1
|
Lee GH, Lee SY, Baek YW, Lim J, Chung KH, Jeong HG. Polyhexamethylene guanidine phosphate induces epithelial-to-mesenchymal transition and cancer stem cell-like properties via Wnt/β-catenin signaling in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117930. [PMID: 39986058 DOI: 10.1016/j.ecoenv.2025.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Inhalation exposure to polyhexamethylene guanidine phosphate (PHMG-p), a primary component of humidifier disinfectants, has been linked to interstitial lung disease and potential carcinogenic effects. This study aimed to investigate epithelial cell transformation and the underlying molecular mechanisms by examining the properties of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) following prolonged exposure to PHMG-p. Beas-2B human bronchial epithelial cells were treated with 0.125-0.5 µg/ml PHMG-p for over 55 passages, resulting in approximately a 1.2-fold increase in proliferation and a 2-fold enhancement in wound healing, migration, and invasion. Long-term exposure induced morphological changes in Beas-2B, which adopted a spindle-shaped appearance, and displayed enhanced expression of EMT markers, including N-cadherin, Vimentin, Twist, and Snail (approximately 1.5- to 3.5-fold). Culturing these cells in a cancer stem cell medium further confirmed neoplastic transformation and the induction of CSC properties in long-term PHMG-p-treated cells. Additionally, expression levels of CSC phenotypic markers (CD44, CD133, ABCG2, and ALDH1A1) and stemness markers (SOX2, OCT4, Nanog, and KLF4) increased during PHMG-p-induced carcinogenesis. Moreover, increased reactive oxygen species (ROS) production and expression of β-catenin indicated the involvement of these signaling molecules during carcinogenesis. Collectively, our findings suggest that chronic exposure to PHMG-p, even at relatively low concentrations, can induce neoplastic transformation through the acquisition of EMT, stemness, and CSC phenotypes, potentially linked to the endogenous ROS and Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea
| | - Seung Yeon Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Environmental Research, Incheon 22689, South Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Environmental Research, Incheon 22689, South Korea
| | - Kyu Hyuck Chung
- College of Pharmacy, Kyungsung University, Busan 48434, South Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
2
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Xiao Z, Wang S, Chen J, Li Y, Jiang Y, Tin VP, Liu J, Hu H, Wong MP, Pan Y, Yam JWP. The Dual Role of the NFATc2/galectin-9 Axis in Modulating Tumor-Initiating Cell Phenotypes and Immune Suppression in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306059. [PMID: 38528665 PMCID: PMC11132051 DOI: 10.1002/advs.202306059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Tumor-initiating cells (TICs) resilience and an immunosuppressive microenvironment are aggressive oncogenic phenotypes that contribute to unsatisfactory long-term outcomes in lung adenocarcinoma (LUAD) patients. The molecular mechanisms mediating the interaction between TICs and immune tolerance have not been elucidated. The role of Galectin-9 in oncogenesis and immunosuppressive microenvironment is still unknown. This study explored the potential role of galectin-9 in TIC regulation and immune modulation in LUAD. The results show that galectin-9 supports TIC properties in LUAD. Co-culture of patient-derived organoids and matched peripheral blood mononuclear cells showed that tumor-secreted galectin-9 suppressed T cell cytotoxicity and induced regulatory T cells (Tregs). Clinically, galectin-9 is upregulated in human LUAD. High expression of galectin-9 predicted poor recurrence-free survival and correlated with high levels of Treg infiltration. LGALS9, the gene encoding galectin-9, is found to be transcriptionally regulated by the nuclear factor of activated T cells 2 (NFATc2), a previously reported TIC regulator, via in silico prediction and luciferase reporter assays. Overall, the results suggest that the NFATc2/galectin-9 axis plays a dual role in TIC regulation and immune suppression.
Collapse
Affiliation(s)
- Zhi‐Jie Xiao
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational ResearchThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Si‐Qi Wang
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Jun‐Jiang Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510000China
| | - Yun Li
- Department of Thoracic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Yuchen Jiang
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Vicky Pui‐Chi Tin
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Jia Liu
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Huiyi Hu
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Maria Pik Wong
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Yihang Pan
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| |
Collapse
|
4
|
Beninato T, Lo Russo G, Leporati R, Roz L, Bertolini G. Circulating tumor cells in lung cancer: Integrating stemness and heterogeneity to improve clinical utility. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 392:1-66. [PMID: 40287216 DOI: 10.1016/bs.ircmb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Circulating tumor cells (CTC), released by primary tumors into the bloodstream, represent a valuable source to inform on cancer heterogeneity, cancer progression, metastatic disease and therapy efficacy without the need of invasive tumor biopsies. However, the extreme rarity and heterogeneity of CTCs, occurring at genotypic, phenotypic and functional levels, poses a major challenge for the study of this population and explains the lack of standardized strategies of CTC isolation. Lung cancer, the leading causes of cancer-related death worldwide, is a paradigmatic example of how CTC heterogeneity can undermine the clinical utility of this biomarker, since contrasting data have been reported using different isolation technologies. Some evidences suggest that only a fraction of CTC, characterized by stem-like feature and partial epithelial-mesenchymal transition (EMT) phenotype, can sustain metastasis initiation. Cancer stem cells (CSCs) have the potential to maintain primary tumors, initiate metastasis and escape both chemotherapy and immunotherapy treatments. Moreover, a close connection has been reported in several tumor types among hybrid phenotype, characterized by retention of epithelial and mesenchymal traits, acquisition of CSC feature and increased metastatic potential. This review focuses on the phenotypic and functional heterogeneity of CTCs and the resulting implications for their isolation and clinical validation, especially in the setting of non-small cell lung cancer (NSCLC). In particular, we discuss the most relevant studies providing evidence for the presence and prognostic/predictive value of CTC subsets characterized by stem-like and hybrid EMT phenotype. Despite technical and conceptual issues, tracking circulating CSCs has the potential to improve the prognostic/predictive value of CTCs in NSCLC setting and could provide novel insights into the comprehension of the metastatic process and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Teresa Beninato
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Unit of Epigenomics and Biomarkers of Solid Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Bertolini
- Unit of Epigenomics and Biomarkers of Solid Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
5
|
Gałecki S, Gdowicz-Kłosok A, Deja R, Masłyk B, Giglok M, Suwiński R, Butkiewicz D. Common Variants in Osteopontin and CD44 Genes as Predictors of Treatment Outcome in Radiotherapy and Chemoradiotherapy for Non-Small Cell Lung Cancer. Cells 2023; 12:2721. [PMID: 38067149 PMCID: PMC10706014 DOI: 10.3390/cells12232721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Osteopontin (OPN)-CD44 signaling plays an important role in promoting tumor progression and metastasis. In cancer, OPN and CD44 overexpression is a marker of aggressive disease and poor prognosis, and correlates with therapy resistance. In this study, we aimed to evaluate the association of single nucleotide polymorphisms (SNPs) in the OPN and CD44 genes with clinical outcomes in 307 non-small cell lung cancer (NSCLC) patients treated with radiotherapy or chemoradiotherapy. The potential impact of the variants on plasma OPN levels was also investigated. Multivariate analysis showed that OPN rs11730582 CC carriers had a significantly increased risk of death (p = 0.029), while the CD44 rs187116 A allele correlated with a reduced risk of locoregional recurrence (p = 0.016) in the curative treatment subset. The rs11730582/rs187116 combination was associated with an elevated risk of metastasis in these patients (p = 0.016). Furthermore, the OPN rs1126772 G variant alone (p = 0.018) and in combination with rs11730582 CC (p = 7 × 10-5) was associated with poor overall survival (OS) in the squamous cell carcinoma subgroup. The rs11730582 CC, rs187116 GG, and rs1126772 G, as well as their respective combinations, were independent risk factors for unfavorable treatment outcomes. The impact of rs11730582-rs1126772 haplotypes on OS was also observed. These data suggest that OPN and CD44 germline variants may predict treatment effects in NSCLC.
Collapse
Affiliation(s)
- Seweryn Gałecki
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Gdowicz-Kłosok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Regina Deja
- Analytics and Clinical Biochemistry Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Barbara Masłyk
- Analytics and Clinical Biochemistry Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Monika Giglok
- II Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Rafał Suwiński
- II Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Dorota Butkiewicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
6
|
Petraroia I, Ghidotti P, Bertolini G, Pontis F, Roz L, Balsamo M, Suatoni P, Pastorino U, Ferretti AM, Sozzi G, Fortunato O. Extracellular vesicles from subjects with COPD modulate cancer initiating cells phenotype through HIF-1α shuttling. Cell Death Dis 2023; 14:681. [PMID: 37838700 PMCID: PMC10576796 DOI: 10.1038/s41419-023-06212-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a risk factor for lung cancer development. COPD induces activation of hypoxia-induced signaling, causing remodeling of surrounding microenvironmental cells also modulating the release and cargo of their extracellular vesicles (EVs). We aimed to evaluate the potential role of circulating EVs from COPD subjects in lung cancer onset. Plasma-EVs were isolated by ultracentrifugation from heavy smoker volunteers with (COPD-EVs) or without (heavy smoker-EVs, HS-EV) COPD and characterized following MISEV guidelines. Immortalized human bronchial epithelial cells (CDK4, hTERT-HBEC3-KT), genetically modified with different oncogenic alterations commonly found in lung cancer (sh-p53, KRASV12), were used to test plasma-EVs pro-tumorigenic activity in vitro. COPD-EVs mainly derived from immune and endothelial cells. COPD-EVs selectively increased the subset of CD133+CXCR4+ metastasis initiating cells (MICs) in HBEC-sh-p53-KRASV12high cells and stimulated 3D growth, migration/invasion, and acquisition of mesenchymal traits. These effects were not observed in HBEC cells bearing single oncogenic mutation (sh-p53 or KRASV12). Mechanistically, hypoxia-inducible factor 1-alpha (HIF-1α) transferred from COPD-EVs triggers CXCR4 pathway activation that in turn mediates MICs expansion and acquisition of pro-tumorigenic effects. Indeed, HIF-1α inhibition or CXCR4 silencing prevented the acquisition of malignant traits induced by COPD-EVs alone. Hypoxia recapitulates the effects observed with COPD-EVs in HBEC-sh-p53-KRASV12high cells. Notably, higher levels of HIF-1α were observed in EVs from COPD subjects who subsequently developed cancer compared to those who remained cancer-free. Our findings support a role of COPD-EVs to promote the expansion of MICs in premalignant epithelial cells through HIF-1α-CXCR4 axis activation thereby potentially sustaining lung cancer progression.
Collapse
Affiliation(s)
- Ilaria Petraroia
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Patrizia Ghidotti
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giulia Bertolini
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
| | - Francesca Pontis
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Luca Roz
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Melissa Balsamo
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Suatoni
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Gabriella Sozzi
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Orazio Fortunato
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
7
|
Huang Q, Liu L, Xiao D, Huang Z, Wang W, Zhai K, Fang X, Kim J, Liu J, Liang W, He J, Bao S. CD44 + lung cancer stem cell-derived pericyte-like cells cause brain metastases through GPR124-enhanced trans-endothelial migration. Cancer Cell 2023; 41:1621-1636.e8. [PMID: 37595587 DOI: 10.1016/j.ccell.2023.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
Brain metastasis of lung cancer causes high mortality, but the exact mechanisms underlying the metastasis remain unclear. Here we report that vascular pericytes derived from CD44+ lung cancer stem cells (CSCs) in lung adenocarcinoma (ADC) potently cause brain metastases through the G-protein-coupled receptor 124 (GPR124)-enhanced trans-endothelial migration (TEM). CD44+ CSCs in perivascular niches generate the majority of vascular pericytes in lung ADC. CSC-derived pericyte-like cells (Cd-pericytes) exhibit remarkable TEM capacity to effectively intravasate into the vessel lumina, survive in the circulation, extravasate into the brain parenchyma, and then de-differentiate into tumorigenic CSCs to form metastases. Cd-pericytes uniquely express GPR124 that activates Wnt7-β-catenin signaling to enhance TEM capacity of Cd-pericytes for intravasation and extravasation, two critical steps during tumor metastasis. Furthermore, selective disruption of Cd-pericytes, GPR124, or the Wnt7-β-catenin signaling markedly reduces brain and liver metastases of lung ADC. Our findings uncover an unappreciated cellular and molecular paradigm driving tumor metastasis.
Collapse
Affiliation(s)
- Qian Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Liping Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Dakai Xiao
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Zhi Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wenjun Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Kui Zhai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoguang Fang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jongmyung Kim
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James Liu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Wenhua Liang
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China.
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
8
|
Wang S, Chen J, Jiang Y, Lei Z, Ruan YC, Pan Y, Yam JWP, Wong MP, Xiao Z. Targeting GSTP1 as Therapeutic Strategy against Lung Adenocarcinoma Stemness and Resistance to Tyrosine Kinase Inhibitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205262. [PMID: 36709476 PMCID: PMC9982593 DOI: 10.1002/advs.202205262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Glutathione S-transferase pi (GSTP1), a phase II detoxification enzyme, is known to be overexpressed and mediates chemotherapeutic resistance in lung cancer. However, whether GSTP1 supports cancer stem cells (CSCs) and the underlying mechanisms in lung adenocarcinoma (LUAD) remain largely unknown. This study unveiled that GSTP1 is upregulated in lung CSCs and supports tumor self-renewal, metastasis, and resistance to targeted tyrosine kinase inhibitors of LUAD both in vitro and in vivo. Mechanistically, CaMK2A (calcium/calmodulin-dependent protein kinase 2 isoform A)/NRF2 (nuclear factor erythroid 2-related factor 2)/GSTP1 is uncovered as a regulatory axis under hypoxia. CaMK2A increased GSTP1 expression through phosphorylating the Sersine558 residue of NRF2 and promoting its nuclear translocation, a novel mechanism for NRF2 activation apart from conventional oxidization-dependent activation. Upregulation of GSTP1 in turn suppressed reactive oxygen species levels and supported CSC phenotypes. Clinically, GSTP1 analyzed by immunohistochemistry is upregulated in a proportion of LUAD and serves as a prognostic marker for survival. Using patient-derived organoids from an ALK-translocated LUAD, the therapeutic potential of a specific GSTP1 inhibitor ezatiostat in combination treatment with the ALK inhibitor crizotinib is demonstrated. This study demonstrates GSTP1 to be a promising therapeutic target for long-term control of LUAD through targeting CSCs.
Collapse
Affiliation(s)
- Si‐Qi Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong SAR999077China
- Institute for Stem Cell and Regenerative MedicineChinese Academy of SciencesBeijing100101China
- Bejing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Jun‐Jiang Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510000China
- Department of Biomedical EngineeringFaculty of EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Yuchen Jiang
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Zi‐Ning Lei
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Ye Chun Ruan
- Department of Biomedical EngineeringFaculty of EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Yihang Pan
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong SAR999077China
| | - Maria Pik Wong
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong SAR999077China
| | - Zhi‐Jie Xiao
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| |
Collapse
|
9
|
Tsochantaridis I, Roupas A, Mohlin S, Pappa A, Voulgaridou GP. The Concept of Cancer Stem Cells: Elaborating on ALDH1B1 as an Emerging Marker of Cancer Progression. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010197. [PMID: 36676146 PMCID: PMC9863106 DOI: 10.3390/life13010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Cancer is a multifactorial, complex disease exhibiting extraordinary phenotypic plasticity and diversity. One of the greatest challenges in cancer treatment is intratumoral heterogeneity, which obstructs the efficient eradication of the tumor. Tumor heterogeneity is often associated with the presence of cancer stem cells (CSCs), a cancer cell sub-population possessing a panel of stem-like properties, such as a self-renewal ability and multipotency potential. CSCs are associated with enhanced chemoresistance due to the enhanced efflux of chemotherapeutic agents and the existence of powerful antioxidant and DNA damage repair mechanisms. The distinctive characteristics of CSCs make them ideal targets for clinical therapeutic approaches, and the identification of efficient and specific CSCs biomarkers is of utmost importance. Aldehyde dehydrogenases (ALDHs) comprise a wide superfamily of metabolic enzymes that, over the last years, have gained increasing attention due to their association with stem-related features in a wide panel of hematopoietic malignancies and solid cancers. Aldehyde dehydrogenase 1B1 (ALDH1B1) is an isoform that has been characterized as a marker of colon cancer progression, while various studies suggest its importance in additional malignancies. Here, we review the basic concepts related to CSCs and discuss the potential role of ALDH1B1 in cancer development and its contribution to the CSC phenotype.
Collapse
Affiliation(s)
- Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Angelos Roupas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofie Mohlin
- Division of Pediatrics, Clinical Sciences, Lund Stem Cell Center, Lund University Cancer Center, 22384 Lund, Sweden
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| |
Collapse
|
10
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
11
|
Unver N, Tavukcuoglu E, Esendagli G. Tailored modulation of stemness and drug resistance marker characteristics in K-Ras mutant lung cancer cells via PD-L1 gene suppression. Life Sci 2022; 311:121171. [DOI: 10.1016/j.lfs.2022.121171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
|
12
|
Ma H, Liu G, Yu B, Wang J, Qi Y, Kou Y, Hu Y, Wang S, Wang F, Chen D. RNA-binding protein CELF6 modulates transcription and splicing levels of genes associated with tumorigenesis in lung cancer A549 cells. PeerJ 2022; 10:e13800. [PMID: 35910766 PMCID: PMC9336609 DOI: 10.7717/peerj.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
CELF6 (CUGBP Elav-Like Family Member 6), a canonical RNA binding protein (RBP), plays important roles in post-transcriptional regulation of pre-mRNAs. However, the underlying mechanism of lower expressed CELF6 in lung cancer tissues is still unclear. In this study, we increased CELF6 manually in lung cancer cell line (A549) and utilized transcriptome sequencing (RNA-seq) technology to screen out differentially expressed genes (DEGs) and alternative splicing events (ASEs) after CELF6 over-expression (CELF6-OE). We found that CELF6-OE induced 417 up-regulated and 1,351 down-regulated DEGs. Functional analysis of down-regulated DEGs showed that they were highly enriched in immune/inflammation response- related pathways and cell adhesion molecules (CAMs). We also found that CELF6 inhibited the expression of many immune-related genes, including TNFSF10, CCL5, JUNB, BIRC3, MLKL, PIK3R2, CCL20, STAT1, MYD88, and CFS1, which mainly promote tumorigenesis in lung cancer. The dysregulated DEGs were also validated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) experiment. In addition, CELF6 regulates the splicing pattern of large number of genes that are enriched in p53 signaling pathway and apoptosis, including TP53 and CD44. In summary, we made an extensive analysis of the transcriptome profile of gene expression and alternative splicing by CELF6-OE, providing a global understanding of the target genes and underlying regulation mechanisms mediated by CELF6 in the pathogenesis and development of lung cancer.
Collapse
Affiliation(s)
- HuSai Ma
- Department of thoracic Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China,Department of Thoracic Surgery, Qinghai Red Cross Hospital, Xining, Qinghai Province, P. R. China
| | - GuoWei Liu
- Department of thoracic Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - Bin Yu
- Department of thoracic Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - Joshua Wang
- Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei Province, China
| | - YaLi Qi
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - YiYing Kou
- Qinghai University School of Medicine, Qinghai University School of Medicine, Xining, Qinghai Province, China
| | - Ying Hu
- Qinghai University School of Medicine, Qinghai University School of Medicine, Xining, Qinghai Province, China
| | - ShunJun Wang
- Department of thoracic Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - Fei Wang
- Qinghai University, Xining, Qinghai Province, China
| | - Dong Chen
- Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Rowbotham SP, Goruganthu MUL, Arasada RR, Wang WZ, Carbone DP, Kim CF. Lung Cancer Stem Cells and Their Clinical Implications. Cold Spring Harb Perspect Med 2022; 12:a041270. [PMID: 34580078 PMCID: PMC9121890 DOI: 10.1101/cshperspect.a041270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is now widely accepted that stem cells exist in various cancers, including lung cancer, which are referred to as cancer stem cells (CSCs). CSCs are defined in this context as the subset of tumor cells with the ability to form tumors in serial transplantation and cloning assays and form tumors at metastatic sites. Mouse models of lung cancer have shown that lung CSCs reside in niches that are essential for the maintenance of stemness, plasticity, enable antitumor immune evasion, and provide metastatic potential. Similar to normal lung stem cells, Notch, Wnt, and the Hedgehog signaling cascades have been recruited by the CSCs to regulate stemness and also provide therapy-driven resistance in lung cancer. Compounds targeting β-catenin and Sonic hedgehog (Shh) activity have shown promising anti-CSC activity in preclinical murine models of lung cancer. Understanding CSCs and their niches in lung cancer can answer fundamental questions pertaining to tumor maintenance and associated immune regulation and escape that appear important in the quest to develop novel lung cancer therapies and enhance sensitivity to currently approved chemo-, targeted-, and immune therapeutics.
Collapse
Affiliation(s)
- Samuel P Rowbotham
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mounika U L Goruganthu
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Rajeswara R Arasada
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Walter Z Wang
- James Thoracic Oncology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - David P Carbone
- James Thoracic Oncology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Carla F Kim
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Kao Y, Huang LC, Hsu SY, Huang SM, Hueng DY. The Effect of Disulfiram and Copper on Cellular Viability, ER Stress and ALDH Expression of Human Meningioma Cells. Biomedicines 2022; 10:887. [PMID: 35453636 PMCID: PMC9025959 DOI: 10.3390/biomedicines10040887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Meningiomas are the most common intracranial tumors in adults; currently there is no effective chemotherapy for malignant meningiomas. The effect of disulfiram (DSF)/Copper (Cu) on meningiomas remains unclear; (2) Methods: The impact of DSF/Cu on cell viability of meningioma adhesion cells (MgACs) and sphere cells (MgSCs) was assessed via MTS assay. The effects of DSF/Cu on intracellular Cu levels, cell senescence, and apoptosis were analyzed using CopperGreen, C12FDG, and Annexin V assays. Intracellular ALDH isoform expression and canonical pathway expression after DSF/Cu treatment were analyzed using mRNA microarray and Ingenuity Pathway Analysis, with further verification through qRT-PCR and immunoblotting; (3) Results: The viability of MgACs and MgSCs were inhibited by DSF/Cu. DSF/Cu increased intracellular Cu levels and cellular senescence. DSF/Cu also induced ER stress in MgACs and activated the PERK/eIF2 pathway for further adaptive response, apoptosis, and autophagy. Finally, DSF/Cu inhibited the expression of different ALDH isoforms in MgACs and MgSCs; (4) Conclusions: DSF/Cu exerts cytotoxic effects against both meningioma cells and stem-like cells and has treatment potential for meningioma.
Collapse
Affiliation(s)
- Ying Kao
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei 10341, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.H.); (S.-M.H.)
| | - Shao-Yuan Hsu
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.H.); (S.-M.H.)
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.H.); (S.-M.H.)
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
15
|
Yamashita N, So T, Miyata T, Yoshimatsu T, Nakano R, Oyama T, Matsunaga W, Gotoh A. Triple-negative expression (ALDH1A1-/CD133-/mutant p53-) cases in lung adenocarcinoma had a good prognosis. Sci Rep 2022; 12:1473. [PMID: 35087112 PMCID: PMC8795115 DOI: 10.1038/s41598-022-05176-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are major contributors to the malignant transformation of cells because of their capacity for self-renewal. Aldehyde dehydrogenase1A1 (ALDH1A1) and CD133 are promising candidate of CSC markers in non-small cell lung cancer (NSCLC). Furthermore, TP53 is frequently mutated in lung cancer, and the loss of its function is associated with malignant characteristics. However, the relationship between CSCs and mutant p53 in lung adenocarcinoma is not well-established. We examined the expression of ALDH1A1, CD133, and mutant p53 in lung adenocarcinoma patients and conducted a clinicopathological study. Triple-negative cases without ALDH1A1, CD133, and mutant p53 expression in lung adenocarcinoma were shown to have a much better prognosis than others. Our present results suggest that detection of CSC markers and mutant p53 by immunohistochemical staining may be effective in therapeutic strategies for lung adenocarcinoma.
Collapse
Affiliation(s)
- Naoki Yamashita
- Department of Education for Medical Research Base, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan.,Department of Thoracic Surgery, Shin-Komonji Hospital, Fukuoka, Japan
| | - Tetsuya So
- Department of Thoracic Surgery, Shin-Komonji Hospital, Fukuoka, Japan
| | - Takeaki Miyata
- Department of Thoracic Surgery, Shin-Kuki General Hospital, Saitama, Japan
| | | | - Ryuji Nakano
- Department of Pathology, Fukuoka-Wajiro Hospital, Fukuoka, Japan
| | - Tsunehiro Oyama
- Department of Education for Medical Research Base, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan.,Imamitsu Home Care Clinic, Kitakyusyu, Japan
| | - Wataru Matsunaga
- Department of Education for Medical Research Base, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Akinobu Gotoh
- Department of Education for Medical Research Base, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan.
| |
Collapse
|
16
|
Cortes-Dericks L, Galetta D. Impact of Cancer Stem Cells and Cancer Stem Cell-Driven Drug Resiliency in Lung Tumor: Options in Sight. Cancers (Basel) 2022; 14:267. [PMID: 35053430 PMCID: PMC8773978 DOI: 10.3390/cancers14020267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Causing a high mortality rate worldwide, lung cancer remains an incurable malignancy resistant to conventional therapy. Despite the discovery of specific molecular targets and new treatment strategies, there remains a pressing need to develop more efficient therapy to further improve the management of this disease. Cancer stem cells (CSCs) are considered the root of sustained tumor growth. This consensus corroborates the CSC model asserting that a distinct subpopulation of malignant cells within a tumor drives and maintains tumor progression with high heterogeneity. Besides being highly tumorigenic, CSCs are highly refractory to standard drugs; therefore, cancer treatment should be focused on eliminating these cells. Herein, we present the current knowledge of the existence of CSCs, CSC-associated mechanisms of chemoresistance, the ability of CSCs to evade immune surveillance, and potential CSC inhibitors in lung cancer, to provide a wider insight to drive a more efficient elimination of this pro-oncogenic and treatment-resistant cell fraction.
Collapse
Affiliation(s)
| | - Domenico Galetta
- Division of Thoracic Surgery, European Institute of Oncology, IRCCS, 20141 Milan, Italy;
- Department of Oncology and Hematology-Oncology-DIPO, University of Milan, 20122 Milan, Italy
| |
Collapse
|
17
|
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor, representing 60% of childhood intracranial embryonal tumors. Despite multimodal advances in therapies over the last 20 years that have yielded a 5-year survival rate of 75%, high-risk patients (younger than 3 years, subtotal resection, metastatic lesions at diagnosis) still experience a 5-year overall survival of less than 70%. In this introductory chapter on pediatric MB, we describe the initial discrimination of MB based on histopathological examination and the more recent progress made in global gene expression profiling methods that have allowed scientists to more accurately subclassify and prognosticate on MB based on molecular characteristics. The identification of subtype-specific molecular drivers and pathways presents novel therapeutic targets that could lead to MB subtype-specific treatment modalities. Additionally, we detail how the cancer stem cell (CSC) hypothesis provides an explanation for tumor recurrence, and the potential for CSC-targeted therapies to address treatment-refractory MB. These personalized therapies can potentially increase MB survivorship and negate some of the long-term neurotoxicity associated with the current standard of care for MB patients.
Collapse
Affiliation(s)
- Yujin Suk
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Ian Burns
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Department of Surgery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
18
|
Isolation of cancer stem cells from cultured breast cancer cells and xenografted breast tumors based on aldehyde dehydrogenase activity. Methods Cell Biol 2022; 171:111-125. [DOI: 10.1016/bs.mcb.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Windmöller BA, Beshay M, Helweg LP, Flottmann C, Beermann M, Förster C, Wilkens L, Greiner JFW, Kaltschmidt C, Kaltschmidt B. Novel Primary Human Cancer Stem-Like Cell Populations from Non-Small Cell Lung Cancer: Inhibition of Cell Survival by Targeting NF-κB and MYC Signaling. Cells 2021; 10:cells10051024. [PMID: 33925297 PMCID: PMC8145874 DOI: 10.3390/cells10051024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that cancer stem cells (CSCs), a small subpopulation of self-renewal cancer cells, are responsible for tumor growth, treatment resistance, and cancer relapse and are thus of enormous clinical interest. Here, we aimed to isolate new CSC-like cells derived from human primary non-small cell lung cancer (NSCLC) specimens and to analyze the influence of different inhibitors of NF-κB and MYC signaling on cell survival. CSC-like cells were established from three squamous cell carcinomas (SCC) and three adenocarcinomas (AC) of the lung and were shown to express common CSC markers such as Prominin-1, CD44-antigen, and Nestin. Further, cells gave rise to spherical cancer organoids. Inhibition of MYC and NF-κB signaling using KJ-Pyr-9, dexamethasone, and pyrrolidinedithiocarbamate resulted in significant reductions in cell survival for SCC- and AC-derived cells. However, inhibition of the protein–protein interaction of MYC/NMYC proto-oncogenes with Myc-associated factor X (MAX) using KJ-Pyr-9 revealed the most promising survival-decreasing effects. Next to the establishment of six novel in vitro models for studying NSCLC-derived CSC-like populations, the presented investigations might provide new insights into potential novel therapies targeting NF-κB/MYC to improve clinical outcomes in NSCLC patients. Nevertheless, the full picture of downstream signaling still remains elusive.
Collapse
Affiliation(s)
- Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Correspondence: ; Tel.: +49-0521-106-5629
| | - Morris Beshay
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Department of General Thoracic Surgery, Protestant Hospital of Bethel Foundation, Burgsteig 13, 33617 Bielefeld, Germany
| | - Laureen P. Helweg
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Clara Flottmann
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
| | - Miriam Beermann
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Raju B, Choudhary S, Narendra G, Verma H, Silakari O. Molecular modeling approaches to address drug-metabolizing enzymes (DMEs) mediated chemoresistance: a review. Drug Metab Rev 2021; 53:45-75. [PMID: 33535824 DOI: 10.1080/03602532.2021.1874406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Resistance against clinically approved anticancer drugs is the main roadblock in cancer treatment. Drug metabolizing enzymes (DMEs) that are capable of metabolizing a variety of xenobiotic get overexpressed in malignant cells, therefore, catalyzing drug inactivation. As evident from the literature reports, the levels of DMEs increase in cancer cells that ultimately lead to drug inactivation followed by drug resistance. To puzzle out this issue, several strategies inclusive of analog designing, prodrug designing, and inhibitor designing have been forged. On that front, the implementation of computational tools can be considered a fascinating approach to address the problem of chemoresistance. Various research groups have adopted different molecular modeling tools for the investigation of DMEs mediated toxicity problems. However, the utilization of these in-silico tools in maneuvering the DME mediated chemoresistance is least considered and yet to be explored. These tools can be employed in the designing of such chemotherapeutic agents that are devoid of the resistance problem. The current review canvasses various molecular modeling approaches that can be implemented to address this issue. Special focus was laid on the development of specific inhibitors of DMEs. Additionally, the strategies to bypass the DMEs mediated drug metabolism were also contemplated in this report that includes analogs and pro-drugs designing. Different strategies discussed in the review will be beneficial in designing novel chemotherapeutic agents that depreciate the resistance problem.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Shalki Choudhary
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
21
|
Cancer Stem Cells-Key Players in Tumor Relapse. Cancers (Basel) 2021; 13:cancers13030376. [PMID: 33498502 PMCID: PMC7864187 DOI: 10.3390/cancers13030376] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, these features contribute to CSC survival after one or multiple therapeutic approaches, thus leading to treatment failure and tumor progression/relapse. Thus, elucidating the molecular mechanisms associated with stemness-driven resistance is crucial for the development of more effective drugs and durable responses. This review will highlight the mechanisms exploited by CSCs to overcome different therapeutic strategies, from chemo- and radiotherapies to targeted therapies and immunotherapies, shedding light on their plasticity as an insidious trait responsible for their adaptation/escape. Finally, novel CSC-specific approaches will be described, providing evidence of their preclinical and clinical applications.
Collapse
|
22
|
Gardelli C, Russo L, Cipolla L, Moro M, Andriani F, Rondinone O, Nicotra F, Sozzi G, Bertolini G, Roz L. Differential glycosylation of collagen modulates lung cancer stem cell subsets through β1 integrin-mediated interactions. Cancer Sci 2020; 112:217-230. [PMID: 33068069 PMCID: PMC7780011 DOI: 10.1111/cas.14700] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
In lung cancer, CD133+ cells represent the subset of cancer stem cells (CSC) able to sustain tumor growth and metastatic dissemination. CSC function is tightly regulated by specialized niches composed of both stromal cells and extracellular matrix (ECM) proteins, mainly represented by collagen. The relevance of collagen glycosylation, a fundamental post-translational modification controlling several biological processes, in regulating tumor cell phenotype remains, however, largely unexplored. To investigate the bioactive effects of differential ECM glycosylation on lung cancer cells, we prepared collagen films functionalized with glucose (Glc-collagen) and galactose (Gal-collagen) exploiting a neoglycosylation approach based on a reductive amination of maltose and lactose with the amino residues of collagen lysines. We demonstrate that culturing of tumor cells on collagen determines a glycosylation-dependent positive selection of CSC and triggers their expansion/generation. The functional relevance of CD133+ CSC increase was validated in vivo, proving an augmented tumorigenic and metastatic potential. High expression of integrin β1 in its active form is associated with an increased proficiency of tumor cells to sense signaling from glycosylated matrices (glyco-collagen) and to acquire stemness features. Accordingly, inhibition of integrin β1 in tumor cells prevents CSC enrichment, suggesting that binding of integrin β1 to Glc-collagen subtends CSC expansion/generation. We provide evidence suggesting that collagen glycosylation could play an essential role in modulating the creation of a niche favorable for the generation and selection/survival of lung CSC. Interfering with this crosstalk may represent an innovative therapeutic strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Cecilia Gardelli
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Massimo Moro
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Andriani
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ornella Rondinone
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Bertolini
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
23
|
Schmidtova S, Dorssers LCJ, Kalavska K, Gillis AJM, Oosterhuis JW, Stoop H, Miklikova S, Kozovska Z, Burikova M, Gercakova K, Durinikova E, Chovanec M, Mego M, Kucerova L, Looijenga LHJ. Napabucasin overcomes cisplatin resistance in ovarian germ cell tumor-derived cell line by inhibiting cancer stemness. Cancer Cell Int 2020; 20:364. [PMID: 32774158 PMCID: PMC7397611 DOI: 10.1186/s12935-020-01458-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cisplatin resistance of ovarian yolk sac tumors (oYST) is a clinical challenge due to dismal patient prognosis, even though the disease is extremely rare. We investigated potential association between cisplatin resistance and cancer stem cell (CSC) markers in chemoresistant oYST cells and targeting strategies to overcome resistance in oYST. Methods Chemoresistant cells were derived from chemosensitive human oYST cells by cultivation in cisplatin in vitro. Derivative cells were characterized by chemoresistance, functional assays, flow cytometry, gene expression and protein arrays focused on CSC markers. RNAseq, methylation and microRNA profiling were performed. Quail chorioallantoic membranes (CAM) with implanted oYST cells were used to analyze the micro-tumor extent and interconnection with the CAM. Tumorigenicity in vivo was determined on immunodeficient mouse model. Chemoresistant cells were treated by inhibitors intefering with the CSC properties to examine the chemosensitization to cisplatin. Results Long-term cisplatin exposure resulted in seven-fold higher IC50 value in resistant cells, cross-resistance to oxaliplatin and carboplatin, and increased migratory capacity, invasiveness and tumorigenicity, associated with hypomethylation of differentially methylated genes/promotors. Resistant cells exhibited increased expression of prominin-1 (CD133), ATP binding cassette subfamily G member 2 (ABCG2), aldehyde dehydrogenase 3 isoform A1 (ALDH3A1), correlating with reduced gene and promoter methylation, as well as increased expression of ALDH1A3 and higher overall ALDH enzymatic activity, rendering them cross-resistant to DEAB, disulfiram and napabucasin. Salinomycin and tunicamycin were significantly more toxic to resistant cells. Pretreatment with napabucasin resensitized the cells to cisplatin and reduced their tumorigenicity in vivo. Conclusions The novel chemoresistant cells represent unique model of refractory oYST. CSC markers are associated with cisplatin resistance being possible targets in chemorefractory oYST.
Collapse
Affiliation(s)
- Silvia Schmidtova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.,Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia
| | - Lambert C J Dorssers
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Katarina Kalavska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.,Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Ad J M Gillis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - J Wolter Oosterhuis
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Hans Stoop
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Svetlana Miklikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Kozovska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Monika Burikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Katarina Gercakova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Erika Durinikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Michal Chovanec
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia
| | - Lucia Kucerova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Leendert H J Looijenga
- Department of Pathology, Laboratory for Experimental Patho-Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
24
|
Al Abdulmonem W, Rasheed Z, Aljohani ASM, Omran OM, Rasheed N, Alkhamiss A, A M Al Salloom A, Alhumaydhi F, Alblihed MA, Al Ssadh H, Khan MI, Fernández N. Absence of CD74 Isoform at 41kDa Prevents the Heterotypic Associations between CD74 and CD44 in Human Lung Adenocarcinoma-derived Cells. Immunol Invest 2020; 50:891-905. [PMID: 32646312 DOI: 10.1080/08820139.2020.1790594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer is a leading cause of cancer-associated death in all over the globe. This study was undertaken to determine the expression and interaction of membrane-bound receptors CD74 and CD44 in human lung adenocarcinoma cells and their associated signaling was also attempted. Levels of CD74 and CD44 were studied in human lung adenocarcinoma-evolved cells A549 and H460. CD74-mediated downstream signaling was studied by the nuclear-transcription-factor NF-κB and prostaglandin E2 (PGE2) production. Flow-cytometric analysis showed that both CD74 and CD44 were perfectly expressed in A549 cells. Importantly, Western immunoblotting showed that A549 cells expressed only two isoforms of CD74 at 33 and 35 kDa but isoform at 41 kDa was absent. These results were verified in H460 cells. Confocal microscopy showed CD74 and CD44 was colocalized but heterotypic interaction between them was missing in both A549 and H460 cells. Activation of NF-κB and production of PGE2 in human lung cancer cells were comparable with other cancer cells. In conclusion, this is the first study that shows A549 and H460 cells expressed two distinctive isoforms of CD74 but isoform at 41 kDa was absent. Due to the absence of this isoform, the direct physical interaction between them CD74 and CD44 was lacking. Furthermore, the data also demonstrated that lacking of direct physical interaction between CD74 and CD44 had no effect on NF-κB activation and PGE2 production indicating that CD74-mediated downstream signaling occurs either through coreceptors or indirect interaction with CD44 in human lung cancer cells. ABBREVIATION CD: cluster of differentiation; SCLC: small cell lung cancer; NSCLC: nonsmall cell lung cancer; SCC: squamous cell carcinoma; ADC: adenocarcinoma; LCC: large cell carcinoma.
Collapse
Affiliation(s)
- Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ola M Omran
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohamd A Alblihed
- Department of Medical Biochemistry, School of Medicine Taif University, Taif, Saudi Arabia
| | - Hussain Al Ssadh
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Muhammad Ismail Khan
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, Australia
| | - Nelson Fernández
- School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
25
|
Wang SQ, Liu J, Qin J, Zhu Y, Tin VPC, Yam JWP, Wong MP, Xiao ZJ. CAMK2A supported tumor initiating cells of lung adenocarcinoma by upregulating SOX2 through EZH2 phosphorylation. Cell Death Dis 2020; 11:410. [PMID: 32483123 PMCID: PMC7264342 DOI: 10.1038/s41419-020-2553-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/10/2022]
Abstract
Tumor initiating cells (TIC) of lung cancer are mainly induced by stress-related plasticity. Calcium/Calmodulin dependent protein kinase II alpha (CAMK2A) is a key calcium signaling molecule activated by exogenous and endogenous stimuli with effects on multiple cell functions but little is known about its role on TIC. In human lung adenocarcinomas (AD), CAMK2A was aberrantly activated in a proportion of cases and was an independent risk factor predicting shorter survivals. Functionally, CAMK2A enhanced TIC phenotypes in vitro and in vivo. CAMK2A regulated SOX2 expression by reducing H3K27me3 and EZH2 occupancy at SOX2 regulatory regions, leading to its epigenetic de-repression with functional consequences. Further, CAMK2A caused kinase-dependent phosphorylation of EZH2 at T487 with suppression of EZH2 activity. Together, the data demonstrated the CAMK2A-EZH2-SOX2 axis on TIC regulation. This study provided phenotypic and mechanistic evidence for the TIC supportive role of CAMK2A, implicating a novel predictive and therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Si-Qi Wang
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Liu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yun Zhu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Vicky Pui-Chi Tin
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Maria Pik Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Zhi-Jie Xiao
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
26
|
Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M, Nezhad SRK, Abbaszadegan MR. Ovarian cancer stem cells and targeted therapy. J Ovarian Res 2019; 12:120. [PMID: 31810474 PMCID: PMC6896744 DOI: 10.1186/s13048-019-0588-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest ratio of mortality among gynecologic malignancies. Chemotherapy is one of the most common treatment options for ovarian cancer. However, tumor relapse in patients with advanced tumor stage is still a therapeutic challenge for its clinical management. MAIN BODY Therefore, it is required to clarify the molecular biology and mechanisms which are involved in chemo resistance to improve the survival rate of ovarian cancer patients. Cancer stem cells (CSCs) are a sub population of tumor cells which are related to drug resistance and tumor relapse. CONCLUSION In the present review, we summarized the recent findings about the role of CSCs in tumor relapse and drug resistance among ovarian cancer patients. Moreover, we focused on the targeted and combinational therapeutic methods against the ovarian CSCs.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu‐Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hadi Yari
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology, Tehran, Iran
| | - Meysam Moghbeli
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | |
Collapse
|
27
|
San Juan BP, Garcia-Leon MJ, Rangel L, Goetz JG, Chaffer CL. The Complexities of Metastasis. Cancers (Basel) 2019; 11:E1575. [PMID: 31623163 PMCID: PMC6826702 DOI: 10.3390/cancers11101575] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Therapies that prevent metastatic dissemination and tumor growth in secondary organs are severely lacking. A better understanding of the mechanisms that drive metastasis will lead to improved therapies that increase patient survival. Within a tumor, cancer cells are equipped with different phenotypic and functional capacities that can impact their ability to complete the metastatic cascade. That phenotypic heterogeneity can be derived from a combination of factors, in which the genetic make-up, interaction with the environment, and ability of cells to adapt to evolving microenvironments and mechanical forces play a major role. In this review, we discuss the specific properties of those cancer cell subgroups and the mechanisms that confer or restrict their capacity to metastasize.
Collapse
Affiliation(s)
- Beatriz P San Juan
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| | - Maria J Garcia-Leon
- INSERM UMR_S1109, Tumor Biomechanics, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Laura Rangel
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Christine L Chaffer
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| |
Collapse
|
28
|
Fakiruddin KS, Lim MN, Nordin N, Rosli R, Zakaria Z, Abdullah S. Targeting of CD133+ Cancer Stem Cells by Mesenchymal Stem Cell Expressing TRAIL Reveals a Prospective Role of Apoptotic Gene Regulation in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11091261. [PMID: 31466290 PMCID: PMC6770521 DOI: 10.3390/cancers11091261] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are emerging as vehicles for anti-tumor cytotherapy; however, investigation on its efficacy to target a specific cancer stem cell (CSC) population in non-small cell lung cancer (NSCLC) is lacking. Using assays to evaluate cell proliferation, apoptosis, and gene expression, we investigated the efficacy of MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) to target and destroy CD133+ (prominin-1 positive) NSCLC-derived CSCs. Characterization of TRAIL death receptor 5 (DR5) revealed that it was highly expressed in the CD133+ CSCs of both H460 and H2170 cell lines. The human MSC-TRAIL generated in the study maintained its multipotent characteristics, and caused significant tumor cell inhibition in NSCLC-derived CSCs in a co-culture. The MSC-TRAIL induced an increase in annexin V expression, an indicator of apoptosis in H460 and H2170 derived CD133+ CSCs. Through investigation of mitochondria membrane potential, we found that MSC-TRAIL was capable of inducing intrinsic apoptosis to the CSCs. Using pathway-specific gene expression profiling, we uncovered candidate genes such as NFKB1, BAG3, MCL1, GADD45A, and HRK in CD133+ CSCs, which, if targeted, might increase the sensitivity of NSCLC to MSC-TRAIL-mediated inhibition. As such, our findings add credibility to the utilization of MSC-TRAIL for the treatment of NSCLC through targeting of CD133+ CSCs.
Collapse
Affiliation(s)
- Kamal Shaik Fakiruddin
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia.
- Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam 40170, Malaysia.
| | - Moon Nian Lim
- Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam 40170, Malaysia
| | - Norshariza Nordin
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Rozita Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Zubaidah Zakaria
- Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam 40170, Malaysia
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
29
|
Zhang H, Hao C, Wang H, Shang H, Li Z. Carboxypeptidase A4 promotes proliferation and stem cell characteristics of hepatocellular carcinoma. Int J Exp Pathol 2019; 100:133-138. [PMID: 31058377 PMCID: PMC6540673 DOI: 10.1111/iep.12315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Carboxypeptidase A4 (CPA4), a member of the metallo-carboxypeptidase family, is overexpressed in liver cancer and is associated with cancer progression. The role of CPA4 in hepatocellular carcinoma (HCC) remains unclear. In this study, we aimed to evaluate the relevance of CPA4 to the proliferation and expression of stem cell characteristics of hepatocellular carcinoma cells. Western blot analysis showed high CPA4 expression in the liver cancer cell line Bel7402 and low expression in HepG2 cells. Knock-down of CPA4 decreased cancer cell proliferation as detected by MTT and clone formation assays. The serum-free culture system revealed that downregulated CPA4 suppressed the sphere formation capacities of tumour cells. However, upregulated CPA4 increased the proliferation and sphere formation capacity. In addition, the protein expression of CD133, ALDH1 and CD44 also increased in cells with upregulated CPA4. In vivo, the overexpression of CPA4 in tumour cells that were subcutaneously injected into nude mice markedly increased the growth of the tumours. These data suggest that CPA4 expression leads to poor prognoses by regulating tumour proliferation and the expression of stem cell characteristics and may therefore serve as a potential therapeutic target of HCC.
Collapse
Affiliation(s)
- Hongtao Zhang
- Department of Hepatopancreatobiliary SurgeryTianjin Nan‐Kai HospitalTianjinChina
| | - Chengfei Hao
- Department of Hepatopancreatobiliary SurgeryTianjin Nan‐Kai HospitalTianjinChina
- Tianjin Medical UniversityTianjinChina
| | - Haibo Wang
- Department of Hepatopancreatobiliary SurgeryTianjin Nan‐Kai HospitalTianjinChina
| | - Haitao Shang
- Department of Hepatopancreatobiliary SurgeryTianjin Nan‐Kai HospitalTianjinChina
| | - Zhonglian Li
- Department of Hepatopancreatobiliary SurgeryTianjin Nan‐Kai HospitalTianjinChina
| |
Collapse
|
30
|
Wang Y, Wang CH, Zhang YF, Zhu L, Lei HM, Tang YB. UPLC-MS-based metabolomics reveals metabolic dysregulation in ALDH1A1-overexpressed lung adenocarcinoma cells. Metabolomics 2019; 15:52. [PMID: 30911937 DOI: 10.1007/s11306-019-1514-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Specific oncogenotypes can produce distinct metabolic changes in cancer. Recently it is considered that metabolic reprograming contributes heavily to drug resistance. Aldehyde dehydrogenase 1A1 (ALDH1A1), is overexpressed in drug resistant lung adenocarcinomas and may be the cause of acquired drug resistance. However, how ALDH1A1 affects metabolic profiling in lung adenocarcinoma cells remains elusive. OBJECTIVE We sought to investigate metabolic alterations induced by ALDH1A1 in lung adenocarcinoma in order to better understand the reprogramming and metabolic mechanism of resistance induced by ALDH1A1. METHODS Metabolic alterations in lung adenocarcinoma HCC827-ALDH1A1 cells were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). HCC827-ALDH1A1 metabolic signatures were extracted by univariate and multivariate statistical analysis. Furthermore, metabolite enrichment analysis and pathway analysis were performed using MetaboAnalyst 4.0 software. RESULTS Twenty-two metabolites were positively identified using authentic standards, including uridine monophosphate (UMP), uridine diphosphate (UDP), adenosine diphosphate (ADP), malic acid, malonyl-coenzyme A, nicotinamide adenine dinucleotide (NAD), coenzyme A and so on. Furthermore, metabolic pathway analysis revealed several dysregulated pathways in HCC827-ALDH1A1 cells, including nucleotide metabolism, urea cycle, tricarboxylic acid (TCA) cycle, and glycerol phospholipid metabolism etc. CONCLUSION: Lung cancer is the most frequent cause of cancer-related deaths worldwide. Nearly all patients eventually undergo disease progression due to acquired resistance. Mechanisms of biological acquired resistance need to be identified. Our study identified altered metabolites in HCC827-ALDH1A1 cells, enhancing our knowledge of lung adenocarcinoma metabolic alterations induced by ALDH1A1, creating a novel therapeutic pathway. These metabolic signatures of ALDH1A1 overexpression may shed light on molecular mechanisms in drug-resistant tumors, and on candidate drug targets. Furthermore, new molecular targets may provide the foundation for potential anticancer strategies for lung cancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Cong-Hui Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-Fei Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui-Min Lei
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
31
|
Vassalli G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int 2019; 2019:3904645. [PMID: 30733805 PMCID: PMC6348814 DOI: 10.1155/2019/3904645] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes that detoxify a variety of endogenous and exogenous aldehydes and are required for the biosynthesis of retinoic acid (RA) and other molecular regulators of cellular function. Over the past decade, high ALDH activity has been increasingly used as a selectable marker for normal cell populations enriched in stem and progenitor cells, as well as for cell populations from cancer tissues enriched in tumor-initiating stem-like cells. Mounting evidence suggests that ALDH not only may be used as a marker for stem cells but also may well regulate cellular functions related to self-renewal, expansion, differentiation, and resistance to drugs and radiation. ALDH exerts its functional actions partly through RA biosynthesis, as all-trans RA reverses the functional effects of pharmacological inhibition or genetic suppression of ALDH activity in many cell types in vitro. There is substantial evidence to suggest that the role of ALDH as a stem cell marker comes down to the specific isoform(s) expressed in a particular tissue. Much emphasis has been placed on the ALDH1A1 and ALDH1A3 members of the ALDH1 family of cytosolic enzymes required for RA biosynthesis. ALDH1A1 and ALDH1A3 regulate cellular function in both normal stem cells and tumor-initiating stem-like cells, promoting tumor growth and resistance to drugs and radiation. An improved understanding of the molecular mechanisms by which ALDH regulates cellular function will likely open new avenues in many fields, especially in tissue regeneration and oncology.
Collapse
Affiliation(s)
- Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Center for Molecular Cardiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
32
|
Abstract
From stem cells, to the cancer stem cell hypothesis and intratumoral heterogeneity, the following introductory chapter on brain tumor stem cells explores the history of normal and cancerous stem cells, and their implication in the current model of brain tumor development. The origins of stem cells date back to the 1960s, when they were first described as cells capable of self-renewal, extensive proliferation, and differentiation. Since then, many advances have been made and adult stem cells are now known to be present in a very wide variety of tissues. Neural stem cells were subsequently discovered 30 years later, which was shortly followed by the discovery of cancer stem cells in leukemia and in brain tumors over the next decade, effectively enabling a new understanding of cancer. Since then, many markers including CD133, brain cancer stem cells have been implicated in a variety of phenomena including intratumoral heterogeneity on the genomic, cellular, and functional levels, tumor initiation, chemotherapy-resistance, radiation-resistance, and are believed to be ultimately responsible for tumor relapse. Understanding this small and rare population of cells could be the key to solving the great enigma that is cancer.
Collapse
Affiliation(s)
- Nicolas Yelle
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
- Department of Surgery, McMaster University, Hamilton, ON, Canada.
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
33
|
Hu M, Guo W, Liao Y, Xu D, Sun B, Song H, Wang T, Kuang Y, Jing B, Li K, Ling J, Yao F, Deng J. Dysregulated ENPP1 increases the malignancy of human lung cancer by inducing epithelial-mesenchymal transition phenotypes and stem cell features. Am J Cancer Res 2019; 9:134-144. [PMID: 30755817 PMCID: PMC6356920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023] Open
Abstract
Induction of cancer stem cell (CSC) characters and epithelial mesenchymal transition (EMT) features are crucial in tumor initiation, progression and metastasis. However, underlying mechanisms remain incompletely understood. Here, we showed that ENPP1 plays an important role in inducing and maintaining EMT phenotypes and CSC features in lung cancer. ENPP1 is upregulated in lung cancer cells. ENPP1-knockdown in lung cancer HCC827 cells and A549 cells resulted in suppressed colonogenic formation, anchorage-independent growth in vitro, and tumorigenicity in vivo. ENPP1-knockdown also reduced expression of CSC makers, including ABCG2, SOX2, NANOG, and CD44. Moreover, ENPP1-knockdown reversed TGFβ-induced EMT phenotypes, including cell migration, E-cadherin repression and vimentin induction. Finally, upregulated ENPP1 was identified in majority of human lung tumor tissues compared to adjacent normal lung tissues. Taken together, our study demonstrates that dysregulated ENPP1 contributes to increased malignancy of human lung cancer by inducing CSC-features, and EMT-like phenotypes.
Collapse
Affiliation(s)
- Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Wenzheng Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Beibei Sun
- Translational Medical Research Center, Shanghai Jiao Tong UniversityShanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jing Ling
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Translational Medical Research Center, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
34
|
Toledo-Guzmán ME, Hernández MI, Gómez-Gallegos ÁA, Ortiz-Sánchez E. ALDH as a Stem Cell Marker in Solid Tumors. Curr Stem Cell Res Ther 2019; 14:375-388. [PMID: 30095061 DOI: 10.2174/1574888x13666180810120012] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Aldehyde dehydrogenase (ALDH) is an enzyme that participates in important cellular mechanisms as aldehyde detoxification and retinoic acid synthesis; moreover, ALDH activity is involved in drug resistance, a characteristic of cancer stem cells (CSCs). Even though ALDH is found in stem cells, CSCs and progenitor cells, this enzyme has been successfully used to identify and isolate cell populations with CSC properties from several tumor origins. ALDH is allegedly involved in cell differentiation through its product, retinoic acid. However, direct or indirect ALDH inhibition, using specific inhibitors or retinoic acid, has shown a reduction in ALDH activity, along with the loss of stem cell traits, reduction of cell proliferation, invasion, and drug sensitization. For these reasons, ALDH and retinoic acid are promising therapeutic targets. This review summarizes the current evidence for ALDH as a CSCs marker in solid tumors, as well as current knowledge about the functional roles of ALDH in CSCs. We discuss the controversy of ALDH activity to maintain CSC stemness, or conversely, to promote cell differentiation. Finally, we review the advances in using ALDH inhibitors as anti-cancer drugs.
Collapse
Affiliation(s)
- Mariel E Toledo-Guzmán
- Departamento de Bioquimica, Laboratorio de Terapia Genica, Escuela Nacional de Ciencias Biologicas, Posgrado de Biomedicina y Biotecnologia Molecular, Instituto Politecnico Nacional, Mexico City, Mexico
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Av San Fernando 22, Colonia Seccion XVI, Tlalpan 14080, Mexico City, Mexico
| | - Miguel Ibañez Hernández
- Departamento de Bioquimica, Laboratorio de Terapia Genica, Escuela Nacional de Ciencias Biologicas, Posgrado de Biomedicina y Biotecnologia Molecular, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Ángel A Gómez-Gallegos
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Av San Fernando 22, Colonia Seccion XVI, Tlalpan 14080, Mexico City, Mexico
- Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Av San Fernando 22, Colonia Seccion XVI, Tlalpan 14080, Mexico City, Mexico
| |
Collapse
|
35
|
Toledo-Guzmán ME, Bigoni-Ordóñez GD, Ibáñez Hernández M, Ortiz-Sánchez E. Cancer stem cell impact on clinical oncology. World J Stem Cells 2018; 10:183-195. [PMID: 30613312 PMCID: PMC6306557 DOI: 10.4252/wjsc.v10.i12.183] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a widespread worldwide chronic disease. In most cases, the high mortality rate from cancer correlates with a lack of clear symptoms, which results in late diagnosis for patients, and consequently, advanced tumor disease with poor probabilities for cure, since many patients will show chemo- and radio-resistance. Several mechanisms have been studied to explain chemo- and radio-resistance to anti-tumor therapies, including cell signaling pathways, anti-apoptotic mechanisms, stemness, metabolism, and cellular phenotypes. Interestingly, the presence of cancer stem cells (CSCs), which are a subset of cells within the tumors, has been related to therapy resistance. In this review, we focus on evaluating the presence of CSCs in different tumors such as breast cancer, gastric cancer, lung cancer, and hematological neoplasias, highlighting studies where CSCs were identified in patient samples. It is evident that there has been a great drive to identify the cell surface phenotypes of CSCs so that they can be used as a tool for anti-tumor therapy treatment design. We also review the potential effect of nanoparticles, drugs, natural compounds, aldehyde dehydrogenase inhibitors, cell signaling inhibitors, and antibodies to treat CSCs from specific tumors. Taken together, we present an overview of the role of CSCs in tumorigenesis and how research is advancing to target these highly tumorigenic cells to improve oncology patient outcomes.
Collapse
Affiliation(s)
- Mariel E Toledo-Guzmán
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | | | - Miguel Ibáñez Hernández
- Departamento de Bioquímica, Laboratorio de Terapia Génica, Escuela Nacional de Ciencias Biológicas, Posgrado de Biomedicina y Biotecnología Molecular, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| |
Collapse
|
36
|
Sosa Iglesias V, Theys J, Groot AJ, Barbeau LMO, Lemmens A, Yaromina A, Losen M, Houben R, Dubois L, Vooijs M. Synergistic Effects of NOTCH/γ-Secretase Inhibition and Standard of Care Treatment Modalities in Non-small Cell Lung Cancer Cells. Front Oncol 2018; 8:460. [PMID: 30464927 PMCID: PMC6234899 DOI: 10.3389/fonc.2018.00460] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Lung cancer is the leading cause of cancer death worldwide. More effective treatments are needed to increase durable responses and prolong patient survival. Standard of care treatment for patients with non-operable stage III-IV NSCLC is concurrent chemotherapy and radiation. An activated NOTCH signaling pathway is associated with poor outcome and treatment resistance in non-small cell lung cancer (NSCLC). NOTCH/γ-secretase inhibitors have been effective in controlling tumor growth in preclinical models but the therapeutic benefit of these inhibitors as monotherapy in patients has been limited so far. Because NOTCH signaling has been implicated in treatment resistance, we hypothesized that by combining NOTCH inhibitors with chemotherapy and radiotherapy this could result in an increased therapeutic effect. A direct comparison of the effects of NOTCH inhibition when combined with current treatment combinations for NSCLC is lacking. Methods: Using monolayer growth assays, we screened 101 FDA-approved drugs from the Cancer Therapy Evaluation Program alone, or combined with radiation, in the H1299 and H460 NSCLC cell lines to identify potent treatment interactions. Subsequently, using multicellular three-dimensional tumor spheroid assays, we tested a selection of drugs used in clinical practice for NSCLC patients, and combined these with a small molecule inhibitor, currently being tested in clinical trials, of the NOTCH pathway (BMS-906024) alone, or in combination with radiation, and measured specific spheroid growth delay (SSGD). Statistical significance was determined by one-way ANOVA with post-hoc Bonferroni correction, and synergism was assessed using two-way ANOVA. Results: Monolayer assays in H1299 and H460 suggest that 21 vs. 5% were synergistic, and 17 vs. 11% were additive chemoradiation interactions, respectively. In H1299 tumor spheroids, significant SSGD was obtained for cisplatin, etoposide, and crizotinib, which increased significantly after the addition of the NOTCH inhibitor BMS-906024 (but not for paclitaxel and pemetrexed), and especially in triple combination with radiation. Synergistic interactions were observed when BMS-906024 was combined with chemoradiation (cisplatin, paclitaxel, docetaxel, and crizotinib). Similar results were observed for H460 spheroids using paclitaxel or crizotinib in dual combination treatment with NOTCH inhibition and triple with radiation. Conclusions: Our findings point to novel synergistic combinations of NOTCH inhibition and chemoradiation that should be tested in NSCLC in vivo models for their ability to achieve an improved therapeutic ratio.
Collapse
Affiliation(s)
- Venus Sosa Iglesias
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jan Theys
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Arjan J Groot
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lydie M O Barbeau
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Alyssa Lemmens
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ala Yaromina
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mario Losen
- Department of Psychology and Neuropsychology, MHeNS, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ruud Houben
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,MAASTRO Clinic, Maastricht, Netherlands
| | - Ludwig Dubois
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO), GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands.,MAASTRO Clinic, Maastricht, Netherlands
| |
Collapse
|
37
|
Yang T, Gu J, Liu T, Ma H, Ma X, Tao J, Jin Y, Liang X. [Expression of Acetaldehyde Dehydrogenase in Gefitinib-resistant Human Lung Adenocarcinoma HCC-827/GR Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:431-436. [PMID: 29945700 PMCID: PMC6022030 DOI: 10.3779/j.issn.1009-3419.2018.06.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tumor recurrence and drug resistance are the main causes of death in tumor patients. The family of acetaldehyde dehydrogenase (ALDH) is closely related to the proliferation, migration, invasion and resistance of tumor cells, and different ALDH subtypes are expressed in different tumor cells. The aim of this study is to elucidate the ALDH subtype in human lung adenocarcinoma HCC-827/GR cells, which resistant to the gefitinib. METHODS The human lung adenocarcinoma HCC-827 cells were used to generate the gefitinib-resistant HCC-827/GR cells; the expression of ALDH subtype in either HCC-827 or HCC-827/GR was detected by flow cytometry; The proliferative capacity and sensitivity to gefitinib of hcc-827/GR cells were analyzed by MTT assay before and after treatment with 100 μmol/L diethyllaminaldehyde (DEAB); Real-time quantitative PCR was used to detect the expression of ALDH subtypes at mRNA levels in hcc-827 cells and hcc-827/GR cells. RESULTS Compared with HCC-827 cells, the positive rate of ALDH in HCC-827/GR cells increased. The proliferation ability of HCC-827/GR cells decreased after treatment with 100 μmol/L DEAB. Compared with HCC-827 cells, the expression of ALDH1A1 and ALDH1L1 mRNA was increased in hcc-827/GR cells, but the ALDH3B2 expression was decreased. CONCLUSIONS ALDH might be used as a molecular biomarker to test the gefitinib-resistant to lung adenocarcinoma cancer cells, and the ALDH1A1 may play a role in gefitinib resistance in lung cancer.
Collapse
Affiliation(s)
- Tingting Yang
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University,
Yinchuan 750004, China
| | - Jingjing Gu
- College of Clinical Medicine, General Hospital of Ningxia Medical University,
Yinchuan 750004, China
| | - Ting Liu
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University,
Yinchuan 750004, China
| | - Haibin Ma
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University,
Yinchuan 750004, China
| | - Xiaona Ma
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University,
Yinchuan 750004, China
| | - Jin Tao
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University,
Yinchuan 750004, China
| | - Yiran Jin
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University,
Yinchuan 750004, China
| | - Xueyun Liang
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University,
Yinchuan 750004, China
| |
Collapse
|
38
|
Wang Y, Jiang M, Du C, Yu Y, Liu Y, Li M, Luo F. Utilization of lung cancer cell lines for the study of lung cancer stem cells. Oncol Lett 2018; 15:6791-6798. [PMID: 29731860 PMCID: PMC5920960 DOI: 10.3892/ol.2018.8265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/30/2017] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is one of the most lethal types of cancer, and its poor prognosis is primarily due to drug resistance and cancer recurrence. As it is associated with a low five-year survival rate, lung cancer stem cells (LCSCs) have been the subject of numerous recent studies. For these studies of LCSCs, lung cancer cell lines are more commonly used than lung cancer tissues obtained from patients, as they are easier to acquire. The methods utilized for the identification of LCSCs from lung cancer cell lines include fluorescence activated cell sorting (FACS), magnetic activated cell sorting (MACS), sphere-forming assay and bacterial surface display library screening. As LCSCs have certain proteins expressed on the surface (CD133, CD44 and CD24) or in the cytoplasm (ALDH and ABCG2), which may act as specific markers, the most frequently used technique to identify and obtain LCSCs is FACS. The current lack of recognized biomarkers in LCSCs makes the identification of LCSCs problematic. Furthermore, the various proportions of LCSCs in specific cell lines, as revealed by numerous previous studies, may cause the LCSC model to be questioned with regard to whether the utilization of certain lung cancer cell lines is dependable for LCSC studies. The current review focuses on lung cancer cell lines that are used for the study of LCSCs and the methods available to identify LCSCs with various markers. The present study also aimed to determine the proportion of LCSCs present in specific cell lines reported by various studies, and to discuss the suitability of specific lung cancer cell lines for the study of LCSCs.
Collapse
Affiliation(s)
- Yuyi Wang
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming Jiang
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chi Du
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Oncology, The Second People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Yang Yu
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Li
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
39
|
Chang CW, Chen YS, Chen CC, Chan IO, Chen CC, Sheu SJ, Lin TW, Chou SH, Liu CJ, Lee TC, Lo JF. Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and src activity using an active component of antrodia cinnamomea mycelia. Oncotarget 2018; 7:73016-73031. [PMID: 27682875 PMCID: PMC5341960 DOI: 10.18632/oncotarget.12194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer initiating cells (CICs) represent a subpopulation of cancer cells, which are responsible for tumor growth and resistance to chemotherapy. Herein, we first used a cell-based aldehyde dehydrogenase (ALDH) activity assay to identify that YMGKI-2 (also named as Ergone), an active component purified from Antrodia cinnamomea Mycelia extract (ACME), effectively abrogated the ALDH activity and abolished the CICs in head and neck squamous cell carcinoma cells (HNSCCs). Consequently, YMGKI-2 treatment suppressed self-renewal ability and expression of stemness signature genes (Oct-4 and Nanog) of sphere cells with enriched CICs. Moreover, YMGKI-2 treated sphere cells displayed reduction of CICs properties and promotion of cell differentiation, but not significant cytotoxicity. YMGKI-2 treatment also attenuated the tumorigenicity of HNSCC cells in vivo. Mechanistically, treatment of YMGKI-2 resulted in inactivation of STAT3 and Src. Lastly, combinatorial treatments with YMGKI-2 and standard chemotherapeutic drugs (cisplatin or Fluorouracil) restored the chemosensivity on sphere cells and cisplatin-resistant HNSCC cells. Together, we demonstrate that YMGKI-2 treatment effectively induces differentiation and reduces tumorigenicity of CICs. Further, combined treatment of YMGKI-2 and conventional chemotherapy can overcome chemoresistance. These results suggest that YMGKI-2 treatment may be used to improve future clinical responses in head and neck cancer treatment through targeting CICs.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Syuan Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Chih Chen
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Ik-On Chan
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Graduate Institute of Chinese Medical Science and Institute of Medical Science, China Medical University, Taichung, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Hu B, Ma Y, Yang Y, Zhang L, Han H, Chen J. CD44 promotes cell proliferation in non-small cell lung cancer. Oncol Lett 2018; 15:5627-5633. [PMID: 29552200 PMCID: PMC5840516 DOI: 10.3892/ol.2018.8051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/26/2017] [Indexed: 01/25/2023] Open
Abstract
Cluster of differentiation 44 (CD44), a marker for cancer stem cells, has been reported to be associated with poor prognosis in non-small cell lung cancer (NSCLC), but its involvement in tumor growth has not fully been elucidated. The present study explored the associations between CD44 expression and clinicopathological features using immunohistochemistry in 94 NSCLC cases, as well as proliferation in cells with aberrant expression of this protein. Overexpression of CD44 was achieved by transfecting H1299 cells with CD44 expression vectors, and inhibition of CD44 expression was performed by transfecting small interfering RNAs into A549 cells. Cell proliferation was measured using Cell Counting Kit-8 assays and flat plate colony formation assay was performed to confirm the cellular anchorage growth in vitro. In total, 64 (68.1%) of the 94 NSCLC cases stained positive for CD44 expression. High expression of CD44 was associated with advanced T stage in NSCLC. Overexpression of CD44 in H1299 cells promoted cell proliferation and colony formation in vitro. Meanwhile, knockdown of CD44 expression in A549 cells suppressed cell proliferation and colony formation in vitro. High expression of CD44 may promote NSCLC progression by increasing cancer cell proliferation; therefore, it may serve as a potential biomarker for diagnosis or target therapy.
Collapse
Affiliation(s)
- Bo Hu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Lijian Zhang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Haibo Han
- Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Jinfeng Chen
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
41
|
Liu S, Guo Y, Wang J, Zhu H, Han Y, Jin M, Wang J, Zhou C, Ma J, Lin Q, Wang Z, Meng K, Fu X. A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells. Oncotarget 2018; 7:45158-45170. [PMID: 27281614 PMCID: PMC5216713 DOI: 10.18632/oncotarget.9783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/20/2016] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments. Thus, it is urgent to develop a novel agent that is able to inhibit CSCs growth. In this study, we examined the ability of SNG1153, a novel chemical agent to inhibit the growth of lung CSCs. We found that SNG1153 inhibited growth and induced apoptosis in established lung cancer cells. We also found that SNG1153 inhibited the tumorsphere formation and decreased CD133-positive (lung CSC marker) cancer cells. SNG1153 was able to attenuate tumor formation in NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice injected with lung tumorsphere cells. We further demonstrated that SNG1153 induced β-catenin phosphorylation and down-regulated β-catenin. Our results thus demonstrate that SNG1153 effectively inhibits the growth of lung CSCs and suggest that SNG1153 may be a novel therapeutic agent to treat human lung cancer.
Collapse
Affiliation(s)
- Shiyang Liu
- School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Yuming Guo
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Jing Wang
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Hai Zhu
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Yuqing Han
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Mingji Jin
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Jun Wang
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Congya Zhou
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Junfeng Ma
- School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Qingcong Lin
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Zhaoyi Wang
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Kun Meng
- Beijing Shenogen Biomedical Co., Ltd, Beijing, P.R. China
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun, P.R. China
| |
Collapse
|
42
|
Wang NN, Wang LH, Li Y, Fu SY, Xue X, Jia LN, Yuan XZ, Wang YT, Tang X, Yang JY, Wu CF. Targeting ALDH2 with disulfiram/copper reverses the resistance of cancer cells to microtubule inhibitors. Exp Cell Res 2018; 362:72-82. [DOI: 10.1016/j.yexcr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
|
43
|
Bakhshinyan D, Adile AA, Qazi MA, Singh M, Kameda-Smith MM, Yelle N, Chokshi C, Venugopal C, Singh SK. Introduction to Cancer Stem Cells: Past, Present, and Future. Methods Mol Biol 2018; 1692:1-16. [PMID: 28986882 DOI: 10.1007/978-1-4939-7401-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Cancer Stem Cell (CSC) hypothesis postulates the existence of a small population of cancer cells with intrinsic properties allowing for resistance to conventional radiochemotherapy regiments and increased metastatic potential. Clinically, the aggressive nature of CSCs has been shown to correlate with increased tumor recurrence, metastatic spread, and overall poor patient outcome across multiple cancer subtypes. Traditionally, isolation of CSCs has been achieved through utilization of cell surface markers, while the functional differences between CSCs and remaining tumor cells have been described through proliferation, differentiation, and limiting dilution assays. The generated insights into CSC biology have further highlighted the importance of studying intratumoral heterogeneity through advanced functional assays, including CRISPR-Cas9 screens in the search of novel targeted therapies. In this chapter, we review the discovery and characterization of cancer stem cells populations within several major cancer subtypes, recent developments of novel assays used in studying therapy resistant tumor cells, as well as recent developments in therapies targeted at cancer stem cells.
Collapse
Affiliation(s)
- David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Ashley A Adile
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Maleeha A Qazi
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Mohini Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Michelle M Kameda-Smith
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Nick Yelle
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Chirayu Chokshi
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Biochemistry and Biomedical Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada, L8S 4K1
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada, L8S 4K1.
- Department of Biochemistry and Biomedical Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada, L8S 4K1.
- Michael DeGroote Centre for Learning and Discovery, Stem Cell and Cancer Research Institute, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1.
| |
Collapse
|
44
|
Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treatments that target EMT signaling. Dev Dyn 2017; 247:462-472. [PMID: 28960588 DOI: 10.1002/dvdy.24596] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cancer worldwide. Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, molecularly targeted therapy including epidermal growth factor receptor or anaplastic lymphoma kinase inhibitors, and immunotherapy. These treatments can be administered alone or in combination. Despite therapeutic advances, however, lung cancer remains the leading cause of cancer death. Recent studies have indicated that epithelial-mesenchymal transition (EMT) is associated with malignancy in various types of cancer, and activation of EMT signaling in cancer cells is widely considered to contribute to metastasis, recurrence, or therapeutic resistance. In this review, we provide an overview of the role of EMT in the progression of lung cancer. We also discuss the prospects for new therapeutic strategies that target EMT signaling in lung cancer. Developmental Dynamics 247:462-472, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
MiR-410 induces stemness by inhibiting Gsk3β but upregulating β-catenin in non-small cells lung cancer. Oncotarget 2017; 8:11356-11371. [PMID: 28076327 PMCID: PMC5355270 DOI: 10.18632/oncotarget.14529] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/27/2016] [Indexed: 02/05/2023] Open
Abstract
Our previous research indicated miR-410 played a critical role in promoting the tumorigenesis and development of NSCLC (non-small cells lung cancer). MiR-410 has been recently reported to be crucial for development and differentiation of embryonic stem cells. But it remains elusive whether miR-410 stimulates the stemness of cancer until now. Herein, we identify miR-410 induces the stemness and is associated with the progression of NSCLC. We demonstrate miR-410 increases the levels of stem cells marker Sox2, Oct4, Nanog, CXCR4 as well as lung cancer stem cells surface marker CD44 and CD166. MiR-410 promotes stem cells-like properties such as proliferation, sphere formation, metastasis and chemoresistance. Moreover, Gsk3β is directly targeted and post-transcriptionally downregulated by miR-410. Also, the expression levels of miR-410 and Gsk3β may be correlated to clinicopathological differentiation in NSCLC tumor specimens. Additionally, we demonstrate miR-410 induces stemness through inhibiting Gsk3β but increasing Sox2, Oct4, Nanog and CXCR4, which binds to β-catenin signaling. In conclusion, our findings identify the miR-410/Gsk3β/β-catenin signaling axis is a novel molecular circuit in inducing stemness of NSCLC.
Collapse
|
46
|
Su YK, Shih PH, Lee WH, Bamodu OA, Wu ATH, Huang CC, Tzeng YM, Hsiao M, Yeh CT, Lin CM. Antrodia cinnamomea sensitizes radio-/chemo-therapy of cancer stem-like cells by modulating microRNA expression. JOURNAL OF ETHNOPHARMACOLOGY 2017; 207:47-56. [PMID: 28602756 DOI: 10.1016/j.jep.2017.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The discovery of many tissue-specific cancer stem cells (CSCs) continues to attract scientific attention. These CSCs are considered to be associated with chemo- and radio-resistance, and consequently, failure of conventional anticancer therapies. The recent demonstration of several microRNAs as enhancers of tumorigenicity via modulation of epithelial-mesenchymal transition and cancer stemness, makes them putative novel therapeutic target in oncology. Antrodia cinnamomea is a Chinese traditional medicine with several biological functions including anti-inflammation, antioxidant, and cancer prevention. However, the anti-CSC capability of A. Cinnamomea is not clear yet. AIM OF THE STUDY To investigate the inhibitory effect of A. cinnamomea mycelium and extract on CSCs derived from various human cancer cell lines using our in-house therapeutics and human genome-wide miRNA screening panels. MATERIALS AND METHODS A broad range of human cancer cell lines, including the acute monocytic leukemia (THP-1), glioblastoma multiforme (GBM 8401), lung carcinoma (A549), breast adenocarcinoma (MDA-MB-231), hepatoblastoma (HepG2), colorectal adenocarcinoma (SW620), and foreskin fibroblast (HS68), were exposed to A. cinnamomea in this study. CD133+ CSCs generated from the cell lines were characterized and isolated by flow cytometry, effect of chemo- and radiotherapy was assessed using the MTT assay, while the RT-PCR and human genome wide qRT-PCR determined the differential gene expression patterns. A comparative analysis of the anticancer effect of A. cinnamomea and Cisplatin, Taxol, or irradiation was also performed. RESULTS Our results indicated that A. cinnamomea mycelium and its ethyl acetate extracts showed anti-proliferation effects against all types of CSCs, especially the lung, breast, and head and neck squamous cell carcinoma CSCs. Furthermore, CSCs treatment with A. cinnamomea combined with irradiation or chemotherapeutics demonstrated significant anti-cancer effect. We also established an association between the CSC-inhibitory effect of A. cinnamomea and significant downregulation of several microRNAs and cancer stemness expression levels in brain and breast CSCs. More importantly, higher CD133 expression is associated with poor prognosis in glioblastoma and breast cancer patients. CONCLUSION Herein, we demonstrate the putative role of A. cinnamomea as an effective ethnopharmacologic therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Yu-Kai Su
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ping-Hsiao Shih
- Department of Pediatrics, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chih Huang
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Yew-Min Tzeng
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Tai Yeh
- Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| | - Chien-Min Lin
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
47
|
Xiao ZJ, Liu J, Wang SQ, Zhu Y, Gao XY, Tin VPC, Qin J, Wang JW, Wong MP. NFATc2 enhances tumor-initiating phenotypes through the NFATc2/SOX2/ALDH axis in lung adenocarcinoma. eLife 2017; 6. [PMID: 28737489 PMCID: PMC5570574 DOI: 10.7554/elife.26733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/22/2017] [Indexed: 12/17/2022] Open
Abstract
Tumor-initiating cells (TIC) are dynamic cancer cell subsets that display enhanced tumor functions and resilience to treatment but the mechanism of TIC induction or maintenance in lung cancer is not fully understood. In this study, we show the calcium pathway transcription factor NFATc2 is a novel regulator of lung TIC phenotypes, including tumorspheres, cell motility, tumorigenesis, as well as in vitro and in vivo responses to chemotherapy and targeted therapy. In human lung cancers, high NFATc2 expression predicted poor tumor differentiation, adverse recurrence-free and cancer-specific overall survivals. Mechanistic investigations identified NFATc2 response elements in the 3’ enhancer region of SOX2, and NFATc2/SOX2 coupling upregulates ALDH1A1 by binding to its 5’ enhancer. Through this axis, oxidative stress induced by cancer drug treatment is attenuated, leading to increased resistance in a mutation-independent manner. Targeting this axis provides a novel approach for the long-term treatment of lung cancer through TIC elimination. DOI:http://dx.doi.org/10.7554/eLife.26733.001 Cancer develops when cells become faulty and start to grow uncontrollably. They eventually form lumps or tumors, which may spread to surrounding tissues or even to other areas in the body. One of the reasons why cancer treatment remains a challenge is that there are over 200 types of cells in the body, and there are a lot of moments in the life cycle of a cell when things could go wrong. Researchers have shown that many cancers, including lung cancer, are not only extremely different from patient to patient, but also display great differences between cancer cells within the same tumor. Increasing evidence suggest that these differences may be caused by a type of cells called tumor initiating cells, or TICs for short. These TICs behave like stem cells and can renew themselves or mature into different types of cells. They are thought to help cancers grow and spread, and even make them resistant to treatments. Previous research has shown that in many types of cancer, the protein NFATc2 helps cancer cells to grow and spread. Until now, however, it was not known if NFATc2 is also important in TICs in lung cancer. Using human lung cancer cell lines and animal models, Xiao et al. show that the protein NFATc2 stimulates the stem-cell like behavior of TICs. The results showed that TICs had higher levels of the NFATc2 protein than other lung cancer cells that were not TICs. Tumors with higher levels were also more aggressive. When NFATc2 was removed from the cells, they formed smaller tumors and were more sensitive to drug treatment compared to cancer cells with NFATc2. Further experiments revealed that NFATc2 helped to increase the levels of a protein called Sox2, which gives cells the ability to renew or develop into different cell types. Together, these two proteins stimulated the production of another protein that was already known to play a crucial role in TIC maintenance. A better understanding of the mechanisms regulating TICs in lung cancer will help scientists tackle new questions about how this cancer progresses and resists to therapy. In the longer-term, combining classic cancer treatments with new therapeutic strategies targeting NFATc2 could make treatments for lung cancer patients more effective. DOI:http://dx.doi.org/10.7554/eLife.26733.002
Collapse
Affiliation(s)
- Zhi-Jie Xiao
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Liu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Si-Qi Wang
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yun Zhu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xu-Yuan Gao
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Vicky Pui-Chi Tin
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Qin
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun-Wen Wang
- Department of Health Sciences Research AND Center for Individualized Medicine, Mayo Clinic, Scottsdale, United States.,Department of Biomedical Informatics, Arizona State University, Scottsdale, United States
| | - Maria Pik Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
48
|
Nishino M, Ozaki M, Hegab AE, Hamamoto J, Kagawa S, Arai D, Yasuda H, Naoki K, Soejima K, Saya H, Betsuyaku T. Variant CD44 expression is enriching for a cell population with cancer stem cell-like characteristics in human lung adenocarcinoma. J Cancer 2017; 8:1774-1785. [PMID: 28819374 PMCID: PMC5556640 DOI: 10.7150/jca.19732] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Preliminary studies have identified cancer stem cells (CSCs) in various cancers and there are several ongoing clinical studies targeting these cells. CD44 (standard or variant isoforms) and/or aldehyde dehydrogenase (ALDH) expression is the most commonly used markers for the identification of CSCs. The goal of the current study was to examine the ability of CD44v, either alone or in combination with ALDH, to identify CSCs within human lung cancer cells lines. Methods: We examined several lung adenocarcinoma cell lines for the ability of CD44v and/or ALDH expression to enrich for cells with CSC characteristics such as in vitro differential proliferation rate, chemotherapeutic-resistance, tumorsphere formation, and in vivo tumorigenicity. We also compared their in vivo secondary tumor formation, and histological characteristics of their xenograft tumors, and examined their expression of PD-L1, EGFR, xCT, and reactive oxygen species (ROS). Results: Both CD44vhigh/ALDHhigh and CD44vhigh/ALDHlow cells were enriched in cells with CSC characteristics, with the CD44vhigh/ALDHlow cells being more proliferative and more resistant to chemotherapeutics, whereas CD44vhigh/ALDHhigh cells were more efficient in forming tumorspheres in vitro, in making primary xenograft tumors, and in propagating secondary tumors in vivo. Applying stricter sorting gates to select for cells with the highest CD44v/ALDH expression caused the CD44vhigh/ALDHlow cells to lose their high proliferation rates and chemotherapeutic resistance ability, but enriched for the tumorsphere-forming cells among the CD44vhigh/ALDHhigh and CD44vhigh/ALDHlow cells. CD44vhigh expression was associated with PD-L1 and xCT expression in both H1650 and HCC827 cells. This association was not modified by ALDH expression in the H1650 cell line. However, in the HCC827 cell line, ALDH expression was negatively associated with PD-L1 and positively associated with xCT expression. Conclusion: Lung adenocarcinoma cells with high CD44v expression are enriched for CSCs. Addition of ALDH as an enrichment marker bestowed some CSCs characteristics to CD44vhigh/ALDHlow cells and others to CD44vhigh/ALDHhigh cells. We propose that lung adenocarcinoma contains different CSCs, each of them endowed with different CSC characteristics.
Collapse
Affiliation(s)
- Makoto Nishino
- Division of Pulmonary Medicine, Department of Medicine, and
| | - Mari Ozaki
- Division of Pulmonary Medicine, Department of Medicine, and
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, and
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, and
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, and
| | - Daisuke Arai
- Division of Pulmonary Medicine, Department of Medicine, and
| | | | | | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, and
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | |
Collapse
|
49
|
Chen J, Kumar S. Biophysical Regulation of Cancer Stem/Initiating Cells: Implications for Disease Mechanisms and Translation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 1:87-95. [PMID: 29082354 DOI: 10.1016/j.cobme.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer stem/initiating cells (CSCs) are a subset of tumor cells proposed to play privileged roles in seeding tumors and driving metastasis. CSCs have emerged as an increasingly important target of interest in cancer biology and therapy. Recent work has suggested that CSC maintenance and metastatic potential may be modulated by physical inputs within the tissue microenvironment, including interstitial pressure and extracellular matrix stiffness. Here we review recent progress in our understanding of CSC regulation by biophysical signals within the tumor microenvironment. While the mechanistic basis of this signaling remains incompletely understood, we discuss emerging evidence that mechanical inputs can epigenetically regulate CSC behavior and that some CSCs can evade mechanotransductive signals to more efficiently infiltrate tissue. We also describe efforts to leverage these findings to engineer culture platforms for the characterization of CSC mechanics for discovery and screening.
Collapse
Affiliation(s)
- Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
50
|
Wang J, Wang L, Ho CT, Zhang K, Liu Q, Zhao H. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3675-3683. [PMID: 28420235 DOI: 10.1021/acs.jafc.7b00346] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.
Collapse
Affiliation(s)
- Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce , Tianjin 300134, China
| | - Liwen Wang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce , Tianjin 300134, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Kunsheng Zhang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce , Tianjin 300134, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce , Tianjin 300134, China
| |
Collapse
|