and
- Department of Veterans Affairs, Nashville, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Di Martino JS, Nobre AR, Mondal C, Taha I, Farias EF, Fertig EJ, Naba A, Aguirre-Ghiso JA, Bravo-Cordero JJ. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. NATURE CANCER 2022; 3:90-107. [PMID: 35121989 PMCID: PMC8818089 DOI: 10.1038/s43018-021-00291-9] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/21/2021] [Indexed: 04/14/2023]
Abstract
Cancer cells disseminate and seed in distant organs, where they can remain dormant for many years before forming clinically detectable metastases. Here we studied how disseminated tumor cells sense and remodel the extracellular matrix (ECM) to sustain dormancy. ECM proteomics revealed that dormant cancer cells assemble a type III collagen-enriched ECM niche. Tumor-derived type III collagen is required to sustain tumor dormancy, as its disruption restores tumor cell proliferation through DDR1-mediated STAT1 signaling. Second-harmonic generation two-photon microscopy further revealed that the dormancy-to-reactivation transition is accompanied by changes in type III collagen architecture and abundance. Analysis of clinical samples revealed that type III collagen levels were increased in tumors from patients with lymph node-negative head and neck squamous cell carcinoma compared to patients who were positive for lymph node colonization. Our data support the idea that the manipulation of these mechanisms could serve as a barrier to metastasis through disseminated tumor cell dormancy induction.
Collapse
Affiliation(s)
- Julie S Di Martino
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Precision Immunology Institute, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chandrani Mondal
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isra Taha
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Eduardo F Farias
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elana J Fertig
- Departments of Oncology, Applied Mathematics and Statistics and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Precision Immunology Institute, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell Biology, Cancer Dormancy and Tumor Microenvironment Institute, Gruss Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Bonfil RD, Chen W, Vranic S, Sohail A, Shi D, Jang H, Kim HR, Prunotto M, Fridman R. Expression and subcellular localization of Discoidin Domain Receptor 1 (DDR1) define prostate cancer aggressiveness. Cancer Cell Int 2021; 21:507. [PMID: 34548097 PMCID: PMC8456559 DOI: 10.1186/s12935-021-02206-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Discoidin Domain Receptor 1 (DDR1) is one of the two members of a unique family of receptor tyrosine kinase receptors that signal in response to collagen, which has been implicated in cancer progression. Here, we examined the expression of DDR1 in prostate cancer (PCa), and assessed its potential value as a prognostic marker, as a function of grade, stage and other clinicopathologic parameters. METHODS We investigated the association between the expression level and subcellular localization of DDR1 protein and PCa aggressiveness by immunohistochemistry, using tissue microarrays (TMAs) encompassing 200 cases of PCa with various Gleason scores (GS) and pathologic stages with matched normal tissue, and a highly specific monoclonal antibody. RESULTS DDR1 was found to be localized in the membrane, cytoplasm, and nuclear compartments of both normal and cancerous prostate epithelial cells. Analyses of DDR1 expression in low GS (≤ 7[3 + 4]) vs high GS (≥ 7[4 + 3]) tissues showed no differences in nuclear or cytoplasmic DDR1in either cancerous or adjacent normal tissue cores. However, relative to normal-matched tissue, the percentage of cases with higher membranous DDR1 expression was significantly lower in high vs. low GS cancers. Although nuclear localization of DDR1 was consistently detected in our tissue samples and also in cultured human PCa and normal prostate-derived cell lines, its presence in that site could not be associated with disease aggressiveness. No associations between DDR1 expression and overall survival or biochemical recurrence were found in this cohort of patients. CONCLUSION The data obtained through multivariate logistic regression model analysis suggest that the level of membranous DDR1 expression status may represent a potential biomarker of utility for better determination of PCa aggressiveness.
Collapse
Affiliation(s)
- R Daniel Bonfil
- Division of Pathology, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S. University Drive, Terry Building # 1337, Fort Lauderdale, FL, 33328-2018, USA.
| | - Wei Chen
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Anjum Sohail
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Scott Hall #8200, 540 E. Canfield St, Detroit, MI, 48201, USA
| | - Dongping Shi
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Scott Hall #8200, 540 E. Canfield St, Detroit, MI, 48201, USA
| | - Hyejeong Jang
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Hyeong-Reh Kim
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Scott Hall #8200, 540 E. Canfield St, Detroit, MI, 48201, USA
| | - Marco Prunotto
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Rafael Fridman
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Scott Hall #8200, 540 E. Canfield St, Detroit, MI, 48201, USA.
| |
Collapse
|
27
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
28
|
Chiusa M, Hu W, Zienkiewicz J, Chen X, Zhang MZ, Harris RC, Vanacore RM, Bentz JA, Remuzzi G, Benigni A, Fogo AB, Luo W, Mili S, Wilson MH, Zent R, Hawiger J, Pozzi A. EGF receptor-mediated FUS phosphorylation promotes its nuclear translocation and fibrotic signaling. J Cell Biol 2021; 219:151955. [PMID: 32678881 PMCID: PMC7480104 DOI: 10.1083/jcb.202001120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/13/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive accumulation of collagen leads to fibrosis. Integrin α1β1 (Itgα1β1) prevents kidney fibrosis by reducing collagen production through inhibition of the EGF receptor (EGFR) that phosphorylates cytoplasmic and nuclear proteins. To elucidate how the Itgα1β1/EGFR axis controls collagen synthesis, we analyzed the levels of nuclear tyrosine phosphorylated proteins in WT and Itgα1-null kidney cells. We show that the phosphorylation of the RNA-DNA binding protein fused in sarcoma (FUS) is higher in Itgα1-null cells. FUS contains EGFR-targeted phosphorylation sites and, in Itgα1-null cells, activated EGFR promotes FUS phosphorylation and nuclear translocation. Nuclear FUS binds to the collagen IV promoter, commencing gene transcription that is reduced by inhibiting EGFR, down-regulating FUS, or expressing FUS mutated in the EGFR-targeted phosphorylation sites. Finally, a cell-penetrating peptide that inhibits FUS nuclear translocation reduces FUS nuclear content and collagen IV transcription. Thus, EGFR-mediated FUS phosphorylation regulates FUS nuclear translocation and transcription of a major profibrotic collagen gene. Targeting FUS nuclear translocation offers a new antifibrotic therapy.
Collapse
Affiliation(s)
- Manuel Chiusa
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Wen Hu
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Jozef Zienkiewicz
- Department of Veterans Affairs, Nashville, TN.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ming-Zhi Zhang
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Raymond C Harris
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Roberto M Vanacore
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | | | - Giuseppe Remuzzi
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Agnes B Fogo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Wentian Luo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Matthew H Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Roy Zent
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| | - Jacek Hawiger
- Department of Veterans Affairs, Nashville, TN.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs, Nashville, TN
| |
Collapse
|
29
|
Biological information and functional analysis reveal the role of discoidin domain receptor 1 in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 131:221-230. [PMID: 33309038 DOI: 10.1016/j.oooo.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/15/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study aimed to establish a framework for the role of discoidin domain receptor 1 (DDR1) in oral squamous cell carcinoma (OSCC) through biological data and functional analysis. STUDY DESIGN The GSE31056 series of the Gene Expression Omnibus database and UALCAN website were used to assess DDR1 expression in head and neck squamous cell carcinoma (HNSCC) and OSCC. DDR1 RNA sequencing data for 260 HNSCC samples from The Cancer Genome Atlas were overlaid to evaluate its association with tumor progression and prognosis. To identify the function of DDR1 in OSCC, 38 patients with OSCC were followed for 8 years and immunohistochemical analysis, western blotting, Cell Counting Kit-8, and colony formation assays were conducted on OSCC cell lines to reveal DDR1 expression and function. RESULTS DDR1 was overexpressed in HNSCC and OSCC tumor specimens and its expression correlated with overall survival and T-stage classification (P = .049, P = .0316). Furthermore, DDR1 was related to OSCC tumor growth because its expression increased with the T-stage level (P = .0071) but not N-stage level, histologic stage, or recurrence (P > .05). DDR1 was highly expressed in OSCC cell lines and promoted cell proliferation, which was repressed by nilotinib (P < .05). CONCLUSIONS DDR1 has an oncogenic role in OSCC and might be a novel target for anti-OSCC therapy.
Collapse
|
30
|
Marahrens B, Schulze A, Wysocki J, Lin MH, Ye M, Kanwar YS, Bader M, Velez JCQ, Miner JH, Batlle D. Knockout of aminopeptidase A in mice causes functional alterations and morphological glomerular basement membrane changes in the kidneys. Kidney Int 2020; 99:900-913. [PMID: 33316280 DOI: 10.1016/j.kint.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Aminopeptidase A is one of the most potent enzymes within the renin-angiotensin system in terms of angiotensin II degradation. Here, we examined whether there is a kidney phenotype and any compensatory changes in other renin angiotensin system enzymes involved in the metabolism of angiotensin II associated with aminopeptidase A deficiency. Kidneys harvested from aminopeptidase A knockout mice were examined by light and electron microscopy, immunohistochemistry and immunofluorescence. Kidney angiotensin II levels and the ability of renin angiotensin system enzymes in the glomerulus to degrade angiotensin II ex vivo, their activities, protein and mRNA levels in kidney lysates were evaluated. Knockout mice had increased blood pressure and mild glomerular mesangial expansion without significant albuminuria. By electron microscopy, knockout mice exhibited a mild increase of the mesangial matrix, moderate thickening of the glomerular basement membrane but a striking appearance of knob-like structures. These knobs were seen in both male and female mice and persisted after the treatment of hypertension. In isolated glomeruli from knockout mice, the level of angiotensin II was more than three-fold higher as compared to wild type control mice. In kidney lysates from knockout mice angiotensin converting enzyme activity, protein and mRNA levels were markedly decreased possibly as a compensatory mechanism to reduce angiotensin II formation. Thus, our findings support a role for aminopeptidase A in the maintenance of glomerular structure and intra-kidney homeostasis of angiotensin peptides.
Collapse
Affiliation(s)
- Benedikt Marahrens
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA; Charité University Medicine Berlin, Berlin, Germany
| | - Arndt Schulze
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA; Charité University Medicine Berlin, Berlin, Germany
| | - Jan Wysocki
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA
| | - Meei-Hua Lin
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minghao Ye
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael Bader
- Charité University Medicine Berlin, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Juan Carlos Q Velez
- Department of Nephrology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
31
|
Chen MK, Hsu JL, Hung MC. Nuclear receptor tyrosine kinase transport and functions in cancer. Adv Cancer Res 2020; 147:59-107. [PMID: 32593407 DOI: 10.1016/bs.acr.2020.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling functions of plasma membrane-localized receptor tyrosine kinases (RTKs) have been extensively studied after they were first described in the mid-1980s. Plasma membrane RTKs are activated by extracellular ligands and cellular stress stimuli, and regulate cellular responses by activating the downstream effector proteins to initiate a wide range of signaling cascades in the cells. However, increasing evidence indicates that RTKs can also be transported into the intracellular compartments where they phosphorylate traditional effector proteins and non-canonical substrate proteins. In general, internalization that retains the RTK's transmembrane domain begins with endocytosis, and endosomal RTK remains active before being recycled or degraded. Further RTK retrograde transport from endosome-Golgi-ER to the nucleus is primarily dependent on membranes vesicles and relies on the interaction with the COP-I vesicle complex, Sec61 translocon complex, and importin. Internalized RTKs have non-canonical substrates that include transcriptional co-factors and DNA damage response proteins, and many nuclear RTKs harbor oncogenic properties and can enhance cancer progression. Indeed, nuclear-localized RTKs have been shown to positively correlate with cancer recurrence, therapeutic resistance, and poor prognosis of cancer patients. Therefore, understanding the functions of nuclear RTKs and the mechanisms of nuclear RTK transport will further improve our knowledge to evaluate the potential of targeting nuclear RTKs or the proteins involved in their transport as new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jennifer L Hsu
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
32
|
Le CC, Bennasroune A, Collin G, Hachet C, Lehrter V, Rioult D, Dedieu S, Morjani H, Appert-Collin A. LRP-1 Promotes Colon Cancer Cell Proliferation in 3D Collagen Matrices by Mediating DDR1 Endocytosis. Front Cell Dev Biol 2020; 8:412. [PMID: 32582700 PMCID: PMC7283560 DOI: 10.3389/fcell.2020.00412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Low density lipoprotein receptor related protein-1 (LRP-1) is a large ubiquitous endocytic receptor mediating the clearance of various molecules from the extracellular matrix. Several studies have shown that LRP-1 plays crucial roles during tumorigenesis functioning as a main signal pathway regulator, especially by interacting with other cell-surface receptors. Discoïdin Domain Receptors (DDRs), type I collagen receptors with tyrosine kinase activity, have previously been associated with tumor invasion and aggressiveness in diverse tumor environments. Here, we addressed whether it could exist functional interplays between LRP-1 and DDR1 to control colon carcinoma cell behavior in three-dimensional (3D) collagen matrices. We found that LRP-1 established tight molecular connections with DDR1 at the plasma membrane in colon cancer cells. In this tumor context, we provide evidence that LRP-1 regulates by endocytosis the cell surface levels of DDR1 expression. The LRP-1 mediated endocytosis of DDR1 increased cell proliferation by promoting cell cycle progression into S phase and decreasing apoptosis. In this study, we identified a new molecular way that controls the cell-surface expression of DDR1 and consequently the colon carcinoma cell proliferation and apoptosis and highlighted an additional mechanism by which LRP-1 carries out its sensor activity of the tumor microenvironment.
Collapse
Affiliation(s)
- Cao Cuong Le
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France.,Unité BioSpecT, EA7506, Reims, France
| | - Amar Bennasroune
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Guillaume Collin
- Université de Reims Champagne-Ardenne, Reims, France.,Unité BioSpecT, EA7506, Reims, France
| | - Cathy Hachet
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Véronique Lehrter
- Université de Reims Champagne-Ardenne, Reims, France.,Unité BioSpecT, EA7506, Reims, France
| | - Damien Rioult
- Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, URCA/INERIS, Reims Champagne-Ardenne University (URCA), Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Hamid Morjani
- Université de Reims Champagne-Ardenne, Reims, France.,Unité BioSpecT, EA7506, Reims, France
| | - Aline Appert-Collin
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
33
|
Hysi E, He X, Fadhel MN, Zhang T, Krizova A, Ordon M, Farcas M, Pace KT, Mintsopoulos V, Lee WL, Kolios MC, Yuen DA. Photoacoustic imaging of kidney fibrosis for assessing pretransplant organ quality. JCI Insight 2020; 5:136995. [PMID: 32298239 DOI: 10.1172/jci.insight.136995] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Roughly 10% of the world's population has chronic kidney disease (CKD). In its advanced stages, CKD greatly increases the risk of hospitalization and death. Although kidney transplantation has revolutionized the care of advanced CKD, clinicians have limited ways of assessing donor kidney quality. Thus, optimal donor kidney-recipient matching cannot be performed, meaning that some patients receive damaged kidneys that function poorly. Fibrosis is a form of chronic damage often present in donor kidneys, and it is an important predictor of future renal function. Currently, no safe, easy-to-perform technique exists that accurately quantifies renal fibrosis. We describe a potentially novel photoacoustic (PA) imaging technique that directly images collagen, the principal component of fibrotic tissue. PA imaging noninvasively quantifies whole kidney fibrotic burden in mice, and cortical fibrosis in pig and human kidneys, with outstanding accuracy and speed. Remarkably, 3-dimensional PA imaging exhibited sufficiently high resolution to capture intrarenal variations in collagen content. We further show that PA imaging can be performed in a setting that mimics human kidney transplantation, suggesting the potential for rapid clinical translation. Taken together, our data suggest that PA collagen imaging is a major advance in fibrosis quantification that could have widespread preclinical and clinical impact.
Collapse
Affiliation(s)
- Eno Hysi
- Department of Physics, Ryerson University, Toronto, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, Canada
| | - Xiaolin He
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, Canada.,Division of Nephrology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto and University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Science and
| | - Muhannad N Fadhel
- Department of Physics, Ryerson University, Toronto, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, Canada
| | - Tianzhou Zhang
- Division of Nephrology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto and University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Science and
| | - Adriana Krizova
- Keenan Research Centre for Biomedical Science and.,Department of Laboratory Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Michael Ordon
- Keenan Research Centre for Biomedical Science and.,Department of Laboratory Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Division of Urology, Department of Surgery, St. Michael's Hospital, Unity Health Toronto and University of Toronto, Toronto, Ontario, Canada
| | - Monica Farcas
- Keenan Research Centre for Biomedical Science and.,Department of Laboratory Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Division of Urology, Department of Surgery, St. Michael's Hospital, Unity Health Toronto and University of Toronto, Toronto, Ontario, Canada
| | - Kenneth T Pace
- Keenan Research Centre for Biomedical Science and.,Department of Laboratory Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.,Division of Urology, Department of Surgery, St. Michael's Hospital, Unity Health Toronto and University of Toronto, Toronto, Ontario, Canada
| | - Victoria Mintsopoulos
- Keenan Research Centre for Biomedical Science and.,Interdepartmental Division of Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science and.,Interdepartmental Division of Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Canada.,Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, Canada
| | - Darren A Yuen
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, Canada.,Division of Nephrology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto and University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Science and
| |
Collapse
|
34
|
Buraschi S, Morcavallo A, Neill T, Stefanello M, Palladino C, Xu SQ, Belfiore A, Iozzo RV, Morrione A. Discoidin Domain Receptor 1 functionally interacts with the IGF-I system in bladder cancer. Matrix Biol Plus 2020; 6-7:100022. [PMID: 33543020 PMCID: PMC7852334 DOI: 10.1016/j.mbplus.2020.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer is one of the most common and aggressive cancers and, regardless of the treatment, often recurs and metastasizes. Thus, a better understanding of the mechanisms regulating urothelial tumorigenesis is critical for the design and implementation of rational therapeutic strategies. We previously discovered that the IGF-IR axis is critical for bladder cancer cell motility and invasion, suggesting a possible role in bladder cancer progression. However, IGF-IR depletion in metastatic bladder cancer cells only partially inhibited anchorage-independent growth. Significantly, metastatic bladder cancer cells have decreased IGF-IR levels but overexpressed the insulin receptor isoform A (IR-A), suggesting that the latter may play a more prevalent role than the IGF-IR in bladder tumor progression. The collagen receptor DDR1 cross-talks with both the IGF-IR and IR in breast cancer, and previous data suggest a role of DDR1 in bladder cancer. Here, we show that DDR1 is expressed in invasive and metastatic, but not in papillary, non-invasive bladder cancer cells. DDR1 is phosphorylated upon stimulation with IGF-I, IGF-II, and insulin, co-precipitates with the IGF-IR, and the IR-A and transient DDR1 depletion severely inhibits IGF-I-induced motility. We further demonstrate that DDR1 interacts with Pyk2 and non-muscle myosin IIA in ligands-dependent fashion, suggesting that it may link the IGF-IR and IR-A to the regulation of F-actin cytoskeleton dynamics. Similarly to the IGF-IR, DDR1 is upregulated in bladder cancer tissues compared to healthy tissue controls. Thus, our findings provide the first characterization of the molecular cross-talk between DDR1 and the IGF-I system and could lead to the identification of novel targets for therapeutic intervention in bladder cancer. Moreover, the expression profiles of IGF-IR, IR-A, DDR1, and downstream effectors could serve as a novel biomarker signature with diagnostic and prognostic significance. We discovered that the collagen receptor DDR1 cross-talks with insulin growth factor I (IGF-I) signaling in bladder cancer DDR1 co-precipitates with the IGF-IR and the insulin receptor (IR), and is phosphorylated upon stimulation with IGF ligands This collagen receptor modulates IGF-I-evoked motility and anchorage-independent growth DDR1 complexes with Pyk2, myosin IIA, IGF-IR and/or IR and regulates actin dynamics
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alaide Morcavallo
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manuela Stefanello
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chiara Palladino
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shi-Qiong Xu
- Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Morrione
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Department of Urology, and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
35
|
Ablondi M, Eriksson S, Tetu S, Sabbioni A, Viklund Å, Mikko S. Genomic Divergence in Swedish Warmblood Horses Selected for Equestrian Disciplines. Genes (Basel) 2019; 10:E976. [PMID: 31783652 PMCID: PMC6947233 DOI: 10.3390/genes10120976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 01/12/2023] Open
Abstract
The equestrian sport horse Swedish Warmblood (SWB) originates from versatile cavalry horses. Most modern SWB breeders have specialized their breeding either towards show jumping or dressage disciplines. The aim of this study was to explore the genomic structure of SWB horses to evaluate the presence of genomic subpopulations, and to search for signatures of selection in subgroups of SWB with high or low breeding values (EBVs) for show jumping. We analyzed high density genotype information from 380 SWB horses born in the period 2010-2011, and used Principal Coordinates Analysis and Discriminant Analysis of Principal Components to detect population stratification. Fixation index and Cross Population Extended Haplotype Homozygosity scores were used to scan the genome for potential signatures of selection. In accordance with current breeding practice, this study highlights the development of two separate breed subpopulations with putative signatures of selection in eleven chromosomes. These regions involve genes with known function in, e.g., mentality, endogenous reward system, development of connective tissues and muscles, motor control, body growth and development. This study shows genetic divergence, due to specialization towards different disciplines in SWB horses. This latter evidence can be of interest for SWB and other horse studbooks encountering specialized breeding.
Collapse
Affiliation(s)
- Michela Ablondi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sasha Tetu
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Alberto Sabbioni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Åsa Viklund
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| |
Collapse
|