1
|
Nataraj K, Schonfeld M, Rodriguez A, Sharma M, Weinman S, Tikhanovich I. Androgen Effects on Alcohol-induced Liver Fibrosis Are Controlled by a Notch-dependent Epigenetic Switch. Cell Mol Gastroenterol Hepatol 2024; 19:101414. [PMID: 39349250 PMCID: PMC11609386 DOI: 10.1016/j.jcmgh.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS Alcohol-associated liver disease (ALD) is a major cause of alcohol-related mortality. Sex is an important variable; however, the mechanism behind sex differences is not yet established. METHODS Kdm5b flox/flox Kdm5c flox male mice were subjected to gonadectomy or sham surgery. Mice were fed a Western diet and 20% alcohol in the drinking water for 18 weeks. To induce knockout, mice received 2 × 1011 genome copies of AAV8-CMV-Cre or AAV8-control. To test the role of Notch, mice were treated with 10 mg/kg of avagacestat for 4 weeks. RESULTS We found that Kdm5b/Kdm5c knockout promoted alcohol-induced liver disease, whereas gonadectomy abolished this effect, suggesting that male sex hormones promote liver disease in the absence of KDM5 demethylases. In contrast, in the thioacetamide-induced fibrosis model, male sex hormones showed a protective effect regardless of genotype. In human liver disease samples, we found that androgen receptor expression positively correlated with fibrosis levels when KDM5B levels were low and negatively when KDM5B was high, suggesting that a KDM5B-dependent epigenetic state defines the androgen receptor role in liver fibrosis. Using isolated cells, we found that this difference was due to the differential effect of testosterone on hepatic stellate cell activation in the absence or presence of KDM5B/KDM5C. Moreover, this effect was mediated by KDM5-dependent suppression of Notch signaling. In KDM5-deficient mice, Notch3 and Jag1 gene expression was induced, facilitating testosterone-mediated induction of Notch signaling and stellate cell activation. Inhibiting Notch with avagacestat greatly reduced liver fibrosis and abolished the effect of Kdm5b/Kdm5c loss. CONCLUSIONS Male sex hormone signaling can promote or prevent alcohol-associated liver fibrosis depending on the KDM5-dependent epigenetic state.
Collapse
Affiliation(s)
- Kruti Nataraj
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Michael Schonfeld
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Adriana Rodriguez
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Madhulika Sharma
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri
| | - Steven Weinman
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri; Kansas City VA Medical Center, Kansas City, Missouri
| | - Irina Tikhanovich
- Department of Internal Medicine, Kansas City VA Medical Center, Kansas City, Missouri.
| |
Collapse
|
2
|
Teramoto Y, Yang Z, Matsukawa T, Najafi MAE, Goto T, Miyamoto H. PGC1α as a downstream effector of KDM5B promotes the progression of androgen receptor-positive and androgen receptor-negative prostate cancers. Am J Cancer Res 2024; 14:4367-4377. [PMID: 39417173 PMCID: PMC11477833 DOI: 10.62347/qwzy6886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/19/2024] Open
Abstract
PPARγ coactivator-1α (PGC1α), as a co-activator, is known to optimize the action of several transcription factors, including androgen receptor (AR). However, the precise functions of PGC1α in prostate cancer, particularly those via the non-AR pathways, remain poorly understood. Meanwhile, our bioinformatics search suggested that PGC1α could be a direct downstream target of lysine-specific demethylase 5B (KDM5B/JARID1B/PLU1). We herein aimed to investigate how PGC1α induced prostate cancer outgrowth. Immunohistochemistry in radical prostatectomy specimens showed that the levels of PGC1α expression were significantly higher in prostatic adenocarcinoma [H-score (mean ± SD): 179.0 ± 111.6] than in adjacent normal-appearing tissue (16.7 ± 29.9, P<0.001) or high-grade prostatic intraepithelial neoplasia (79.0 ± 94.7, P<0.001). Although there were no strong associations of PGC1α expression with tumor grade or stage, outcome analysis revealed that patients with high PGC1α (H-score of ≥200) tumor had a significantly higher risk of postoperative biochemical recurrence even in a multivariable setting (hazard ratio 5.469, P=0.004). In prostate cancer LNCaP and C4-2 cells, PGC1α silencing resulted in considerable reduction in the levels of prostate-specific antigen expression. Interestingly, PGC1α silencing inhibited the cell viability of not only AR-positive LNCaP/C4-2/22Rv1 lines but also AR-negative PC3/DU145 lines. Chromatin immunoprecipitation assay further revealed the binding of KDM5B to the promoter region of PGC1α in these lines. Additionally, treatment with a KDM5 inhibitor KDM5-C70 considerably reduced the expression of PGC1α and prostate-specific antigen, as well as the cell viability of all the AR-positive and AR-negative lines examined. PGC1α silencing or KDM5-C70 treatment also down-regulated the expression of phospho-JAK2 and phospho-STAT3 in both AR-positive and AR-negative cells. These findings suggest the involvement of PGC1α, as a downstream effector of KDM5B, in prostate cancer progression via both AR-dependent and AR-independent pathways. KDM5B-PGC1α is thus a potential therapeutic target for both androgen-sensitive and castration-resistant tumors. Meanwhile, PGC1α overexpression may serve as a useful prognosticator in those undergoing radical prostatectomy.
Collapse
Affiliation(s)
- Yuki Teramoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY 14642, USA
| | - Zhiming Yang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
| | - Takuo Matsukawa
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY 14642, USA
| | - Mohammad Amin Elahi Najafi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY 14642, USA
| | - Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY 14642, USA
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY 14642, USA
- Department of Urology, University of Rochester Medical CenterRochester, NY 14642, USA
| |
Collapse
|
3
|
Schonfeld M, O’Neil M, Weinman SA, Tikhanovich I. Alcohol-induced epigenetic changes prevent fibrosis resolution after alcohol cessation in miceresolution. Hepatology 2024; 80:119-135. [PMID: 37943941 PMCID: PMC11078890 DOI: 10.1097/hep.0000000000000675] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease is a major cause of alcohol-associated mortality. Recently, we identified hepatic demethylases lysine demethylase (KDM)5B and KDM5C as important epigenetic regulators of alcohol response in the liver. In this study, we aimed to investigate the role of KDM5 demethylases in alcohol-associated liver disease resolution. APPROACH AND RESULTS We showed that alcohol-induced liver steatosis rapidly resolved after alcohol cessation. In contrast, fibrosis persisted in the liver for up to 8 weeks after the end of alcohol exposure. Defects in fibrosis resolution were in part due to alcohol-induced KDM5B and KDM5C-dependent epigenetic changes in hepatocytes. Using cell-type-specific knockout mice, we found that adeno-associated virus-mediated knockout of KDM5B and KDM5C demethylases in hepatocytes at the time of alcohol withdrawal promoted fibrosis resolution. Single-cell ATAC sequencing analysis showed that during alcohol-associated liver disease resolution epigenetic cell states largely reverted to control conditions. In addition, we found unique epigenetic cell states distinct from both control and alcohol states and identified associated transcriptional regulators, including liver X receptor (LXR) alpha (α). In vitro and in vivo analysis confirmed that knockout of KDM5B and KDM5C demethylases promoted LXRα activity, likely through regulation of oxysterol biosynthesis, and this activity was critical for the fibrosis resolution process. Reduced LXR activity by small molecule inhibitors prevented fibrosis resolution in KDM5-deficient mice. CONCLUSIONS In summary, KDM5B and KDM5C demethylases prevent liver fibrosis resolution after alcohol cessation in part through suppression of LXR activity.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maura O’Neil
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Brown LK, Kanagasabai T, Li G, Celada SI, Rumph JT, Adunyah SE, Stewart LV, Chen Z. Co-targeting SKP2 and KDM5B inhibits prostate cancer progression by abrogating AKT signaling with induction of senescence and apoptosis. Prostate 2024; 84:877-887. [PMID: 38605532 DOI: 10.1002/pros.24706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is the second-leading cause of cancer mortalities in the United States and is the most commonly diagnosed malignancy in men. While androgen deprivation therapy (ADT) is the first-line treatment option to initial responses, most PCa patients invariably develop castration-resistant PCa (CRPC). Therefore, novel and effective treatment strategies are needed. The goal of this study was to evaluate the anticancer effects of the combination of two small molecule inhibitors, SZL-P1-41 (SKP2 inhibitor) and PBIT (KDM5B inhibitor), on PCa suppression and to delineate the underlying molecular mechanisms. METHODS Human CRPC cell lines, C4-2B and PC3 cells, were treated with small molecular inhibitors alone or in combination, to assess effects on cell proliferation, migration, senescence, and apoptosis. RESULTS SKP2 and KDM5B showed an inverse regulation at the translational level in PCa cells. Cells deficient in SKP2 showed an increase in KDM5B protein level, compared to that in cells expressing SKP2. By contrast, cells deficient in KDM5B showed an increase in SKP2 protein level, compared to that in cells with KDM5B intact. The stability of SKP2 protein was prolonged in KDM5B depleted cells as measured by cycloheximide chase assay. Cells deficient in KDM5B were more vulnerable to SKP2 inhibition, showing a twofold greater reduction in proliferation compared to cells with KDM5B intact (p < 0.05). More importantly, combined inhibition of KDM5B and SKP2 significantly decreased proliferation and migration of PCa cells as compared to untreated controls (p < 0.005). Mechanistically, combined inhibition of KDM5B and SKP2 in PCa cells abrogated AKT activation, resulting in an induction of both cellular senescence and apoptosis, which was measured via Western blot analysis and senescence-associated β-galactosidase (SA-β-Gal) staining. CONCLUSIONS Combined inhibition of KDM5B and SKP2 was more effective at inhibiting proliferation and migration of CRPC cells, and this regimen would be an ideal therapeutic approach of controlling CRPC malignancy.
Collapse
Affiliation(s)
- LaKendria K Brown
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Sherly I Celada
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jelonia T Rumph
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - LaMonica V Stewart
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Smith T, White T, Chen Z, Stewart LV. The KDM5 inhibitor PBIT reduces proliferation of castration-resistant prostate cancer cells via cell cycle arrest and the induction of senescence. Exp Cell Res 2024; 437:113991. [PMID: 38462208 PMCID: PMC11091958 DOI: 10.1016/j.yexcr.2024.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
The compound 2-4(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PBIT) is an inhibitor of the KDM5 family of lysine-specific histone demethylases that has been suggested as a lead compound for cancer therapy. The goal of this study was to explore the effects of PBIT within human prostate cancers. Micromolar concentrations of PBIT altered proliferation of castration-sensitive LNCaP and castration-resistant C4-2B, LNCaP-MDV3100 and PC-3 human prostate cancer cell lines. We then characterized the mechanism underlying the anti-proliferative effects of PBIT within the C4-2B and PC-3 cell lines. Data from Cell Death ELISAs suggest that PBIT does not induce apoptosis within C4-2B or PC-3 cells. However, PBIT did increase the amount of senescence associated beta-galactosidase. PBIT also altered cell cycle progression and increased protein levels of the cell cycle protein p21. PC-3 and C4-2B cells express varying amounts of KDM5A, KDM5B, and KDM5C, the therapeutic targets of PBIT. siRNA-mediated knockdown studies suggest that inhibition of multiple KDM5 isoforms contribute to the anti-proliferative effect of PBIT. Furthermore, combination treatments involving PBIT and the PPARγ agonist 15-deoxy-Δ-12, 14 -prostaglandin J2 (15d-PGJ₂) also reduced PC-3 cell proliferation. Together, these data strongly suggest that PBIT significantly reduces the proliferation of prostate cancers via a mechanism that involves cell cycle arrest and senescence.
Collapse
Affiliation(s)
- Tunde Smith
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Tytianna White
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - LaMonica V Stewart
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
6
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
7
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
8
|
Longbotham JE, Kelly MJS, Fujimori DG. Recognition of Histone H3 Methylation States by the PHD1 Domain of Histone Demethylase KDM5A. ACS Chem Biol 2023; 18:1915-1925. [PMID: 33621062 PMCID: PMC8380758 DOI: 10.1021/acschembio.0c00976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PHD reader domains are chromatin binding modules often responsible for the recruitment of large protein complexes that contain histone modifying enzymes, chromatin remodelers, and DNA repair machinery. A majority of PHD domains recognize N-terminal residues of histone H3 and are sensitive to the methylation state of Lys4 in histone H3 (H3K4). Histone demethylase KDM5A, an epigenetic eraser enzyme that contains three PHD domains, is often overexpressed in various cancers, and its demethylation activity is allosterically enhanced when its PHD1 domain is bound to the H3 tail. The allosteric regulatory function of PHD1 expands roles of reader domains, suggesting unique features of this chromatin interacting module. Our previous studies determined the H3 binding site of PHD1, although it remains unclear how the H3 tail interacts with the N-terminal residues of PHD1 and how PHD1 discriminates against H3 tails with varying degrees of H3K4 methylation. Here, we have determined the solution structure of apo and H3 bound PHD1. We observe conformational changes occurring in PHD1 in order to accommodate H3, which interestingly binds in a helical conformation. We also observe differential interactions of binding residues with differently methylated H3K4 peptides (me0, me1, me2, or me3), providing a rationale for PHD1's preference for lower methylation states of H3K4. We further assessed the contributions of various H3 interacting residues in the PHD1 domain to the binding of H3 peptides. The structural details of the H3 binding site could provide useful information to aid the development of allosteric small molecule modulators of KDM5A.
Collapse
Affiliation(s)
- James E Longbotham
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, California 94158, United States
| | - Mark J S Kelly
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, California 94158, United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, California 94158, United States
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, California 94158, United States
- Quantitative Biosciences Institute, University of California San Francisco, 1700 Fourth Street, San Francisco, California 94158, United States
| |
Collapse
|
9
|
Penas C, Arroyo-Berdugo Y, Apraiz A, Rasero J, Muñoa-Hoyos I, Andollo N, Cancho-Galán G, Izu R, Gardeazabal J, Ezkurra PA, Subiran N, Alvarez-Dominguez C, Alonso S, Bosserhoff AK, Asumendi A, Boyano MD. Pirin is a prognostic marker of human melanoma that dampens the proliferation of malignant cells by downregulating JARID1B/KDM5B expression. Sci Rep 2023; 13:9561. [PMID: 37308689 DOI: 10.1038/s41598-023-36684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Originally considered to act as a transcriptional co-factor, Pirin has recently been reported to play a role in tumorigenesis and the malignant progression of many tumors. Here, we have analyzed the diagnostic and prognostic value of Pirin expression in the early stages of melanoma, and its role in the biology of melanocytic cells. Pirin expression was analyzed in a total of 314 melanoma biopsies, correlating this feature with the patient's clinical course. Moreover, PIR downregulated primary melanocytes were analyzed by RNA sequencing, and the data obtained were validated in human melanoma cell lines overexpressing PIR by functional assays. The immunohistochemistry multivariate analysis revealed that early melanomas with stronger Pirin expression were more than twice as likely to develop metastases during the follow-up. Transcriptome analysis of PIR downregulated melanocytes showed a dampening of genes involved in the G1/S transition, cell proliferation, and cell migration. In addition, an in silico approach predicted that JARID1B as a potential transcriptional regulator that lies between PIR and its downstream modulated genes, which was corroborated by co-transfection experiments and functional analysis. Together, the data obtained indicated that Pirin could be a useful marker for the metastatic progression of melanoma and that it participates in the proliferation of melanoma cells by regulating the slow-cycling JARID1B gene.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA, 15213, USA
| | - Iraia Muñoa-Hoyos
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | | | - Rosa Izu
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Basurto University Hospital, 48013, Bilbo, Spain
| | - Jesús Gardeazabal
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Cruces University Hospital, 48903, Barakaldo, Spain
| | - Pilar A Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Carmen Alvarez-Dominguez
- MEDONLINE Multidisciplinary Research Group, Faculty of Health Sciences and Faculty of Education, International University of La Rioja, 26006, Logroño, Spain
| | - Santos Alonso
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940, Leioa, Spain
| | - Anja K Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054, Erlangen, Germany
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - María D Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain.
| |
Collapse
|
10
|
Chen CY, Tian R, Ge T, Lam M, Sanchez-Andrade G, Singh T, Urpa L, Liu JZ, Sanderson M, Rowley C, Ironfield H, Fang T, Daly M, Palotie A, Tsai EA, Huang H, Hurles ME, Gerety SS, Lencz T, Runz H. The impact of rare protein coding genetic variation on adult cognitive function. Nat Genet 2023:10.1038/s41588-023-01398-8. [PMID: 37231097 DOI: 10.1038/s41588-023-01398-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Compelling evidence suggests that human cognitive function is strongly influenced by genetics. Here, we conduct a large-scale exome study to examine whether rare protein-coding variants impact cognitive function in the adult population (n = 485,930). We identify eight genes (ADGRB2, KDM5B, GIGYF1, ANKRD12, SLC8A1, RC3H2, CACNA1A and BCAS3) that are associated with adult cognitive function through rare coding variants with large effects. Rare genetic architecture for cognitive function partially overlaps with that of neurodevelopmental disorders. In the case of KDM5B we show how the genetic dosage of one of these genes may determine the variability of cognitive, behavioral and molecular traits in mice and humans. We further provide evidence that rare and common variants overlap in association signals and contribute additively to cognitive function. Our study introduces the relevance of rare coding variants for cognitive function and unveils high-impact monogenic contributions to how cognitive function is distributed in the normal adult population.
Collapse
Affiliation(s)
- Chia-Yen Chen
- Research and Development, Biogen Inc, Cambridge, MA, USA.
| | - Ruoyu Tian
- Research and Development, Biogen Inc, Cambridge, MA, USA
- Dewpoint Therapeutics, Boston, MA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Max Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Tarjinder Singh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Lea Urpa
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jimmy Z Liu
- Research and Development, Biogen Inc, Cambridge, MA, USA
- GlaxoSmithKline, Philadelphia, PA, USA
| | | | | | | | - Terry Fang
- Research and Development, Biogen Inc, Cambridge, MA, USA
| | - Mark Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ellen A Tsai
- Research and Development, Biogen Inc, Cambridge, MA, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | - Todd Lencz
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Heiko Runz
- Research and Development, Biogen Inc, Cambridge, MA, USA.
| |
Collapse
|
11
|
Mo J, Wan MT, Au DWT, Shi J, Tam N, Qin X, Cheung NKM, Lai KP, Winkler C, Kong RYC, Seemann F. Transgenerational bone toxicity in F3 medaka (Oryzias latipes) induced by ancestral benzo[a]pyrene exposure: Cellular and transcriptomic insights. J Environ Sci (China) 2023; 127:336-348. [PMID: 36522066 DOI: 10.1016/j.jes.2022.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/17/2023]
Abstract
Benzo[a]pyrene (BaP), a ubiquitous pollutant, raises environmental health concerns due to induction of bone toxicity in the unexposed offspring. Exposure of F0 ancestor medaka (Oryzias latipes) to 1 µg/L BaP for 21 days causes reduced vertebral bone thickness in the unexposed F3 male offspring. To reveal the inherited modifications, osteoblast (OB) abundance and molecular signaling pathways of transgenerational BaP-induced bone thinning were assessed. Histomorphometric analysis showed a reduction in OB abundance. Analyses of the miRNA and mRNA transcriptomes revealed the dysregulation of Wnt signaling (frzb/ola-miR-1-3p, sfrp5/ola-miR-96-5p/miR-455-5p) and bone morphogenetic protein (Bmp) signaling (bmp3/ola-miR-96-5p/miR-181b-5p/miR-199a-5p/miR-205-5p/miR-455-5p). Both pathways are major indicators of impaired bone formation, while the altered Rank signaling in osteoclasts (c-fos/miR-205-5p) suggests a potentially augmented bone resorption. Interestingly, a typical BaP-responsive pathway, the Nrf2-mediated oxidative stress response (gst/ola-miR-181b-5p/miR-199a-5p/miR-205), was also affected. Moreover, mRNA levels of epigenetic modification enzymes (e.g., hdac6, hdac7, kdm5b) were found dysregulated. The findings indicated that epigenetic factors (e.g., miRNAs, histone modifications) may directly regulate the expression of genes associated with transgenerational BaP bone toxicity and warrants further studies. The identified candidate genes and miRNAs may serve as potential biomarkers for BaP-induced bone disease and as indicators of historic exposures in wild fish for conservation purposes.
Collapse
Affiliation(s)
- Jiezhang Mo
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Miles Teng Wan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Nathan Tam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Napo K M Cheung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin 541004, China
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, 119077, Singapore
| | - Richard Yuen-Chong Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Frauke Seemann
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Center for Coastal Studies and Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, USA.
| |
Collapse
|
12
|
Abdelmaksoud NM, El-Mahdy HA, Ismail A, Elsakka EGE, El-Husseiny AA, Khidr EG, Ali EM, Rashed MH, El-Demerdash FES, Doghish AS. The role of miRNAs in the pathogenesis and therapeutic resistance of endometrial cancer: a spotlight on the convergence of signaling pathways. Pathol Res Pract 2023; 244:154411. [PMID: 36921547 DOI: 10.1016/j.prp.2023.154411] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Endometrial cancer (EC) is the 2nd common cancer in females after breast cancer. Besides, it's the most common among gynecological cancers. Several epigenetic factors such as miRNAs have been reported to affect EC aspects including initiation, progression, angiogenesis, and resistance to therapy. miRNAs could regulate the expression of various genes involved in EC pathogenesis. This effect is attributed to miRNAs' effects in proliferation, apoptosis, cell cycle, angiogenesis, invasion, and metastasis. miRNAs also influence crucial EC-related mechanistic pathways such as JAK/STAT axis, EGFR, TGF-β signaling, and P53. Beside pathogenesis, miRNAs also have the potential to affect EC response to treatments including radio and chemotherapy. Thus, this review aims to illustrate the link between miRNAs and EC; focusing on the effects of miRNAs on EC signaling pathways.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Esraa M Ali
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Helmy Rashed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Fatma El-Saeed El-Demerdash
- Department of Zoology and Entomology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
13
|
[Expression pattern of the histone lysine demethylase family and its potential role in bladder cancer: a multi-omics analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1822-1831. [PMID: 36651250 PMCID: PMC9878407 DOI: 10.12122/j.issn.1673-4254.2022.12.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To investigate the expression patterns of 19 histone lysine demethylases (KDMs) and their role in bladder cancer. METHODS In this study, UALCAN and GSCALite were used to analyze the transcriptional expression, methylation level and somatic variation of KDMs in bladder cancer samples from TCGA. Kaplan Meier-Plotter and Assistant for clinical bioinformatics were used to investigate the effect of KDMs expression on the prognosis of BLCA samples. The immune infiltration and drug sensitivity of KDMs in bladder cancer were analyzed by Timer and GSCALite. RESULTS The KDMs did not show consistent expressions patterns in bladder cancer, where the expressions of KDM1A/1B/2B/4A/4B/5B/5C were significantly upregulated while those of KDM3B/6B/7C were significantly downregulated. Methylation data analysis showed that methylation levels of KDM1A/3B/4A/4B/4C/5A/5B/5C/7B were significantly downregulated and that of KDM7C was upregulated. The transcription levels of 14 KDMs had significant negative correlations with their methylation levels, and among them KDM1A showed the strongest correlation. Mutation analysis revealed that KDM6A had the highest frequency of nonsynonymous mutations with the largest variety, and these mutations were complementary to nonsynonymous mutations of the other KDMs. Survival analysis showed that KDM3A/4C/5D/6A/7B were protective for OS while KDM3B/5B/5C adversely affected RFS of BLCA patients. Further comprehensive prognostic modeling confirmed that KDM4C/6A/7B were potential prognostic biomarkers of bladder cancer, and their expressions were positively correlated with immune infiltration in BLCA patients. KDM2B/3B/4B/4C/5A were negatively correlated with the sensitivity to most anticancer drugs, while KDM2B/4B were positively correlated with the sensitivity to 4 anticancer drugs. CONCLUSION The expression patterns of the KDMs in bladder cancer highlight a high mutation complementarity and a negative correlation between over-expression and hypomethylation level closely related with the prognosis, immune infiltration and drug sensitivity.
Collapse
|
14
|
Manea SA, Vlad ML, Lazar AG, Muresian H, Simionescu M, Manea A. Pharmacological Inhibition of Lysine-Specific Demethylase 1A Reduces Atherosclerotic Lesion Formation in Apolipoprotein E-Deficient Mice by a Mechanism Involving Decreased Oxidative Stress and Inflammation; Potential Implications in Human Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11122382. [PMID: 36552592 PMCID: PMC9774905 DOI: 10.3390/antiox11122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Dysregulated epigenetic mechanisms promote transcriptomic and phenotypic alterations in cardiovascular diseases. The role of histone methylation-related pathways in atherosclerosis is largely unknown. We hypothesize that lysine-specific demethylase 1A (LSD1/KDM1A) regulates key molecular effectors and pathways linked to atherosclerotic plaque formation. Human non-atherosclerotic and atherosclerotic tissue specimens, ApoE-/- mice, and in vitro polarized macrophages (Mac) were examined. Male ApoE-/- mice fed a normal/atherogenic diet were randomized to receive GSK2879552, a highly specific LSD1 inhibitor, or its vehicle, for 4 weeks. The mRNA and protein expression levels of LSD1/KDM1A were significantly elevated in atherosclerotic human carotid arteries, atherosclerotic aortas of ApoE-/- mice, and M1-Mac. Treatment of ApoE-/- mice with GSK2879552 significantly reduced the extent of atherosclerotic lesions and the aortic expression of NADPH oxidase subunits (Nox1/2/4, p22phox) and 4-hydroxynonenal-protein adducts. Concomitantly, the markers of immune cell infiltration and vascular inflammation were significantly decreased. LSD1 blockade down-regulated the expression of genes associated with Mac pro-inflammatory phenotype. Nox subunit transcript levels were significantly elevated in HEK293 reporter cells overexpressing LSD1. In experimental atherosclerosis, LSD1 mediates the up-regulation of molecular effectors connected to oxidative stress and inflammation. Together, these data indicate that LSD1-pharmacological interventions are novel targets for supportive therapeutic strategies in atherosclerosis.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Mihaela-Loredana Vlad
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Alexandra-Gela Lazar
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Horia Muresian
- Cardiovascular Surgery Department, University Hospital Bucharest, 050098 Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
- Correspondence:
| |
Collapse
|
15
|
Schonfeld M, Averilla J, Gunewardena S, Weinman SA, Tikhanovich I. Alcohol-associated fibrosis in females is mediated by female-specific activation of lysine demethylases KDM5B and KDM5C. Hepatol Commun 2022; 6:2042-2057. [PMID: 35468265 PMCID: PMC9315128 DOI: 10.1002/hep4.1967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 12/15/2022] Open
Abstract
Alcohol-associated liver disease is a major cause of alcohol-related mortality. However, the mechanisms underlying disease progression are not fully understood. Recently we found that liver molecular pathways are altered by alcohol consumption differently in males and females. We were able to associate these sex-specific pathways with two upstream regulators: H3K4-specific demethylase enzymes KDM5B and KDM5C. Mice were fed the Lieber-DeCarli alcohol liquid diet for 3 weeks or a combination of a high-fat diet with alcohol in water for 16 weeks (western diet alcohol model [WDA] model). To assess the role of histone demethylases, mice were treated with AAV-shControl, AAV-shKdm5b, and/or AAV-shKdm5c and/or AAV-shAhR vectors. Gene expression and epigenetic changes after Kdm5b/5c knockdown were assessed by RNA-sequencing and H3K4me3 chromatin immunoprecipitation analysis. We found that less than 5% of genes affected by Kdm5b/Kdm5c knockdown were common between males and females. In females, Kdm5b/Kdm5c knockdown prevented fibrosis development in mice fed the WDA alcohol diet for 16 weeks and decreased fibrosis-associated gene expression in mice fed the Lieber-DeCarli alcohol liquid diet. In contrast, fibrosis was not affected by Kdm5b/Kdm5c knockdown in males. We found that KDM5B and KDM5C promote fibrosis in females through down-regulation of the aryl hydrocarbon receptor (AhR) pathway components in hepatic stellate cells. Kdm5b/Kdm5c knockdown resulted in an up-regulation of Ahr, Arnt, and Aip in female but not in male mice, thus preventing fibrosis development. Ahr knockdown in combination with Kdm5b/Kdm5c knockdown restored profibrotic gene expression. Conclusion: KDM5 demethylases contribute to differences between males and females in the alcohol response in the liver. The KDM5/AhR axis is a female-specific mechanism of fibrosis development in alcohol-fed mice.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Janice Averilla
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Steven A. Weinman
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
- Liver CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
- Kansas City VA Medical CenterKansas CityMissouriUSA
| | - Irina Tikhanovich
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
16
|
Harrington J, Wheway G, Willaime-Morawek S, Gibson J, Walters ZS. Pathogenic KDM5B variants in the context of developmental disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194848. [PMID: 35905858 DOI: 10.1016/j.bbagrm.2022.194848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Histone modifying enzymes are involved in the posttranslational modification of histones and the epigenetic control of gene expression. They play a critical role in normal development, and there is increasing evidence of their role in developmental disorders (DDs). DDs are a group of chronic, severe conditions that impact the physical, intellectual, language and/or behavioral development of an individual. There are very few treatment options available for DDs such that these are conditions with significant unmet clinical need. Recessive variants in the gene encoding histone modifying enzyme KDM5B are associated with a DD characterized by developmental delay, facial dysmorphism and camptodactyly. KDM5B is responsible for the demethylation of lysine 4 on the amino tail of histone 3 and plays a vital role in normal development and regulating cell differentiation. This review explores the literature on KDM5B and what is currently known about its roles in development and developmental disorders.
Collapse
Affiliation(s)
- Jack Harrington
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Gabrielle Wheway
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | - Jane Gibson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Zoë S Walters
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
17
|
Schonfeld M, Averilla J, Gunewardena S, Weinman SA, Tikhanovich I. Male-Specific Activation of Lysine Demethylases 5B and 5C Mediates Alcohol-Induced Liver Injury and Hepatocyte Dedifferentiation. Hepatol Commun 2022; 6:1373-1391. [PMID: 35084807 PMCID: PMC9134811 DOI: 10.1002/hep4.1895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is a major cause of alcohol-related mortality. Sex differences in sensitivity to ALD are well described, but these are often disregarded in studies of ALD development. We aimed to define sex-specific pathways in liver exposed to alcohol. Mice were fed the Lieber-DeCarli alcohol liquid diet or a combination of a high-fat diet with alcohol in water. Single-cell RNA sequencing (scRNA-Seq) was performed on liver cells from male and female mice. Mice were treated with adeno-associated virus (AAV)-short hairpin (sh)Control or AAV-sh lysine demethylase 5b (shKdm5b) and/or AAV-shKdm5c vectors. Changes after Kdm5b/5c knockdown were assessed by RNA-Seq and histone H3 lysine K4 (H3K4)me3 chromatin immunoprecipitation-Seq analysis. Using scRNA-Seq analysis, we found several sex-specific pathways induced by alcohol, including pathways related to lipid metabolism and hepatocyte differentiation. Bioinformatic analysis suggested that two epigenetic regulators, H3K4-specific lysine demethylases KDM5B and KDM5C, contribute to sex differences in alcohol effects. We found that in alcohol-fed male mice, KDM5B and KDM5C are involved in hepatocyte nuclear factor 4 alpha (Hnf4a) down-regulation, hepatocyte dedifferentiation, and an increase in fatty acid synthesis. This effect is mediated by alcohol-induced KDM5B and KDM5C recruitment to Hnf4a and other gene promoters in male but not in female mice. Kdm5b and Kdm5c knockdown or KDM5-inhibitor treatment prevented alcohol-induced lipid accumulation and restored levels of Hnf4a and other hepatocyte differentiation genes in male mice. In addition, Kdm5b knockdown prevented hepatocellular carcinoma development in male mice by up-regulating Hnf4a and decreasing tumor cell proliferation. Conclusion: Alcohol specifically activates KDM5 demethylases in male mice to promote alcohol-induced hepatocyte dedifferentiation and tumor development.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Janice Averilla
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Steven A. Weinman
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
- Liver CenterUniversity of Kansas Medical CenterKansas CityKSUSA
- Kansas City VA Medical CenterKansas CityMOUSA
| | - Irina Tikhanovich
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| |
Collapse
|
18
|
KDM5B promotes tumorigenesis of Ewing sarcoma via FBXW7/CCNE1 axis. Cell Death Dis 2022; 13:354. [PMID: 35428764 PMCID: PMC9012801 DOI: 10.1038/s41419-022-04800-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/26/2022]
Abstract
Ewing sarcoma (EwS) is an aggressive tumor that affects children and young adults. Patients with relapsed/refractory diseases have limited treatment options. Targeting the driver fusion oncoproteins of EwS remains a technical problem. Epigenetic mechanisms have been pointed out as key players and alternative therapeutic targets in EwS. Here, we reported that lysine demethylase 5B (KDM5B), a histone demethylase that specifically demethylates tri- and di-methylated H3 Lys-4 (H3K4), was upregulated in EwS and overexpressed KDM5B was correlated with poor outcomes of patients. KDM5B knockdown and KDM5B inhibitor AS-8351 suppressed EwS cell proliferation and induced cell cycle arrest. Bioinformatics analysis revealed that KDM5B mainly influenced the cell cycle pathways in EwS. In mechanistic studies, we found that overexpression of KDM5B resulted in increased CCNE1 protein level, but did not affect the mRNA level of CCNE1. KDM5B upregulation blocked the degradation pathway of CCNE1 by reducing the expression of FBXW7. KDM5B downregulated FBXW7 gene by demethylation of H3K4me3 at promoter region. Moreover, AS-8351 could inhibit tumor growth in nude mice models, indicating the antitumor effect of targeting KDM5B in EwS. Our study uncovered that KDM5B in EwS attenuated FBXW7 transcription and accumulated CCNE1 protein, leading to malignant proliferation of EwS. Epigenetic drug targeting KDM5B could be a potential treatment for EwS.
Collapse
|
19
|
Lemster AL, Sievers E, Pasternack H, Lazar-Karsten P, Klümper N, Sailer V, Offermann A, Brägelmann J, Perner S, Kirfel J. Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers (Basel) 2022; 14:cancers14081894. [PMID: 35454801 PMCID: PMC9032772 DOI: 10.3390/cancers14081894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer is the most common cancer in men and is one of the leading causes of cancer-related deaths. During prostate cancer progression and metastasis, the epithelial cells can undergo epithelial–mesenchymal transition (EMT). Here, we show that the histone demethylase KDM5C is highly expressed in metastatic prostate cancer. We establish that stable clones silence KDM5C in prostate cancer cells. Knockdown of KDM5C leads to a reduced migratory and invasion capacity. This is associated with changes by multiple molecular mechanisms. This signaling subsequently modifies the expression of various transcription factors like Snail, Twist, and Zeb1/2, which are also known as master regulators of EMT. Taken together, our results indicate the potential to therapeutically target KDM5C either alone or in combination with Akt/mTOR-inhibitor in prostate cancer patients by targeting the EMT signaling pathways. Abstract Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Helen Pasternack
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Pamela Lazar-Karsten
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Johannes Brägelmann
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Correspondence:
| |
Collapse
|
20
|
Taylor-Papadimitriou J, Burchell JM. Histone Methylases and Demethylases Regulating Antagonistic Methyl Marks: Changes Occurring in Cancer. Cells 2022; 11:1113. [PMID: 35406676 PMCID: PMC8997813 DOI: 10.3390/cells11071113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation of gene expression is crucial to the determination of cell fate in development and differentiation, and the Polycomb (PcG) and Trithorax (TrxG) groups of proteins, acting antagonistically as complexes, play a major role in this regulation. Although originally identified in Drosophila, these complexes are conserved in evolution and the components are well defined in mammals. Each complex contains a protein with methylase activity (KMT), which can add methyl groups to a specific lysine in histone tails, histone 3 lysine 27 (H3K27), by PcG complexes, and H3K4 and H3K36 by TrxG complexes, creating transcriptionally repressive or active marks, respectively. Histone demethylases (KDMs), identified later, added a new dimension to histone methylation, and mutations or changes in levels of expression are seen in both methylases and demethylases and in components of the PcG and TrX complexes across a range of cancers. In this review, we focus on both methylases and demethylases governing the methylation state of the suppressive and active marks and consider their action and interaction in normal tissues and in cancer. A picture is emerging which indicates that the changes which occur in cancer during methylation of histone lysines can lead to repression of genes, including tumour suppressor genes, or to the activation of oncogenes. Methylases or demethylases, which are themselves tumour suppressors, are highly mutated. Novel targets for cancer therapy have been identified and a methylase (KMT6A/EZH2), which produces the repressive H3K27me3 mark, and a demethylase (KDM1A/LSD1), which demethylates the active H3K4me2 mark, are now under clinical evaluation.
Collapse
|
21
|
Bilmez Y, Talibova G, Ozturk S. Dynamic changes of histone methylation in mammalian oocytes and early embryos. Histochem Cell Biol 2021; 157:7-25. [PMID: 34599660 DOI: 10.1007/s00418-021-02036-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Histone methylation is a key epigenetic mechanism and plays a major role in regulating gene expression during oocyte maturation and early embryogenesis. This mechanism can be briefly defined as the process by which methyl groups are transferred to lysine and arginine residues of histone tails extending from nucleosomes. While methylation of the lysine residues is catalyzed by histone lysine methyltransferases (KMTs), protein arginine methyltransferases (PRMTs) add methyl groups to the arginine residues. When necessary, the added methyl groups can be reversibly removed by histone demethylases (HDMs) by a process called histone demethylation. The spatiotemporal regulation of methylation and demethylation in histones contributes to modulating the expression of genes required for proper oocyte maturation and early embryonic development. In this review, we comprehensively evaluate and discuss the functional importance of dynamic histone methylation in mammalian oocytes and early embryos, regulated by KMTs, PRMTs, and HDMs.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
22
|
Chai Y, Sun Y, Liu B, Guo L, Liu Z, Zhou L, Dai L, Jia C, Zhang W, Li C. Role of Sulfur Metabolism Gene and High-Sulfur Gene Expression in Wool Growth Regulation in the Cashmere Goat. Front Genet 2021; 12:715526. [PMID: 34484302 PMCID: PMC8416455 DOI: 10.3389/fgene.2021.715526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Sulfur, an essential mineral element for animals, mainly exists in the form of organic sulfur-containing amino acids (SAAs), such as cystine, methionine, and cysteine, within the body. The content, form, and structure of sulfur play an important role in determining the wool fiber quality. In addition, keratin-associated proteins, one of the most crucial wool fiber components, are rich in SAAs. However, sulfur metabolism from the blood to the skin and hair follicles remains unclear. In this study, we analyzed high-sulfur protein gene and sulfur metabolism genes in the cashmere goat and explored the effects of melatonin on their expression. In total, 53 high-sulfur protein genes and 321 sulfur metabolism genes were identified. We found that high-sulfur protein genes were distributed in the 3-4 and 144M regions of chromosome 1 and the 40-41M region of chromosome 19 in goats. Moreover, all year round, allele-specific expression (ASE) is higher in the 40-41M region of chromosome 19 than in the other regions. Total of 47 high-sulfur protein genes showed interaction with transcription factors and cofactors with ASE. These transcription factors and cofactors were inhibited after melatonin implantation. The network analysis revealed that melatonin may activate the sulfur metabolism process via the regulation of the genes related to cell energy metabolism and cell cycle in the skin, which provided sufficient SAAs for wool and cashmere growth. In conclusion, our findings provide a new insight into wool growth regulation by sulfur metabolism genes and high-sulfur protein genes in cashmere goats.
Collapse
Affiliation(s)
- Yuan Chai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanyong Sun
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.,College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Bin Liu
- Nei Mongol BioNew Technology Co., Ltd., Hohhot, China
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Le Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Lingli Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunyan Jia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chun Li
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| |
Collapse
|
23
|
He Y, Wang L, Tang J, Han Z. Genome-Wide Identification and Analysis of the Methylation of lncRNAs and Prognostic Implications in the Glioma. Front Oncol 2021; 10:607047. [PMID: 33489915 PMCID: PMC7820673 DOI: 10.3389/fonc.2020.607047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Glioma is characterized by rapid cell proliferation and extensive infiltration among brain tissues, but the molecular pathology has been still poorly understood. Previous studies found that DNA methylation modifications play a key role in contributing to the pathogenesis of glioma. On the other hand, long noncoding RNAs (lncRNAs) has been discovered to be associated with some key tumorigenic processes of glioma. Moreover, genomic methylation can influence expression and functions of lncRNAs, which contributes to the pathogenesis of many complex diseases. However, to date, no systematic study has been performed to detect the methylation of lncRNAs and its influences in glioma on a genome-wide scale. Here, we selected the methylation data, clinical information, expression of lncRNAs, and DNA methylation regulatory proteins of 537 glioma patients from TCGA and TANRIC databases. Then, we performed a differential analysis of lncRNA expression and methylated regions between low-grade glioma (LGG) and glioblastoma multiform (GBM) subjects, respectively. Next, we further identified and verified potential key lncRNAs contributing the pathogenesis of glioma involved in methylation modifications by an annotation and correlation analysis, respectively. In total, 18 such lncRNAs were identified, and 7 of them have been demonstrated to be functionally linked to the pathogenesis of glioma by previous studies. Finally, by the univariate Cox regression, LASSO regression, clinical correlation, and survival analysis, we found that all these 18 lncRNAs are high-risk factors for clinical prognosis of glioma. In summary, this study provided a strategy to explore the influence of lncRNA methylation on glioma, and our findings will be benefit to improve understanding of its pathogenesis.
Collapse
Affiliation(s)
- Yijie He
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Lidan Wang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Zhijie Han
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Wang L, Zhang S, Wang X. The Metabolic Mechanisms of Breast Cancer Metastasis. Front Oncol 2021; 10:602416. [PMID: 33489906 PMCID: PMC7817624 DOI: 10.3389/fonc.2020.602416] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common malignancy among women worldwide. Metastasis is mainly responsible for treatment failure and is the cause of most breast cancer deaths. The role of metabolism in the progression and metastasis of breast cancer is gradually being emphasized. However, the regulatory mechanisms that conduce to cancer metastasis by metabolic reprogramming in breast cancer have not been expounded. Breast cancer cells exhibit different metabolic phenotypes depending on their molecular subtypes and metastatic sites. Both intrinsic factors, such as MYC amplification, PIK3CA, and TP53 mutations, and extrinsic factors, such as hypoxia, oxidative stress, and acidosis, contribute to different metabolic reprogramming phenotypes in metastatic breast cancers. Understanding the metabolic mechanisms underlying breast cancer metastasis will provide important clues to develop novel therapeutic approaches for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
25
|
Ma Y, Chen Z, Yu G. microRNA-139-3p Inhibits Malignant Behaviors of Laryngeal Cancer Cells via the KDM5B/SOX2 Axis and the Wnt/β-Catenin Pathway. Cancer Manag Res 2020; 12:9197-9209. [PMID: 33061611 PMCID: PMC7532048 DOI: 10.2147/cmar.s268871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/15/2020] [Indexed: 01/05/2023] Open
Abstract
Background Laryngeal cancer (LCA) is a common head and neck cancer. Lysine demethylase 5B (KDM5B) knockdown is expected as a new target for cancer prevention. We investigated the molecular mechanism of KDM5B in LCA. Materials and Methods The levels of KDM5B, microRNA (miR)-139-3p and high-mobility-group box 2 (SOX2) in LCA tissues and cells, normal tissues and cells were detected. The effect of KDM5B on LCA was evaluated. The upstream miR of KDM5B and the downstream gene and pathway of KDM5B were predicted and their effects on LCA were analyzed. The Wnt/β-catenin pathway-specific activator agonist was delivered into LCA cells expressing miR-139-3p mimic to evaluate the role of the Wnt/β-catenin pathway. Results KDM5B was highly expressed in LCA, and inhibition of KDM5B suppressed LCA progression. miR-139-3p, downregulated in LCA tissues, was a regulatory miR of KDM5B. Overexpression of miR-139-3p significantly inhibited the malignant biological behaviors of LCA cells. KDM5B promoted SOX2 expression via histone demethylation. SOX2 was highly expressed in LCA, and overexpression of SOX2 promoted LCA progression by inducing the Wnt/β-catenin pathway. Activated Wnt/β-catenin pathway attenuated the inhibitory effect of miR-139-3p mimic on the malignant biological behaviors of LCA cells. Conclusion miR-139-3p overexpression inhibited LCA development via regulating the KDM5B/SOX2 axis and inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yifei Ma
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, People's Republic of China.,Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, People's Republic of China
| | - Zili Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, People's Republic of China
| | - Guodong Yu
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, People's Republic of China
| |
Collapse
|
26
|
Lee KH, Kim BC, Jeong SH, Jeong CW, Ku JH, Kim HH, Kwak C. Histone Demethylase KDM7A Regulates Androgen Receptor Activity, and Its Chemical Inhibitor TC-E 5002 Overcomes Cisplatin-Resistance in Bladder Cancer Cells. Int J Mol Sci 2020; 21:5658. [PMID: 32781788 PMCID: PMC7460860 DOI: 10.3390/ijms21165658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Histone demethylase KDM7A regulates many biological processes, including differentiation, development, and the growth of several cancer cells. Here, we have focused on the role of KDM7A in bladder cancer cells, especially under drug-resistant conditions. When the KDM7A gene was knocked down, bladder cancer cell lines showed impaired cell growth, increased cell death, and reduced rates of cell migration. Biochemical studies revealed that KDM7A knockdown in the bladder cancer cells repressed the activity of androgen receptor (AR) through epigenetic regulation. When we developed a cisplatin-resistant bladder cancer cell line, we found that AR expression was highly elevated. Upon treatment with TC-E 5002, a chemical inhibitor of KDM7A, the cisplatin-resistant bladder cancer cells, showed decreased cell proliferation. In the mouse xenograft model, KDM7A knockdown or treatment with its inhibitor reduced the growth of the bladder tumor. We also observed the upregulation of KDM7A expression in patients with bladder cancer. The findings suggest that histone demethylase KDM7A mediates the growth of bladder cancer. Moreover, our findings highlight the therapeutic potential of the KMD7A inhibitor, TC-E 5002, in patients with cisplatin-resistant bladder cancer.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Male
- Methylation
- Mice, Inbred NOD
- Middle Aged
- Neoplasm Invasiveness
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Transcription, Genetic/drug effects
- Tumor Burden/drug effects
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kyoung-Hwa Lee
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Byung-Chan Kim
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Seung-Hwan Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34052, Korea;
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea; (K.-H.L.); (B.-C.K.); (C.W.J.); (J.H.K.); (H.H.K.)
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
27
|
Arifuzzaman S, Khatun MR, Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother 2020; 129:110392. [PMID: 32574968 DOI: 10.1016/j.biopha.2020.110392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, there have been remarkable scientific advancements in the understanding of lysine demethylases (KDMs) because of their demethylation of diverse substrates, including nucleic acids and proteins. Novel structural architectures, physiological roles in the gene expression regulation, and ability to modify protein functions made KDMs the topic of interest in biomedical research. These structural diversities allow them to exert their function either alone or in complex with numerous other bio-macromolecules. Impressive number of studies have demonstrated that KDMs are localized dynamically across the cellular and tissue microenvironment. Their dysregulation is often associated with human diseases, such as cancer, immune disorders, neurological disorders, and developmental abnormalities. Advancements in the knowledge of the underlying biochemistry and disease associations have led to the development of a series of modulators and technical compounds. Given the distinct biophysical and biochemical properties of KDMs, in this review we have focused on advances related to the structure, function, disease association, and therapeutic targeting of KDMs highlighting improvements in both the specificity and efficacy of KDM modulation.
Collapse
Affiliation(s)
- Sarder Arifuzzaman
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh; Everest Pharmaceuticals Ltd., Dhaka-1208, Bangladesh.
| | - Mst Reshma Khatun
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Rabeya Khatun
- Department of Pediatrics, TMSS Medical College and Rafatullah Community Hospital, Gokul, Bogura, 5800, Bangladesh
| |
Collapse
|
28
|
Transcriptional Regulation of Genes by Ikaros Tumor Suppressor in Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21041377. [PMID: 32085659 PMCID: PMC7073093 DOI: 10.3390/ijms21041377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of oncogenic gene expression by transcription factors that function as tumor suppressors is one of the major mechanisms that regulate leukemogenesis. Understanding this complex process is essential for explaining the pathogenesis of leukemia as well as developing targeted therapies. Here, we provide an overview of the role of Ikaros tumor suppressor and its role in regulation of gene transcription in acute leukemia. Ikaros (IKZF1) is a DNA-binding protein that functions as a master regulator of hematopoiesis and the immune system, as well as a tumor suppressor in acute lymphoblastic leukemia (ALL). Genetic alteration or functional inactivation of Ikaros results in the development of high-risk leukemia. Ikaros binds to the specific consensus binding motif at upstream regulatory elements of its target genes, recruits chromatin-remodeling complexes and activates or represses transcription via chromatin remodeling. Over the last twenty years, a large number of Ikaros target genes have been identified, and the role of Ikaros in the regulation of their expression provided insight into the mechanisms of Ikaros tumor suppressor function in leukemia. Here we summarize the role of Ikaros in the regulation of the expression of the genes whose function is critical for cellular proliferation, development, and progression of acute lymphoblastic leukemia.
Collapse
|
29
|
Abstract
Recent advances in immunotherapy have revolutionized the treatment of certain cancers. Some patients show a durable response to these immunotherapies, while others show little benefit or develop resistance. Identification of biomarkers to predict responsiveness will be helpful for informing treatment strategies; and would furthermore lead to the identification of molecular pathways dysregulated in nonresponding patients that could be targeted for therapeutic development. Pathways of epigenetic modification, such as histone posttranslational modifications (PTMs), have been shown to be dysregulated in certain cancer and immune cells. Histones are abundant cellular proteins readily assayed with high-throughput technologies, making them attractive targets as biomarkers. We explore promising advancements for using histone PTMs as immunotherapy responsiveness biomarkers in both cancer and immune cells, and provide a methodological workflow for assaying histone PTMs in relevant samples.
Collapse
Affiliation(s)
- Erin M Taylor
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lauren E Davis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
30
|
Drelon C, Rogers MF, Belalcazar HM, Secombe J. The histone demethylase KDM5 controls developmental timing in Drosophila by promoting prothoracic gland endocycles. Development 2019; 146:dev.182568. [PMID: 31862793 PMCID: PMC6955219 DOI: 10.1242/dev.182568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
In Drosophila, the larval prothoracic gland integrates nutritional status with developmental signals to regulate growth and maturation through the secretion of the steroid hormone ecdysone. While the nutritional signals and cellular pathways that regulate prothoracic gland function are relatively well studied, the transcriptional regulators that orchestrate the activity of this tissue remain less characterized. Here, we show that lysine demethylase 5 (KDM5) is essential for prothoracic gland function. Indeed, restoring kdm5 expression only in the prothoracic gland in an otherwise kdm5 null mutant animal is sufficient to rescue both the larval developmental delay and the pupal lethality caused by loss of KDM5. Our studies show that KDM5 functions by promoting the endoreplication of prothoracic gland cells, a process that increases ploidy and is rate limiting for the expression of ecdysone biosynthetic genes. Molecularly, we show that KDM5 activates the expression of the receptor tyrosine kinase torso, which then promotes polyploidization and growth through activation of the MAPK signaling pathway. Taken together, our studies provide key insights into the biological processes regulated by KDM5 and expand our understanding of the transcriptional regulators that coordinate animal development. Summary: Identification of KDM5 as a new transcriptional regulator of the MAPK signaling cascade provides insights into the molecular mechanisms governing the regulation of ecdysone production and developmental growth control.
Collapse
Affiliation(s)
- Coralie Drelon
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael F Rogers
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA .,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| |
Collapse
|
31
|
Yeh IJ, Esakov E, Lathia JD, Miyagi M, Reizes O, Montano MM. Phosphorylation of the histone demethylase KDM5B and regulation of the phenotype of triple negative breast cancer. Sci Rep 2019; 9:17663. [PMID: 31776402 PMCID: PMC6881367 DOI: 10.1038/s41598-019-54184-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications are known to play critical roles in the expression of genes related to differentiation and dedifferentiation. Histone lysine demethylase KDM5B (PLU-1) catalyzes the demethylation of histone H3 on Lys 4 (H3K4), which results in the repression of gene expression. KDM5B is involved in regulation of luminal and basal cell specific gene expression in breast cancers. However, the mechanisms by which KDM5B is regulated in breast cancer, in particular in response to post-translational signals is not well-defined. Here, we demonstrate that KDM5B is phosphorylated at Ser1456 by the cyclin-dependent kinase 1 (CDK1). Phosphorylation of KDM5B at Ser1456 attenuated the occupancy of KDM5B on the promoters of pluripotency genes. Moreover, KDM5B inhibited the expression of pluripotency genes, SOX2 and NANOG, and decreased the stem cell population in triple-negative breast cancer cell lines (TNBC). We previously reported that the tumor suppressor HEXIM1 is a mediator of KDM5B recruitment to its target genes, and HEXIM1 is required for the inhibition of nuclear hormone receptor activity by KDM5B. Similarly, HEXIM1 is required for regulation of pluripotency genes by KDM5B.
Collapse
Affiliation(s)
- I-Ju Yeh
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA
| | - Emily Esakov
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Monica M Montano
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA.
| |
Collapse
|
32
|
Li Y, Chen L, Feng L, Zhu M, Shen Q, Fang Y, Liu X, Zhang X. NEK2 promotes proliferation, migration and tumor growth of gastric cancer cells via regulating KDM5B/H3K4me3. Am J Cancer Res 2019; 9:2364-2378. [PMID: 31815040 PMCID: PMC6895449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023] Open
Abstract
The mechanisms of how Never in Mitosis (NIMA) Related Kinase 2 (NEK2) coordinates altered signaling to malignant gastric cancer (GC) transformation remain unclear. Overexpression of NEK2 and KDM5B were observed in GC cell lines with high sensitivity to NEK2 inhibitors. Here we investigated the biological behaviors of NEK2 and the possible mechanisms of regulative effects of NEK2 on KDM5B in GC cell lines both in vitro and in vivo. The results showed that NEK2 and KDM5B were highly expressed in most of the 10 GC cell lines. NEK2 knockdown in MGC-803 cells led to suppression of cell proliferation and migration in vitro and tumor growth in vivo, while NEK2 overexpression in BGC-823 cells exhibited the reverse biological effect. When NEK2 was inhibited by NEK2 inhibitors or shNEK2, cellular KDM5B level decreased and H3K4me3 level increased, while overexpression of NEK2 resulted in enhanced KDM5B expression and decreased H3K4me3 level. Though direct interaction between NEK2 and KDM5B was excluded, NEK2 could regulate KDM5B/H3K4me3 expression through β-catenin/Myc both in vitro and in vivo, which was double confirmed by c-myc and KDM5B inhibitor experiments. Taken together, our study showed that NEK2 was highly expressed in GC cell lines and related to promoting cell proliferation, migration and tumor growth. A NEK2/β-catenin/Myc/KDM5B/H3K4me3 signaling pathway may contribute to the important carcinogenic role of NEK2-mediated malignant behaviors in GC.
Collapse
Affiliation(s)
- Yiwei Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Lijuan Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Lixing Feng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Mengli Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Qiang Shen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Yanfen Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| |
Collapse
|
33
|
Zoeller EL, Pedro B, Konen J, Dwivedi B, Rupji M, Sundararaman N, Wang L, Horton JR, Zhong C, Barwick BG, Cheng X, Martinez ED, Torres MP, Kowalski J, Marcus AI, Vertino PM. Genetic heterogeneity within collective invasion packs drives leader and follower cell phenotypes. J Cell Sci 2019; 132:jcs231514. [PMID: 31515279 PMCID: PMC6803364 DOI: 10.1242/jcs.231514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Collective invasion, the coordinated movement of cohesive packs of cells, has become recognized as a major mode of metastasis for solid tumors. These packs are phenotypically heterogeneous and include specialized cells that lead the invasive pack and others that follow behind. To better understand how these unique cell types cooperate to facilitate collective invasion, we analyzed transcriptomic sequence variation between leader and follower populations isolated from the H1299 non-small cell lung cancer cell line using an image-guided selection technique. We now identify 14 expressed mutations that are selectively enriched in leader or follower cells, suggesting a novel link between genomic and phenotypic heterogeneity within a collectively invading tumor cell population. Functional characterization of two phenotype-specific candidate mutations showed that ARP3 enhances collective invasion by promoting the leader cell phenotype and that wild-type KDM5B suppresses chain-like cooperative behavior. These results demonstrate an important role for distinct genetic variants in establishing leader and follower phenotypes and highlight the necessity of maintaining a capacity for phenotypic plasticity during collective cancer invasion.
Collapse
Affiliation(s)
- Elizabeth L Zoeller
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Brian Pedro
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Jessica Konen
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Niveda Sundararaman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lei Wang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chaojie Zhong
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | - Benjamin G Barwick
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabeth D Martinez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Adam I Marcus
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Paula M Vertino
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Zhang ZG, Zhang HS, Sun HL, Liu HY, Liu MY, Zhou Z. KDM5B promotes breast cancer cell proliferation and migration via AMPK-mediated lipid metabolism reprogramming. Exp Cell Res 2019; 379:182-190. [DOI: 10.1016/j.yexcr.2019.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/24/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
|
35
|
Li L, Shou H, Wang Q, Liu S. Investigation of the potential theranostic role of KDM5B/miR-29c signaling axis in paclitaxel resistant endometrial carcinoma. Gene 2019; 694:76-82. [DOI: 10.1016/j.gene.2018.12.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/12/2018] [Accepted: 12/27/2018] [Indexed: 01/11/2023]
|
36
|
Abstract
Hepatocellular carcinoma (HCC) has high morbidity and mortality rates, and the number of new cases and deaths from liver cancer are increasing. However, the details of the regulation in HCC remain largely unknown. Plant homeodomain finger protein 8 (PHF8) is a JmjC domain-containing protein. Recently, PHF8 was reported to participate in several types of cancer. However, the biological function and clinical significance of PHF8 in HCC remain unknown. In this study, we investigate the role of PHF8 in HCC growth and metastasis. We used bioinformatics analysis and identified the differentially expressed PHF8 in primary HCC and metastasis HCC. Immunohistochemistry analysis demonstrated that PHF8 was expressed higher in human HCC tissues than in corresponding adjacent noncancerous tissues. Silencing PHF8 in HCC cells significantly decreased the cells’ ability of proliferation, migration, invasion, and sphere formation. On the contrary, overexpression of PHF8 promoted these properties. In addition, the analysis in vivo showed that PHF8 overexpression promoted tumor formation and metastasis in nude mice. In the end, the RNA-sequence assay showed that CUL4A is upregulated by the PHF8. Taken together, these results demonstrated that PHF8 was a novel oncogene in HCC, which may contribute to therapeutic approaches aimed at targeting components of the PHF8 and provide new insights into the mechanisms governing the developmental programs in HCC.
Collapse
Affiliation(s)
- Hong Ye
- Department of Gastroenterology, Jiaozhou People's Hospital, Jiaozhou, Shandong Province, P.R. China
| | - Qing Yang
- Department of Pathology, Jiaozhou People's Hospital, Jiaozhou, Shandong Province, P.R. China
| | - Shujie Qi
- Department of Gastroenterology, Jiaozhou People's Hospital, Jiaozhou, Shandong Province, P.R. China
| | - Hairong Li
- Department of Traditional Chinese Medicine, Jiaozhou People's Hospital, Jiaozhou, Shandong Province, P.R. China
| |
Collapse
|
37
|
Vazquez‐Rodriguez S, Wright M, Rogers CM, Cribbs AP, Velupillai S, Philpott M, Lee H, Dunford JE, Huber KVM, Robers MB, Vasta JD, Thezenas M, Bonham S, Kessler B, Bennett J, Fedorov O, Raynaud F, Donovan A, Blagg J, Bavetsias V, Oppermann U, Bountra C, Kawamura A, Brennan PE. Design, Synthesis and Characterization of Covalent KDM5 Inhibitors. Angew Chem Int Ed Engl 2019; 58:515-519. [PMID: 30431220 PMCID: PMC6391970 DOI: 10.1002/anie.201810179] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/30/2018] [Indexed: 01/05/2023]
Abstract
Histone lysine demethylases (KDMs) are involved in the dynamic regulation of gene expression and they play a critical role in several biological processes. Achieving selectivity over the different KDMs has been a major challenge for KDM inhibitor development. Here we report potent and selective KDM5 covalent inhibitors designed to target cysteine residues only present in the KDM5 sub-family. The covalent binding to the targeted proteins was confirmed by MS and time-dependent inhibition. Additional competition assays show that compounds were non 2-OG competitive. Target engagement and ChIP-seq analysis showed that the compounds inhibited the KDM5 members in cells at nano- to micromolar levels and induce a global increase of the H3K4me3 mark at transcriptional start sites.
Collapse
Affiliation(s)
- Saleta Vazquez‐Rodriguez
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research BuildingRoosevelt DriveOxfordOX3 7DQ and OX3 7FZUK
| | - Miranda Wright
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research BuildingRoosevelt DriveOxfordOX3 7DQ and OX3 7FZUK
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Catherine M. Rogers
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research BuildingRoosevelt DriveOxfordOX3 7DQ and OX3 7FZUK
| | - Adam P. Cribbs
- Botnar Research CenterNuffield Department of OrthopedicsRheumatology and Musculoskeletal SciencesNIHR Oxford BRCUniversity of OxfordOxfordOX3 7DQUK
| | - Srikannathasan Velupillai
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research BuildingRoosevelt DriveOxfordOX3 7DQ and OX3 7FZUK
| | - Martin Philpott
- Botnar Research CenterNuffield Department of OrthopedicsRheumatology and Musculoskeletal SciencesNIHR Oxford BRCUniversity of OxfordOxfordOX3 7DQUK
| | - Henry Lee
- Botnar Research CenterNuffield Department of OrthopedicsRheumatology and Musculoskeletal SciencesNIHR Oxford BRCUniversity of OxfordOxfordOX3 7DQUK
| | - James E. Dunford
- Botnar Research CenterNuffield Department of OrthopedicsRheumatology and Musculoskeletal SciencesNIHR Oxford BRCUniversity of OxfordOxfordOX3 7DQUK
| | - Kilian V. M. Huber
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research BuildingRoosevelt DriveOxfordOX3 7DQ and OX3 7FZUK
| | | | - James D. Vasta
- Promega Corporation2800 Woods Hollow RoadFitchburgWI53711USA
| | - Marie‐Laetitia Thezenas
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOX3 7FZOxfordUK
| | - Sarah Bonham
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOX3 7FZOxfordUK
| | - Benedikt Kessler
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOX3 7FZOxfordUK
| | - James Bennett
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research BuildingRoosevelt DriveOxfordOX3 7DQ and OX3 7FZUK
| | - Oleg Fedorov
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research BuildingRoosevelt DriveOxfordOX3 7DQ and OX3 7FZUK
| | - Florence Raynaud
- Cancer Research (UK) Cancer Therapeutics UnitThe Institute of Cancer Research15 Cotswold RoadLondonSM2 5NGUK
| | - Adam Donovan
- Cancer Research (UK) Cancer Therapeutics UnitThe Institute of Cancer Research15 Cotswold RoadLondonSM2 5NGUK
| | - Julian Blagg
- Cancer Research (UK) Cancer Therapeutics UnitThe Institute of Cancer Research15 Cotswold RoadLondonSM2 5NGUK
| | - Vassilios Bavetsias
- Cancer Research (UK) Cancer Therapeutics UnitThe Institute of Cancer Research15 Cotswold RoadLondonSM2 5NGUK
| | - Udo Oppermann
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research BuildingRoosevelt DriveOxfordOX3 7DQ and OX3 7FZUK
- Botnar Research CenterNuffield Department of OrthopedicsRheumatology and Musculoskeletal SciencesNIHR Oxford BRCUniversity of OxfordOxfordOX3 7DQUK
- FRIAS—Freiburg Institute of Advanced Studies79104FreiburgGermany
| | - Chas Bountra
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research BuildingRoosevelt DriveOxfordOX3 7DQ and OX3 7FZUK
| | - Akane Kawamura
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Paul E. Brennan
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research BuildingRoosevelt DriveOxfordOX3 7DQ and OX3 7FZUK
| |
Collapse
|
38
|
Vazquez‐Rodriguez S, Wright M, Rogers CM, Cribbs AP, Velupillai S, Philpott M, Lee H, Dunford JE, Huber KVM, Robers MB, Vasta JD, Thezenas M, Bonham S, Kessler B, Bennett J, Fedorov O, Raynaud F, Donovan A, Blagg J, Bavetsias V, Oppermann U, Bountra C, Kawamura A, Brennan PE. Design, Synthesis and Characterization of Covalent KDM5 Inhibitors. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Saleta Vazquez‐Rodriguez
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research Building Roosevelt Drive Oxford OX3 7DQ and OX3 7FZ UK
| | - Miranda Wright
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research Building Roosevelt Drive Oxford OX3 7DQ and OX3 7FZ UK
- Chemistry Research LaboratoryUniversity of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Catherine M. Rogers
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research Building Roosevelt Drive Oxford OX3 7DQ and OX3 7FZ UK
| | - Adam P. Cribbs
- Botnar Research CenterNuffield Department of OrthopedicsRheumatology and Musculoskeletal SciencesNIHR Oxford BRCUniversity of Oxford Oxford OX3 7DQ UK
| | - Srikannathasan Velupillai
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research Building Roosevelt Drive Oxford OX3 7DQ and OX3 7FZ UK
| | - Martin Philpott
- Botnar Research CenterNuffield Department of OrthopedicsRheumatology and Musculoskeletal SciencesNIHR Oxford BRCUniversity of Oxford Oxford OX3 7DQ UK
| | - Henry Lee
- Botnar Research CenterNuffield Department of OrthopedicsRheumatology and Musculoskeletal SciencesNIHR Oxford BRCUniversity of Oxford Oxford OX3 7DQ UK
| | - James E. Dunford
- Botnar Research CenterNuffield Department of OrthopedicsRheumatology and Musculoskeletal SciencesNIHR Oxford BRCUniversity of Oxford Oxford OX3 7DQ UK
| | - Kilian V. M. Huber
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research Building Roosevelt Drive Oxford OX3 7DQ and OX3 7FZ UK
| | | | - James D. Vasta
- Promega Corporation 2800 Woods Hollow Road Fitchburg WI 53711 USA
| | - Marie‐Laetitia Thezenas
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Roosevelt Drive OX3 7FZ Oxford UK
| | - Sarah Bonham
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Roosevelt Drive OX3 7FZ Oxford UK
| | - Benedikt Kessler
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Roosevelt Drive OX3 7FZ Oxford UK
| | - James Bennett
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research Building Roosevelt Drive Oxford OX3 7DQ and OX3 7FZ UK
| | - Oleg Fedorov
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research Building Roosevelt Drive Oxford OX3 7DQ and OX3 7FZ UK
| | - Florence Raynaud
- Cancer Research (UK) Cancer Therapeutics UnitThe Institute of Cancer Research 15 Cotswold Road London SM2 5NG UK
| | - Adam Donovan
- Cancer Research (UK) Cancer Therapeutics UnitThe Institute of Cancer Research 15 Cotswold Road London SM2 5NG UK
| | - Julian Blagg
- Cancer Research (UK) Cancer Therapeutics UnitThe Institute of Cancer Research 15 Cotswold Road London SM2 5NG UK
| | - Vassilios Bavetsias
- Cancer Research (UK) Cancer Therapeutics UnitThe Institute of Cancer Research 15 Cotswold Road London SM2 5NG UK
| | - Udo Oppermann
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research Building Roosevelt Drive Oxford OX3 7DQ and OX3 7FZ UK
- Botnar Research CenterNuffield Department of OrthopedicsRheumatology and Musculoskeletal SciencesNIHR Oxford BRCUniversity of Oxford Oxford OX3 7DQ UK
- FRIAS—Freiburg Institute of Advanced Studies 79104 Freiburg Germany
| | - Chas Bountra
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research Building Roosevelt Drive Oxford OX3 7DQ and OX3 7FZ UK
| | - Akane Kawamura
- Chemistry Research LaboratoryUniversity of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Paul E. Brennan
- Structural Genomics Consortium & Target Discovery InstituteUniversity of OxfordNDM Research Building Roosevelt Drive Oxford OX3 7DQ and OX3 7FZ UK
| |
Collapse
|
39
|
Khan MI, Hamid A, Rath S, Ateeq B, Khan Q, Siddiqui IA, Adhami VM, Choudhry H, Zamzami MA, Mukhtar H. AKT Inhibition Modulates H3K4 Demethylase Levels in PTEN-Null Prostate Cancer. Mol Cancer Ther 2018; 18:356-363. [PMID: 30446585 DOI: 10.1158/1535-7163.mct-18-0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/24/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Hyperactivated AKT kinase due to loss of its negative regulator PTEN influences many aspects of cancer biology, including chromatin. AKT primarily regulates acetyl-CoA production and phosphorylates many histone-modulating enzymes, resulting in their activation or inhibition. Therefore, understanding the therapeutic impact of AKT inhibition on chromatin-related events is essential. Here, we report that AKT inhibition in prostate-specific PTEN knockout mice significantly induces di- and trimethylation of H3K4 with concomitant reduction in H3K9 acetylation. Mechanistically, we observed that AKT inhibition reduces expression of the H3K4 methylation-specific histone demethylases KDM5 family, especially KDM5B expression at transcriptional levels. Furthermore, we observed that AKT negatively regulates miR-137 levels, which transcriptionally represses KDM5B expression. Overexpression of miR-137 significantly reduced KDM5B and increased H3K4 methylation levels but failed to change AKT phosphorylation. Overall, we observed that AKT transcriptionally regulates KDM5B mainly via repression of miR-137. Our data identify a mechanism by which AKT kinase modulates the prostate cancer epigenome through regulating H3K4 methylation. Additional studies on AKT inhibition-mediated induction of H3K4 methylation will help in designing strategies to enhance the therapeutic efficacy of PI3K/AKT inhibitors.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. .,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Abid Hamid
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, India
| | - Suvasmita Rath
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences & Bioengineering, Indian Institute of Technology-Kanpur (IIT-K) Kanpur, India
| | - Qateeb Khan
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Imtiaz A Siddiqui
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Vaqar Mustafa Adhami
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hasan Mukhtar
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
40
|
Shigekawa Y, Hayami S, Ueno M, Miyamoto A, Suzaki N, Kawai M, Hirono S, Okada KI, Hamamoto R, Yamaue H. Overexpression of KDM5B/JARID1B is associated with poor prognosis in hepatocellular carcinoma. Oncotarget 2018; 9:34320-34335. [PMID: 30344945 PMCID: PMC6188148 DOI: 10.18632/oncotarget.26144] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Background & aims Hepatocellular carcinoma (HCC) has high potential for recurrence, even in curative operative cases. Although several molecular-targeting drugs have been applied to recurrent HCC, their effectiveness has been limited. This study therefore aims to develop novel cancer drugs through protein methylation. Methods We investigated the role of KDM5B/JARID1B, a member of JmjC histone demethylase, in HCC. Expression profiles of KDM5B were examined by immunohistochemical analysis in 105 HCC clinical tissue samples. To examine functional effects of KDM5B using HCC cell lines, we performed loss-of-function analysis treated with KDM5B-specific small interfering RNAs (siKDM5B). Results All HCC cases were divided into KDM5B-positive expression group (n=54) and negative expression group (n=51). In five-year overall survival, KDM5B-positive group had poorer prognosis than KDM5B-negative (61% vs 77%, p=0.047). KDM5B-positive group had much poorer prognosis than that of the negative group, especially in HCC derived from persistent infection of hepatitis B virus (HBV) or hepatitis C virus (HCV) (54% vs 78%, p=0.015). Multivariate analysis indicated that KDM5B was the strongest risk factor for poor prognosis, especially in HCC derived from HBV/HCV. Inhibition of KDM5B could significantly suppress HCC cell proliferation through no promotion from G1 to S phase. Real-time PCR and Western blotting demonstrated that E2F1/E2F2 were downstream genes of KDM5B. Conclusions Overexpression of KDM5B results in poor prognosis in HCC that especially derived from HBV/HCV. KDM5B appears to be an ideal target for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Yoshinobu Shigekawa
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinya Hayami
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masaki Ueno
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Atsushi Miyamoto
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Norihiko Suzaki
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Manabu Kawai
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Seiko Hirono
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ken-Ichi Okada
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
41
|
Xu W, Zhou B, Zhao X, Zhu L, Xu J, Jiang Z, Chen D, Wei Q, Han M, Feng L, Wang S, Wang X, Zhou J, Jin H. KDM5B demethylates H3K4 to recruit XRCC1 and promote chemoresistance. Int J Biol Sci 2018; 14:1122-1132. [PMID: 29989047 PMCID: PMC6036731 DOI: 10.7150/ijbs.25881] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy is the main treatment for human cancers including gastric cancer. However, in response to chemotherapeutic drugs, tumor cells can develop drug resistance by reprogramming intracellular metabolic and epigenetic networks to maintain their intrinsic homeostasis. Previously, we have established cisplatin-resistant gastric cancer cells as a drug resistant model, and elucidated the XRCC1 as the core DNA repair mechanism of drug resistance. This study investigated the regulation of XRCC1 by lysine demethylase 5B (KDM5B) in drug resistance. We found that the methylation level of H3K4 decreased significantly in drug-resistant cells. The chemical inhibitor of H3K4 demethylases, JIB-04, restored the methylation of H3K4 and blocked the co-localization of XRCC1 and γH2AX, eventually improved drug sensitivity. We further found that the expression level of KDM5B increased significantly in drug-resistant cells. Knockdown of KDM5B increased the methylation level of H3K4 and blocked the localization of XRCC1 to the DNA damage site, leads to increased drug sensitivity. In the sensitive cells, overexpression of KDM5B suppressed H3K4 methylation levels, which resulted to resistance to cisplatin. Moreover, we found that the posttranslational modification of KDM5B is responsible for its high expression in drug-resistant cells. Through mass spectrometry screening and co-immunoprecipitation validation, we found that the molecular chaperone HSP90 forms a complex with KDM5B in drug resistance cells. Interestingly, HSP90 inhibitor 17-AAG induced KDM5B degradation in a time-and-dose-dependent manner, indicating that HSP90 protected KDM5B from protein degradation. Targeting inhibition of HSP90 and KDM5B reversed drug resistance both in vitro and in vivo. Taken together, molecular chaperon HSP90 interacted with KDM5B to protect it from ubiquitin-dependent proteasomal degradation. Increased KDM5B demethylated H3K4 and facilitated the recruitment of XRCC1 to repair damaged DNA. Therefore, inhibition of HSP90 or KDM5B represented a novel approach to reverse chemoresistance in human cancers.
Collapse
Affiliation(s)
- Wenxia Xu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Bingluo Zhou
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Xiaoya Zhao
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Jinye Xu
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Dingwei Chen
- Department of general surgery, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Qi Wei
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Mengjiao Han
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| |
Collapse
|
42
|
Shokri G, Doudi S, Fathi-Roudsari M, Kouhkan F, Sanati MH. Targeting histone demethylases KDM5A and KDM5B in AML cancer cells: A comparative view. Leuk Res 2018; 68:105-111. [DOI: 10.1016/j.leukres.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
|
43
|
Horton JR, Liu X, Wu L, Zhang K, Shanks J, Zhang X, Rai G, Mott BT, Jansen DJ, Kales SC, Henderson MJ, Pohida K, Fang Y, Hu X, Jadhav A, Maloney DJ, Hall MD, Simeonov A, Fu H, Vertino PM, Yan Q, Cheng X. Insights into the Action of Inhibitor Enantiomers against Histone Lysine Demethylase 5A. J Med Chem 2018; 61:3193-3208. [PMID: 29537847 PMCID: PMC6322411 DOI: 10.1021/acs.jmedchem.8b00261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isomers of chiral drugs can exhibit marked differences in biological activities. We studied the binding and inhibitory activities of 12 compounds against KDM5A. Among them are two pairs of enantiomers representing two distinct inhibitor chemotypes, namely, ( R)- and ( S)-2-((2-chlorophenyl)(2-(piperidin-1-yl)ethoxy)methyl)-1 H-pyrrolo[3,2- b]pyridine-7-carboxylic acid (compounds N51 and N52) and ( R) - and ( S) -N-(1-(3-isopropyl-1 H-pyrazole-5-carbonyl)pyrrolidin-3-yl)cyclopropanecarboxamide (compounds N54 and N55). In vitro, the S enantiomer of the N51/N52 pair (N52) and the R enantiomer of the N54/N55 pair (N54) exhibited about 4- to 5-fold greater binding affinity. The more potent enzyme inhibition of KDM5A by the R-isoform for the cell-permeable N54/N55 pair translated to differences in growth inhibitory activity. We determined structures of the KDM5A catalytic domain in complex with all 12 inhibitors, which revealed the interactions (or lack thereof) responsible for the differences in binding affinity. These results provide insights to guide improvements in binding potency and avenues for development of cell permeable inhibitors of the KDM5 family.
Collapse
Affiliation(s)
- John R. Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Lizhen Wu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Kai Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - John Shanks
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Bryan T. Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Daniel J. Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Stephen C. Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Katherine Pohida
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Haian Fu
- Department of Pharmacology, Emory University, Atlanta, Georgia 30322, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia 30322, United States
- Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, United States
- The Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Paula M. Vertino
- The Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
- Department of Radiation Oncology, Emory University, Atlanta, Georgia 30322, United States
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
44
|
Patel R, Khalifa AO, Isali I, Shukla S. Prostate cancer susceptibility and growth linked to Y chromosome genes. Front Biosci (Elite Ed) 2018; 10:423-436. [PMID: 29293466 PMCID: PMC6152832 DOI: 10.2741/e830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The role of Y chromosome in prostate cancer progression and incidence is not well known. Among the 46 chromosomes, Y chromosome determines the male gender. The Y chromosome is smaller than the X chromosome and contains only 458 genes compared to over 2000 genes found in the X chromosome. The Y chromosome is prone to high mutation rates, created exclusively in sperm cells due to the highly oxidative environment of the testis. Y chromosome harbors epigenetic information, which affects the expression of genes associated with the incidence and progression of prostate cancer. In this review, we focus on Y chromosome related genetic abnormalities, likely to be involved in the development and progression of prostate cancer.
Collapse
Affiliation(s)
- Riddhi Patel
- Department of Urology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, USA
| | - Ahmad O Khalifa
- Urology Dept. Case Western Reserve University, Cleveland, Ohio and Menofia University, Shebin Al kom, Egpt
| | - Ilaha Isali
- Department of Urology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, USA
| | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, USA,
| |
Collapse
|
45
|
Huang D, Qiu Y, Li G, Liu C, She L, Zhang D, Chen X, Zhu G, Zhang X, Tian Y, Liu Y. KDM5B overexpression predicts a poor prognosis in patients with squamous cell carcinoma of the head and neck. J Cancer 2018; 9:198-204. [PMID: 29290786 PMCID: PMC5743728 DOI: 10.7150/jca.22145] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023] Open
Abstract
Purpose: Lysine demethylase (KDM) 5B, as a member of the histone lysine demethylase family, is overexpressed and functions abnormally in various human cancers. However, its expression in the squamous cell carcinoma of the head and neck (SCCHN) remains unclear. Methods: KDM5B expression was analyzed by immunohistochemistry and correlated with clinicopathological parameters in 103 archival SCCHN tissue samples and 24 adjacent noncancerous epithelial tissues. Results: We found that KDM5B expression was higher in SCCHN than that in adjacent noncancerous tissues. This was closely associated with lymph node metastasis and tumor recurrence. In addition, Kaplan-Meier analysis revealed that patients with high KDM5B expression had shorter disease-free and overall survival times than those with low KDM5B expression. Importantly, both univariate and multivariate analysis demonstrated that KDM5B level was an independent prognostic factor in SCCHN patients. Conclusions: These results indicate that KDM5B is a valuable biomarker that can be used to predict SCCHN patient outcome.
Collapse
Affiliation(s)
- Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Li She
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Gangcai Zhu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Yongquan Tian
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha 410008, Hunan, China
| |
Collapse
|
46
|
Boström J, Sramkova Z, Salašová A, Johard H, Mahdessian D, Fedr R, Marks C, Medalová J, Souček K, Lundberg E, Linnarsson S, Bryja V, Sekyrova P, Altun M, Andäng M. Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. PLoS One 2017; 12:e0188772. [PMID: 29228002 PMCID: PMC5724894 DOI: 10.1371/journal.pone.0188772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023] Open
Abstract
The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development.
Collapse
Affiliation(s)
- Johan Boström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Sramkova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alena Salašová
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helena Johard
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Diana Mahdessian
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics CAS, v.v.i., Královopolská 135, Brno, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, Brno, Czech Republic
| | - Carolyn Marks
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jiřina Medalová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics CAS, v.v.i., Královopolská 135, Brno, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Emma Lundberg
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Sekyrova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (PS); (MAl); (MAn)
| | - Mikael Altun
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (PS); (MAl); (MAn)
| | - Michael Andäng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (PS); (MAl); (MAn)
| |
Collapse
|
47
|
Scahill CM, Digby Z, Sealy IM, Wojciechowska S, White RJ, Collins JE, Stemple DL, Bartke T, Mathers ME, Patton EE, Busch-Nentwich EM. Loss of the chromatin modifier Kdm2aa causes BrafV600E-independent spontaneous melanoma in zebrafish. PLoS Genet 2017; 13:e1006959. [PMID: 28806732 PMCID: PMC5570503 DOI: 10.1371/journal.pgen.1006959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/24/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022] Open
Abstract
KDM2A is a histone demethylase associated with transcriptional silencing, however very little is known about its in vivo role in development and disease. Here we demonstrate that loss of the orthologue kdm2aa in zebrafish causes widespread transcriptional disruption and leads to spontaneous melanomas at a high frequency. Fish homozygous for two independent premature stop codon alleles show reduced growth and survival, a strong male sex bias, and homozygous females exhibit a progressive oogenesis defect. kdm2aa mutant fish also develop melanomas from early adulthood onwards which are independent from mutations in braf and other common oncogenes and tumour suppressors as revealed by deep whole exome sequencing. In addition to effects on translation and DNA replication gene expression, high-replicate RNA-seq in morphologically normal individuals demonstrates a stable regulatory response of epigenetic modifiers and the specific de-repression of a group of zinc finger genes residing in constitutive heterochromatin. Together our data reveal a complex role for Kdm2aa in regulating normal mRNA levels and carcinogenesis. These findings establish kdm2aa mutants as the first single gene knockout model of melanoma biology.
Collapse
Affiliation(s)
- Catherine M. Scahill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Zsofia Digby
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ian M. Sealy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Sonia Wojciechowska
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit & The University of Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard J. White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - John E. Collins
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Derek L. Stemple
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Till Bartke
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marie E. Mathers
- Department of Pathology, Western General Hospital, Edinburgh, United Kingdom
| | - E. Elizabeth Patton
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit & The University of Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisabeth M. Busch-Nentwich
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
48
|
A novel SHARPIN-PRMT5-H3R2me1 axis is essential for lung cancer cell invasion. Oncotarget 2017; 8:54809-54820. [PMID: 28903384 PMCID: PMC5589623 DOI: 10.18632/oncotarget.18957] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
SHARPIN (Shank-associated RH domain interacting protein) is the main component of the linear ubiquitin chain activation complex (LUBAC). SHARPIN is involved in regulating inflammation and cancer progression. However, whether SHARPIN plays an important role in lung cancer metastasis and the potential underlying mechanism are still unknown. Here, for the first time, we reported that SHARPIN expression is closely related to lung cancer progression. Moreover, SHARPIN plays a central role in controlling lung cancer cell metastasis. Mechanistic studies further revealed that PRMT5 (Protein arginine methyltransferase 5), responsible for catalyzing arginine methylation on histones, is a novel cofactor of SHARPIN. This finding provides the basis for further study of the crosstalk between protein ubiquitination and histone methylation. We further found that SHARPIN-PRMT5 is essential for the monomethylation of histones of chromatins at key metastasis-related genes, defining a new mechanism regulating cancer invasion. A novel MLL complex (ASH2 and WDR5) was implied in the link between histone arginine2 monomethylation (H3R2me1) and histone lysine4 trimethylation (H3K4me3) for the activation of metastasis-related genes. These novel findings establish a new epigenetic paradigm in which SHARPIN-PRMT5 has distinct roles in orchestrating chromatin environments for cancer-related genes via integrating signaling between H3R2me1 and H3K4me3.
Collapse
|
49
|
vel Szic KS, Declerck K, Crans RA, Diddens J, Scherf DB, Gerhäuser C, Berghe WV. Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget 2017; 8:40434-40453. [PMID: 28467815 PMCID: PMC5522326 DOI: 10.18632/oncotarget.17107] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by poor prognosis and a DNA hypomethylation profile. Withaferin A (WA) is a plant derived steroidal lactone which holds promise as a therapeutic agent for treatment of breast cancer (BC). We determined genome-wide DNA methylation changes in weakly-metastatic and aggressive, metastatic BC cell lines, following 72h treatment to a sub-cytotoxic concentration of WA. In contrast to the DNA demethylating agent 5-aza-2'-deoxycytidine (DAC), WA treatment of MDA-MB-231 cells rather tackles an epigenetic cancer network through gene-specific DNA hypermethylation of tumor promoting genes including ADAM metallopeptidase domain 8 (ADAM8), urokinase-type plasminogen activator (PLAU), tumor necrosis factor (ligand) superfamily, member 12 (TNFSF12), and genes related to detoxification (glutathione S-transferase mu 1, GSTM1), or mitochondrial metabolism (malic enzyme 3, ME3). Gene expression and pathway enrichment analysis further reveals epigenetic suppression of multiple cancer hallmarks associated with cell cycle regulation, cell death, cancer cell metabolism, cell motility and metastasis. Remarkably, DNA hypermethylation of corresponding CpG sites in PLAU, ADAM8, TNSF12, GSTM1 and ME3 genes correlates with receptor tyrosine-protein kinase erbB-2 amplification (HER2)/estrogen receptor (ESR)/progesterone receptor (PR) status in primary BC tumors. Moreover, upon comparing differentially methylated WA responsive target genes with DNA methylation changes in different clinical subtypes of breast cancer patients in the cancer genome atlas (TCGA), we found that WA silences HER2/PR/ESR-dependent gene expression programs to suppress aggressive TNBC characteristics in favor of luminal BC hallmarks, with an improved therapeutic sensitivity. In this respect, WA may represent a novel and attractive phyto-pharmaceutical for TNBC treatment.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Current address: Division of Hematology, Oncology and Stem Cell Transplantation, Center for Translational Cell Research, The University Medical Center Freiburg, Freiburg, Germany
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - René A.J Crans
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Current address: Laboratory for GPCR Expression and Signal Transduction (L-GEST), Department of Biochemistry and Microbiology, University of Ghent, Ghent, Belgium
| | - Jolien Diddens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - David B. Scherf
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clarissa Gerhäuser
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
50
|
Baumgart SJ, Haendler B. Exploiting Epigenetic Alterations in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18051017. [PMID: 28486411 PMCID: PMC5454930 DOI: 10.3390/ijms18051017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.
Collapse
Affiliation(s)
- Simon J Baumgart
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|