1
|
Dole NS, Betancourt-Torres A, Kaya S, Obata Y, Schurman CA, Yoon J, Yee CS, Khanal V, Luna CA, Carroll M, Salinas JJ, Miclau E, Acevedo C, Alliston T. High-fat and high-carbohydrate diets increase bone fragility through TGF-β-dependent control of osteocyte function. JCI Insight 2024; 9:e175103. [PMID: 39171528 PMCID: PMC11343608 DOI: 10.1172/jci.insight.175103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Obesity can increase the risk of bone fragility, even when bone mass is intact. This fragility stems from poor bone quality, potentially caused by deficiencies in bone matrix material properties. However, cellular and molecular mechanisms leading to obesity-related bone fragility are not fully understood. Using male mouse models of obesity, we discovered TGF-β signaling plays a critical role in mediating the effects of obesity on bone. High-carbohydrate and high-fat diets increase TGF-β signaling in osteocytes, which impairs their mitochondrial function, increases cellular senescence, and compromises perilacunar/canalicular remodeling and bone quality. By specifically inhibiting TGF-β signaling in mouse osteocytes, some of the negative effects of high-fat and high-carbohydrate diets on bones, including the lacunocanalicular network, perilacunar/canalicular remodeling, senescence, and mechanical properties such as yield stress, were mitigated. DMP1-Cre-mediated deletion of TGF-β receptor II also blunted adverse effects of high-fat and high-carbohydrate diets on energy balance and metabolism. These findings suggest osteocytes are key in controlling bone quality in response to high-fat and high-carbohydrate diets. Calibrating osteocyte function could mitigate bone fragility associated with metabolic diseases while reestablishing energy balance.
Collapse
Affiliation(s)
- Neha S. Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock Arkansas, USA
| | - Andrés Betancourt-Torres
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Yoshihiro Obata
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Charles A. Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Jihee Yoon
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Cristal S. Yee
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Vivek Khanal
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock Arkansas, USA
| | - Clarissa Aguirre Luna
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Madeline Carroll
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock Arkansas, USA
| | - Jennifer J. Salinas
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Elizabeth Miclau
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, California, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| |
Collapse
|
2
|
Cook CE, Keter D, Cade WT, Winkelstein BA, Reed WR. Manual therapy and exercise effects on inflammatory cytokines: a narrative overview. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1305925. [PMID: 38745971 PMCID: PMC11091266 DOI: 10.3389/fresc.2024.1305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Background Matching disease and treatment mechanisms is a goal of the Precision Medicine Initiative. Pro- and anti-inflammatory cytokines (e.g., Tumor Necrosis Factor-alpha, Transforming Growth Factor-beta, and Interleukin-2, 10, and 12) have gained a significant amount of interest in their potential role in persistent pain for musculoskeletal (MSK) conditions. Manual therapy (MT) and exercise are two guideline-recommended approaches for treating MSK conditions. The objective of this narrative overview was to investigate of the effects of MT and exercise on pro- and anti-inflammatory cytokines and determine the factors that lead to variability in results. Methods Two reviewers evaluated the direction and variabilities of MT and exercise literature. A red, yellow, and green light scoring system was used to define consistencies. Results Consistencies in responses were seen with acute and chronic exercise and both pro- and anti-inflammatory cytokines. Chronic exercise is associated with a consistent shift towards a more anti-inflammatory cytokine profile (Transforming Growth Factor-beta, and Interleukin-2 and 13, whereas acute bouts of intense exercise can transiently increase pro-inflammatory cytokine levels. The influence of MT on cytokines was less commonly studied and yielded more variable results. Conclusion Variability in findings is likely related to the subject and their baseline condition or disease, when measurement occurs, and the exercise intensity, duration, and an individual's overall health and fitness.
Collapse
Affiliation(s)
- Chad E. Cook
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
- Department of Population Health Sciences, Duke University, Durham, NC, United States
- Duke Clinical Research Institute, Duke University, Durham, NC, United States
| | - Damian Keter
- Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - William Todd Cade
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
| | - Beth A. Winkelstein
- Departments of Bioengineering & Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - William R. Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Morsy MHE, Nabil ZI, Darwish ST, Al-Eisa RA, Mehana AE. Anti-Diabetic and Anti-Adipogenic Effect of Harmine in High-Fat-Diet-Induced Diabetes in Mice. Life (Basel) 2023; 13:1693. [PMID: 37629550 PMCID: PMC10455780 DOI: 10.3390/life13081693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most important health issues facing the world today is obesity. It is an important independent risk factor for developing type 2 diabetes. Harmine offers various pharmacological effects, such as anti-inflammatory and anti-tumor effects. The current study aims to investigate Harmine's anti-diabetic and anti-adipogenic properties in albino mice after inducing low-grade inflammation with a high-fat diet (HFD). About forty-eight male albino mice were divided into four groups. Group 1: control mice were injected with daily saline and fed a normal chow diet of 21% protein for 5 months. Group 2: mice were treated daily with IP-injected Harmine (30 mg/kg body weight) and were fed a normal chow diet for 5 months. Group 3: mice were fed HFD to induce type 2 Diabetes Mellitus (T2DM) for 5 months. Group 4: mice were fed HFD for 14 weeks and treated with Harmine for the last 6 weeks. A figh-fat diet caused a significant increase in body and organ weight, lipid profiles, and destructive changes within the pancreas, kidney, and liver tissue. The administration of Harmine led to a remarkable improvement in the histological and ultrastructural changes induced by HFD. The findings indicate that mice cured using Harmine had lower oxidative stress, a higher total antioxidant capacity, and a reduced lipid profile compared to HFD mice. Harmine led to the hepatocytes partly restoring their ordinary configuration. Furthermore, it was noticed that the pathological incidence of damage in the structure of both the kidney and pancreas sections reduced in comparison with the diabetic group. Additional research will be required to fully understand Harmine and its preventive effects on the two forms of diabetes.
Collapse
Affiliation(s)
- Menna H E Morsy
- Department of Zoology, Faculty of Science, Arish University, Arish 45511, Egypt
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Zohour I Nabil
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Samah T Darwish
- Department of Zoology, Faculty of Science, Arish University, Arish 45511, Egypt
| | - Rasha A Al-Eisa
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amir E Mehana
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Almási N, Török S, Al-awar A, Veszelka M, Király L, Börzsei D, Szabó R, Varga C. Voluntary Exercise-Mediated Protection in TNBS-Induced Rat Colitis: The Involvement of NETosis and Prdx Antioxidants. Antioxidants (Basel) 2023; 12:1531. [PMID: 37627526 PMCID: PMC10451893 DOI: 10.3390/antiox12081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are autoimmune disorders of the gut. It is increasingly clear that voluntary exercise (VE) may exert protection against IBDs, but the exact background mechanism needs to be elucidated. In the present study, we aimed to investigate the possible role of NETosis and the antioxidant peroxiredoxin (Prdx) enzyme family in VE-induced protection. Wistar Han rats were randomly divided into two groups: sedentary (SED) and VE. After the 6-week voluntary wheel running, animals were treated with 2,4,6-trinitrobenzene sulphonic acid (TNBS) as a model of colitis. Here, we found that VE significantly decreased inflammation and ulceration of the colon in the VE TNBS group compared with SED TNBS. We also found that VE significantly decreased the expression of protein arginine deiminase 4 (PAD4) and myeloperoxidase (MPO), and markedly reduced citrullinated histone H3 (citH3) compared with SED TNBS. Furthermore, VE caused a significant increase in the levels of Prdx6 in the control and TNBS groups. Taken together, we found that a prior 6-week VE effectively reduces inflammation in TNBS-induced colitis, and we suggest that the protective effect of VE may be mediated via the inhibition of NETosis and upregulation of Prdx6 antioxidant.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Amin Al-awar
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - László Király
- Zala-Cereália Kft, H-8790 Zalaszentgrót-Tüskeszentpéter, Hungary;
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| |
Collapse
|
5
|
Della Guardia L, Codella R. Exercise Restores Hypothalamic Health in Obesity by Reshaping the Inflammatory Network. Antioxidants (Basel) 2023; 12:antiox12020297. [PMID: 36829858 PMCID: PMC9951965 DOI: 10.3390/antiox12020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Obesity and overnutrition induce inflammation, leptin-, and insulin resistance in the hypothalamus. The mediobasal hypothalamus responds to exercise enabling critical adaptions at molecular and cellular level that positively impact local inflammation. This review discusses the positive effect of exercise on obesity-induced hypothalamic dysfunction, highlighting the mechanistic aspects related to the anti-inflammatory effects of exercise. In HFD-fed animals, both acute and chronic moderate-intensity exercise mitigate microgliosis and lower inflammation in the arcuate nucleus (ARC). Notably, this associates with restored leptin sensitivity and lower food intake. Exercise-induced cytokines IL-6 and IL-10 mediate part of these positive effect on the ARC in obese animals. The reduction of obesity-associated pro-inflammatory mediators (e.g., FFAs, TNFα, resistin, and AGEs), and the improvement in the gut-brain axis represent alternative paths through which regular exercise can mitigate hypothalamic inflammation. These findings suggest that the regular practice of exercise can restore a proper functionality in the hypothalamus in obesity. Further analysis investigating the crosstalk muscle-hypothalamus would help toward a deeper comprehension of the subject.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence: ; Tel.: +39-02-50330356
| |
Collapse
|
6
|
Hu MM, Chen JH, Zhang QQ, Song ZY, Shaukat H, Qin H. Sesamol counteracts on metabolic disorders of middle-aged alimentary obese mice through regulating skeletal muscle glucose and lipid metabolism. Food Nutr Res 2022; 66:8231. [PMID: 35382382 PMCID: PMC8941404 DOI: 10.29219/fnr.v66.8231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022] Open
Abstract
Background Globally, obesity is a significant public problem, especially when aging. Sesamol, a phenolic lignan present in sesame seeds, might have a positive effect on high-fat diet (HFD)-induced obesity associated with aging. Objective The purpose of current research study was to explore salutary effects and mechanisms of sesamol in treating alimentary obesity and associated metabolic syndrome in middle-aged mice. Methods C57BL/6J mice aged 4–6 weeks and 6–8 months were assigned to the young normal diet group, middle-aged normal diet group, middle-aged HFD group, and middle-aged HFD + sesamol group. At the end of experiment, glucose tolerance test and insulin tolerance test were performed; the levels of lipids and oxidative stress-related factors in the serum and skeletal muscle were detected using chemistry reagent kits; lipid accumulation in skeletal muscle was observed by oil red O staining; the expressions of muscular glucose and lipid metabolism associated proteins were measured by Western blotting. Results Sesamol decreased the body weight and alleviated obesity-associated metabolism syndrome in middle-aged mice, such as glucose intolerance, insulin resistance, dyslipidemia, and oxidative stress. Moreover, muscular metabolic disorders were attenuated after treatment with sesamol. It increased the expression of glucose transporter type-4 and down-regulated the protein levels of pyruvate dehydrogenase kinase isozyme 4, implying the increase of glucose uptake and oxidation. Meanwhile, sesamol decreased the expression of sterol regulatory element binding protein 1c and up-regulated the phosphorylation of hormone-sensitive lipase and the level of carnitine palmityl transferase 1α, which led to the declined lipogenesis and the increased lipolysis and lipid oxidation. In addition, the SIRT1/AMPK signaling pathway was triggered by sesamol, from which it is understood how sesamol enhances glucose and lipid metabolism. Conclusions Sesamol counteracts on metabolic disorders of middle-aged alimentary obese mice through regulating skeletal muscle glucose and lipid metabolism, which might be associated with the stimulation of the SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Min-Min Hu
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ji-Hua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Quan-Quan Zhang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zi-Yu Song
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Horia Shaukat
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
7
|
Ataeinosrat A, Saeidi A, Abednatanzi H, Rahmani H, Daloii AA, Pashaei Z, Hojati V, Basati G, Mossayebi A, Laher I, Alesi MG, Hackney AC, VanDusseldorp TA, Zouhal H. Intensity Dependent Effects of Interval Resistance Training on Myokines and Cardiovascular Risk Factors in Males With Obesity. Front Endocrinol (Lausanne) 2022; 13:895512. [PMID: 35757424 PMCID: PMC9226680 DOI: 10.3389/fendo.2022.895512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To determine the effects of different intensities of interval resistance training (IRT) protocols on the levels of select myokines (decorin, follistatin, myostatin, activin A, transforming growth factor beta-1 [TGF-β1]), and cardiometabolic and anthropometric measures in males with obesity. METHODS Forty-four obese males (age: 27.5 ± 9.4 yr.; height: 165.4 ± 2.8 cm; weight: 97.9 ± 2.6 kg and BMI: 35.7 ± 4.3 kg/m2) were randomly assigned to one of four groups (n=11 per group): low-intensity interval resistance training (LIIRT), moderate-intensity interval resistance training (MIIRT), high-intensity interval resistance training (HIIRT) or control (C). The LIIRT group performed 10 exercises in 3 sets of 40% (20 repetitions), the MIIRT group performed 10 exercises in three sets of 60% (13 repetitions), and the HIIRT group performed 10 exercises in three sets of 80% (10 repetitions) of one maximum repetition (1RM), which were followed with active rest of 20% of 1RM and 15 repetitions. The resistance training groups exercised ~70 min per session, 3 days per week, for 12 weeks. Measurements were taken at baseline and after 12 weeks of exercise training. RESULTS Baseline levels of myokines, cardiovascular risk factors, anthropometry, body composition, and cardio-respiratory fitness were not different between the four groups (p>0.05). The group x time interactions for decorin, activin A, follistatin, myostatin, and TGF-β1, total cholesterol (TC), triglyceride (TG), high-density cholesterol (HDL), low-density cholesterol (LDL), anthropometry, body composition, and cardio-respiratory fitness were statistically significant (p<0.05). There were increases in post-test values for decorin, follistatin, HDL (p<0.05) and decreases in TC, TG, TGF-β1, LDL, and myostatin levels in the LIIRT, MIIRT, and HIIRT groups compared to pretest values (p<0.05). Changes in fat mass, VO2peak, HDL, TG, glucose, activin A, decorin were not significant in LIIRT compared to the control group, while changes in activin A, follistatin, and TFG-β1 levels were greater in HIIRT and MIIRT groups compared to the LIIRT group (p<0.05). CONCLUSION The LIIRT, MIIRT, and HIIRT protocols all produced beneficial changes in decorin, activin A, follistatin, myostatin, and TGF-β1 levels, and cardiometabolic risk factors, with greater effects from the MIIRT and HIIRT protocols compared to LIIRT.
Collapse
Affiliation(s)
- Ali Ataeinosrat
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran
| | - Hossein Abednatanzi
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hiwa Rahmani
- Department of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Asieh Abbassi Daloii
- Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Zhaleh Pashaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Gholam Basati
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Mossayebi
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, The University of British Columbia, Vancouver BC, Canada
| | - Michaela G. Alesi
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Anthony C. Hackney
- Department of Exercise & Sport Science; Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Trisha A. VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
- *Correspondence: Hassane Zouhal, ; Trisha A. VanDusseldorp,
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé), Rennes, France
- Institut International des Sciences du Sport (2I2S), Irodouer, France
- *Correspondence: Hassane Zouhal, ; Trisha A. VanDusseldorp,
| |
Collapse
|
8
|
Ghosh P, Singh R, Ganeshpurkar A, Pokle AV, Singh RB, Singh SK, Kumar A. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochem Int 2021; 151:105212. [PMID: 34656693 DOI: 10.1016/j.neuint.2021.105212] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), an extremely common neurodegenerative disorder of the older generation, is one of the leading causes of death globally. Besides the conventional hallmarks i.e. Amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), neuroinflammation also serves as a major contributing factor in the pathogenesis of AD. There are mounting evidences to support the fundamental role of cellular (microglia, astrocytes, mast cells, and T-cells) and molecular (cytokines, chemokines, caspases, and complement proteins) influencers of neuroinflammation in producing/promoting neurodegeneration and dementia in AD. Genome-wide association studies (GWAS) have revealed the involvement of various single nucleotide polymorphisms (SNPs) of genes related to neuroinflammation with the risk of developing AD. Modulating the release of the neuroinflammatory molecules and targeting their relevant mechanisms may have beneficial effects on the onset, progress and severity of the disease. Here, we review the distinct role of various mediators and modulators of neuroinflammation that impact the pathogenesis and progression of AD as well as incite further research efforts for the treatment of AD through a neuroinflammatory approach.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Vyankatrao Pokle
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Bhushan Singh
- Institute of Pharmacy Harischandra PG College, Bawanbigha, Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
9
|
Wang X, Yang J, Lu T, Zhan Z, Wei W, Lyu X, Jiang Y, Xue X. The effect of swimming exercise and diet on the hypothalamic inflammation of ApoE-/- mice based on SIRT1-NF-κB-GnRH expression. Aging (Albany NY) 2020; 12:11085-11099. [PMID: 32518216 PMCID: PMC7346084 DOI: 10.18632/aging.103323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 04/13/2023]
Abstract
A high-fat diet and sedentary lifestyle could accelerate aging and hypothalamic inflammation. In order to explore the regulatory mechanisms of lifestyle in the hypothalamus, swimming exercise and diet control were applied in the high-fat diet ApoE-/- mice in our study. 20-week-old ApoE-/- mice fed with 12-week high-fat diet were treated by high-fat diet, diet control and swimming exercise. The results showed that hypothalamic inflammation, glial cells activation and cognition decline were induced by high-fat diet. Compared with the diet control, hypothalamic inflammation, glial cells activation and learning and memory impairment were effectively alleviated by swimming exercise plus diet control, which was related to the increasing expression of SIRT1, inhibiting the expression of NF-κB and raising secretion of GnRH in the hypothalamus. These findings supported the hypothesis that hypothalamic inflammation was susceptible to exercise and diet, which was strongly associated with SIRT1-NF-κB-GnRH expression in the hypothalamus.
Collapse
Affiliation(s)
- Xialei Wang
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, China
| | - Jingda Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, China
| | - Taotao Lu
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, China
| | - Zengtu Zhan
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Wei Wei
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Xinru Lyu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350112, China
| | - Yijing Jiang
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Xiehua Xue
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| |
Collapse
|
10
|
Chen JJ, Xie J, Zeng L, Zhou CJ, Zheng P, Xie P. Urinary metabolite signature in bipolar disorder patients during depressive episode. Aging (Albany NY) 2020; 11:1008-1018. [PMID: 30721880 PMCID: PMC6382435 DOI: 10.18632/aging.101805] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
The first few episodes of bipolar disorder (BD) are highly likely to be depressive. This phenomenon causes many BD patients to be misdiagnosed as having major depression. Therefore, it is very important to correctly diagnose BD patients during depressive episode. Here, we conducted this study to identify potential biomarkers for young and middle-aged BD patients during depressive episode. Both gas chromatography-mass spectroscopy (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy were used to profile the urine samples from the recruited subjects. In total, 13 differential metabolites responsible for the discrimination between healthy controls (HCs) and patients were identified. Most differential metabolites had a close relationship with energy homeostasis. Meanwhile, a panel consisting of five differential metabolites was identified. This panel could effectively distinguish the patients from HCs with an AUC of 0.998 in the training set and 0.974 in the testing set. Our findings on one hand could be helpful in developing an objective diagnostic method for young and middle-aged BD patients during depressive episode; on the other hand could provide critical insight into the pathological mechanism of BD and the biological mechanisms responsible for the transformation of different episodes.
Collapse
Affiliation(s)
- Jian-Jun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jing Xie
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Li Zeng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chan-Juan Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Abstract
Under conditions leading to aging and metabolic syndrome, the hypothalamus atypically undergoes proinflammatory signaling activation leading to a chronic and stable background inflammation, referred to as "hypothalamic microinflammation." Through the past decade of research, progress has been made to causally link this hypothalamic inflammation to the mechanism of aging as well as metabolic syndrome, promoting the "hypothalamic microinflammation" theory, which helps characterize the consensus of these epidemic health problems. In general, it is consistently appreciated that hypothalamic microinflammation emerges during the early stages of aging and metabolic syndrome and evolves to be multifaceted and advanced alongside disease progression, while inhibition of key inflammatory components in the hypothalamus has a broad range of effects in counteracting these disorders. Herein, focusing on aging and metabolic syndrome, this writing aims to provide an overview of and insights into the mediators, signaling components, cellular impacts, and physiological significance of this hypothalamic microinflammation.
Collapse
|
12
|
Silva VRR, Lenhare L, Katashima CK, Morari J, M-Assis A, Gaspar RS, da Silva ASR, Moura LP, Pauli JR, Cintra DE, Velloso LA, Ropelle ER. TGF-β1 downregulation in the hypothalamus of obese mice through acute exercise. J Cell Biochem 2019; 120:18186-18192. [PMID: 31144370 DOI: 10.1002/jcb.29124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/27/2022]
Abstract
Obesity and aging lead to abnormal transforming growth factor-β1 (TGF-β1) signaling in the hypothalamus, triggering the imbalance on glucose metabolism and energy homeostasis. Here, we determine the effect of acute exercise on TGF-β1 expression in the hypothalamus of two models of obesity in mice. The bioinformatics analysis was performed to evaluate the correlation between hypothalamic Tgf-β1 messenger RNA (mRNA) and genes related to thermogenesis in the brown adipose tissue (BAT) by using a large panel of isogenic BXD mice. Thereafter, leptin-deficient (ob/ob) mice and obese C57BL/6 mice fed on a high-fat diet (HFD) were submitted to the acute exercise protocol. Transcriptomic analysis by using BXD mouse reference population database revealed that hypothalamic Tgf-β1 mRNA is negatively correlated with genes related to thermogenesis in brown adipose tissue of BXD mice, such as peroxisome proliferator-activated receptor gamma coactivator and is positively correlated with respiratory exchange ratio. In agreement with these results, leptin-deficient (ob/ob) and HFD-fed mice displayed high levels of Tgf-β1 mRNA in the hypothalamus and reduction of Pgc1α mRNA in BAT. Interestingly, an acute exercise session reduced TGF-β1 expression in the hypothalamus, increased Pgc1α mRNA in the BAT and reduced food consumption in obese mice. Our results demonstrated that acute physical exercise suppressed hypothalamic TGF-β1 expression, increasing Pgc1α mRNA in BAT in obese mice.
Collapse
Affiliation(s)
- Vagner R R Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Luciene Lenhare
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Carlos K Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Alexandre M-Assis
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Rodrigo S Gaspar
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leandro P Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.,CEPECE-Research Center of Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.,CEPECE-Research Center of Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| |
Collapse
|
13
|
Mendes NF, Gaspar JM, Lima-Júnior JC, Donato J, Velloso LA, Araújo EP. TGF-β1 down-regulation in the mediobasal hypothalamus attenuates hypothalamic inflammation and protects against diet-induced obesity. Metabolism 2018; 85:171-182. [PMID: 29660453 DOI: 10.1016/j.metabol.2018.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND The consumption of large amounts of dietary fats induces hypothalamic inflammation and impairs the function of the melanocortin system, leading to a defective regulation of caloric intake and whole-body energy expenditure. In mice fed a high-fat diet (HFD), TGF-β1 expression was increased and NF-κB signaling was activated in proopiomelanocortin neurons, which plays an important role in the obesity-associated hypothalamic inflammation scenario. However, whether excessive hypothalamic TGF-β1 impairs energy homeostasis remains unclear. OBJECTIVES We aimed to investigate the role of diet-induced hypothalamic TGF-β1 on inflammation and whole-body energy homeostasis. METHODS A TGF-β1 inhibitory lentiviral shRNA particle was stereotaxically injected bilaterally in the arcuate nucleus (ARC) of C57BL/6 mice fed a HFD. We assessed changes in body mass and adiposity, food intake, inflammatory markers, and the function of energy and glucose metabolism. RESULTS TGF-β1 down-regulation in the ARC-attenuated body-mass gain, reduced fat-mass accumulation, decreased hypothalamic inflammatory markers, and protected against HFD-induced lipohypertrophy of brown adipose tissue. In addition, the inhibition of hypothalamic TGF-β1 increased the locomotor activity and improved whole-body lipid metabolism, which attenuated hepatic fat accumulation and serum triglyceride levels. No changes were observed in food intake and glucose homeostasis. CONCLUSION Hypothalamic TGF-β1 down-regulation attenuates hypothalamic inflammation and improves energy metabolism, resulting in lower body-mass gain and lower fat-mass accumulation, which protects mice from the development of obesity. Our data suggest that modulation of hypothalamic TGF-β1 expression might be an effective strategy to treat obesity.
Collapse
Affiliation(s)
- Natália F Mendes
- School of Nursing, State University of Campinas (UNICAMP), Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Joana M Gaspar
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - José C Lima-Júnior
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Lício A Velloso
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Eliana P Araújo
- School of Nursing, State University of Campinas (UNICAMP), Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil.
| |
Collapse
|