1
|
Ogunlusi O, Ghosh A, Sarkar M, Carter K, Davuluri H, Chakraborty M, Eckel-Mahan K, Keene A, Menet JS, Bell-Pedersen D, Sarkar TR. Rhythm is essential: Unraveling the relation between the circadian clock and cancer. Crit Rev Oncol Hematol 2025; 208:104632. [PMID: 39864535 DOI: 10.1016/j.critrevonc.2025.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Physiological processes such as the sleep-wake cycle, metabolism, hormone secretion, neurotransmitter release, sensory capabilities, and a variety of behaviors, including sleep, are controlled by a circadian rhythm adapted to 24-hour day-night periodicity. Disruption of circadian rhythm may lead to the risks of numerous diseases, including cancers. Several epidemiological and clinical data reveal a connection between the disruption of circadian rhythms and cancer. On the contrary, oncogenic processes may suppress the homeostatic balance imposed by the circadian clock. The integration of circadian biology into cancer research offers new options for making cancer treatment more effective, and the pharmacological modulation of core clock genes is a new approach in cancer therapy. This review highlights the role of the circadian clock in tumorigenesis, how clock disruption alters the tumor microenvironment, and discusses how pharmacological modulation of circadian clock genes can lead to new therapeutic options.
Collapse
Affiliation(s)
| | - Abantika Ghosh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Kayla Carter
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Harshini Davuluri
- The Master of Biotechnology Program, Texas A&M University, College Station, TX, USA
| | - Mahul Chakraborty
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, The University of Texas Health Science Centre, Houston, TX, USA
| | - Alex Keene
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Jerome S Menet
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Deborah Bell-Pedersen
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, USA; Texas A&M Center for Biological Clocks Research, USA.
| |
Collapse
|
2
|
Xiao X, Kong L, Xie Z, Liu H, Cai L, Zhao S, Zhou J, Liu S, Wu J, Wu Y, Wu P, James AA, Chen XG. miR-2940-1 is involved in the circadian regulation of oviposition in Aedes albopictus. INSECT SCIENCE 2025; 32:69-79. [PMID: 38556782 PMCID: PMC11439969 DOI: 10.1111/1744-7917.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
The vast majority of all global species have circadian rhythm cycles that allow them to adapt to natural environments. These regular rhythms are regulated by core clock genes and recent studies have also implicated roles for microRNAs in this regulation. Oviposition is an important circadian behavior in the reproductive cycle of insect vectors of diseases, and little is known about the rhythm or its regulation in mosquitoes. Aedes albopictus is a diurnal mosquito that transmits arboviruses and is the major cause of outbreaks of dengue fever in China. We analyzed the oviposition rhythm patterns of A. albopictus under different light/dark conditions and show that the mosquitoes have an oviposition peak between zeitgeber time 9 (ZT 9) and ZT 12. Furthermore, the antagomir-mediated knockdown of expression of the microRNA miR-2940-1 affected the oviposition rhythm of A. albopictus. These data support the conclusion that miR-2940-1 is involved in the regulation of oviposition rhythm in A. albopictus and provide a foundation for using oviposition rhythms as a new target for vector mosquito control.
Collapse
Affiliation(s)
- Xiaolin Xiao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijun Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuang Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiming Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peilin Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine CA 92697-4025, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine CA 92697-3900, USA
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Oladapo A, Deshetty UM, Callen S, Buch S, Periyasamy P. Single-Cell RNA-Seq Uncovers Robust Glial Cell Transcriptional Changes in Methamphetamine-Administered Mice. Int J Mol Sci 2025; 26:649. [PMID: 39859365 PMCID: PMC11766323 DOI: 10.3390/ijms26020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes. Using single-cell RNA sequencing (scRNA-seq), we analyzed the transcriptomes of 4000 glial cell-associated genes from the cortical regions of mice chronically administered methamphetamine. Methamphetamine exposure altered the key pathways in astrocytes, including the circadian rhythm and cAMP signaling; in microglia, affecting autophagy, ubiquitin-mediated proteolysis, and mitophagy; and in oligodendrocytes, disrupting lysosomal function, cytoskeletal regulation, and protein processing. Notably, several transcription factors, such as Zbtb16, Hif3a, Foxo1, and Klf9, were significantly dysregulated in the glial cells. These findings reveal profound methamphetamine-induced changes in the glial transcriptomes, particularly in the cortical regions, highlighting potential molecular pathways and transcription factors as targets for therapeutic intervention. This study provides novel insights into the glial-mediated mechanisms of methamphetamine toxicity, contributing to our understanding of its effects on the central nervous system and laying the groundwork for future strategies to mitigate its neurotoxic consequences.
Collapse
Affiliation(s)
| | | | | | | | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.O.); (U.M.D.); (S.C.); (S.B.)
| |
Collapse
|
4
|
Xu W, Li L, Cao Z, Ye J, Gu X. Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence. Aging Dis 2025:AD.2024.1188. [PMID: 39812541 DOI: 10.14336/ad.2024.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body. Both aging and the circadian clock are highly interlinked phenomena with a bidirectional relationship. The process of aging leads to circadian disruptions while dysfunctional circadian rhythms promote age-related complications. Both processes involve diverse physiological, molecular, and cellular changes such as modifications in the DNA repair mechanisms, mechanisms, ROS generation, apoptosis, and cell proliferation. This review aims to examine the role of aging and circadian rhythms in the context of lung cancer. This will also review the existing literature on the role of circadian disruptions in the process of aging and vice versa. Various molecular pathways and genes such as BMAL1, SIRT1, HLF, and PER1 and their implications in aging, circadian rhythms, and lung cancer will also be discussed.
Collapse
Affiliation(s)
- Wenhui Xu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Jinghong Ye
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Xuyu Gu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Wojtulewicz K, Tomczyk M, Wójcik M, Antushevich H, Bochenek J, Herman AP. Influence of Acute Inflammation on the Expression of Clock Genes in the Ovine Pars Tuberalis Under Different Photoperiodic Conditions. Int J Mol Sci 2024; 25:11471. [PMID: 39519024 PMCID: PMC11546426 DOI: 10.3390/ijms252111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The pars tuberalis (PT) plays an important role in the photoperiodic regulation of the secretory activity of the pituitary gland. Additionally, PT secretory activity may be influenced by the animal's immune status. The melatonin signal processing in PT cells occurs through the presence of melatonin receptors and the expression of molecular clock genes. This study aimed to define the effects of acute inflammation induced by intravenous administration of lipopolysaccharide (LPS) on the expression of clock genes in the PT of ewes under different photoperiodic conditions. Two analogous experiments were conducted in different photoperiods: short-day and long-day. Both experiments included 24 sheep divided into two groups: day (n = 12) and night (n = 12), further subdivided into a control group (n = 6) and a group treated with LPS (n = 6) at a dose of 400 ng/kg. Under short-day conditions, the expression of clock circadian regulator, basic helix-loop-helix ARNT like 1, cryptochrome circadian regulator (CRY) 1, 2, and casein kinase 1 epsilon genes was lower during inflammation. LPS injection increased expression of the period circadian regulator 1 gene during the night. Under long-day conditions, CRY1 mRNA level was lower during the night, while diurnal CRY2 mRNA expression was decreased after LPS injection. Our results showed that inflammation disturbed the expression of molecular clock genes in the PT; however, this influence was partly dependent on photoperiod conditions.
Collapse
Affiliation(s)
- Karolina Wojtulewicz
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (M.T.); (M.W.); (H.A.); (J.B.); (A.P.H.)
| | | | | | | | | | | |
Collapse
|
6
|
Aragona F, Fazio F, Piccione G, Giannetto C. Chronophysiology of domestic animals. Chronobiol Int 2024; 41:888-903. [PMID: 38832548 DOI: 10.1080/07420528.2024.2360723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
This review highlights recent findings on biological rhythms and discusses their implications for the management and production of domestic animals. Biological rhythms provide temporal coordination between organs and tissues in order to anticipate environmental changes, orchestrating biochemical, physiological and behavioural processes as the right process may occur at the right time. This allows animals to adapt their internal physiological functions, such as sleep-wake cycles, body temperature, hormone secretion, food intake and regulation of physical performance to environmental stimuli that constantly change. The study and evaluation of biological rhythms of various physiological parameters allows the assessment of the welfare status of animals. Alteration of biological rhythms represents an imbalance of the state of homeostasis that can be found in different management conditions.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Gu W, Li T, Huang Y, Wang R, Zhang L, Chen R, Li R, Liu C. Metabolic Profile and Lipid Metabolism Phenotype in Mice with Conditional Deletion of Hepatic BMAL1. Int J Mol Sci 2024; 25:6070. [PMID: 38892255 PMCID: PMC11172555 DOI: 10.3390/ijms25116070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The disruption of circadian rhythms (CRs) has been linked to metabolic disorders, yet the role of hepatic BMAL1, a key circadian regulator, in the whole-body metabolism and the associated lipid metabolic phenotype in the liver remains unclear. Bmal1 floxed (Bmal1f/f) and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) C57BL/6J mice underwent a regular feeding regimen. Hepatic CR, lipid content, mitochondrial function, and systemic metabolism were assessed at zeitgeber time (ZT) 0 and ZT12. Relevant molecules were examined to elucidate the metabolic phenotype. Hepatocyte-specific knockout of Bmal1 disrupted the expression of rhythmic genes in the liver. Bmal1hep-/- mice exhibited decreased hepatic TG content at ZT0, primarily due to enhanced lipolysis, reduced lipogenesis, and diminished lipid uptake. The β-oxidation function of liver mitochondria decreased at both ZT0 and ZT12. Our findings on the metabolic profile and associated hepatic lipid metabolism in the absence of Bmal1 in hepatocytes provides new insights into metabolic syndromes from the perspective of liver CR disturbances.
Collapse
Affiliation(s)
- Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.G.)
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Ting Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.G.)
| | - Yuxin Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.G.)
| | - Ruiqing Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.G.)
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.G.)
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.G.)
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.G.)
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.G.)
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| |
Collapse
|
8
|
Chandramouli M, Basavanna V, Ningaiah S. A scenario of unhealthy life cycle: The role of circadian rhythms in health. Aging Med (Milton) 2024; 7:231-238. [PMID: 38725697 PMCID: PMC11077335 DOI: 10.1002/agm2.12301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Circadian rhythms are oscillations in physiology and behavior caused by the circadian regulator. Cryptochromes, Periods, and Bmal1 are circadian clock genes that have been linked to aging and cancer. Human pathologies alter circadian clock gene expression, and transgenic rats with clock gene defects progress to cancer and age prematurely. In the growth of age-linked pathologies and carcinogenesis, cell proliferation and genome integrity play critical roles. The relationship concerning the cell cycle regulation and circadian clock is discussed in this article. The circadian clock controls the behavior and countenance of many main cell cycle and cell cycle check-point proteins, and cell cycle-associated proteins, in turn, control the activity and expression of circadian clock proteins. The circadian clock can be reset by DNA disruption, providing a molecular mechanism for mutual control amid the cell cycle and the clock. This circadian clock-dependent regulation of cell proliferation, composed with other circadian clock-dependent physiological functions including metabolism control, genotoxic and oxidative stress response, and DNA repair, unlocks new avenues for studying the processes of aging and carcinogenesis.
Collapse
Affiliation(s)
- Manasa Chandramouli
- Department of Chemistry, Vidyavardhaka College of EngineeringVisvesvaraya Technological UniversityMysoreKarnatakaIndia
| | - Vrushabendra Basavanna
- Department of Chemistry, Vidyavardhaka College of EngineeringVisvesvaraya Technological UniversityMysoreKarnatakaIndia
| | - Srikantamurthy Ningaiah
- Department of Chemistry, Vidyavardhaka College of EngineeringVisvesvaraya Technological UniversityMysoreKarnatakaIndia
| |
Collapse
|
9
|
Kanan MK, Sheehan PW, Haines JN, Gomez PG, Dhuler A, Nadarajah CJ, Wargel ZM, Freeberg BM, Nelvagal HR, Izumo M, Takahashi JS, Cooper JD, Davis AA, Musiek ES. Neuronal deletion of the circadian clock gene Bmal1 induces cell-autonomous dopaminergic neurodegeneration. JCI Insight 2024; 9:e162771. [PMID: 38032732 PMCID: PMC10906231 DOI: 10.1172/jci.insight.162771] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Circadian rhythm dysfunction is a hallmark of Parkinson disease (PD), and diminished expression of the core clock gene Bmal1 has been described in patients with PD. BMAL1 is required for core circadian clock function but also serves nonrhythmic functions. Germline Bmal1 deletion can cause brain oxidative stress and synapse loss in mice, and it can exacerbate dopaminergic neurodegeneration in response to the toxin MPTP. Here we examined the effect of cell type-specific Bmal1 deletion on dopaminergic neuron viability in vivo. We observed that global, postnatal deletion of Bmal1 caused spontaneous loss of tyrosine hydroxylase+ (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc). This was not replicated by light-induced disruption of behavioral circadian rhythms and was not induced by astrocyte- or microglia-specific Bmal1 deletion. However, either pan-neuronal or TH neuron-specific Bmal1 deletion caused cell-autonomous loss of TH+ neurons in the SNpc. Bmal1 deletion did not change the percentage of TH neuron loss after α-synuclein fibril injection, though Bmal1-KO mice had fewer TH neurons at baseline. Transcriptomics analysis revealed dysregulation of pathways involved in oxidative phosphorylation and Parkinson disease. These findings demonstrate a cell-autonomous role for BMAL1 in regulating dopaminergic neuronal survival and may have important implications for neuroprotection in PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hemanth R. Nelvagal
- Departments of Pediatrics, Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Joseph S. Takahashi
- Department of Neuroscience and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan D. Cooper
- Departments of Pediatrics, Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Erik S. Musiek
- Department of Neurology and
- Center On Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Dollish HK, Tsyglakova M, McClung CA. Circadian rhythms and mood disorders: Time to see the light. Neuron 2024; 112:25-40. [PMID: 37858331 PMCID: PMC10842077 DOI: 10.1016/j.neuron.2023.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The importance of time is ever prevalent in our world, and disruptions to the normal light/dark and sleep/wake cycle have now become the norm rather than the exception for a large part of it. All mood disorders, including seasonal affective disorder (SAD), major depressive disorder (MDD), and bipolar disorder (BD), are strongly associated with abnormal sleep and circadian rhythms in a variety of physiological processes. Environmental disruptions to normal sleep/wake patterns, light/dark changes, and seasonal changes can precipitate episodes. Moreover, treatments that target the circadian system have proven to be therapeutic in certain cases. This review will summarize much of our current knowledge of how these disorders associate with specific circadian phenotypes, as well as the neuronal mechanisms that link the circadian clock with mood regulation. We also discuss what has been learned from therapies that target circadian rhythms and how we may use current knowledge to develop more individually designed treatments.
Collapse
Affiliation(s)
- Hannah K Dollish
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Mariya Tsyglakova
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA.
| |
Collapse
|
11
|
Streng AA, Van Dycke KCG, van Oostrom CTM, Salvatori DCF, Hulsegge G, Chaves I, Roenneberg T, Zander SAL, van Steeg H, van der Horst GTJ, van Kerkhof LWM. Impact of Simulated Rotating Shift Work on Mammary Tumor Development in the p53R270H©/+WAPCre Mouse Model for Breast Cancer. J Biol Rhythms 2023; 38:476-491. [PMID: 37357746 DOI: 10.1177/07487304231178340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Epidemiological studies associate night shift work with increased breast cancer risk. However, the underlying mechanisms are not clearly understood. To better understand these mechanisms, animal models that mimic the human situation of different aspects of shift work are needed. In this study, we used "timed sleep restriction" (TSR) cages to simulate clockwise and counterclockwise rotating shift work schedules and investigated predicted sleep patterns and mammary tumor development in breast tumor-prone female p53R270H©/+WAPCre mice. We show that TSR cages are effective in disturbing normal activity and estimated sleep patterns. Although circadian rhythms were not shifted, we observed effects of the rotating schedules on sleep timing and sleep duration. Sleep loss during a simulated shift was partly compensated after the shift and also partly during the free days. No effects were observed on body weight gain and latency time of breast cancer development. In summary, our study shows that the TSR cages can be used to model shift work in mice and affect patterns of activity and sleep. The effect of disturbing sleep patterns on carcinogenesis needs to be further investigated.
Collapse
Affiliation(s)
- Astrid A Streng
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kirsten C G Van Dycke
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Conny T M van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Daniela C F Salvatori
- Experimental Pathology Services Lab, Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Gerben Hulsegge
- Sustainable Productivity and Employability, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Inês Chaves
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Till Roenneberg
- Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Serge A L Zander
- Experimental Pathology Services Lab, Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Harry van Steeg
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gijsbertus T J van der Horst
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Linda W M van Kerkhof
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
12
|
Han X, Zhang D, Hong L, Yu D, Wu Z, Yang T, Rust M, Tu Y, Ouyang Q. Determining subunit-subunit interaction from statistics of cryo-EM images: observation of nearest-neighbor coupling in a circadian clock protein complex. Nat Commun 2023; 14:5907. [PMID: 37737245 PMCID: PMC10516925 DOI: 10.1038/s41467-023-41575-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Biological processes are typically actuated by dynamic multi-subunit molecular complexes. However, interactions between subunits, which govern the functions of these complexes, are hard to measure directly. Here, we develop a general approach combining cryo-EM imaging technology and statistical modeling and apply it to study the hexameric clock protein KaiC in Cyanobacteria. By clustering millions of KaiC monomer images, we identify two major conformational states of KaiC monomers. We then classify the conformational states of (>160,000) KaiC hexamers by the thirteen distinct spatial arrangements of these two subunit states in the hexamer ring. We find that distributions of the thirteen hexamer conformational patterns for two KaiC phosphorylation mutants can be fitted quantitatively by an Ising model, which reveals a significant cooperativity between neighboring subunits with phosphorylation shifting the probability of subunit conformation. Our results show that a KaiC hexamer can respond in a switch-like manner to changes in its phosphorylation level.
Collapse
Affiliation(s)
- Xu Han
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Dongliang Zhang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Lu Hong
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Daqi Yu
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Zhaolong Wu
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Tian Yang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Michael Rust
- Departments of Molecular Genetics and Cell Biology and of Physics, University of Chicago, Chicago, IL, 60637, USA.
| | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
| | - Qi Ouyang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China.
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, AAIC, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Sheehan PW, Nadarajah CJ, Kanan MF, Patterson JN, Novotny B, Lawrence JH, King MW, Brase L, Inman CE, Yuede CM, Lee J, Patel TK, Harari O, Benitez BA, Davis AA, Musiek ES. An astrocyte BMAL1-BAG3 axis protects against alpha-synuclein and tau pathology. Neuron 2023; 111:2383-2398.e7. [PMID: 37315555 PMCID: PMC10524543 DOI: 10.1016/j.neuron.2023.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 03/29/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
The circadian clock protein BMAL1 modulates glial activation and amyloid-beta deposition in mice. However, the effects of BMAL1 on other aspects of neurodegenerative pathology are unknown. Here, we show that global post-natal deletion of Bmal1 in mouse tauopathy or alpha-synucleinopathy models unexpectedly suppresses both tau and alpha-synuclein (αSyn) aggregation and related pathology. Astrocyte-specific Bmal1 deletion is sufficient to prevent both αSyn and tau pathology in vivo and induces astrocyte activation and the expression of Bag3, a chaperone critical for macroautophagy. Astrocyte Bmal1 deletion enhances phagocytosis of αSyn and tau in a Bag3-dependent manner, and astrocyte Bag3 overexpression is sufficient to mitigate αSyn spreading in vivo. In humans, BAG3 is increased in patients with AD and is highly expressed in disease-associated astrocytes (DAAs). Our results suggest that early activation of astrocytes via Bmal1 deletion induces Bag3 to protect against tau and αSyn pathologies, providing new insights into astrocyte-specific therapies for neurodegeneration.
Collapse
Affiliation(s)
- Patrick W Sheehan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Collin J Nadarajah
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael F Kanan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessica N Patterson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brenna Novotny
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer H Lawrence
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melvin W King
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Logan Brase
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Casey E Inman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiyeon Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tirth K Patel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Albert A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Center on Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Rezaeian AH, Dang F, Wei W. The circadian clock, aging and its implications in cancer. Neoplasia 2023; 41:100904. [PMID: 37148656 PMCID: PMC10192918 DOI: 10.1016/j.neo.2023.100904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Circadian clock orchestrates the intergenic biochemical, physiological and behavioral changes to form an approximate 24h oscillation through the transcription-translation feedback loop (TTFL). Mechanistically, a heterodimer of transcriptional activator formed by BMAL1 and CLOCK, governs the expression of its transcriptional repressors, CRY, PER and REV-ERBα/β proteins, thereby controlling more than 50 % of protein encoding genes in human. There is also increasing evidence showing that tumor microenvironment can disrupt specific clock gene functions to facilitate tumorigenesis. Although there is great progress in understanding the molecular mechanisms of the circadian clock, aging and cancer, elucidating their complex relationships among these processes remains challenging. Herein, the optimization of the chronochemotherapy regimen has not been justified yet for treatment of cancer. Here, we discuss the hypothesis of relocalization of chromatin modifiers (RCM) along with function(s) of the circadian rhythm on aging and carcinogenesis. We will also introduce the function of the chromatin remodeling as a new avenue for rejuvenation of competent tissues to combat aging and cancer.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
15
|
Hu Y, Fan S, Zhu Y, Xie X. A novel circadian cycle-related gene signature for prognosis prediction of patients with breast cancer. Medicine (Baltimore) 2023; 102:e33718. [PMID: 37144994 PMCID: PMC10158864 DOI: 10.1097/md.0000000000033718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
The extensive and intricate relationships between circadian rhythm and cancer have been reported in numerous studies. However, in breast cancer (BC), the potential role of circadian clock-related genes (CCRGs) in prognosis prediction has not been fully clarified. The transcriptome data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. A CCRGs-based risk signature was established by differential expression analysis, univariate, Lasso and multivariate Cox regression analyses. we conducted a gene set enrichment analysis (GSEA) between groups. A nomogram integrating independent clinical factors and risk score was generated and evaluated by calibration curves and decision curve analysis (DCA). Differentially expression analysis revealed 80 differentially expressed CCRGs, and 27 of them were significantly associated with the overall survival (OS) of BC. BC can be classified into 4 molecular subtypes with significant differences in prognosis based on the 27 CCRGs. Three prognostic CCRGs, including desmocollin 1 (DSC1), LEF1, and protocadherin 9 (PCDH9), were identified to be independent risk factors of BC prognosis and were used to construct a risk score model. BC patients were divided into high- and low-risk groups, and there were significant differences in prognosis between the 2 groups both in the training and validation cohorts. It was found that patients in different groups of race, status, or T stage had significant levels of risk score. Furthermore, patients of different risk levels exhibit varying degrees of sensitivity to vinorelbine, lapatinib, metformin, and vinblastine. GSEA showed that in the high-risk group, immune response-related activities were dramatically repressed whereas cilium-related processes were significantly stimulated. Cox regression analysis demonstrated that age, N stage, radiotherapy and the risk score were independent prognostic risk factors of BC, and a nomogram was established based on these variables. The nomogram exerted a favorable concordance index (0.798) as well as calibration performance, which strongly supports the clinical application of the nomogram. Our study indicated the disruption of the expression of CCRGs in BC and built a favorable prognostic risk model based on 3 independent prognostic CCRGs. These genes may be applied as candidate molecular targets for the diagnosis and therapy of BC.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Shuyao Fan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yiwan Zhu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Yuan M, Lu W, Lan Y, Yang J, Yin J, Wang D. Current role and future perspectives of electroacupuncture in circadian rhythm regulation. Heliyon 2023; 9:e15986. [PMID: 37205998 PMCID: PMC10189514 DOI: 10.1016/j.heliyon.2023.e15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/02/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
In recent years, in-depth research on chronobiology has been conducted, and the circadian rhythm has become a new target for the treatment of diseases. Circadian rhythms are closely related to the normal physiological functions of organisms. Increasing evidence indicates that circadian rhythm disorders are the pathological basis of diseases such as sleep disorders, depression, cardiovascular diseases, and cancer. As an economical, safe, and effective treatment method, electroacupuncture has been widely used in clinical practice. In this paper, we summarize the current literature on electroacupuncture's regulation of circadian rhythm disorders and circadian clock genes. In addition, we briefly explore the optimization of electroacupuncture intervention programmes and the feasibility of implementing electroacupuncture intervention programmes at selected times in clinical practice. We conclude that electroacupuncture may have good application prospects in circadian rhythm regulation, but this conclusion needs to be confirmed by clinical trials.
Collapse
Affiliation(s)
- Min Yuan
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Wei Lu
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Ying Lan
- Department of Intensive Care Unit, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Jiaen Yang
- Department of TCM Rehabilitation Medicine, Affiliated Foshan Gaoming Hospital of Guangdong Medical University, Foshan, China
| | - Jun Yin
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Dong Wang
- Department of Rehabilitation Medicine, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- Corresponding author.
| |
Collapse
|
17
|
Malik A, Zavadil JA, Geusz ME. Using bioluminescence to image gene expression and spontaneous behavior in freely moving mice. PLoS One 2023; 18:e0279875. [PMID: 36662734 PMCID: PMC9858005 DOI: 10.1371/journal.pone.0279875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/17/2022] [Indexed: 01/21/2023] Open
Abstract
Bioluminescence imaging (BLI) of gene expression in live animals is a powerful method for monitoring development, tumor growth, infections, healing, and other progressive, long-term biological processes. BLI remains an effective approach for reducing the number of animals needed to monitor dynamic changes in gene activity because images can be captured repeatedly from the same animals. When examining these ongoing changes, it is sometimes necessary to remove rhythmic effects on the bioluminescence signal caused by the circadian clock's daily modulation of gene expression. Furthermore, BLI using freely moving animals remains limited because the standard procedures can alter normal behaviors. Another obstacle with conventional BLI of animals is that luciferin, the firefly luciferase substrate, is usually injected into mice that are then imaged while anesthetized. Unfortunately, the luciferase signal declines rapidly during imaging as luciferin is cleared from the body. Alternatively, mice are imaged after they are surgically implanted with a pump or connected to a tether to deliver luciferin, but stressors such as this surgery and anesthesia can alter physiology, behavior, and the actual gene expression being imaged. Consequently, we developed a strategy that minimizes animal exposure to stressors before and during sustained BLI of freely moving unanesthetized mice. This technique was effective when monitoring expression of the Per1 gene that serves in the circadian clock timing mechanism and was previously shown to produce circadian bioluminescence rhythms in live mice. We used hairless albino mice expressing luciferase that were allowed to drink luciferin and engage in normal behaviors during imaging with cooled electron-multiplying-CCD cameras. Computer-aided image selection was developed to measure signal intensity of individual mice each time they were in the same posture, thereby providing comparable measurements over long intervals. This imaging procedure, performed primarily during the animal's night, is compatible with entrainment of the mouse circadian timing system to the light cycle while allowing sampling at multi-day intervals to monitor long-term changes. When the circadian expression of a gene is known, this approach provides an effective alternative to imaging immobile anesthetized animals and can removing noise caused by circadian oscillations and body movements that can degrade data collected during long-term imaging studies.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology, & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jessica A. Zavadil
- Graduate Medical Education, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Michael E. Geusz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
18
|
Abstract
Circadian rhythms are natural rhythms that widely exist in all creatures, and regulate the processes and physiological functions of various biochemical reactions. The circadian clock is critical for cancer occurrence and progression. Its function is regulated by metabolic activities, and the expression and transcription of various genes. This review summarizes the composition of the circadian clock; the biological basis for its function; its relationship with, and mechanisms in, cancer; its various functions in different cancers; the effects of anti-tumor treatment; and potential therapeutic targets. Research in this area is expected to advance understanding of circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) in tumor diseases, and contribute to the development of new anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Chen Huang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chenliang Zhang
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jian Li
- West China School of Medicine, Sichuan University, Chengdu 610000, China
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
19
|
Yi PC, Qin YH, Zheng CM, Ren KM, Huang L, Chen W. Tumor markers and depression scores are predictive of non-suicidal self-injury behaviors among adolescents with depressive disorder: A retrospective study. Front Neurosci 2022; 16:953842. [PMID: 36033621 PMCID: PMC9403252 DOI: 10.3389/fnins.2022.953842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Non-suicidal self-injury (NSSI) is an important risk factor for suicide in adolescents with depressive disorders; therefore, it is important to predict NSSI occurrence as early as possible. Disturbances in biological rhythms are characteristic manifestations of depressive disorders and can lead to immune dysfunction, leading to changes in tumor markers. This study aimed to produce an index that utilizes tumor markers to predict NSSI behaviors among adolescents with depressive disorders. Methods A total of 120 hospitalized adolescent patients with depressive disorders aged 14–24 years were included in this study. Participants were divided into NSSI and non-NSSI groups based on self-reports using the Ottawa Self-Injury Inventory. Demographics, tumor marker concentrations, other peripheral blood indices, Hamilton Depression Rating Scale (HDRS) scores, and Hamilton Anxiety Rating Scale (HAMA) scores were compared between the two groups. Logistic regression analysis was conducted to develop a joint index, and a receiver operating characteristic (ROC) curve was created to predict NSSI behaviors among adolescents with depressive disorders. Results Compared with the non-NSSI group, the NSSI group had significantly higher insight, retardation, insomnia, hopelessness, psychiatric anxiety, total HDRS and HAMA scores, and significantly higher levels of cancer antigen 125 (CA-125), cancer antigen 19-9 (CA19-9), and carcinoembryonic antigen (CEA). In addition, a joint index was developed by combining CA-125, CA19-9, CEA, HDRS total score, HAMA total score and age using multiple logistic regression to predict NSSI behaviors. The area under the curve was 0.831, with a sensitivity and specificity of 0.734 and 0.891, respectively. Conclusion A combination of depression score, tumor marker levels, and age can identify NSSI behaviors among adolescents with depressive disorders.
Collapse
Affiliation(s)
- Peng-cheng Yi
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinical Psychology, The Third People’s Hospital of Xiangshan County, Ningbo, China
| | - Yan-hua Qin
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-mei Zheng
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Psychiatry, The Seventh People’s Hospital of Shaoxing, Shaoxing, China
| | - Ke-ming Ren
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Huang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
- *Correspondence: Wei Chen,
| |
Collapse
|
20
|
Alachkar A, Lee J, Asthana K, Vakil Monfared R, Chen J, Alhassen S, Samad M, Wood M, Mayer EA, Baldi P. The hidden link between circadian entropy and mental health disorders. Transl Psychiatry 2022; 12:281. [PMID: 35835742 PMCID: PMC9283542 DOI: 10.1038/s41398-022-02028-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The high overlapping nature of various features across multiple mental health disorders suggests the existence of common psychopathology factor(s) (p-factors) that mediate similar phenotypic presentations across distinct but relatable disorders. In this perspective, we argue that circadian rhythm disruption (CRD) is a common underlying p-factor that bridges across mental health disorders within their age and sex contexts. We present and analyze evidence from the literature for the critical roles circadian rhythmicity plays in regulating mental, emotional, and behavioral functions throughout the lifespan. A review of the literature shows that coarse CRD, such as sleep disruption, is prevalent in all mental health disorders at the level of etiological and pathophysiological mechanisms and clinical phenotypical manifestations. Finally, we discuss the subtle interplay of CRD with sex in relation to these disorders across different stages of life. Our perspective highlights the need to shift investigations towards molecular levels, for instance, by using spatiotemporal circadian "omic" studies in animal models to identify the complex and causal relationships between CRD and mental health disorders.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA. .,Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
| | - Justine Lee
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Kalyani Asthana
- grid.266093.80000 0001 0668 7243Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA USA
| | - Roudabeh Vakil Monfared
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Jiaqi Chen
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Sammy Alhassen
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Muntaha Samad
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA USA
| | - Marcelo Wood
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA USA
| | - Emeran A. Mayer
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.19006.3e0000 0000 9632 6718G. Oppenheimer Center of Neurobiology of Stress & Resilience and Goldman Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, CA USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA. .,Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
21
|
Malik A, Nalluri S, De A, Beligala D, Geusz ME. The Relevance of Circadian Clocks to Stem Cell Differentiation and Cancer Progression. NEUROSCI 2022; 3:146-165. [PMID: 39483369 PMCID: PMC11523739 DOI: 10.3390/neurosci3020012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2024] Open
Abstract
The molecular mechanism of circadian clocks depends on transcription-translation feedback loops (TTFLs) that have known effects on key cellular processes. However, the distinct role of circadian TTFLs in mammalian stem cells and other less differentiated cells remains poorly understood. Neural stem cells (NSCs) of the brain generate neurons and glia postnatally but also may become cancer stem cells (CSCs), particularly in astrocytomas. Evidence indicates clock TTFL impairment is needed for tumor growth and progression; although, this issue has been examined primarily in more differentiated cancer cells rather than CSCs. Similarly, few studies have examined circadian rhythms in NSCs. After decades of research, it is now well recognized that tumors consist of CSCs and a range of other cancer cells along with noncancerous stromal cells. The circadian properties of these many contributors to tumor properties and treatment outcome are being widely explored. New molecular tools and ones in development will likely enable greater discrimination of important circadian and non-circadian cells within malignancies at multiple stages of cancer progression and following therapy. Here, we focus on adult NSCs and glioma CSCs to address how cells at different stages of differentiation may harbor unique states of the molecular circadian clock influencing differentiation and cell fate.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Arpan De
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Dilshan Beligala
- Department of Molecular Biology and Biotechnology, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Michael E Geusz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
| |
Collapse
|
22
|
Lone IM, Iraqi FA. Genetics of murine type 2 diabetes and comorbidities. Mamm Genome 2022; 33:421-436. [PMID: 35113203 DOI: 10.1007/s00335-022-09948-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
ABSTRAC Type 2 diabetes (T2D) is a polygenic and multifactorial complex disease, defined as chronic metabolic disorder. It's a major global health concern with an estimated 463 million adults aged 20-79 years with diabetes and projected to increase up to 700 million by 2045. T2D was reported to be one of the four leading causes of non-communicable disease (NCD) deaths in 2012. Environmental factors play a part in the development of polygenic forms of diabetes. Polygenic forms of diabetes often run-in families. Fortunately, T2D, which accounts for 90-95% of the entire four types of diabetes including, Type 1 diabetes (T1D), T2D, monogenic diabetes syndromes (MGDS), and Gestational diabetes mellitus, can be prevented or delayed through nutrition and lifestyle changes as well as through pharmacologic interventions. Typical symptom of the T2D is high blood glucose levels and comprehensive insulin resistance of the body, producing an impaired glucose tolerance. Impaired glucose tolerance of T2D is accompanied by extensive health complications, including cardiovascular diseases (CVD) that vary in morbidity and mortality among populations. The pathogenesis of T2D varies between populations and/or ethnic groupings and is known to be attributed extremely by genetic components and environmental factors. It is evident that genetic background plays a critical role in determining the host response toward certain environmental conditions, whether or not of developing T2D (susceptibility versus resistant). T2D is considered as a silent disease that can progress for years before its diagnosis. Once T2D is diagnosed, many metabolic malfunctions are observed whether as side effects or as independent comorbidity. Mouse models have been proven to be a powerful tool for mapping genetic factors that underline the susceptibility to T2D development as well its comorbidities. Here, we have conducted a comprehensive search throughout the published data covering the time span from early 1990s till the time of writing this review, for already reported quantitative trait locus (QTL) associated with murine T2D and comorbidities in different mouse models, which contain different genetic backgrounds. Our search has resulted in finding 54 QTLs associated with T2D in addition to 72 QTLs associated with comorbidities associated with the disease. We summarized the genomic locations of these mapped QTLs in graphical formats, so as to show the overlapping positions between of these mapped QTLs, which may suggest that some of these QTLs could be underlined by sharing gene/s. Finally, we reviewed and addressed published reports that show the success of translation of the identified mouse QTLs/genes associated with the disease in humans.
Collapse
Affiliation(s)
- Iqbal M Lone
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Fuad A Iraqi
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
23
|
Wong DCS, Seinkmane E, Zeng A, Stangherlin A, Rzechorzek NM, Beale AD, Day J, Reed M, Peak‐Chew SY, Styles CT, Edgar RS, Putker M, O’Neill JS. CRYPTOCHROMES promote daily protein homeostasis. EMBO J 2022; 41:e108883. [PMID: 34842284 PMCID: PMC8724739 DOI: 10.15252/embj.2021108883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
The daily organisation of most mammalian cellular functions is attributed to circadian regulation of clock-controlled protein expression, driven by daily cycles of CRYPTOCHROME-dependent transcriptional feedback repression. To test this, we used quantitative mass spectrometry to compare wild-type and CRY-deficient fibroblasts under constant conditions. In CRY-deficient cells, we found that temporal variation in protein, phosphopeptide, and K+ abundance was at least as great as wild-type controls. Most strikingly, the extent of temporal variation within either genotype was much smaller than overall differences in proteome composition between WT and CRY-deficient cells. This proteome imbalance in CRY-deficient cells and tissues was associated with increased susceptibility to proteotoxic stress, which impairs circadian robustness, and may contribute to the wide-ranging phenotypes of CRY-deficient mice. Rather than generating large-scale daily variation in proteome composition, we suggest it is plausible that the various transcriptional and post-translational functions of CRY proteins ultimately act to maintain protein and osmotic homeostasis against daily perturbation.
Collapse
Affiliation(s)
| | | | - Aiwei Zeng
- MRC Laboratory of Molecular BiologyCambridgeUK
| | | | | | | | - Jason Day
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
| | - Martin Reed
- MRC Laboratory of Molecular BiologyCambridgeUK
| | | | | | - Rachel S Edgar
- Department of Infectious DiseasesImperial CollegeLondonUK
| | - Marrit Putker
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
Crown BioscienceUtrechtthe Netherlands
| | | |
Collapse
|
24
|
Zhang H, Shu R, Liu X, Zhang X, Sun D. Downregulation of REV-ERBα is associated with the progression of lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:56. [PMID: 35282080 PMCID: PMC8848401 DOI: 10.21037/atm-21-6405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Background The nuclear receptor REV-ERBα (nuclear receptor subfamily 1, Group D member 1, NR1D1) is one of the essential components of the circadian clock which modulates cell proliferation, glucose metabolism, inflammation, and many other biological processes. Modulation of these processes are also relevant to cancer development. Previous studies have suggested that activation of REV-ERBα correlates with cancer cell senescence and death, but how REV-ERBα play roles in tumor progression require further elucidation. Methods We investigated the expression of REV-ERBα in clinical samples by immunohistochemistry (IHC). REV-ERBα is downregulated by shorth hairpin RNA (shRNA). The gene expression level of each group was detected by Western blot analysis. The effects of REV-ERBα downregulation on apoptosis and cell cycles was assessed by flow cytometry assay. A549 cell growth curve under different treatments measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Cell invasion ability under different treatments was measured by Transwell assay. Immunostaining analysis was also used for evaluating the effects of downregulation of REV-ERBα on nuclear factor-κB (NF-κB). Results Compared to 81.8% (54/66) of samples exhibiting a lower expression level of REV-ERBα in cancer tissue than in paired normal tissue, only 18.2% (12/66) were higher or equally expressed in lung cancer tissue. Furthermore, downregulation of REV-ERBα by RNA interference can significantly enhance the transcription of nuclear factor-κB (NF-κB), while the expression of p53 remained the same. Downregulation of REV-ERBα was also shown to stimulate the invasion and promote the proliferation of lung adenocarcinoma cell line A549. Conclusions Our findings suggest that tumorigenesis and progression of lung carcinoma is relevant to downregulation or inhibition of REV-ERBα. This pathophysiological process also correlates with regulation of the NF-κB signaling pathway, indicating that REV-ERBα is a potential target of lung cancer therapy.
Collapse
Affiliation(s)
- Hao Zhang
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Ruichen Shu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaofeng Liu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xun Zhang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Daqiang Sun
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
25
|
Stokes K, Nunes M, Trombley C, Flôres DEFL, Wu G, Taleb Z, Alkhateeb A, Banskota S, Harris C, Love OP, Khan WI, Rueda L, Hogenesch JB, Karpowicz P. The Circadian Clock Gene, Bmal1, Regulates Intestinal Stem Cell Signaling and Represses Tumor Initiation. Cell Mol Gastroenterol Hepatol 2021; 12:1847-1872.e0. [PMID: 34534703 PMCID: PMC8591196 DOI: 10.1016/j.jcmgh.2021.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Circadian rhythms are daily physiological oscillations driven by the circadian clock: a 24-hour transcriptional timekeeper that regulates hormones, inflammation, and metabolism. Circadian rhythms are known to be important for health, but whether their loss contributes to colorectal cancer is not known. We tested the nonredundant clock gene Bmal1 in intestinal homeostasis and tumorigenesis, using the Apcmin model of colorectal cancer. METHODS Bmal1 mutant, epithelium-conditional Bmal1 mutant, and photoperiod (day/night cycle) disrupted mice bearing the Apcmin allele were assessed for tumorigenesis. Tumors and normal nontransformed tissue were characterized. Intestinal organoids were assessed for circadian transcription rhythms by RNA sequencing, and in vivo and organoid assays were used to test Bmal1-dependent proliferation and self-renewal. RESULTS Loss of Bmal1 or circadian photoperiod increases tumor initiation. In the intestinal epithelium the clock regulates transcripts involved in regeneration and intestinal stem cell signaling. Tumors have no self-autonomous clock function and only weak clock function in vivo. Apcmin clock-disrupted tumors show high Yes-associated protein 1 (Hippo signaling) activity but show low Wnt (Wingless and Int-1) activity. Intestinal organoid assays show that loss of Bmal1 increases self-renewal in a Yes-associated protein 1-dependent manner. CONCLUSIONS Bmal1 regulates intestinal stem cell pathways, including Hippo signaling, and the loss of circadian rhythms potentiates tumor initiation. Transcript profiling: GEO accession number: GSE157357.
Collapse
Affiliation(s)
- Kyle Stokes
- Department of Biomedical Sciences, Windsor, Ontario, Canada
| | - Malika Nunes
- Department of Biomedical Sciences, Windsor, Ontario, Canada
| | | | - Danilo E F L Flôres
- Division of Human Genetics and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gang Wu
- Division of Human Genetics and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zainab Taleb
- Department of Biomedical Sciences, Windsor, Ontario, Canada
| | | | - Suhrid Banskota
- Department of Pathology and Molecular Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Chris Harris
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Waliul I Khan
- Department of Pathology and Molecular Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Luis Rueda
- School of Computer Science, Windsor, Ontario, Canada
| | - John B Hogenesch
- Division of Human Genetics and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
26
|
Xing X, Gu F, Hua L, Cui X, Li D, Wu Z, Zhang R. TIMELESS Promotes Tumor Progression by Enhancing Macrophages Recruitment in Ovarian Cancer. Front Oncol 2021; 11:732058. [PMID: 34490127 PMCID: PMC8417241 DOI: 10.3389/fonc.2021.732058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/29/2021] [Indexed: 01/11/2023] Open
Abstract
Objective Ovarian cancer (OV) is the most fatal and frequent type of gynecological malignancy worldwide. TIMELESS (TIM), as a circadian clock gene, has been found to be highly expressed and predictive of poor prognosis in various cancers. However, the function of TIM in OV is not known. This study was designed to investigate the biological functions and underlying mechanisms of TIM during OV progression. Methods Cell viability assay, cell migration assay, immunohistochemistry staining, qPCR analyses, and tumor xenograft model were used to identify the functions of TIM in OV. Bioinformatics analyses, including GEPIA, cBioPortal, GeneMANIA, and TIMER, were used to analyze the gene expression, genetic alteration, and immune cell infiltration of TIM in OV. Results TIM is highly expressed in OV patients. TIM knockdown inhibited OV cell proliferation, migration, and invasion both in vitro and in vivo. Genetic alteration of TIM was identified in patients with OV. TIM co-expression network indicates that TIM had a wide effect on the immune cell infiltration and activation in OV. Further analysis and experimental verification revealed that TIM was positively correlated with macrophages infiltration in OV. Conclusions Our study unveiled a novel function of highly expressed TIM associated with immune cell especially macrophages infiltration in OV. TIM may serve as a potential prognostic biomarker and immunotherapy target for OV patients.
Collapse
Affiliation(s)
- Xin Xing
- Department of Obstetrics and Gynecology, Fengxian Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Fei Gu
- Department of Obstetrics and Gynecology, Fengxian Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Lanyu Hua
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoxiao Cui
- Department of Obstetrics and Gynecology, Fengxian Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Dongxue Li
- Shanghai Cancer Institute, Shanghai, China
| | - Zhiyong Wu
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital Affiliated to the Southern Medical University, Shanghai, China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Yang Y, Lindsey-Boltz LA, Vaughn CM, Selby CP, Cao X, Liu Z, Hsu DS, Sancar A. Circadian clock, carcinogenesis, chronochemotherapy connections. J Biol Chem 2021; 297:101068. [PMID: 34375638 PMCID: PMC8403766 DOI: 10.1016/j.jbc.2021.101068] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/27/2023] Open
Abstract
The circadian clock controls the expression of nearly 50% of protein coding genes in mice and most likely in humans as well. Therefore, disruption of the circadian clock is presumed to have serious pathological effects including cancer. However, epidemiological studies on individuals with circadian disruption because of night shift or rotating shift work have produced contradictory data not conducive to scientific consensus as to whether circadian disruption increases the incidence of breast, ovarian, prostate, or colorectal cancers. Similarly, genetically engineered mice with clock disruption do not exhibit spontaneous or radiation-induced cancers at higher incidence than wild-type controls. Because many cellular functions including the cell cycle and cell division are, at least in part, controlled by the molecular clock components (CLOCK, BMAL1, CRYs, PERs), it has also been expected that appropriate timing of chemotherapy may increase the efficacy of chemotherapeutic drugs and ameliorate their side effect. However, empirical attempts at chronochemotherapy have not produced beneficial outcomes. Using mice without and with human tumor xenografts, sites of DNA damage and repair following treatment with the anticancer drug cisplatin have been mapped genome-wide at single nucleotide resolution and as a function of circadian time. The data indicate that mechanism-based studies such as these may provide information necessary for devising rational chronochemotherapy regimens.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Courtney M Vaughn
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xuemei Cao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Zhenxing Liu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - David S Hsu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
28
|
Hou L, Li H, Wang H, Ma D, Liu J, Ma L, Wang Z, Yang Z, Wang F, Xia H. The circadian clock gene PER2 enhances chemotherapeutic efficacy in nasopharyngeal carcinoma when combined with a targeted nanosystem. J Mater Chem B 2021; 8:5336-5350. [PMID: 32458942 DOI: 10.1039/d0tb00595a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatment failure occurs in more than 40% of advanced nasopharyngeal carcinoma (NPC) patients including local recurrence and distant metastasis due to chemoradioresistance. Circadian clock genes were identified as regulating cancer progression and chemoradiosensitivity in a time-dependent manner. A novel nanosystem can ensure the accumulation and controllable release of chemotherapeutic agents at the tumour site at a set time. In this study, we investigated the expression of circadian clock genes and identified that period circadian regulator 2 (PER2) as a tumour suppressor plays a key role in NPC progression. A label-free proteomic approach showed that PER2 overexpression can inhibit the ERK/MAPK pathway. The chemotherapeutic effect of PER2 overexpression was assessed in NPC together with the nanosystem comprising folic acid (FA), upconverting nanoparticles covalently coupled with Rose Bengal (UCNPs-RB), 10-hydroxycamptothecin (HCPT) and lipid-perfluorohexane (PFH) (FURH-PFH-NPs). PER2 overexpression combined with the targeted and controlled release of nanoagents elevated chemotherapeutic efficacy in NPC, which has potential application value for the chronotherapy of tumours.
Collapse
Affiliation(s)
- Li Hou
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China and Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China.
| | - Hailiang Li
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China. and Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Haiyan Wang
- Department of Gynaecology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Dede Ma
- Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Jing Liu
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Liqiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Zhihua Wang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Zhihua Yang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Faxuan Wang
- School of Public Health, Ningxia Medical University, Yin Chuan, 750004 Ningxia, P. R. China
| | - Hechun Xia
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China. and Department of Neurosurgery, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| |
Collapse
|
29
|
Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. Importance of circadian timing for aging and longevity. Nat Commun 2021; 12:2862. [PMID: 34001884 PMCID: PMC8129076 DOI: 10.1038/s41467-021-22922-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary restriction (DR) decreases body weight, improves health, and extends lifespan. DR can be achieved by controlling how much and/or when food is provided, as well as by adjusting nutritional composition. Because these factors are often combined during DR, it is unclear which are necessary for beneficial effects. Several drugs have been utilized that target nutrient-sensing gene pathways, many of which change expression throughout the day, suggesting that the timing of drug administration is critical. Here, we discuss how dietary and pharmacological interventions promote a healthy lifespan by influencing energy intake and circadian rhythms. Circadian clocks link physiologic processes to environmental conditions and a mismatch between internal and external rhythms has negative effects on organismal health. In this review, the authors discuss the interactions between circadian clocks and dietary interventions targeted to promote healthy aging.
Collapse
Affiliation(s)
- Victoria A Acosta-Rodríguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Abstract
The circadian clock coordinates daily rhythmicity of biochemical, physiologic, and behavioral functions in humans. Gene expression, cell division, and DNA repair are modulated by the clock, which gives rise to the hypothesis that clock dysfunction may predispose individuals to cancer. Although the results of many epidemiologic and animal studies are consistent with there being a role for the clock in the genesis and progression of tumors, available data are insufficient to conclude that clock disruption is generally carcinogenic. Similarly, studies have suggested a circadian time-dependent efficacy of chemotherapy, but clinical trials of chronochemotherapy have not demonstrated improved outcomes compared with conventional regimens. Future hypothesis-driven and discovery-oriented research should focus on specific interactions between clock components and carcinogenic mechanisms to realize the full clinical potential of the relationship between clocks and cancer.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Russell N Van Gelder
- Departments of Ophthalmology, Biological Structure, and Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA.
| |
Collapse
|
31
|
Nicola AC, Ferreira LB, Mata MM, Vilhena-Franco T, Leite CM, Martins AB, Antunes-Rodrigues J, Poletini MO, Dornelles RCM. Vasopressinergic Activity of the Suprachiasmatic Nucleus and mRNA Expression of Clock Genes in the Hypothalamus-Pituitary-Gonadal Axis in Female Aging. Front Endocrinol (Lausanne) 2021; 12:652733. [PMID: 34504470 PMCID: PMC8421860 DOI: 10.3389/fendo.2021.652733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
The important involvement of the suprachiasmatic nucleus (SCN) and the activity of vasopressinergic neurons in maintaining the rhythmicity of the female reproductive system depends on the mRNA transcription-translation feedback loops. Therefore, circadian clock function, like most physiological processes, is involved in the events that determine reproductive aging. This study describes the change of mRNA expression of clock genes, Per2, Bmal1, and Rev-erbα, in the hypothalamus-pituitary-gonadal axis (HPG) of female rats with regular cycle (RC) and irregular cycle (IC), and the vasopressinergic neurons activity in the SCN and kisspeptin neurons in the arcuate nucleus (ARC) of these animals. Results for gonadotropins and the cFos/AVP-ir neurons in the SCN of IC were higher, but kisspeptin-ir was minor. Change in the temporal synchrony of the clock system in the HPG axis, during the period prior to the cessation of ovulatory cycles, was identified. The analysis of mRNA for Per2, Bmal1, and Rev-erbα in the reproductive axis of adult female rodents shows that the regularity of the estrous cycle is guaranteed by alternation in the amount of expression of Bmal1 and Per2, and Rev-erbα and Bmal1 between light and dark phases, which ceases to occur and contributes to determining reproductive senescence. These results showed that the desynchronization between the central and peripheral circadian clocks contributes to the irregularity of reproductive events. We suggest that the feedback loops of clock genes on the HPG axis modulate the spontaneous transition from regular to irregular cycle and to acyclicity in female rodents.
Collapse
Affiliation(s)
- Angela Cristina Nicola
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas—SBFis/UNESP, Department of Basic Sciences, Araçatuba, Brazil
- *Correspondence: Angela Cristina Nicola, ; Rita Cássia Menegati Dornelles,
| | - Larissa Brazoloto Ferreira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas—SBFis/UNESP, Department of Basic Sciences, Araçatuba, Brazil
| | - Milene Mantovani Mata
- University of Sao Paulo (USP), School of Medicine of Ribeirão Preto, Department of Physiology, Ribeirão Preto, Brazil
| | - Tatiane Vilhena-Franco
- University of Sao Paulo (USP), School of Medicine of Ribeirão Preto, Department of Physiology, Ribeirão Preto, Brazil
| | | | - Andressa Busetti Martins
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas—SBFis/UEL, Department of Physiological Sciences, Londrina, Brazil
| | - José Antunes-Rodrigues
- University of Sao Paulo (USP), School of Medicine of Ribeirão Preto, Department of Physiology, Ribeirão Preto, Brazil
| | - Maristela Oliveira Poletini
- Federal University of Minas Gerais (UFMG), Institute of Biological Sciences, Department of Physiology and Biophysics, Belo Horizonte, Brazil
| | - Rita Cássia Menegati Dornelles
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas—SBFis/UNESP, Department of Basic Sciences, Araçatuba, Brazil
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Sciences, Araçatuba, Brazil
- *Correspondence: Angela Cristina Nicola, ; Rita Cássia Menegati Dornelles,
| |
Collapse
|
32
|
Hu L, Harper A, Heer E, McNeil J, Cao C, Park Y, Martell K, Gotto G, Shen-Tu G, Peters C, Brenner D, Yang L. Social Jetlag and Prostate Cancer Incidence in Alberta's Tomorrow Project: A Prospective Cohort Study. Cancers (Basel) 2020; 12:E3873. [PMID: 33371502 PMCID: PMC7767515 DOI: 10.3390/cancers12123873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
We investigated the association of social jetlag (misalignment between the internal clock and socially required timing of activities) and prostate cancer incidence in a prospective cohort in Alberta, Canada. Data were collected from 7455 cancer-free men aged 35-69 years enrolled in Alberta's Tomorrow Project (ATP) from 2001-2007. In the 2008 survey, participants reported usual bed- and wake-times on weekdays and weekend days. Social jetlag was defined as the absolute difference in waking time between weekday and weekend days, and was categorized into three groups: 0-<1 h (from 0 to anything smaller than 1), 1-<2 h (from 1 to anything smaller than 2), and 2+ h. ATP facilitated data linkage with the Alberta Cancer Registry in June 2018 to determine incident prostate cancer cases (n = 250). Hazard ratios (HR) were estimated using Cox proportional hazards regressions, adjusting for a range of covariates. Median follow-up was 9.57 years, yielding 68,499 person-years. Baseline presence of social jetlag of 1-<2 h (HR = 1.52, 95% CI: 1.10 to 2.01), and 2+ hours (HR = 1.69, 95% CI: 1.15 to 2.46) were associated with increased prostate cancer risk vs. those reporting no social jetlag (p for trend = 0.004). These associations remained after adjusting for sleep duration (p for trend = 0.006). With respect to chronotype, the association between social jetlag and prostate cancer risk remained significant in men with early chronotypes (p for trend = 0.003) but attenuated to null in men with intermediate (p for trend = 0.150) or late chronotype (p for trend = 0.381). Our findings suggest that greater than one hour of habitual social jetlag is associated with an increased risk of prostate cancer. Longitudinal studies with repeated measures of social jetlag and large samples with sufficient advanced prostate cancer cases are needed to confirm these findings.
Collapse
Affiliation(s)
- Liang Hu
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310028, China;
- Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB T2S 3C3, Canada; (A.H.); (E.H.); (J.M.); (C.P.)
| | - Andrew Harper
- Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB T2S 3C3, Canada; (A.H.); (E.H.); (J.M.); (C.P.)
| | - Emily Heer
- Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB T2S 3C3, Canada; (A.H.); (E.H.); (J.M.); (C.P.)
| | - Jessica McNeil
- Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB T2S 3C3, Canada; (A.H.); (E.H.); (J.M.); (C.P.)
| | - Chao Cao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Yikyung Park
- Program of Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Kevin Martell
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada; (K.M.); (D.B.)
| | - Geoffrey Gotto
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N2, Canada;
| | - Grace Shen-Tu
- Alberta’s Tomorrow Project, Cancer Care Alberta, Alberta Health Services, Calgary, AB T2T 5C7, Canada;
| | - Cheryl Peters
- Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB T2S 3C3, Canada; (A.H.); (E.H.); (J.M.); (C.P.)
- Program of Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Darren Brenner
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada; (K.M.); (D.B.)
| | - Lin Yang
- Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB T2S 3C3, Canada; (A.H.); (E.H.); (J.M.); (C.P.)
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada; (K.M.); (D.B.)
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
33
|
Small Molecules Targeting Biological Clock; A Novel Prospective for Anti-Cancer Drugs. Molecules 2020; 25:molecules25214937. [PMID: 33114496 PMCID: PMC7663518 DOI: 10.3390/molecules25214937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
The circadian rhythms are an intrinsic timekeeping system that regulates numerous physiological, biochemical, and behavioral processes at intervals of approximately 24 h. By regulating such processes, the circadian rhythm allows organisms to anticipate and adapt to continuously changing environmental conditions. A growing body of evidence shows that disruptions to the circadian rhythm can lead to various disorders, including cancer. Recently, crucial knowledge has arisen regarding the essential features that underlie the overt circadian rhythm and its influence on physiological outputs. This knowledge suggests that specific small molecules can be utilized to control the circadian rhythm. It has been discovered that these small molecules can regulate circadian-clock-related disorders such as metabolic, cardiovascular, inflammatory, as well as cancer. This review examines the potential use of small molecules for developing new drugs, with emphasis placed on recent progress that has been made regarding the identification of small-molecule clock modulators and their potential use in treating cancer.
Collapse
|
34
|
Hozer C, Perret M, Pavard S, Pifferi F. Survival is reduced when endogenous period deviates from 24 h in a non-human primate, supporting the circadian resonance theory. Sci Rep 2020; 10:18002. [PMID: 33093578 PMCID: PMC7582969 DOI: 10.1038/s41598-020-75068-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythms are ubiquitous attributes across living organisms and allow the coordination of internal biological functions with optimal phases of the environment, suggesting a significant adaptive advantage. The endogenous period called tau lies close to 24 h and is thought to be implicated in individuals' fitness: according to the circadian resonance theory, fitness is reduced when tau gets far from 24 h. In this study, we measured the endogenous period of 142 mouse lemurs (Microcebus murinus), and analyzed how it is related to their survival. We found different effects according to sex and season. No impact of tau on mortality was found in females. However, in males, the deviation of tau from 24 h substantially correlates with an increase in mortality, particularly during the inactive season (winter). These results, comparable to other observations in mice or drosophila, show that captive gray mouse lemurs enjoy better fitness when their circadian period closely matches the environmental periodicity. In addition to their deep implications in health and aging research, these results raise further ecological and evolutionary issues regarding the relationships between fitness and circadian clock.
Collapse
Affiliation(s)
- Clara Hozer
- Unité Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, CNRS, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Martine Perret
- Unité Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, CNRS, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Samuel Pavard
- Unité Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, 75016, Paris, France
| | - Fabien Pifferi
- Unité Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, CNRS, 1 Avenue du Petit Château, 91800, Brunoy, France.
| |
Collapse
|
35
|
Abstract
The ability of organisms to keep track of external time, by means of the circadian clock interacting with the environment, is essential for health. The focus of this review is recent methods to detect the internal circadian time of an omics sample. Before reaching our main topic, we introduce the circadian clock, its hierarchical structure, and its main functions; we will also explain the notion of internal time, or circadian phase, and how it differs from the geophysical time. We then focus on the role played by the clock in the maintenance of human heath, in particular in the context of cancer. Thereafter, we analyze an important methodological question: how to infer the circadian phase of unlabeled omics snapshot measurements. Answering this question could both significantly increase our understanding of the circadian clock and allow the use of this knowledge in biomedical applications. We review existing methods, focusing on the more recent ones, following a historical trajectory. We explain the basic concepts underlying the methods, as well as some crucial technical aspects of each. We conclude by reporting how some of these methods have, more or less effectively, enabled furthering our understanding of the clock and given insights regarding potential biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Talamanca
- The Institute of Bioengineering (IBI), School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering (IBI), School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
36
|
Impact of circadian and diurnal rhythms on cellular metabolic function and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:393-412. [PMID: 32739012 DOI: 10.1016/bs.irn.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The 24-h rotational period of the earth has driven evolution of biological systems that serve to synchronize organismal physiology and behavior to this predictable environmental event. In mammals, the circadian (circa, "about" and dia, "a day") clock keeps 24-h time at the organismal and cellular level, optimizing biological function for a given time of day. The most obvious circadian output is the sleep-wake cycle, though countless bodily functions, ranging from hormone levels to cognitive function, are influenced by the circadian clock. Here we discuss the regulation of metabolic pathways by the circadian clock, discuss the evidence implicating circadian and sleep disruption in neurodegenerative diseases, and suggest some possible connections between the clock, metabolism, and neurodegenerative disease.
Collapse
|
37
|
Yang C, Wu J, Liu X, Wang Y, Liu B, Chen X, Wu X, Yan D, Han L, Liu S, Shan L, Shang Y. Circadian Rhythm Is Disrupted by ZNF704 in Breast Carcinogenesis. Cancer Res 2020; 80:4114-4128. [PMID: 32651256 DOI: 10.1158/0008-5472.can-20-0493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022]
Abstract
Copy number gain in chromosome 8q21 is frequently detected in breast cancer, yet the oncogenic potential underlying this amplicon in breast carcinogenesis remains to be delineated. We report here that ZNF704, a gene mapped to 8q21, is recurrently amplified in various malignancies including breast cancer. ZNF704 acted as a transcriptional repressor and interacted with the transcriptional corepressor SIN3A complex. Genome-wide interrogation of transcriptional targets revealed that the ZNF704/SIN3A complex represses a panel of genes including PER2 that are critically involved in the function of the circadian clock. Overexpression of ZNF704 prolonged the period and dampened the amplitude of the circadian clock. ZNF704 promoted the proliferation and invasion of breast cancer cells in vitro and accelerated the growth and metastasis of breast cancer in vivo. Consistently, the level of ZNF704 expression inversely correlated with that of PER2 in breast carcinomas, and high level of ZNF704 correlated with advanced histologic grades, lymph node positivity, and poor prognosis of patients with breast cancer, especially those with HER2+ and basal-like subtypes. These results indicate that ZNF704 is an important regulator of the circadian clock and a potential driver for breast carcinogenesis. SIGNIFICANCE: This study indicates that ZNF704 could be a potential oncogenic factor, disrupting circadian rhythm of breast cancer cells and contributing to breast carcinogenesis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Beibei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lulu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Laboratory of Cancer Epigenetics, Chinese Academy of Medical Sciences Beijing, China
| |
Collapse
|
38
|
Monfredi O, Lakatta EG. Complexities in cardiovascular rhythmicity: perspectives on circadian normality, ageing and disease. Cardiovasc Res 2020; 115:1576-1595. [PMID: 31150049 DOI: 10.1093/cvr/cvz112] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/06/2019] [Accepted: 05/25/2019] [Indexed: 12/13/2022] Open
Abstract
Biological rhythms exist in organisms at all levels of complexity, in most organs and at myriad time scales. Our own biological rhythms are driven by energy emitted by the sun, interacting via our retinas with brain stem centres, which then send out complex messages designed to synchronize the behaviour of peripheral non-light sensing organs, to ensure optimal physiological responsiveness and performance of the organism based on the time of day. Peripheral organs themselves have autonomous rhythmic behaviours that can act independently from central nervous system control but is entrainable. Dysregulation of biological rhythms either through environment or disease has far-reaching consequences on health that we are only now beginning to appreciate. In this review, we focus on cardiovascular rhythms in health, with ageing and under disease conditions.
Collapse
Affiliation(s)
- Oliver Monfredi
- Division of Medicine, Department of Cardiology, The Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD, USA.,Laboratory of Cardiovascular Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA
| |
Collapse
|
39
|
Shen W, Zhang W, Ye W, Wang H, Zhang Q, Shen J, Hong Q, Li X, Wen G, Wei T, Zhang J. SR9009 induces a REV-ERB dependent anti-small-cell lung cancer effect through inhibition of autophagy. Theranostics 2020; 10:4466-4480. [PMID: 32292508 PMCID: PMC7150483 DOI: 10.7150/thno.42478] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: The circadian clock coordinates cell proliferation and metabolism and impacts the progression of some diseases, particularly cancer. Pharmacological modulation of the circadian machinery may be an effective therapeutic approach for treating cancer. SR9009 is a specific synthetic agonist of the REV-ERBs, essential circadian clock components. However, the potential efficacy and antitumor mechanism of this drug in small-cell lung cancer (SCLC) remains poorly understood. Methods: Here, we used chemosensitive cells (H69 and H446) and the corresponding chemoresistant cells (H69AR and H446DDP) to assess the efficacy of the REV-ERB agonist SR9009 for the treatment of SCLC in vitro and further validated the antitumor effect in subcutaneous tumor models of SCLC. Then, we determined whether REV-ERBα was correlated with the anti-SCLC effect of SR9009. Chromatin immunoprecipitation (ChIP) sequencing assays were conducted to identify potential DNA sequences directly regulated by REV-ERBα. Autophagy regulation by REV-ERBα and its possible mechanism in SR9009-based SCLC therapy were analyzed. Results: Here, we showed that the REV-ERB agonist SR9009 is specifically lethal to both chemosensitive and chemoresistant SCLC cells. REV-ERBα was involved in the antitumor effect of SR9009 in SCLC. The core autophagy gene Atg5 was identified as a direct downstream target of REV-ERBα and was suppressed by the REV-ERB agonist SR9009 in SCLC. Furthermore, the interaction of REV-ERBα with this autophagy gene impaired autophagy activity, leading to SR9009 cytotoxicity in SCLC cells. Principal conclusions: Our study provided a novel viewpoint indicating that the REV-ERB agonist SR9009 could be a novel and promising therapeutic strategy in first- or second-line SCLC treatment. The anti-SCLC effect of SR9009 is mediated by REV-ERB dependent suppression of autophagy via direct repression of the autophagy gene Atg5.
Collapse
|
40
|
Damulewicz M, Mazzotta GM. One Actor, Multiple Roles: The Performances of Cryptochrome in Drosophila. Front Physiol 2020; 11:99. [PMID: 32194430 PMCID: PMC7066326 DOI: 10.3389/fphys.2020.00099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 01/19/2023] Open
Abstract
Cryptochromes (CRYs) are flavoproteins that are sensitive to blue light, first identified in Arabidopsis and then in Drosophila and mice. They are evolutionarily conserved and play fundamental roles in the circadian clock of living organisms, enabling them to adapt to the daily 24-h cycles. The role of CRYs in circadian clocks differs among different species: in plants, they have a blue light-sensing activity whereas in mammals they act as light-independent transcriptional repressors within the circadian clock. These two different functions are accomplished by two principal types of CRYs, the light-sensitive plant/insect type 1 CRY and the mammalian type 2 CRY acting as a negative autoregulator in the molecular circadian clockwork. Drosophila melanogaster possesses just one CRY, belonging to type 1 CRYs. Nevertheless, this single CRY appears to have different functions, specific to different organs, tissues, and even subset of cells in which it is expressed. In this review, we will dissect the multiple roles of this single CRY in Drosophila, focusing on the regulatory mechanisms that make its pleiotropy possible.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
41
|
McKee CA, Lananna BV, Musiek ES. Circadian regulation of astrocyte function: implications for Alzheimer's disease. Cell Mol Life Sci 2020; 77:1049-1058. [PMID: 31578625 PMCID: PMC7098845 DOI: 10.1007/s00018-019-03314-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock regulates rhythms in gene transcription that have a profound impact on cellular function, behavior, and disease. Circadian dysfunction is a symptom of aging and neurodegenerative diseases, and recent studies suggest a bidirectional relationship between impaired clock function and neurodegeneration. Glial cells possess functional circadian clocks which may serve to control glial responses to daily oscillations in brain activity, cellular stress, and metabolism. Astrocytes directly support brain function through synaptic interactions, neuronal metabolic support, neuroinflammatory regulation, and control of neurovascular coupling at blood and CSF barriers. Emerging evidence suggests that the astrocyte circadian clock may be involved in many of these processes, and that clock disruption could influence neurodegeneration by disrupting several aspects of astrocyte function. Here we review the literature surrounding circadian control of astrocyte function in health and disease, and discuss the potential implications of astrocyte clocks for neurodegeneration.
Collapse
Affiliation(s)
- Celia A McKee
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA
| | - Brian V Lananna
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA
| | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, Box 8111, 425 S. Euclid Ave, St. Louis, MO, 63105, USA.
| |
Collapse
|
42
|
Sex specific effects of capsaicin on longevity regulation. Exp Gerontol 2020; 130:110788. [DOI: 10.1016/j.exger.2019.110788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/26/2023]
|
43
|
Zhang S, Dai M, Wang X, Jiang SH, Hu LP, Zhang XL, Zhang ZG. Signalling entrains the peripheral circadian clock. Cell Signal 2020; 69:109433. [PMID: 31982551 DOI: 10.1016/j.cellsig.2019.109433] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022]
Abstract
In mammals, 24-h rhythms of behaviour and physiology are regulated by the circadian clock. The circadian clock is controlled by a central clock in the brain's suprachiasmatic nucleus (SCN) that synchronizes peripheral clocks in peripheral tissues. Clock genes in the SCN are primarily entrained by light. Increasing evidence has shown that peripheral clocks are also regulated by light and hormones independent of the SCN. How the peripheral clocks deal with internal signals is dependent on the relevance of a specific cue to a specific tissue. In different tissues, most genes that are under circadian control are not overlapping, revealing the tissue-specific control of peripheral clocks. We will discuss how different signals control the peripheral clocks in different peripheral tissues, such as the liver, gastrointestinal tract, and pancreas, and discuss the organ-to-organ communication between the peripheral clocks at the molecular level.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
44
|
Teixeira AAS, Biondo LA, Silveira LS, Lima EA, Batatinha HA, Diniz TA, Oliveira De Souza C, Comin J, Neto JCR. Doxorubicin modulated clock genes and cytokines in macrophages extracted from tumor-bearing mice. Cancer Biol Ther 2020; 21:344-353. [PMID: 31931676 PMCID: PMC7515505 DOI: 10.1080/15384047.2019.1702400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythm is essential for cellular regulation of physiological, metabolic, and immune functions. Perturbations of circadian rhythms have been correlated with increased susceptibility to cancer and poor prognosis in the cancer treatment. Our aim is to investigate the role of doxorubicin (DOX) treatment on clock genes expression and inflammation in intraperitoneal macrophages and the antitumoral response. Methods: Macrophages were extracted from intraperitoneal cavity of mice without or with Lewis lung carcinoma (LLC) and treated with DOX totaling four groups (CTL, LLC, LLC+DOX and DOX) and analyzes of clock genes in six time points (ZT02, ZT06, ZT10, ZT14, ZT18 AND ZT22). Intraperitoneal macrophages cell culture was stimulated with LPS and DOX and clock genes and inflammatory profile were analyzed. In tumor were analyzed macrophages markers. Results: The expression of F4/80 (ZT22) and CD11c (ZT06) tumor tissue was significantly differed between LLC and LCC+DOX groups. In the intraperitoneal macrophages, DOX increased Clock (ZT10), Rev-Erbα (ZT18 and ZT22) and Per2 expressions (ZT18); in the LLC+DOX group was increased Bmal1 (ZT10), Per2 (ZT18) and NF-kB (ZT22) expressions; IL-6 expression increased in the LCC group (ZT02). In intraperitoneal macrophages cell culture stimulated with DOX and LPS after 24 h decreased Clock and Per1. DOX causes depression after 6 and 24 h in TNF-α content and Per2 gene expression after 24 h IL-1β expression was reduced also. Conclusion: DOX treatment in vivo disrupted cytokine and clock genes expression in intraperitoneal macrophages suppressing immune response. Moreover, macrophages cultured with DOX had decreased expression of LPS-stimulated inflammatory cytokines.
Collapse
Affiliation(s)
| | | | - Loreana S Silveira
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | - Edson A Lima
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | - Helena A Batatinha
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | - Tiego A Diniz
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | | | - Jeferson Comin
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
45
|
Welz PS, Benitah SA. Molecular Connections Between Circadian Clocks and Aging. J Mol Biol 2019; 432:3661-3679. [PMID: 31887285 DOI: 10.1016/j.jmb.2019.12.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
Abstract
The mammalian circadian clockwork has evolved as a timing system that allows the daily environmental changes to be anticipated so that behavior and tissue physiology can be adjusted accordingly. The circadian clock synchronizes the function of all cells within tissues in order to temporally separate preclusive and potentially harmful physiologic processes and to establish a coherent temporal organismal physiology. Thus, the proper functioning of the circadian clockwork is essential for maintaining cellular and tissue homeostasis. Importantly, aging reduces the robustness of the circadian clock, resulting in disturbed sleep-wake cycles, a lowered capacity to synchronize circadian rhythms in peripheral tissues, and reprogramming of the circadian clock output at the molecular function levels. These circadian clock-dependent behavioral and molecular changes in turn further accelerate the process of aging. Here we review the current knowledge about how aging affects the circadian clock, how the functional decline of the circadian clock affects aging, and how the circadian clock machinery and the molecular processes that underlie aging are intertwined.
Collapse
Affiliation(s)
- Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - S A Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
46
|
Abstract
Circadian clocks are endogenous oscillators that control 24-h physiological and behavioral processes. The central circadian clock exerts control over myriad aspects of mammalian physiology, including the regulation of sleep, metabolism, and the immune system. Here, we review advances in understanding the genetic regulation of sleep through the circadian system, as well as the impact of dysregulated gene expression on metabolic function. We also review recent studies that have begun to unravel the circadian clock’s role in controlling the cardiovascular and nervous systems, gut microbiota, cancer, and aging. Such circadian control of these systems relies, in part, on transcriptional regulation, with recent evidence for genome-wide regulation of the clock through circadian chromosome organization. These novel insights into the genomic regulation of human physiology provide opportunities for the discovery of improved treatment strategies and new understanding of the biological underpinnings of human disease.
Collapse
|
47
|
De A, Beligala DH, Birkholz TM, Geusz ME. Anticancer Properties of Curcumin and Interactions With the Circadian Timing System. Integr Cancer Ther 2019. [PMCID: PMC6902383 DOI: 10.1177/1534735419889154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The phytochemical curcumin is a major component of turmeric. It has recognized activity against cancer cells and affects several intracellular signaling pathways. Many molecules targeted by curcumin also regulate the circadian timing system that has effects on carcinogenesis, tumor growth, and metastasis. Although the circadian clock within cells may be suppressed in tumors, cancer cells are subjected to daily hormonal and neural activity that should be considered when timing optimal curcumin treatments. Rapid curcumin degradation in blood and tissues provides a challenge to maintaining sustained levels suitable for inducing cancer cell death, increasing the need to identify when during the circadian cycle rhythmically expressed molecular targets are present. Curcumin is well tolerated by individuals ingesting it for possible cancer prevention or in combination with conventional cancer therapies, and it shows low toxicity toward noncancerous cells at low dosages. In contrast, curcumin is particularly effective against cancer stem cells, which are treatment-resistant, aggressive, and tumor-initiating. Although curcumin has poor bioavailability, more stable curcumin analogs retain the anti-inflammatory, antioxidant, antimitotic, and pro-apoptotic benefits of curcumin. Anticancer properties are also present in congeners of curcumin in turmeric and after curcumin reduction by intestinal microbes. Various commercial curcuminoid products are highly popular dietary supplements, but caution is warranted. Although antioxidant properties of curcumin may prevent carcinogenesis, studies suggest curcumin interferes with certain chemotherapeutic agents. This review delves into the complex network of curcuminoid effects to identify potential anticancer strategies that may work in concert with daily physiological cycles controlled by the circadian timing system.
Collapse
Affiliation(s)
- Arpan De
- Bowling Green State University, Bowling Green, OH, USA
| | | | | | | |
Collapse
|
48
|
Liu F, Li X, Liu P, Quan X, Zheng C, Zhou B. Association Between Three Polymorphisms in BMAL1 Genes and Risk of Lung Cancer in a Northeast Chinese Population. DNA Cell Biol 2019; 38:1437-1443. [PMID: 31580742 DOI: 10.1089/dna.2019.4853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The connection between cancer and circadian rhythms has garnered recent attention. BMAL1 is a core factor in the regulation of circadian rhythms, and its variants have frequently been associated with human diseases, including cancer. Our study first clarifies the relationship of three single-nucleotide polymorphisms (rs3816360, rs2290035, and rs3816358) in BMAL1 with the risk of lung cancer, as well as the gene-environment interaction between the polymorphisms and tobacco exposure in a Northeast Chinese population. A case-control study of 409 new diagnosis patients and 417 controls was performed in Shenyang, Liaoning province. The gene-environment interactions were explored on both additive and multiplicative scale. After Bonferroni correction, rs3816360 and rs2290035 were evidently associated with lung cancer risk. For rs3816360, subjects carrying CC (adjusted odds ratio [OR] = 2.163, 95% confidence interval [CI] = 1.413-3.310, p = 0.004) genotype showed an increased risk of lung cancer compared to the subjects carrying homozygous TT genotype. As for rs2290035, homozygous carriers of AA genotype (OR = 1.908, 95% CI = 1.207-3.017, p = 0.006) showed a significantly increased risk of lung cancer. The dominant models and recessive models of rs3816360 and rs2290035 showed significant associations (p < 0.01). In the stratified analysis, our results revealed that rs3816360 and rs2290035 were associated with the risk of lung adenocarcinoma. However, rs3816358 polymorphism was not significantly associated with lung cancer risk. The measures of additive interaction and logistic models suggested that the gene-environment interactions were not statistically significant on both additive and multiplicative scales.
Collapse
Affiliation(s)
- Fangjiang Liu
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Xuelian Li
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Pinyun Liu
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaowei Quan
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Chang Zheng
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
49
|
Huang Z, Zhao X, Wu X, Xiang L, Yuan Y, Zhou S, Yu W. LncRNA UCA1 facilitated cell growth and invasion through the miR-206/CLOCK axis in glioma. Cancer Cell Int 2019; 19:316. [PMID: 31798345 PMCID: PMC6883638 DOI: 10.1186/s12935-019-1023-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 01/27/2023] Open
Abstract
Background Glioma is a lethal malignant brain tumor, which affects the brain functions and is life-threatening. LncRNA UCA1 was identified as a pivotal regulator for tumorigenesis of glioma. MiR-206 was discovered to promote tumorigenesis and is critical in the regulation of cell proliferation in glioma. This study will discuss the expression of UCA1 regarding miR-206 and CLOCK, and their integrative effects in the proliferation and cell cycle of glioma cells. Methods qRT-PCR was conducted to measure the mRNA expressions of IgG and Ago2 in cells co-transfected with UCA1, and miR-216 in U251. Bioinformation was analyzed for the prediction of association between UCA1 and miR-206. Transwell migrations assays and invasion assays were utilized to observe the cell invasive ability. Western blot and immunofluorescence imaging were used to examine the protein expressions. In vivo comparisons and observations were also performed to investigate the role of UCA1 in glioma growth. Results LncRNA UCA1 was up-regulated in glioma cell lines and tissues. It elevated cell invasion via the inducing of epithelial-mesenchymal transition. We found that UCA1 can modulate miR-206 expression and serve as an endogenous sponge of miR-206. The EMT-inducer CLOCK was validated as a messenger RNA target of miR-206. At last, we demonstrated that UCA1 exerted the biology function through regulating miR-206 and CLOCK in vivo. Conclusions Overall, the results demonstrated that UCA1/miR-206/CLOCK axis participated in the progressing of glioma and could act as a promising therapeutic target.
Collapse
Affiliation(s)
- Zhi Huang
- 1Department of interventional radiology, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, 556000 Guizhou People's Republic of China.,2Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550005 Guizhou People's Republic of China.,3Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Xuya Zhao
- 2Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550005 Guizhou People's Republic of China
| | - Xiaowen Wu
- 4Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Lei Xiang
- 4Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Yingnan Yuan
- 4Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Shi Zhou
- 4Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Wenfeng Yu
- 3Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002 Guizhou People's Republic of China
| |
Collapse
|
50
|
Folgueras AR, Freitas-Rodríguez S, Velasco G, López-Otín C. Mouse Models to Disentangle the Hallmarks of Human Aging. Circ Res 2019; 123:905-924. [PMID: 30355076 DOI: 10.1161/circresaha.118.312204] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Model organisms have provided fundamental evidence that aging can be delayed and longevity extended. These findings gave rise to a new era in aging research aimed at elucidating the pathways and networks controlling this complex biological process. The identification of 9 hallmarks of aging has established a framework to evaluate the relative contribution of each hallmark and the interconnections among them. In this review, we revisit these hallmarks with the information obtained exclusively through the generation of genetically modified mouse models that have a significant impact on the aging process. We discuss within each hallmark those interventions that accelerate aging or that have been successful at increasing lifespan, with the final goal of identifying the most promising antiaging avenues based on the current knowledge provided by in vivo models.
Collapse
Affiliation(s)
- Alicia R Folgueras
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Sandra Freitas-Rodríguez
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Gloria Velasco
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Carlos López-Otín
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| |
Collapse
|