1
|
Yao H, Liu T, Chen Y, She L, Wu T, Liu D, Deng Y, Han Y, Chen K, Deng J, Zhang J, Chen J, Liu F. Dysregulated gastric microbial communities and functional shifts in chronic atrophic versus non-atrophic gastritis: a Helicobacter pylori-Negative observational study. BMC Gastroenterol 2025; 25:304. [PMID: 40301773 PMCID: PMC12039101 DOI: 10.1186/s12876-025-03900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection was identified as a substantial risk factor for gastric cancer development, but the eradication of H. pylori did not necessarily lead to a reduction in the incidence of gastric cancer. Non-Helicobacter pylori (non-H. pylori) bacteria in the stomach are involved in the transformation of gastritis carcinoma. The aim of this study was to characterize the microbiome composition of the gastric mucosa and its functions in non-H. pylori (H. pylori-negative) patients with chronic atrophic gastritis (CAG) and chronic non-atrophic gastritis (CNAG). METHODS Fourteen CNAG samples and twenty-three CAG samples were collected. The composition of the gastric microbiome was analyzed using 16 S rDNA gene sequencing. The bioinformatic analysis was performed using alpha and beta diversity analyses, PICRUSt2, and linear discriminant analysis effect size (LEfSe). RESULTS The two groups shared the same most abundant bacterial phyla (Pseudomonadota, Bacillota, Actinomycetota, and Bacteroidota). The top 5 most abundant bacterial genera in the CAG group were Sphingomonas, Ralstonia, Brevundimonas, Methyloversatilis, and Pseudomonas. In the CNAG group, the top genera were Brevundimonas, Ralstonia, Sphingomonas, Methyloversatilis, and Acinetobacter. Differential analysis revealed distinct genera between groups: the CAG group showed enrichment in Sphingomonas, Ralstonia, Bradyrhizobium, Roseateles, and Acidithiobacillus, while the CNAG group was enriched in Brevundimonas, Rhodococcus, Hydrogenophaga, Bacteroides, and Leifsonia (p < 0.05). Sphingomonas exhibited a positive correlation with Acidithiobacillus but negative correlations with Brevundimonas, Hydrogenophaga, and Leifsonia. Pathways related to xenobiotic biodegradation, metabolism, signal transduction, cofactor/vitamin metabolism, cancer, infectious diseases, and digestive system were enriched in the CAG group. In contrast, the CNAG group showed enrichment in amino acid metabolism, translation, replication/repair, and terpenoid/polyketide metabolism. CONCLUSION Gastric mucosal microbiota dysbiosis and functional shifts are significantly associated with chronic atrophic gastritis. Taxa such as Sphingomonas and Ralstonia, enriched in CAG patients, may indicate microbial signatures associated with early atrophic transition and provide candidates for further mechanistic validation.
Collapse
Affiliation(s)
- Hong Yao
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Tingting Liu
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Yiming Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Ling She
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Tingfeng Wu
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Dongsong Liu
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Yuhong Deng
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Yubin Han
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Kai Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Jianmin Deng
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Jue Zhang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China
| | - Jinfeng Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China.
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, People's Republic of China.
| | - Fengbin Liu
- Lingnan Institute of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China.
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Liu S, Qi L, Dong L, Sun W, Liu S, Li P, Zhang N. Prognostic implications of the interaction between intratumoral microbiome and immune response in gastric cancer. Microbiol Spectr 2025; 13:e0283024. [PMID: 40202312 PMCID: PMC12054076 DOI: 10.1128/spectrum.02830-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/08/2025] [Indexed: 04/10/2025] Open
Abstract
Gastric cancer (GC) prognosis is significantly influenced by intratumoral microbiomes, which modulate host-immune interactions. This study analyzed data from the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to identify immune genes associated with GC prognosis and conducted prognostic immune subtypes. GC patients were classified into two distinct prognostic immune phenotypes C1 and C2 based on the non-negative matrix factorization consensus clusters. Phenotype C2 exhibited a better prognosis and distinct immune characteristics, including enhanced presence of Th2 and Th17 cells and improved response to chemotherapy. In contrast, phenotype C1 showed higher expression levels of PDCD1LG2 and TLR9, which were critical immune factors involved in immune regulation. Both phenotypes were linked to immune genes influencing intratumoral microbiomes and GC immunotherapy responses. A prediction risk model was constructed using the LASSO regression analysis and showed great prognostic value for GC patients. The key genes were correlated with immune cells and suppressed the function of the host immune system. The intratumoral microbiomes were strongly associated with the hosts' immune infiltration and significantly interacted with host immune genes to influence GC outcomes. Candidatus Nitrosotenuis plays a significant role in predicting the prognosis of GC patients. This research underscores the pivotal role of intratumoral microbiomes in GC prognosis and supports the development of future personalized therapeutic approaches.IMPORTANCEIncreasing evidence confirms the presence of intratumoral microbiomes. However, the role of the intratumoral microbiomes in the progression of gastric cancer and their relationship with the immune microenvironment remain unclear. Our study classified gastric cancer patients into two immune prognostic subtypes, C1 and C2, using non-negative matrix factorization consensus clusters. The C2 subtype exhibited a better prognosis and more pronounced immune characteristics. Microbiome analyses revealed associations between both subtypes and immune genes that affect intratumoral microbiomes and their responses to immunotherapy. The intratumoral microbiomes were closely linked with host immune infiltration and significantly interacted with immune genes, which influence the prognosis of gastric cancer. Notably, Candidatus Nitrosotenuis showed a significant prognostic value in gastric cancer patients. Our findings highlight the critical role of the intratumoral microbiomes in affecting gastric cancer prognosis and its interaction with the immune microenvironment, supporting future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sifan Liu
- Department of Gastroenterology, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesions of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lingyu Qi
- Department of Gastroenterology, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesions of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lu Dong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Wenjing Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Siying Liu
- Department of Gastroenterology, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesions of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Li
- Department of Gastroenterology, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesions of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nan Zhang
- Department of Gastroenterology, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesions of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Huang Z, Zhu J, Bu X, Lu S, Luo Y, Liu T, Duan N, Wang W, Wang Y, Wang X. Probiotics and prebiotics: new treatment strategies for oral potentially malignant disorders and gastrointestinal precancerous lesions. NPJ Biofilms Microbiomes 2025; 11:55. [PMID: 40199865 PMCID: PMC11978799 DOI: 10.1038/s41522-025-00688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
Oral potentially malignant disorders (OPMDs) and gastrointestinal precancerous lesions (GPLs) are major public health concerns because of their potential to progress to cancer. Probiotics, prebiotics, and engineered probiotics can positively influence the prevention and management of OPMDs and GPLs. This review aims to comprehensively review the application status of probiotics, prebiotics and engineered probiotics in OPMDs and GPLs, explore their potential mechanisms of action, and anticipate their future clinical use.
Collapse
Affiliation(s)
- Zhuwei Huang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jiaye Zhu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Xiangwen Bu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Shulai Lu
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yixian Luo
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ting Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| | - Xiang Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Ma Y, Jiang Z, Wang Y, Pan L, Liu K, Xia R, Yuan L, Cheng X. Tongue coating microbiota-based machine learning for diagnosing digestive system tumours. J Oral Microbiol 2025; 17:2487645. [PMID: 40206097 PMCID: PMC11980229 DOI: 10.1080/20002297.2025.2487645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Background Digestive system tumours (DSTs) often diagnosed late due to nonspecific symptoms. Non-invasive biomarkers are crucial for early detection and improved outcomes. Patients and Methods We collected tongue coating samples from 710 patients diagnosed with DST and 489 healthy controls (HC) from April 2023, to December 2023. Microbial composition was analyzed using 16S rRNA sequencing, and five machine learning algorithms were applied to assess the diagnostic potential of tongue coating microbiota. Results Alpha diversity analysis showed that the microbial diversity in the tongue coating was significantly increased in DST patients. LEfSe analysis identified DST-enriched genera Alloprevotella and Prevotella, contrasting with HC-dominant taxa Neisseria, Haemophilus, and Porphyromonas (LDA >4). Notably, when comparing each of the four DST subtypes with the HC group, the proportion of Haemophilus in the HC group was significantly higher, and it was identified as an important feature for distinguishing the HC group. Machine learning validation demonstrated superior diagnostic performance of the Extreme Gradient Boosting (XGBoost) model, achieving an AUC of 0.926 (95% CI: 0.893-0.958) in internal validation, outperforming the other four machine learning models. Conclusion Tongue coating microbiota shows promise as a non-invasive biomarker for DST diagnosis, supported by robust machine learning models.
Collapse
Affiliation(s)
- Yubo Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengchen Jiang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yanan Wang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Libin Pan
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Kang Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruihong Xia
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
5
|
Li Y, Wang M, Zhao H. Research Progress of Buyang Yiwei Decoction in Regulating Intestinal Flora for Gastric Cancer. Cancer Manag Res 2024; 16:1863-1869. [PMID: 39735255 PMCID: PMC11675287 DOI: 10.2147/cmar.s496404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Intestinal flora is a complex micro-ecosystem in human body, which is called the second genome of human body. Intestinal flora imbalance plays an important role in the occurrence and development of gastric cancer through circulation, metabolism and immunity. Gastric cancer is associated with dysbacteriosis. Traditional Chinese medicine (TCM) compounds in Buyang Yiwei Decoction can reduce the clinical signs and symptoms of gastric cancer by regulating intestinal microbiota, alleviate the adverse reactions of gastric cancer after radiotherapy and chemotherapy, and improve the quality of life of patients. This article reviews whether Buyang Yiwei Decoction can reduce the risk of gastric cancer or play a therapeutic role in gastric cancer by improving the intestinal microbiota.
Collapse
Affiliation(s)
- Yu Li
- Oncology Department, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, People’s Republic of China
| | - Manya Wang
- Department of Traditional Chinese Medicine, Shanghai Pudong New Area Nanhui Xincheng Community Health Service Center, Pudong New Area, Shanghai, People’s Republic of China
| | - Huixie Zhao
- Department of Traditional Chinese Medicine, Shijiazhuang TCM Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
6
|
Petkevicius V, Lehr K, Kupcinskas J, Link A. Fusobacterium nucleatum: Unraveling its potential role in gastric carcinogenesis. World J Gastroenterol 2024; 30:3972-3984. [PMID: 39351058 PMCID: PMC11438658 DOI: 10.3748/wjg.v30.i35.3972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is a Gram-negative anaerobic bacterium that plays a key role in the development of oral inflammation, such as periodontitis and gingivitis. In the last 10 years, F. nucleatum has been identified as a prevalent bacterium associated with colorectal adenocarcinoma and has also been linked to cancer progression, metastasis and poor disease outcome. While the role of F. nucleatum in colon carcinogenesis has been intensively studied, its role in gastric carcinogenesis is still poorly understood. Although Helicobacter pylori infection has historically been recognized as the strongest risk factor for the development of gastric cancer (GC), with recent advances in DNA sequencing technology, other members of the gastric microbial community, and F. nucleatum in particular, have received increasing attention. In this review, we summarize the existing knowledge on the involvement of F. nucleatum in gastric carcinogenesis and address the potential translational and clinical significance of F. nucleatum in GC.
Collapse
Affiliation(s)
- Vytenis Petkevicius
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| |
Collapse
|
7
|
Mascaretti F, Haider S, Amoroso C, Caprioli F, Ramai D, Ghidini M. Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers. J Gastrointest Cancer 2024; 55:662-678. [PMID: 38411876 DOI: 10.1007/s12029-024-01021-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gastroesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment. RESULTS Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)'s role in the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has emerged as a therapeutic strategy as well. CONCLUSIONS Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of anticancer treatment.
Collapse
Affiliation(s)
- Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salman Haider
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York, NY, USA
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Via Sforza 28, Milan, Italy.
| |
Collapse
|
8
|
Wang JL, Jing DD. Gastric microbiome and gastric cancer: Relationship, mechanism, and clinical significance. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:327-332. [DOI: 10.11569/wcjd.v32.i5.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
9
|
Zhu L, Wang B, Liu L, Han P, Ji L, Zhang Z, Zhang J. High-Throughput Sequencing Technology Assisted Investigation of the Correlation Between Intestinal Flora, Serum Biochemistry, Blood Lipids, and Tumour Markers in Patients with Gastric Cancer and Healthy Plateau Residents. Comb Chem High Throughput Screen 2024; 27:996-1010. [PMID: 37559540 DOI: 10.2174/1386207326666230808110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
AIM The goal is to use high-throughput sequencing technology to compare and study the structure and variety of intestinal flora in people with gastric cancer and healthy people in the Qinghai-Tibet Plateau. BACKGROUND Recent research has connected gut flora structure to numerous disorders. Metabolites, endotoxins, and immunomodulatory modulation might cause gastrointestinal or other systemic diseases and affect gastric cancer treatment and prognosis. We used the correlation study to uncover biomarkers associated with good intestinal flora and gastric cancer groups on the plateau to investigate their involvement in gastric cancer development. OBJECTIVES To investigate the possible links between intestinal flora and gastric cancer in the Qinghai Plateau region using a variety of clinical phenotypic data and to investigate the flora that may be linked to gastric cancer. METHODS The 22 Qinghai Province tertiary hospital gastric cancer patients and 30 healthy people had their fresh faeces collected. To examine intestinal flora diversity and composition, 52 patients underwent 16S rDNA high-throughput gene sequencing of intestinal bacteria. The correlation between clinical phenotypes and the top 15 dominant intestinal flora at the phylum level was analyzed. RESULTS The difference in total protein TP between the healthy group and the gastric cancer group was statistically significant (P<0.001). Globulin was significantly different (P<0.05), TC of total cholesterol was significantly different (P<0.05). High-density lipoprotein showed statistical significance (P<0.05).The difference in low-density lipoprotein was statistically significant (P<0.001). Alphafetoprotein was significantly different (P<0.05). CA72-4 carbohydrate antigen (P<0.05). CONCLUSION There were significant differences in total protein, globulin, total cholesterol, high density lipoprotein, low-density lipoprotein, alpha-fetoprotein and carbohydrate antigen CA72-4 in patients with gastric cancer in the plateau area compared with the healthy group, and the different clinical variables were correlated with intestinal flora at some phylum and genus levels.
Collapse
Affiliation(s)
- Linghong Zhu
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Bo Wang
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Linxun Liu
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Pei Han
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Li Ji
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Zilong Zhang
- Department of Oncosurgery, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Jingni Zhang
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| |
Collapse
|
10
|
Sharma P, Phatak SM, Warikoo P, Mathur A, Mahant S, Das K, Das R. Crosstalk between Helicobacter pylori and gastrointestinal microbiota in various gastroduodenal diseases-A systematic review. 3 Biotech 2023; 13:303. [PMID: 37588796 PMCID: PMC10425313 DOI: 10.1007/s13205-023-03734-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Gastroduodenal diseases have prevailed for a long time and more so due to dominance of gut bacteria Helicobacter pylori in most of the cases. But habitation by other gut microbiota in gastroduodenal diseases and the relationship between Helicobacter pylori and gastrointestinal microbiota in different gastroduodenal diseases is somewhat being unravelled in the current times. For this systematic review, we did a literature search of various gastroduodenal diseases and the effect on gut microbiota pertaining to it. A search of the online bibliographic databases PUBMED and PUBMED CENTRAL was carried out to identify articles published between 1977 and May 2022. The analysis of these selected studies highlighted the inhabitation of other gut microbiota such as Fusobacteria, Bacteroidetes, Streptococcaceae, Prevotellaceae, Fusobacteriaceae, and many others. Interplay between these microbiota and H. pylori have also been noted which suggested that gastroduodenal diseases and gut microbiota are intertwined by a symbiotic association regardless of the H. pylori status. The relationship between the gut microbiota and many gastroduodenal diseases, such as gastritis, gastric cancer, lymphomas, and ulcers, demonstrates the dysbiosis of the gut microbiota in both the presence and absence of H. pylori. The evolving ways for eliminating H. pylori are provided along with inhibiting qualities of other species on H. pylori. Most significant member of our gut system is Helicobacter pylori which has been associated with numerous diseases like gastric cancer, gastritis, duodenal ulcer.
Collapse
Affiliation(s)
- Prateek Sharma
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Shravani M. Phatak
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Prisha Warikoo
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Akshita Mathur
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Shweta Mahant
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Kunal Das
- Department of Gastroenterology, Yashoda Super Speciality Hospital, Kaushambi, Ghaziabad, Uttar Pradesh India
| | - Rajashree Das
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| |
Collapse
|
11
|
Eslami O, Nakhaie M, Rezaei Zadeh Rukerd M, Azimi M, Shahabi E, Honarmand A, Khazaneha M. Global Trend on Machine Learning in Helicobacter within One Decade: A Scientometric Study. Glob Health Epidemiol Genom 2023; 2023:8856736. [PMID: 37600599 PMCID: PMC10439832 DOI: 10.1155/2023/8856736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/29/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose This study aims to create a science map, provide structural analysis, investigate evolution, and identify new trends in Helicobacter pylori (H. pylori) research articles. Methods All Helicobacter publications were gathered from the Web of Science (WoS) database from August 2010 to 2021. The data were required for bibliometric analysis. The bibliometric analysis was performed with Bibliometrix R Tool. Bibliometric data were analyzed using the Bibliometrix Biblioshiny R-package software. Results A total of 17,413 articles were reviewed and analyzed, with descriptive characteristics of the H. pylori literature included. In journals, 21,102 keywords plus and 20,490 author keywords were reported. These articles were also written by 56,106 different authors, with 262 being single-author articles. Most authors' abstracts, titles, and keywords included "Helicobacter-pylori." Since 2010, the total number of H. pylori-related publications has been decreasing. Gut, PLOS ONE, and Gastroenterology are the most influential H. pylori journals, according to source impact. China, the United States, and Japan are the countries with most affiliations and subjects. In addition, Seoul National University has published the most articles about H. pylori. According to the cloud word plot, the authors' most frequently used keywords are gastric cancer (GC), H. pylori, gastritis, eradication, and inflammation. "Helicobacter pylori" and "infection" have the steepest slopes in terms of the upward trend of words used in articles from 2010 to 2021. Subjects such as GC, intestinal metaplasia, epidemiology, peptic ulcer, eradication, and clarithromycin are included in the diagram's motor theme section, according to strategic diagrams. According to the thematic evolution map, topics such as Helicobacter pylori infection, B-cell lymphoma, CagA, Helicobacter pylori, and infection were largely discussed between 2010 and 2015. From 2016 to 2021, the top topics covered included Helicobacter pylori, H. pylori infection, and infection.
Collapse
Affiliation(s)
- Omid Eslami
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Azimi
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Department of Traditional Medicine, School of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ellahe Shahabi
- Faculty of Management and Economics, Shahid Bahonar University, Kerman, Iran
| | - Amin Honarmand
- Department of Emergency Medicine, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdiyeh Khazaneha
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Zhou S, Li C, Liu L, Yuan Q, Miao J, Wang H, Ding C, Guan W. Gastric microbiota: an emerging player in gastric cancer. Front Microbiol 2023; 14:1130001. [PMID: 37180252 PMCID: PMC10172576 DOI: 10.3389/fmicb.2023.1130001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Gastric cancer (GC) is a common cancer worldwide with a high mortality rate. Many microbial factors influence GC, of which the most widely accepted one is Helicobacter pylori (H. pylori) infection. H. pylori causes inflammation, immune reactions and activation of multiple signaling pathways, leading to acid deficiency, epithelial atrophy, dysplasia and ultimately GC. It has been proved that complex microbial populations exist in the human stomach. H. pylori can affect the abundance and diversity of other bacteria. The interactions among gastric microbiota are collectively implicated in the onset of GC. Certain intervention strategies may regulate gastric homeostasis and mitigate gastric disorders. Probiotics, dietary fiber, and microbiota transplantation can potentially restore healthy microbiota. In this review, we elucidate the specific role of the gastric microbiota in GC and hope these data can facilitate the development of effective prevention and therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chenxi Li
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinggang Yuan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Lopes C, Almeida TC, Pimentel-Nunes P, Dinis-Ribeiro M, Pereira C. Linking dysbiosis to precancerous stomach through inflammation: Deeper than and beyond imaging. Front Immunol 2023; 14:1134785. [PMID: 37063848 PMCID: PMC10102473 DOI: 10.3389/fimmu.2023.1134785] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Upper gastrointestinal endoscopy is considered the gold standard for gastric lesions detection and surveillance, but it is still associated with a non-negligible rate of missing conditions. In the Era of Personalized Medicine, biomarkers could be the key to overcome missed lesions or to better predict recurrence, pushing the frontier of endoscopy to functional endoscopy. In the last decade, microbiota in gastric cancer has been extensively explored, with gastric carcinogenesis being associated with progressive dysbiosis. Helicobacter pylori infection has been considered the main causative agent of gastritis due to its interference in disrupting the acidic environment of the stomach through inflammatory mediators. Thus, does inflammation bridge the gap between gastric dysbiosis and the gastric carcinogenesis cascade and could the microbiota-inflammation axis-derived biomarkers be the answer to the unmet challenge of functional upper endoscopy? To address this question, in this review, the available evidence on the role of gastric dysbiosis and chronic inflammation in precancerous conditions of the stomach is summarized, particularly targeting the nuclear factor-κB (NF-κB), toll-like receptors (TLRs) and cyclooxygenase-2 (COX-2) pathways. Additionally, the potential of liquid biopsies as a non-invasive source and the clinical utility of studied biomarkers is also explored. Overall, and although most studies offer a mechanistic perspective linking a strong proinflammatory Th1 cell response associated with, but not limited to, chronic infection with Helicobacter pylori, promising data recently published highlights not only the diagnostic value of microbial biomarkers but also the potential of gastric juice as a liquid biopsy pushing forward the concept of functional endoscopy and personalized care in gastric cancer early diagnosis and surveillance.
Collapse
Affiliation(s)
- Catarina Lopes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- CINTESIS – Center for Health Technology and Services Research, University of Porto, Porto, Portugal
- ICBAS-UP – Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Tatiana C. Almeida
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Gastroenterology, Unilabs, Porto, Portugal
| | - Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Department of Gastroenterology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Carina Pereira
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- CINTESIS – Center for Health Technology and Services Research, University of Porto, Porto, Portugal
- *Correspondence: Carina Pereira,
| |
Collapse
|
14
|
Cao X, Yang Y, Zhang Y, Ji R, Zhao X, Zheng W, Yang A. Impact of Helicobacter pylori on the gastric microbiome in patients with chronic gastritis: a systematic review and meta-analysis protocol. BMJ Open 2023; 13:e050476. [PMID: 36927582 PMCID: PMC10030478 DOI: 10.1136/bmjopen-2021-050476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
INTRODUCTION Chronic gastritis is a common disease worldwide. Studies have consistently shown that chronic gastritis is usually associated with gastric microbial dysbiosis, especially the infection of Helicobacter pylori. However, the interaction between H. pylori and non-H. pylori bacteria in patients with chronic gastritis has not been clearly identified yet. Consequently, we designed a protocol for a systematic review and meta-analysis, which focused on identifying the changes in gastrointestinal microbiota composition between patients with H. pylori-infective and non-infective chronic gastritis. METHOD AND ANALYSIS We will search PubMed, EMBASE and Cochrane Library databases to retrieve observational studies on humans. The eligible studies must include data about the relative abundance of the gastrointestinal microbiome in patients with H. pylori-infective or non-infective chronic gastritis. Only the data of adults aged over 18 years will be analysed. Two researchers will extract the data independently, and Newcastle-Ottawa Scale will be used to assess the risk of bias. Random-effects model will be performed in quantitative analyses. Correlation analysis, bioinformatics analysis and function analysis will be performed. DISCUSSION Currently, numerous studies have revealed the role of H. pylori in chronic gastritis. However, the alterations of non-H. pylori bacteria in patients with chronic gastritis remain an open question. The results of our study might provide new insights into future diagnosis and treatments. ETHICS AND DISSEMINATION This study is based on published documents, unrelated to personal data, so ethical approval is not in need. The results of this study are expected to be published in journals or conference proceedings. PROSPERO REGISTRATION NUMBER CRD42020205260; Pre-results.
Collapse
Affiliation(s)
- Xinyuan Cao
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yizhen Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ruoyu Ji
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinyu Zhao
- Department of Clinical Epidemiology and EBM, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
15
|
Nikitina D, Lehr K, Vilchez-Vargas R, Jonaitis LV, Urba M, Kupcinskas J, Skieceviciene J, Link A. Comparison of genomic and transcriptional microbiome analysis in gastric cancer patients and healthy individuals. World J Gastroenterol 2023; 29:1202-1218. [PMID: 36926663 PMCID: PMC10011954 DOI: 10.3748/wjg.v29.i7.1202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Helicobacter pylori and the stomach microbiome play a crucial role in gastric carcinogenesis, and detailed characterization of the microbiome is necessary for a better understanding of the pathophysiology of the disease. There are two common modalities for microbiome analysis: DNA (16S rRNA gene) and RNA (16S rRNA transcript) sequencing. The implications from the use of one or another sequencing approach on the characterization and comparability of the mucosal microbiome in gastric cancer (GC) are poorly studied. AIM To characterize the microbiota of GC using 16S rRNA gene and its transcript and determine difference in the bacterial composition. METHODS In this study, 316 DNA and RNA samples extracted from 105 individual stomach biopsies were included. The study cohort consisted of 29 healthy control individuals and 76 patients with GC. Gastric tissue biopsy samples were collected from damaged mucosa and healthy mucosa at least 5 cm from the tumor tissue. From the controls, healthy stomach mucosa biopsies were collected. From all biopsies RNA and DNA were extracted. RNA was reverse transcribed into cDNA. V1-V2 region of bacterial 16S rRNA gene from all samples were amplified and sequenced on an Illumina MiSeq platform. Bray-Curtis algorithm was used to construct sample-similarity matrices abundances of taxonomic ranks in each sample type. For significant differences between groups permutational multivariate analysis of variance and Mann-Whitney test followed by false-discovery rate test were used. RESULTS Microbial analysis revealed that only a portion of phylotypes (18%-30%) overlapped between microbial profiles obtained from DNA and RNA samples. Detailed analysis revealed differences between GC and controls depending on the chosen modality, identifying 17 genera at the DNA level and 27 genera at the RNA level. Ten of those bacteria were found to be different from the control group at both levels. The key taxa showed congruent results in various tests used; however, differences in 7 bacteria taxa were found uniquely only at the DNA level, and 17 uniquely only at the RNA level. Furthermore, RNA sequencing was more sensitive for detecting differences in bacterial richness, as well as differences in the relative abundance of Reyranella and Sediminibacterium according to the type of GC. In each study group (control, tumor, and tumor adjacent) were found differences between DNA and RNA bacterial profiles. CONCLUSION Comprehensive microbial study provides evidence for the effect of choice of sequencing modality on the microbiota profile, as well as on the identified differences between case and control.
Collapse
Affiliation(s)
- Darja Nikitina
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| | | | - Mindaugas Urba
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| |
Collapse
|
16
|
Xu S, Xiong Y, Fu B, Guo D, Sha Z, Lin X, Wu H. Bacteria and macrophages in the tumor microenvironment. Front Microbiol 2023; 14:1115556. [PMID: 36825088 PMCID: PMC9941202 DOI: 10.3389/fmicb.2023.1115556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer and microbial infections are significant worldwide health challenges. Numerous studies have demonstrated that bacteria may contribute to the emergence of cancer. In this review, we assemble bacterial species discovered in various cancers to describe their variety and specificity. The relationship between bacteria and macrophages in cancer is also highlighted, and we look for ample proof to establish a biological basis for bacterial-induced macrophage polarization. Finally, we quickly go over the potential roles of metabolites, cytokines, and microRNAs in the regulation of the tumor microenvironment by bacterially activated macrophages. The complexity of bacteria and macrophages in cancer will be revealed as we gain a better understanding of their pathogenic mechanisms, which will lead to new therapeutic approaches for both inflammatory illnesses and cancer.
Collapse
Affiliation(s)
| | | | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | | |
Collapse
|
17
|
Abate M, Vos E, Gonen M, Janjigian YY, Schattner M, Laszkowska M, Tang L, Maron SB, Coit DG, Vardhana S, Vanderbilt C, Strong VE. A Novel Microbiome Signature in Gastric Cancer: A Two Independent Cohort Retrospective Analysis. Ann Surg 2022; 276:605-615. [PMID: 35822725 PMCID: PMC9463093 DOI: 10.1097/sla.0000000000005587] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The microbiome is hypothesized to have a significant impact on cancer development. In gastric cancer (GC), Helicobacter pylori is an established class I carcinogen. However, additional organisms in the intratumoral microbiome play an important role in GC pathogenesis and progression. In this study, we characterize the full spectrum of the microbes present within GC and identify distinctions among molecular subtypes. METHODS A microbiome bioinformatics pipeline that is generalizable across multiple next-generation sequencing platforms was developed. Microbial profiles for alpha diversity and enrichment were generated for 2 large, demographically distinct cohorts: (1) internal Memorial Sloan Kettering Cancer Center (MSKCC) and (2) The Cancer Genome Atlas (TCGA) cohorts. A total of 520 GC samples were compared with select tumor-adjacent nonmalignant samples. Microbiome differences among the GC molecular subtypes were identified. RESULTS Compared with nonmalignant samples, GC had significantly decreased microbial diversity in both MSKCC and TCGA cohorts ( P <0.05). Helicobacter , Lactobacillus , Streptococcus , Prevotella , and Bacteroides were significantly more enriched in GC samples when compared with nonmalignant tissue ( P <0.05). Microsatellite instability-high GC had distinct microbial enrichment compared with other GC molecular subtypes. CONCLUSION Distinct patterns of microbial diversity and species enrichment were identified in patients with GC. Given the varied spectrum of disease progression and treatment response of GC, understanding unique microbial signatures will provide the landscape to explore key microbial targets for therapy.
Collapse
Affiliation(s)
- Miseker Abate
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- New York Presbyterian Hospital, Weill Cornell Medicine, Department of Surgery
| | - Elvira Vos
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, NY
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yelena Y. Janjigian
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Mark Schattner
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Monika Laszkowska
- Gastroenterology, Hepatology, and Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Laura Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven B. Maron
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Daniel G. Coit
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, NY
| | - Santosh Vardhana
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vivian E. Strong
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, NY
| |
Collapse
|
18
|
Kwon SK, Park JC, Kim KH, Yoon J, Cho Y, Lee B, Lee JJ, Jeong H, Oh Y, Kim SH, Lee SD, Hwang BR, Chung Y, Kim JF, Nam KT, Lee YC. Human gastric microbiota transplantation recapitulates premalignant lesions in germ-free mice. Gut 2022; 71:1266-1276. [PMID: 34389621 DOI: 10.1136/gutjnl-2021-324489] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Gastric cancer (GC) is a leading cause of cancer-related mortality. Although microbes besides Helicobacter pylori may also contribute to gastric carcinogenesis, wild-type germ-free (GF) mouse models investigating the role of human gastric microbiota in the process are not yet available. We aimed to evaluate the histopathological features of GF mouse stomachs transplanted with gastric microbiota from patients with different gastric disease states and their relationships with the microbiota. DESIGN Microbiota profiles in corpus and antrum tissues and gastric fluid from 12 patients with gastric dysplasia or GC were analysed. Thereafter, biopsied corpus and antrum tissues and gastric fluid from patients (n=15 and n=12, respectively) with chronic superficial gastritis, intestinal metaplasia or GC were inoculated into 42 GF C57BL/6 mice. The gastric microbiota was analysed by amplicon sequencing. Histopathological features of mouse stomachs were analysed immunohistochemically at 1 month after inoculation. An independent set of an additional 15 GF mice was also analysed at 1 year. RESULTS The microbial community structures of patients with dysplasia or GC in the corpus and antrum were similar. The gastric microbiota from patients with intestinal metaplasia or GC selectively colonised the mouse stomachs and induced premalignant lesions: loss of parietal cells and increases in inflammation foci, in F4/80 and Ki-67 expression, and in CD44v9/GSII lectin expression. Marked dysplastic changes were noted at 1 year post inoculation. CONCLUSION Major histopathological features of premalignant changes are reproducible in GF mice transplanted with gastric microbiota from patients with intestinal metaplasia or GC. Our results suggest that GF mice are useful for analysing the causality of associations reported in human gastric microbiome studies.
Collapse
Affiliation(s)
- Soon-Kyeong Kwon
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Division of Applied Life Science (Brain Korea 21), Gyeongsang National University, Jinju, Republic of Korea
| | - Jun Chul Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaekyung Yoon
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Buhyun Lee
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Jae Lee
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Life Science, Hallym University, Chuncheon, Republic of Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeseul Oh
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hee Kim
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Dam Lee
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bo Ram Hwang
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yusook Chung
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea .,Strategic Initiative for Microbiomes in Agriculture and Food, Yonsei University, Seoul, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Chan Lee
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Liatsos C, Papaefthymiou A, Kyriakos N, Galanopoulos M, Doulberis M, Giakoumis M, Petridou E, Mavrogiannis C, Rokkas T, Kountouras J. Helicobacter pylori, gastric microbiota and gastric cancer relationship: Unrolling the tangle. World J Gastrointest Oncol 2022; 14:959-972. [PMID: 35646287 PMCID: PMC9124990 DOI: 10.4251/wjgo.v14.i5.959] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection (Hp-I) represents a typical microbial agent intervening in the complex mechanisms of gastric homeostasis by disturbing the balance between the host gastric microbiota and mucosa-related factors, leading to inflammatory changes, dysbiosis and eventually gastric cancer. The normal gastric microbiota shows diversity, with Proteobacteria [Helicobacter pylori (H. pylori) belongs to this family], Firmicutes, Actinobacteria, Bacteroides and Fusobacteria being the most abundant phyla. Most studies indicate that H. pylori has inhibitory effects on the colonization of other bacteria, harboring a lower diversity of them in the stomach. When comparing the healthy with the diseased stomach, there is a change in the composition of the gastric microbiome with increasing abundance of H. pylori (where present) in the gastritis stage, while as the gastric carcinogenesis cascade progresses to gastric cancer, the oral and intestinal-type pathogenic microbial strains predominate. Hp-I creates a premalignant environment of atrophy and intestinal metaplasia and the subsequent alteration in gastric microbiota seems to play a crucial role in gastric tumorigenesis itself. Successful H. pylori eradication is suggested to restore gastric microbiota, at least in primary stages. It is more than clear that Hp-I, gastric microbiota and gastric cancer constitute a challenging tangle and the strong interaction between them makes it difficult to unroll. Future studies are considered of crucial importance to test the complex interaction on the modulation of the gastric microbiota by H. pylori as well as on the relationships between the gastric microbiota and gastric carcinogenesis.
Collapse
Affiliation(s)
- Christos Liatsos
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Apostolis Papaefthymiou
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
- Gastroenterology, University Hospital of Larissa, Larissa 41336, Greece
| | - Nikolaos Kyriakos
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Michail Galanopoulos
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Michael Doulberis
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau 1234, Switzerland
| | - Marios Giakoumis
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Evangelia Petridou
- Department of Microbiology, “Agia Sofia” Paediatric Hospital, Goudi, Athens 11527, Greece
| | - Christos Mavrogiannis
- Gastrointestinal and Liver Unit, Faculty of Nursing, Kifissia General and Oncology Hospital, Kaliftaki, N.Kifisia 14564, Greece
| | - Theodore Rokkas
- Gastroenterological Clinic, Henry Dunant Hospital, Athens 11525, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 41336, Macedonia, Greece
| |
Collapse
|
20
|
Zhang Z, Zhu L, Ma Y, Wang B, Ci C, Zhang J, Zhou Y, Dou C, Gu Q, An Y, Lan Y, Zhao J. Study on the Characteristics of Intestinal Flora Composition in Gastric Cancer Patients and Healthy People in the Qinghai-Tibet Plateau. Appl Biochem Biotechnol 2022; 194:1510-1526. [PMID: 34792749 PMCID: PMC9007807 DOI: 10.1007/s12010-021-03732-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022]
Abstract
The aim of this study is to compare and analyze the structure and diversity of intestinal flora between gastric cancer patients and healthy people in the Qinghai-Tibet Plateau and to explore the characteristics of the intestinal flora composition in gastric cancer patients in the plateau area, and to determine the possible correlation between the intestinal flora and gastric cancer. Fresh feces from 22 cases of gastric cancer patients diagnosed in a tertiary hospital in Qinghai Province and 30 cases of healthy people during the same period were collected. The 52 subjects were undergone for 16S rDNA gene sequencing of intestinal bacteria to analyze and compare the diversity and compositional characteristics of intestinal flora. Analysis of the diversity of intestinal flora between the gastric cancer group and the healthy group was based on the Chao1 index of species richness, Shannon diversity index, and Simpson index. It showed that the gastric cancer group had no statistically difference from the healthy group (P > 0.05). In the Venn diagram, the number of OTU units shared by the gastric cancer group and the healthy group is 6997, and the number of unique OTU units in the healthy group is 2282, while the number of OTU units in the gastric cancer group is 896 and the difference is statistically significant (χ2 = 495.829), P < 0.000). Analysis of the composition and abundance distribution of intestinal flora showed that at the phylum level, there is no significant deference in abundance between the healthy group of Bacteroides and Firmicutes compared with the gastric cancer group (P > 0.05). However, there is a statistically significant difference in abundance between the healthy groups of Proteobacteria compared with the gastric cancer group (P < 0.05). At the genus level, the gastric cancer group of Prevotella_9 is significantly different from the healthy group (P < 0.05). Meanwhile, the gastric cancer group of Streptococcus and Lactobacillus are significantly different from the healthy group (P < 0.001). There are differences in the composition and abundance of intestinal flora between patients with gastric cancer and healthy people in plateau areas, suggesting that Proteobacteria, Prevotella_9, Streptococcus, and Lactobacillus have increased in the Qinghai-Tibet Plateau and becoming one of the factors related to the incidence of gastric cancer in the region.
Collapse
Affiliation(s)
- Zilong Zhang
- Northwest Minzu University, Lanzhou, 730030, Gansu Province, China
- Department of Oncosurgery, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Linghong Zhu
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Yanqing Ma
- Northwest Minzu University, Lanzhou, 730030, Gansu Province, China
| | - Bo Wang
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Caihong Ci
- Northwest Minzu University, Lanzhou, 730030, Gansu Province, China
| | - Jingni Zhang
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Yunsong Zhou
- Northwest Minzu University, Lanzhou, 730030, Gansu Province, China
| | - Chunjiang Dou
- Northwest Minzu University, Lanzhou, 730030, Gansu Province, China
| | - Qiaoling Gu
- Northwest Minzu University, Lanzhou, 730030, Gansu Province, China
| | - Yan An
- Northwest Minzu University, Lanzhou, 730030, Gansu Province, China
| | - Yongmei Lan
- Northwest Minzu University, Lanzhou, 730030, Gansu Province, China.
| | - Jin Zhao
- Northwest Minzu University, Lanzhou, 730030, Gansu Province, China.
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, 730030, Gansu Province, China.
| |
Collapse
|
21
|
Role of Gastric Microorganisms Other than Helicobacter pylori in the Development and Treatment of Gastric Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6263423. [PMID: 35321071 PMCID: PMC8938066 DOI: 10.1155/2022/6263423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
The microenvironment in the stomach is different from other digestive tracts, mainly because of the secretion of gastric acid and digestive enzymes, bile reflux, special mucus barrier, gastric peristalsis, and so on, which all contribute to the formation of antibacterial environment. Microecological disorders can lead to gastric immune disorders or lead to the decrease of dominant bacteria and the increase of the abundance and virulence of pathogenic microorganisms and then promote the occurrence of diseases. The body performs its immune function through innate and adaptive immunity and maintains microbial balance through the mechanism of immune homeostasis. Microecological imbalance can lead to the invasion of pathogenic microorganisms and damage mucosal barrier and immune system. The coexistence of gastric microorganisms (including viruses and fungi) may play a synergistic or antagonistic role in the pathogenesis of gastric diseases. Probiotics have the ability to compete with intestinal pathogens, increase the secretion of immunoglobulin A (IgA), stimulate the production of mucin, bacteriocin, and lactic acid, regulate the expression and secretion of cytokines, and regulate the growth of microbiota, which all have beneficial effects on the host microbial environment. At present, most studies focused on Helicobacter pylori, ignoring other stomach microbes and the overall stomach microecology. So, in this article, we reviewed advances in human gastric microecology, the relationship between gastric microecology and immunity or gastric diseases, and the treatment of probiotics in gastric diseases, in order to explore new area for further study of gastric microorganisms and treatment of gastric diseases.
Collapse
|
22
|
Lu Y, Liu H, Yang K, Mao Y, Meng L, Yang L, Ouyang G, Liu W. A comprehensive update: gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine. J Zhejiang Univ Sci B 2022; 23:1-18. [PMID: 35029085 DOI: 10.1631/jzus.b2100182] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the recent upsurge of studies in the field of microbiology, we have learned more about the complexity of the gastrointestinal microecosystem. More than 30 genera and 1000 species of gastrointestinal microflora have been found. The structure of the normal microflora is relatively stable, and is in an interdependent and restricted dynamic equilibrium with the body. In recent years, studies have shown that there is a potential relationship between gastrointestinal microflora imbalance and gastric cancer (GC) and precancerous lesions. So, restoring the balance of gastrointestinal microflora is of great significance. Moreover, intervention in gastric premalignant condition (GPC), also known as precancerous lesion of gastric cancer (PLGC), has been the focus of current clinical studies. The holistic view of traditional Chinese medicine (TCM) is consistent with the microecology concept, and oral TCM can play a two-way regulatory role directly with the microflora in the digestive tract, restoring the homeostasis of gastrointestinal microflora to prevent canceration. However, large gaps in knowledge remain to be addressed. This review aims to provide new ideas and a reference for clinical practice.
Collapse
Affiliation(s)
- Yuting Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Huayi Liu
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China.
| | - Kuo Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Liu Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Guangze Ouyang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Wenjie Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| |
Collapse
|
23
|
Kaźmierczak-Siedlecka K, Daca A, Roviello G, Catalano M, Połom K. Interdisciplinary insights into the link between gut microbiome and gastric carcinogenesis-what is currently known? Gastric Cancer 2022; 25:1-10. [PMID: 34741681 PMCID: PMC8732854 DOI: 10.1007/s10120-021-01260-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Currently, gastric cancer is one of the leading death-related cancer globally. The etiopathogenesis of gastric cancer is multifactorial and includes among others dysbiotic alterations of gastric microbiota. Molecular techniques revealed that stomach is not a sterile organ and it is resides with ecosystem of microbes. Due to the fact that the role of Helicobacter pylori infection in development of gastric cancer is established and well-studied, this paper is mainly focused on the role of other bacterial as well as viral and fungal gut microbiota imbalance in gastric carcinogenesis. Notably, not only the composition of gastric microbiota may play an important role in development of gastric cancer, but also its activity. Microbial metabolites, such as short-chain fatty acids, polyamines, N-nitroso compounds, and lactate, may significantly affect gastric carcinogenesis. Therefore, this paper discussed aforementioned aspects with the interdisciplinary insights (regarding also immunological point of view) into the association between gut microbiome and gastric carcinogenesis based on up-to-date studies.
Collapse
Affiliation(s)
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdańsk, Poland
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, ul. Smoluchowskiego 17, 80-214, Gdańsk, Poland
| |
Collapse
|
24
|
Yang Y, Ji R, Zhao X, Cao X, Wang Q, Jiang Q, Zhang Y, Zheng W, Wu X, Yang A. Alterations in Gastric Mucosal Microbiota in Gastric Carcinogenesis: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:754959. [PMID: 34926502 PMCID: PMC8678046 DOI: 10.3389/fmed.2021.754959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Background: The gastric microbiota profile alters during gastric carcinogenesis. We aimed to identify the alterations in the alpha diversity and relative abundance of bacterial phyla and genera of gastric microbiota in the development of gastric cancer (GC). Methods: The systematic review was performed based on a published protocol with the registration number CRD42020206973. We searched through PubMed, EMBASE and Cochrane databases, as well as conference proceedings and references of review articles (May 2021) for observational studies reporting either the relative abundance of bacterial phyla or genera, or alpha diversity indexes in both GC and non-cancer groups. Selection of studies and data extraction were performed independently by two researchers, with disagreements resolved through discussion. Risk of bias was assessed using the self-modified Newcastle-Ottawa Scale. Results of random-effects meta-analyses were presented as mean differences (MD). Results: Our systematic review included 751 GC patients and 792 non-cancer patients from 14 case-control studies. Gastric cancer group had fewer operational taxonomic units (OTUs) (MD = -68.52, 95%CI: -126.65 to -10.39) and a lower Simpson index (MD = -0.13, 95%CI: -0.20 to -0.07) compared with non-cancer group. At the phylum level, gastric cancer group had a higher abundance of Firmicutes (MD = 7.11, 95%CI: 1.76 to 12.46). At the genus level, Streptococcus (MD = 3.03, 95%CI: 0.07 to 6.00) and Lactobacillus (MD = 5.15, 95%CI: 1.27 to 9.04) were found to be enriched in GCgroup. The relative abundance of the rest bacterial phyla or genera analyzed in our study did not significantly differ between two groups. Subgroup analyses indicated that the source of samples was the major source of interstudy heterogeneity. Conclusion: This systematic review suggested that gastric microbiota dysbiosis occurred in gastric carcinogenesis, with alpha diversity declined and microbiota composition altered.
Collapse
Affiliation(s)
- Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ruoyu Ji
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinyu Zhao
- National Clinical Research Center for Digestive Diseases, Department of Clinical Epidemiology and Evidence-based Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyuan Cao
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Qiang Wang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Qingwei Jiang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yizhen Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xi Wu
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
25
|
Dai D, Yang Y, Yang Y, Dang T, Xiao J, Wang W, Teng L, Xu J, Ye J, Jiang H. Alterations of thyroid microbiota across different thyroid microhabitats in patients with thyroid carcinoma. J Transl Med 2021; 19:488. [PMID: 34847917 PMCID: PMC8638380 DOI: 10.1186/s12967-021-03167-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Background In recent years, the incidence rate of Thyroid carcinoma (TC) has been increasing worldwide. Thus, research on factors of TC carcinogenesis may promote TC prevention and decrease the incidence rate. There are several studies targeting the correlation between gut microbiota and thyroid disease. Carcinogenesis of several malignancies is influenced by microbiota. However, thyroid microbiome of TC has not been revealed. This study investigated thyroid microbiota in different TC microhabitats. Methods We performed 16s rRNA gene sequencing using tumor tissues and matched peritumor tissues from 30 patients with TC to characterize thyroid microbiota. Results The richness and diversity of thyroid microbiota were lower in TC tumor samples than in matched peritumor tissues. At the genus level, the core microbiota of thyroid included Sphingomonas, Comamonas, Acinetobacter, Pseudomonas, Microvirgula, and Soonwooa. The abundance of Sphingomonas and Aeromonas was significantly increased in tumor tissues, while the abundance of Comamonas, Acinetobacter, and Peptostreptococcus was significantly enhanced in peritumor tissues. The combination of Comamonas and Sphingomonas could discriminate tumor samples from peritumor samples with an area under the curve (AUC) of 0.981 (95% confidence interval [CI] 0.949–1.000). The abundance of Sphingomonas was significantly higher in N1 stage than in N0 stage. Sphingomonas could distinguish between N0 and N1 stage with an AUC of 0.964 (95% CI 0.907–1.000). Conclusions The microbial diversity and composition were significantly different between peritumor and tumor microhabitats from patients with TC, which may eventually affect TC carcinogenesis and progression. The combination of Comamonas and Sphingomonas could serve as a powerful biomarker for discrimination between tumor and peritumor tissues. Furthermore, the higher abundance of Sphingomonas was correlated with lymph node metastasis, indicating that the abundance of Sphingomonas may indicate a poor prognosis for TC patients, and Sphingomonas may play a role in promoting TC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03167-9.
Collapse
Affiliation(s)
- Daofeng Dai
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yong Yang
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Tianfeng Dang
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiansheng Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weibin Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Juan Xu
- Pathology Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| | - Jing Ye
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Hongqun Jiang
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
26
|
Abstract
El cuerpo humano está expuesto continuamente a microorganismos tanto fijos como transitorios, así como sus metabolitos tóxicos, lo cual puede conducir a la aparición y progresión del cáncer en sitios distantes al hábitat particular de cada microbio. Diversos estudios científicos han hecho posible entender la relación estrecha que existe entre microbioma y cáncer, ya que los componentes del primero, al tener la capacidad de migrar a diferentes zonas del cuerpo, pueden contribuir al desarrollo de diversas enfermedades crónicas. Los estudios de metagenómica sugieren que la disbiosis, en la microbiota comensal, está asociada con trastornos inflamatorios y varios tipos de cáncer, los cuales pueden ocurrir por sus efectos sobre el metabolismo, la proliferación celular y la inmunidad. La microbiota puede producir el cáncer cuando existen condiciones predisponentes, como en la etapa inicial de la progresión tumoral (iniciación), inestabilidad genética, susceptibilidad a la respuesta inmune del huésped, a la progresión y la respuesta a la terapia. La relación más estrecha, entre el microbioma y el cáncer, es a través de la desregulación del sistema inmune. En este trabajo revisamos las actuales evidencias sobre la asociación entre la microbiota y algunos tipos de cáncer como el cáncer gástrico, colorrectal, próstata, ovario, oral, pulmón y mama.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Felipe Sojo
- Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela
| | - Carlos Cotte
- Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
27
|
Gomez-Ramirez U, Valencia-Mayoral P, Mendoza-Elizalde S, Murillo-Eliosa JR, Solórzano Santos F, Contreras-Rodríguez A, Zúñiga G, Aguilar-Rodea P, Jiménez-Rojas VL, Vigueras Galindo JC, Salazar-García M, Velázquez-Guadarrama N. Role of Helicobacter pylori and Other Environmental Factors in the Development of Gastric Dysbiosis. Pathogens 2021; 10:1203. [PMID: 34578235 PMCID: PMC8467233 DOI: 10.3390/pathogens10091203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Microbiomes are defined as complex microbial communities, which are mainly composed of bacteria, fungi, and viruses residing in diverse regions of the human body. The human stomach consists of a unique and heterogeneous habitat of microbial communities owing to its anatomical and functional characteristics, that allow the optimal growth of characteristic bacteria in this environment. Gastric dysbiosis, which is defined as compositional and functional alterations of the gastric microbiota, can be induced by multiple environmental factors, such as age, diet, multiple antibiotic therapies, proton pump inhibitor abuse, H. pylori status, among others. Although H. pylori colonization has been reported across the world, chronic H. pylori infection may lead to serious consequences; therefore, the infection must be treated. Multiple antibiotic therapy improvements are not always successful because of the lack of adherence to the prescribed antibiotic treatment. However, the abuse of eradication treatments can generate gastric dysbiotic states. Dysbiosis of the gastric microenvironment induces microbial resilience, due to the loss of relevant commensal bacteria and simultaneous colonization by other pathobiont bacteria, which can generate metabolic and physiological changes or even initiate and develop other gastric disorders by non-H. pylori bacteria. This systematic review opens a discussion on the effects of multiple environmental factors on gastric microbial communities.
Collapse
Affiliation(s)
- Uriel Gomez-Ramirez
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (P.V.-M.); (J.R.M.-E.)
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Juan Rafael Murillo-Eliosa
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (P.V.-M.); (J.R.M.-E.)
| | - Fortino Solórzano Santos
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Pamela Aguilar-Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Verónica Leticia Jiménez-Rojas
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Juan Carlos Vigueras Galindo
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| |
Collapse
|
28
|
Deng Y, Ding X, Song Q, Zhao G, Han L, Ding B, Wang X, Hao X, Li H. Alterations in mucosa-associated microbiota in the stomach of patients with gastric cancer. Cell Oncol (Dordr) 2021; 44:701-714. [PMID: 33770413 PMCID: PMC8213677 DOI: 10.1007/s13402-021-00596-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The purpose of this study was to characterize alterations in mucosa-associated microbiota in different anatomical locations of the stomach during gastric cancer progression and to identify associations between Helicobacter pylori infection and gastric microbial changes in patients with gastric cancer. METHODS Twenty-five H. pylori negative subjects with chronic gastritis and thirty-four subjects with gastric cancer were recruited, including H. pylori negative and positive patients with tumors in the antrum and the corpus. Gastric mucosa-associated microbiota were determined by 16S ribosomal RNA gene sequencing using a 454 sequencing platform. RESULTS We found that individuals with chronic gastritis from three different anatomical sites exhibited different microbiota compositions, although the microbial alpha diversity, richness and beta diversity were similar. Compared to patients with chronic gastritis, the gastric microbiota compositions were significantly different at the order level in the antrum and the corpus of patients with gastric cancer, which was dependent on the H. pylori infection status. Microbial alpha diversity and species richness, however, were similar between chronic gastritis and gastric cancer cases and independent of H. pylori status. The microbial community structure in patients with gastric cancer was distinct from that in patients with chronic gastritis. In addition, we found that the presence of H. pylori markedly altered the structure in gastric corpus cancer, but only mildly affected the antrum. CONCLUSION Our data revealed distinct niche-specific microbiota alterations during the progression from gastritis to gastric cancer. These alterations may reflect adaptions of the microbiota to the diverse specific environmental habitats in the stomach, and may play an important, as yet undetermined, role in gastric carcinogenesis.
Collapse
Affiliation(s)
- Yilin Deng
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xuewei Ding
- National Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qingyuan Song
- Department of Computer and Information Science, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Gang Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Lei Han
- National Clinical Research Center for Cancer, Tianjin, 300060, China
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Bowen Ding
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xianhao Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xishan Hao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
29
|
Virgilio E, Giarnieri E, Carico E, Montagnini M, Villani S, Fiorenti M, Cavallini M, Montali F, Costi R. Prognostic Role of Intragastric Cytopathology and Microbiota in Surgical Patients with Stomach Cancer. J Cytol 2021; 38:82-87. [PMID: 34321774 PMCID: PMC8280856 DOI: 10.4103/joc.joc_238_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: In the last decade, analysis of malignant cells and flora in gastric lavage (GL) has provided interesting data on pathogenesis of gastric cancer (GC). For this study, combining such two aspects into one cyto-microbiologic category, we tested the prognostic role of the presence/absence of cancer cells (GL1/GL0) and bacterial microbiota (MB1/MB0) in our GC population. Material and Methods: Between April 2012 and August 2019, 79 surgical patients with GC were prospectively investigated with the determination of GL MB. Results: Compared with GL1 MB0, GL1 MB1 strongly correlated with advanced GC, portended poorer overall survival (OS) (45.8 months vs 20.5 months, P = 0.049), and resulted a significant (P = 0.008) and an independent (P = 0.013) prognostic factor unfavorable for OS. Conclusion: In the light of our results, the cyto-microbiologic parameter of GL MB should be used to gain a better prognosis of GC patients. Administration of antimicrobial treatment for MB1 subjects should be entertained because it could reduce the risk of oncogenesis.
Collapse
Affiliation(s)
- Edoardo Virgilio
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of General Surgery, di Vaio Hospital, Fidenza (PR), Italy
| | - Enrico Giarnieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - Elisabetta Carico
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - Monica Montagnini
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - Sandra Villani
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University "Sapienza", St. Andrea Hospital, Rome, Italy
| | - Michele Fiorenti
- Department of Anesthesiology and Reanimation, St. Andrea Hospital, Rome, Italy
| | - Marco Cavallini
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University "Sapienza," Rome, Italy
| | - Filippo Montali
- Department of General Surgery, di Vaio Hospital, Fidenza (PR), Italy.,Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Renato Costi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of General Surgery, di Vaio Hospital, Fidenza (PR), Italy
| |
Collapse
|
30
|
Ziemons J, Smidt ML, Damink SO, Rensen SS. Gut microbiota and metabolic aspects of cancer cachexia. Best Pract Res Clin Endocrinol Metab 2021; 35:101508. [PMID: 33648847 DOI: 10.1016/j.beem.2021.101508] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a metabolic syndrome characterized by unintended weight loss and muscle wasting. It has a strong negative impact on survival. Its underlying mechanisms involve systemic inflammation and insulin resistance, which are known to be influenced by the gut microbiota. Preclinical studies support a role for the gut microbiota in cancer cachexia by demonstrating that cachectic mice display: 1) various gut microbiota composition changes; 2) increased gut permeability and translocation of pro-inflammatory microbial compounds; 3) muscle atrophy-related processes linked to gut microbiota properties; 4) positive effects of microbiota-modulating interventions. Data on the relationships between gut microbiota, insulin resistance, and hepatic/adipose tissue metabolism in cachexia models are lacking. Nevertheless, the available data and existing evidence for the impact of gut microbiota on metabolic aberrations in human obesity urge for exploration of its role in human cancer cachexia. We provide practical recommendations and discuss the challenges for such future clinical studies.
Collapse
Affiliation(s)
- Janine Ziemons
- GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Marjolein L Smidt
- GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Steven Olde Damink
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands; NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Department of General-, Visceral- and Transplant Surgery, Uniklinikum Aachen, Aachen, Germany.
| | - Sander S Rensen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands; NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
31
|
Zhang X, Li C, Cao W, Zhang Z. Alterations of Gastric Microbiota in Gastric Cancer and Precancerous Stages. Front Cell Infect Microbiol 2021; 11:559148. [PMID: 33747975 PMCID: PMC7966516 DOI: 10.3389/fcimb.2021.559148] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Microbial infections have been shown to contribute to gastric carcinogenesis, the knowledge of gastric microbiota alteration in this process may provide help in early diagnosis of gastric cancer. The aim of this study was to characterize the microbial changes and identify taxonomic biomarkers across stages of gastric carcinogenesis. Methods The gastric microbiota was investigated by 16S rRNA gene analysis in gastric mucosal specimens from 47 patients including superficial gastritis (SG), atrophic gastritis (AG), gastric intraepithelial neoplasia (GIN), and gastric cancer (GC). Differences in microbial composition across the disease stages, especially in GIN and GC were assessed using linear discriminant analysis effect size. Results There was no gradual changing trend in the richness or diversity of the gastric microbiota across stages of gastric carcinogenesis. The relative abundance of dominant taxa at phylum and genus levels didn’t show a gradual shift pattern, and the only four taxa that continuously enriched from SG to GC were Slackia, Selenomonas, Bergeyella, and Capnocytophaga, all of which were oral bacteria. The most representative taxa which were enriched in GC patients were oral bacteria including Parvimonas, Eikenella and Prevotella-2, and environmental bacteria including Kroppenstedtia, Lentibacillus, and Oceanobacillus. The gastric microbiota in GIN patients were characterized by enrichment of intestinal commensals including Romboutsia, Fusicatenibacter, Prevotellaceae-Ga6A1-group, and Intestinimonas. Gastric cardia cancer and non-cardia cancer patients had significantly different microbiota profiles characterized by a higher abundance of Helicobacter in the cardia cancer patients. Conclusions Our results provide insights on potential taxonomic biomarkers for gastric cancer and precancerous stages, and suggest that gastric microbiota might play different roles in the carcinogenesis of cardia cancer and non-cardia cancer.
Collapse
Affiliation(s)
- Xinmei Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Li
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weijun Cao
- Department of Gastroenterology, Jiahui International Hospital, Shanghai, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Abstract
INTRODUCTION The human stomach is a complex and diverse microbial ecosystem. Consecutive alternations of gastric microbiota occur in gastric carcinogenesis, while the changing pattern during this process remains controversial across studies. We aim to identify the changes in the diversity and composition of gastric mucosal microbiota in gastric tumorigenesis. METHODS AND ANALYSIS We will search through PubMed, EMBASE and Cochrane databases, as well as conference proceedings and references of review articles for observational articles reporting either the relative abundance of bacteria at the phylum or genus level or at least one of the alpha diversity indexes respectively and clearly in both gastric cancer and non-cancer groups. Selection of studies and data extraction will be performed independently by two researchers. Disagreements will be resolved through discussion. Risk of bias will be assessed using the modified Newcastle-Ottawa Scale. Quantitative analyses will be performed using a random effects model, where the effect measurement will be expressed as the MD. ETHICS AND DISSEMINATION Ethical approval for this systematic review is not required, as the study is based exclusively on published documents and will not include any individual data. Findings of this study are expected to be disseminated through peer-reviewed journals or conference proceedings. PROSPERO REGISTRATION NUMBER CRD42020206973.
Collapse
Affiliation(s)
- Ruoyu Ji
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinyu Zhao
- Department of Clinical Epidemiology and EBM, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xinyuan Cao
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yizhen Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
33
|
Intestinal bacteria are potential biomarkers and therapeutic targets for gastric cancer. Microb Pathog 2021; 151:104747. [PMID: 33484807 DOI: 10.1016/j.micpath.2021.104747] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
The diagnostic and therapeutic role of intestinal microbiota in gastric carcinogenesis remains unclear. In this study, feces from gastric cancer patients and healthy people were sequenced for microbiota analysis, and the correlation between fecal bacteria and the occurrence of gastric cancer was explored. The β-diversity results showed that microbial compositions varied between gastric cancer patients and healthy people. Interestingly, the dissection of microbial structure revealed that all facultative anaerobic genera with relatively high abundances expanded significantly in gastric cancer patients. The succeeding correlation analysis demonstrated a distorted interaction of intestinal bacteria in gastric cancer. The application of some differential bacteria, Desulfovibrio, Escherichia, Faecalibacterium or Oscillospira, as biomarkers to predict gastric cancer could all reach an accuracy of 0.900 or above. The shift in Desulfovibrio was specifically verified by qPCR in newly collected fecal samples, and the patients with stage IV gastric cancer were identified to have significantly more Desulfovibrio than those with stage I, II and III gastric cancer. The possible role of Desulfovibrio in gastric cancer was assessed with H2S-treated HT-29 cells, and the results showed that H2S induced NO, IL-1β and IL-18 production, which is important for inflammation promotion and can be delivered through the bloodstream. This study suggests a correlation of intestinal microbiota and the development of gastric cancer.
Collapse
|
34
|
Sexton RE, Al Hallak MN, Diab M, Azmi AS. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev 2020; 39:1179-1203. [PMID: 32894370 PMCID: PMC7680370 DOI: 10.1007/s10555-020-09925-3] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer remains a major unmet clinical problem with over 1 million new cases worldwide. It is the fourth most commonly occurring cancer in men and the seventh most commonly occurring cancer in women. A major fraction of gastric cancer has been linked to variety of pathogenic infections including but not limited to Helicobacter pylori (H. pylori) or Epstein Barr virus (EBV). Strategies are being pursued to prevent gastric cancer development such as H. pylori eradication, which has helped to prevent significant proportion of gastric cancer. Today, treatments have helped to manage this disease and the 5-year survival for stage IA and IB tumors treated with surgery are between 60 and 80%. However, patients with stage III tumors undergoing surgery have a dismal 5-year survival rate between 18 and 50% depending on the dataset. These figures indicate the need for more effective molecularly driven treatment strategies. This review discusses the molecular profile of gastric tumors, the success, and challenges with available therapeutic targets along with newer biomarkers and emerging targets.
Collapse
Affiliation(s)
- Rachel E Sexton
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Maria Diab
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA.
| |
Collapse
|
35
|
Șurlin P, Nicolae FM, Șurlin VM, Pătrașcu Ș, Ungureanu BS, Didilescu AC, Gheonea DI. Could Periodontal Disease through Periopathogen Fusobacterium Nucleatum be an Aggravating Factor for Gastric Cancer? J Clin Med 2020; 9:3885. [PMID: 33260439 PMCID: PMC7761398 DOI: 10.3390/jcm9123885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease affects the supporting tissues of the teeth, being a chronic inflammatory disease caused by specific microorganisms from subgingival biofilm. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that acts as a periodontal pathogen, being an important factor in linking Gram-positive and Gram-negative bacteria in the periodontal biofilm, but its involvement in systemic diseases has also been found. Several studies regarding the implication of Fusobacterium nucleatum in gastro-enterological cancers have been conducted. The present review aims to update and systematize the latest information about Fusobacterium nucleatum in order to evaluate the possibility of an association between periodontal disease and the evolution of gastroenterological cancers through the action of Fusobacterium nucleatum, highlighting gastric cancer. This would motivate future research on the negative influence of periodontal pathology on the evolution of gastric cancer in patients suffering from both pathologies.
Collapse
Affiliation(s)
- Petra Șurlin
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Flavia Mirela Nicolae
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Valeriu Marin Șurlin
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefan Pătrașcu
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Andreea Cristiana Didilescu
- Department of Embriology, University of Medicine and Pharmacy Carol Davila of Bucharest, 020021 Bucharest, Romania;
| | - Dan Ionuț Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| |
Collapse
|
36
|
MALDI-TOF MS and 16S RNA Identification of Culturable Gastric Microbiota: Variability Associated with the Presence of Helicobacter pylori. Microorganisms 2020; 8:microorganisms8111763. [PMID: 33182527 PMCID: PMC7697671 DOI: 10.3390/microorganisms8111763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori is the main bacteria associated with gastroduodenal diseases. Recent studies have reported that gastric microbiota might be modified by the H. pylori colonization, favoring gastric lesions′ development. In Chile, the region of La Araucanía concentrates a high risk of gastric cancer associated with Helicobacter pylori colonization, rurality, poverty, and Mapuche ethnicity. Hence, we aimed to identify the culturable gastric microbiota and characterize its variability at different stages of epithelial injury, based on its H. pylori colonization in dyspeptic patients from this Chilean region. Microaerophilic bacteria strains were isolated from antrum biopsies of 155 dyspeptic patients′ biopsies and identified using MALDI-TOF MS or 16sRNA gene sequencing for non-pylori species identification, and UreC gene amplification for H. pylori confirmation. We found 48 species from 18 families, mainly belonging to Neisseriaceae (21.3%), Streptococcaceae (20.0%), Actynomicetaceae (9.0%), Enterobacteriaceae, and Lactobacillaceae (4.5%); however, Streptococcaceae and Actinomycetaceae families showed a significant reduction in samples infected with H. pylori, along with a considerably lower diversity of species. Our results revealed a microbiota modification due to H. pylori colonization associated with the gastric epithelial state, suggesting a potential microbiota role for developing and progressing gastric diseases.
Collapse
|
37
|
Alterations in Gastric Microbial Communities Are Associated with Risk of Gastric Cancer in a Korean Population: A Case-Control Study. Cancers (Basel) 2020; 12:cancers12092619. [PMID: 32937864 PMCID: PMC7563352 DOI: 10.3390/cancers12092619] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The gastric microbial community has been identified as a specific risk factor for the gastric cancer (GC) risk in recent molecular epidemiology studies. The equilibrium of the gastric microbial community and their functions are very important to keep a proper gastric related health. However, dysbiosis where there is an imbalance of the microbiome in gastric environment leads to several pathological conditions including GC. Thus, understanding how alterations in gastric microbial communities are associated with GC risk in large population-based studies is needed to implement possible preventive and curative strategies in the future. We derived a microbial dysbiosis index to observe the association with GC risk. Further, we predicted the microbial functions that are associated with GC risk. The findings of our study are important to understand certain pathogenic bacteria and their functions associated with GC risk. It might be helpful to develop novel preventive guidelines to prevent GC risk. Abstract Although the microbiome has a potential role in gastric cancer (GC), little is known about microbial dysbiosis and its functions. This study aimed to observe the associations between the alterations in gastric microbial communities and GC risk. The study participants included 268 GC patients and 288 controls. The 16S rRNA gene sequencing was performed to characterize the microbiome. Streptococcus_NCVM and Prevotella melaninogenica species were highly enriched in cases and controls, respectively. Those who were in the third tertile of P. melaninogenica showed a significantly decreased risk of GC in total (odds ratio (OR): 0.91, 95% confidence interval (CI): 0.38–0.96, p-trend = 0.071). Class Bacilli was phylogenetically enriched in cases, while phylum Actinobacteria, class Actinobacteria were related to the controls. The microbial dysbiosis index (MDI) was significantly higher for the cases compared with the healthy controls in the female population (p = 0.002). Females in the third tertile of the MDI showed a significantly increased risk of GC (OR: 2.66, 95% CI: 1.19-5.99, p-trend = 0.017). Secondary bile acid synthesis and biosynthesis of ansamycins pathways were highly abundant in cases and controls, respectively. Dysbiosis of gastric microbial communities is associated with an increased risk of GC specifically in females.
Collapse
|
38
|
Shi XJ, Wei Y, Ji B. Systems Biology of Gastric Cancer: Perspectives on the Omics-Based Diagnosis and Treatment. Front Mol Biosci 2020; 7:203. [PMID: 33005629 PMCID: PMC7479200 DOI: 10.3389/fmolb.2020.00203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is the fifth most diagnosed cancer in the world, affecting more than a million people and causing nearly 783,000 deaths each year. The prognosis of advanced gastric cancer remains extremely poor despite the use of surgery and adjuvant therapy. Therefore, understanding the mechanism of gastric cancer development, and the discovery of novel diagnostic biomarkers and therapeutics are major goals in gastric cancer research. Here, we review recent progress in application of omics technologies in gastric cancer research, with special focus on the utilization of systems biology approaches to integrate multi-omics data. In addition, the association between gastrointestinal microbiota and gastric cancer are discussed, which may offer insights in exploring the novel microbiota-targeted therapeutics. Finally, the application of data-driven systems biology and machine learning approaches could provide a predictive understanding of gastric cancer, and pave the way to the development of novel biomarkers and rational design of cancer therapeutics.
Collapse
Affiliation(s)
- Xiao-Jing Shi
- Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
39
|
Al-Hilu SA, Al-Shujairi WH. Dual Role of Bacteria in Carcinoma: Stimulation and Inhibition. Int J Microbiol 2020; 2020:4639761. [PMID: 32908523 PMCID: PMC7463420 DOI: 10.1155/2020/4639761] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Although what unifies the carcinogenic microorganisms has not been determined by multiple studies, the role of bacteria in the development of neoplasms has not been properly elucidated. In this review, we discuss links between the bacterial species and cancer, with focus on immune responses for the stimulation of tumor cells such as induction of inflammation. Finally, we will describe the potential therapeutic strategies of bacteria on target tumors to improve treatment while mitigating adverse reactions. Cancer is a series of genetic changes that transform normal cells into tumor cells. These changes come from several reasons, including smoking, drinking alcohol, sunlight, exposure to chemical or physical factors, and finally chronic infection with microorganisms, including bacteria. In fact, bacterial infections are not carcinogenic, but recently it was discovered that the association between bacteria and cancer is through two mechanisms, the first stimulating chronic inflammation and the second producing carcinogenic metabolites. While bacteria are carcinogenic agents also, they have a dual role eliminating and removing tumor cells. However, the traditional cancer treatments that include chemotherapy, radiotherapy, surgery, and immunotherapy increase the chances of survival, and there are many side effects of these therapies, including the high toxicity of tissues and normal cells, could not penetrate the tumor cells, and resistance of these therapies by tumor cells. Therefore, the world has turned to an alternative solution, which is the use of genetically engineered microorganisms; thus, the use of living bacteria targeting cancerous cells is the unique option to overcome these challenges. Bacterial therapies, whether used alone or combination with chemotherapy, give a positive effect to treat multiple conditions of cancer. Also, bacteria can be used as vectors for drug, gene, or therapy, and this is a great step to treat cancer. Thus, we review the mechanisms underlying the interaction of the microbiota residents with cancer. Cancer-associated bacteria differ from those in healthy human and are linked with gene-expression profile. We also discuss how live bacteria interact with tumor microenvironments to induce tumor regression through colonization and spread. Finally, we provide past and ongoing clinical trials that include bacteria targeting tumors.
Collapse
Affiliation(s)
- Suad A Al-Hilu
- Department of Biology/Faculty of Sciences, University of Kufa, 54001 Najaf, Iraq
| | - Wisam H Al-Shujairi
- Department of Clinical Laboratory Sciences/College of Pharmacy, University of Babylon, 51001 Hilla, Iraq
| |
Collapse
|
40
|
Gantuya B, El-Serag HB, Yamaoka Y. Letter: are microbes other than Helicobacter pylori associated with gastric cancer? Authors' reply. Aliment Pharmacol Ther 2020; 51:1447-1449. [PMID: 32445529 DOI: 10.1111/apt.15757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Boldbaatar Gantuya
- Department of Gastroenterology, Mongolian National University of Medical sciences, Ulaanbaatar, Mongolia.,Endoscopy Unit, Mongolia-Japan Teaching Hospital, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yoshio Yamaoka
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Environmental and Preventive Medicine, Oita University of Medicine, Yufu, Japan
| |
Collapse
|
41
|
Vandana UK, Barlaskar NH, Gulzar ABM, Laskar IH, Kumar D, Paul P, Pandey P, Mazumder PB. Linking gut microbiota with the human diseases. Bioinformation 2020; 16:196-208. [PMID: 32405173 PMCID: PMC7196170 DOI: 10.6026/97320630016196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
The human gut is rich in microbes. Therefore, it is of interest to document data to link known human diseases with the gut microbiota. Various factors like hormones, metabolites and dietary habitats are responsible for shaping the microbiota of the gut. Imbalance in the gut microbiota is responsible for the pathogenesis of various disease types including rheumatoid arthritis, different types of cancer, diabetes mellitus, obesity, and cardiovascular disease. We report a review of known data for the correction of dysbiosis (imbalance in microbe population) towards improved human health.
Collapse
Affiliation(s)
| | | | | | | | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Prosenjit Paul
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, India
| | | |
Collapse
|
42
|
Chouhan D, Barani Devi T, Chattopadhyay S, Dharmaseelan S, Nair GB, Devadas K, Radhakrishna Pillai M. Mycobacterium abscessus infection in the stomach of patients with various gastric symptoms. PLoS Negl Trop Dis 2019; 13:e0007799. [PMID: 31682611 PMCID: PMC6855505 DOI: 10.1371/journal.pntd.0007799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 11/14/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Development of gastric diseases such as gastritis, peptic ulcer and gastric cancer is often associated with several biotic and abiotic factors. Helicobacter pylori infection is such a well-known biotic factor. However, not all H. pylori-infected individuals develop gastric diseases and not all individuals with gastric diseases are infected with H. pylori. Therefore, it is possible that other gastric bacteria may contribute to the formation and progression of gastric disease. The aim of this study was to isolate prevalent gastric bacteria under microaerobic condition and identify them by 16S rRNA gene sequence analysis. Analysis of gastric biopsies showed infection of Mycobacterium abscessus (phylum Actinobacteria) to be highly prevalent in the stomachs of subjects included. Our data show that of 129 (67 male and 62 female) patients with gastric symptoms, 96 (51 male and 45 female) showed the presence of M. abscessus in stomach tissues. Infection of M. abscessus in gastric epithelium was further confirmed by imaging with acid fast staining, immunohistochemistry and immunofluorescence. Our imaging data strongly suggested that M. abscessus is an intracellular colonizer residing inside the gastric epithelial cells rather than in macrophages. Additionally, phylogenetic analysis of the mycobacterial hsp65 gene showed that the nearest match to the M. abscessus strains isolated from our study subjects is the M. abscessus strain ATCC 19977. Surprisingly, the subjects studied, the prevalence of M. abscessus infection in stomach is even higher than the prevalence of H. pylori infection. This, to the best of our knowledge, is the first study showing the colonization of M. abscessus in human gastric mucosa among patients with various gastric symptoms. This study could provide usher in a new opportunity to understand the role of less studied gastric bacteria in the development of gastric diseases.
Collapse
Affiliation(s)
- Deepak Chouhan
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T. Barani Devi
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Santanu Chattopadhyay
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Sanjai Dharmaseelan
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Gopinath Balakrish Nair
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Thiruvananthapuram, India
| | | |
Collapse
|
43
|
Mohammadi M, Talebi Bezmin Abadi A, Rahimi F, Forootan M. Helicobacter heilmannii Colonization Is Associated with High Risk for Gastritis. Arch Med Res 2019; 50:423-427. [DOI: 10.1016/j.arcmed.2019.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
|
44
|
Dong Z, Chen B, Pan H, Wang D, Liu M, Yang Y, Zou M, Yang J, Xiao K, Zhao R, Zheng X, Zhang L, Zhang Y. Detection of Microbial 16S rRNA Gene in the Serum of Patients With Gastric Cancer. Front Oncol 2019; 9:608. [PMID: 31338330 PMCID: PMC6629868 DOI: 10.3389/fonc.2019.00608] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/20/2019] [Indexed: 01/03/2023] Open
Abstract
Aberrance in the blood bacterial microbiome has been identified and validated in several non-infectious diseases, including cancer. The occurrence and progression of gastric cancer has been found to be associated with alterations in the microbiome composition. However, the composition of the blood microbiome in patients with gastric cancer is not well-characterized. To test this hypothesis, we conducted a case-control study to investigate the microbiota compositions in the serum of patients with gastric cancer. The serum microbiome was investigated in patients with gastric cancer, atypical hyperplasia, chronic gastritis, and in healthy controls using 16S rRNA gene sequencing targeting the V1-V2 region. Our results revealed that the structure of the serum microbiome in gastric cancer was significantly different from all other groups, and alpha diversity decreased from the healthy control to patients with gastric cancer. The serum microbiome correlated significantly with tumor-node-metastasis (TNM) stage, lymphatic metastasis, tumor diameter, and invasion depth in gastric cancer. Three genera or species, namely, Acinetobacter, Bacteroides, Haemophilus parainfluenzae, were enriched in patients with gastric cancer, whereas Sphingomonas, Comamonas, and Pseudomonas stutzeri were enriched in the healthy control. Furthermore, the structure of serum microbiota differed between gastric cancer lymphatic metastasis and non-lymphatic metastasis. As a pilot investigation to characterizing the serum microbiome in gastric cancer, our study provided a foundation for improving our understanding of the role of microbiota in the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Province Key Laboratories of Medicine and Health (Tumor Marker Translational Medicine Laboratory), Qilu Hospital of Shandong University, Jinan, China
| | - Bin Chen
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Province Key Laboratories of Medicine and Health (Tumor Marker Translational Medicine Laboratory), Qilu Hospital of Shandong University, Jinan, China
| | - Ding Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Province Key Laboratories of Medicine and Health (Tumor Marker Translational Medicine Laboratory), Qilu Hospital of Shandong University, Jinan, China
| | - Min Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Province Key Laboratories of Medicine and Health (Tumor Marker Translational Medicine Laboratory), Qilu Hospital of Shandong University, Jinan, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Province Key Laboratories of Medicine and Health (Tumor Marker Translational Medicine Laboratory), Qilu Hospital of Shandong University, Jinan, China
| | - Mingjin Zou
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Province Key Laboratories of Medicine and Health (Tumor Marker Translational Medicine Laboratory), Qilu Hospital of Shandong University, Jinan, China
| | - Junjie Yang
- College of Life Science, Qilu Normal University, Jinan, China
| | - Ke Xiao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Province Key Laboratories of Medicine and Health (Tumor Marker Translational Medicine Laboratory), Qilu Hospital of Shandong University, Jinan, China
| | - Rui Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Province Key Laboratories of Medicine and Health (Tumor Marker Translational Medicine Laboratory), Qilu Hospital of Shandong University, Jinan, China
| | - Xin Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Province Key Laboratories of Medicine and Health (Tumor Marker Translational Medicine Laboratory), Qilu Hospital of Shandong University, Jinan, China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Qingdao Human Microbiome Center, The Affiliated Central Hospital of Qingdao University, Qingdao, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Province Key Laboratories of Medicine and Health (Tumor Marker Translational Medicine Laboratory), Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
45
|
Panebianco C, Potenza A, Andriulli A, Pazienza V. Exploring the microbiota to better understand gastrointestinal cancers physiology. Clin Chem Lab Med 2019; 56:1400-1412. [PMID: 29630505 DOI: 10.1515/cclm-2017-1163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Gastrointestinal cancers account for around 40% of cancer-related deaths worldwide, representing a global health burden. There is a growing body of evidence highlighting the link between microbiota and gastrointestinal tumorigenesis and/or resistance to therapy. In the present manuscript, we reviewed the published studies on the relationship between the microbiota and the different gastrointestinal tumors, namely, gastric, colorectal and esophageal, including also the cancer of accessory organs such as liver and pancreas. There is an emergent interest in the manipulation of gastrointestinal microflora in order to understand the gastrointestinal tumorigenesis' processes and the establishment of chemoresistance mechanisms.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | - Angelo Andriulli
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy, Phone: +39-0882.416281, Fax: +39-0882.410271
| |
Collapse
|
46
|
Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol 2019; 10:846. [PMID: 31110496 PMCID: PMC6501431 DOI: 10.3389/fmicb.2019.00846] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria are highly social organisms that communicate via signaling molecules and can assume a multicellular lifestyle to build biofilm communities. Until recently, complications from biofilm-associated infection have been primarily ascribed to increased bacterial resistance to antibiotics and host immune evasion, leading to persistent infection. In this theory and hypothesis article we present a relatively new argument that biofilm formation has potential etiological role in the development of digestive tract cancer. First, we summarize recent new findings suggesting the potential link between bacterial biofilm and various types of cancer to build the foundation of our hypothesis. To date, evidence has been particularly convincing for colorectal cancer and its precursor, i.e., polyps, pointing to several key individual bacterial species, such as Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus gallolyticus subsp. Gallolyticus. Then, we further extend this hypothesis to one of the most common bacterial infection in humans, Helicobacter pylori (Hp), which is considered a major cause of gastric cancer. Thus far, there has been no direct evidence linking in vivo Hp gastric biofilm formation to gastric carcinogenesis. Yet, we synthesize the information to support an argument that biofilm associated-Hp is potentially more carcinogenic, summarizing biological characteristics of biofilm-associated bacteria. We also discuss mechanistic pathways as to how Hp or other biofilm-associated bacteria control biofilm formation and highlight recent findings on Hp genes that influence biofilm formation, which may lead to strain variability in biofilm formation. This knowledge may open a possibility of developing targeted intervention. We conclude, however, that this field is still in its infancy. To test the hypothesis rigorously and to link it ultimately to gastric pathologies (e.g., premalignant lesions and cancer), studies are needed to learn more about Hp biofilms, such as compositions and biological properties of extracellular polymeric substance (EPS), presence of non-Hp microbiome and geographical distribution of biofilms in relation to gastric gland types and structures. Identification of specific Hp strains with enhanced biofilm formation would be helpful not only for screening patients at high risk for sequelae from Hp infection, but also for development of new antibiotics to avoid resistance, regardless of its association with gastric cancer.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
47
|
Suicide journey of H. pylori through gastric carcinogenesis: the role of non-H. pylori microbiome and potential consequences for clinical practice. Eur J Clin Microbiol Infect Dis 2019; 38:1591-1597. [PMID: 31114971 DOI: 10.1007/s10096-019-03564-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022]
|
48
|
Pichon M, Burucoa C. Impact of the Gastro-Intestinal Bacterial Microbiome on Helicobacter-Associated Diseases. Healthcare (Basel) 2019; 7:E34. [PMID: 30813360 PMCID: PMC6473412 DOI: 10.3390/healthcare7010034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori is a bacterium that selectively infects the gastric epithelium of half of the world population. The microbiome, community of microorganisms gained major interest over the last years, due to its modification associated to health and disease states. Even if most of these descriptions have focused on chronic disorders, this review describes the impact of the intestinal bacterial microbiome on host response to Helicobacter associated diseases. Microbiome has a direct impact on host cells, major barrier of the gastro-intestinal tract, but also an indirect impact on immune system stimulation, by enhancing or decreasing non-specific or adaptive response. In microbial infections, especially in precancerous lesions induced by Helicobacter pylori infection, these modifications could lead to different outcome. Associated to data focusing on the microbiome, transcriptomic analyses of the eukaryote response would lead to a complete understanding of these complex interactions and will allow to characterize innovative biomarkers and personalized therapies.
Collapse
Affiliation(s)
- Maxime Pichon
- Bacteriology and Infection Control Laboratory, Infectious Agents Department, University Hospital of Poitiers, 86021 Poitiers, France.
- Laboratoire Inflammation, Tissus Épithéliaux et Cytokines, EA 4331, Faculté de Médecine et de Pharmacie, University of Poitiers, 86022 Poitiers, France.
| | - Christophe Burucoa
- Bacteriology and Infection Control Laboratory, Infectious Agents Department, University Hospital of Poitiers, 86021 Poitiers, France.
- Laboratoire Inflammation, Tissus Épithéliaux et Cytokines, EA 4331, Faculté de Médecine et de Pharmacie, University of Poitiers, 86022 Poitiers, France.
| |
Collapse
|
49
|
Chen D, Wu J, Jin D, Wang B, Cao H. Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer 2018; 145:2021-2031. [PMID: 30458058 PMCID: PMC6767494 DOI: 10.1002/ijc.32003] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
The human gut is home to a large and diverse microbial community, comprising about 1,000 bacterial species. The gut microbiota exists in a symbiotic relationship with its host, playing a decisive role in the host's nutrition, immunity and metabolism. Accumulating studies have revealed the associations between gut dysbiosis or some special bacteria and various cancers. Emerging data suggest that gut microbiota can modulate the effectiveness of cancer therapies, especially immunotherapy. Manipulating the microbial populations with therapeutic intent has become a hot topic of cancer research, and the most dramatic manipulation of gut microbiota refers to fecal microbiota transplantation (FMT) from healthy individuals to patients. FMT has demonstrated remarkable clinical efficacy against Clostridium difficile infection (CDI) and it is highly recommended for the treatment of recurrent or refractory CDI. Lately, interest is growing in the therapeutic potential of FMT for other diseases, including cancers. We briefly reviewed the current researches about gut microbiota and its link to cancer, and then summarized the recent preclinical and clinical evidence to indicate the potential of FMT in cancer management as well as cancer‐treatment associated complications. We also presented the rationale of FMT for cancer management such as reconstruction of intestinal microbiota, amelioration of bile acid metabolism, and modulation of immunotherapy efficacy. This article would help to better understand this new therapeutic approach for cancer patients by targeting gut microbiota.
Collapse
Affiliation(s)
- Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Duochen Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
50
|
Sebastián Domingo JJ, Sánchez Sánchez C. From the intestinal flora to the microbiome. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2018; 110:51-56. [PMID: 29271225 DOI: 10.17235/reed.2017.4947/2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this article, the history of the microbiota is reviewed and the related concepts of the microbiota, microbiome, metagenome, pathobiont, dysbiosis, holobiont, phylotype and enterotype are defined. The most precise and current knowledge about the microbiota is presented and the metabolic, nutritional and immunomodulatory functions are reviewed. Some gastrointestinal diseases whose pathogenesis is associated with the intestinal microbiota, including inflammatory bowel disease, irritable bowel syndrome and celiac disease, among others, are briefly discussed. Finally, some prominent and promising data with regard to the fecal microbiota transplantation in certain digestive illness are discussed.
Collapse
|