1
|
Togni A, Piermartiri T, Tasca CI, Nedel CB. The intricate relationship between SUMOylation and gliomas: a review with a perspective on natural compounds. Nat Prod Res 2025:1-12. [PMID: 39849680 DOI: 10.1080/14786419.2025.2456093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Gliomas are tumours that affect the nervous system, with glioblastoma, also known as grade IV astrocytoma, being the most aggressive type, associated with poor prognosis. Glioblastoma is characterised by its highly invasive nature, rapid growth, and resistance to conventional chemotherapy and radiation treatments, resulting in a median survival of about 14 months. To improve patient outcomes, novel therapeutic approaches are needed. Targeting SUMOylation, a post-translational modification involving the attachment of Small Ubiquitin-like Modifier (SUMO) proteins to lysine residues in target proteins, is emerging as a promising strategy. SUMOylation regulates various biological processes, including the cell cycle, apoptosis, and senescence. Dysregulation of this pathway has been linked to glioblastoma tumorigenesis, as well as the invasion and proliferation of glioblastoma cells. Therefore, focusing on the SUMOylation pathway offers the potential for developing innovative therapeutic strategies, including the use of natural compounds as adjuvant therapies, to address glioblastoma more effectively.
Collapse
Affiliation(s)
- Anderson Togni
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tetsade Piermartiri
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cláudia Beatriz Nedel
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
2
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
3
|
Liu H, Zhang J, Xue Z, Chang M, Feng X, Cai Y, Bai L, Wang W, Liu E, Zhao S, Wang R. Deficiency of protein inhibitor of activated STAT3 exacerbates atherosclerosis by modulating VSMC phenotypic switching. Atherosclerosis 2023; 380:117195. [PMID: 37586220 DOI: 10.1016/j.atherosclerosis.2023.117195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND AND AIMS Phenotypic switching of vascular smooth muscle cells (VSMCs) plays an essential role in the development of atherosclerosis. Protein inhibitor of activated STAT (Pias) regulates VSMCs phenotype via acting as sumo E3 ligase to promote protein sumoylation. Our previous study indicated that Pias3 expression decreased in atherosclerotic lesions. Therefore, this study aimed to explore the role of Pias3 on VSMCs phenotype switching during atherosclerosis. METHODS ApoE-/- and ApoE-/-Pias3-/- double-deficient mice were fed with high-fat/high-cholesterol diet to induce atherosclerosis. Aorta tissues and primary VSMCs were collected to assess plaque formation and VSMCs phenotype. In vitro, Pias3 was overexpressed in A7r5, a VSMCs cell line, by transfection with Pias3 plasmid. Real-time quantitative PCR, immunoblotting, immunoprecipitation, were used to analyze the effect of Pias3 on VSMCs phenotypic switching. RESULTS Pias3 deficiency significantly exacerbated atherosclerotic plaque formation and promoted VSMCs phenotypic switching to a synthetic state within lesion. In vitro, overexpressing Pias3 in VSMCs increased the expression of contractile markers (myosin heavy chain 11, calponin 1), while it decreased the level of synthetic marker (vimentin). Additionally, Pias3 overexpression blocked PDGF-BB-induced VSMCs proliferation and migration. Immunoprecipitation and mass spectrometry results showed that Pias3 enhanced sumoylation and ubiquitination of vimentin, and shortened its half-life. Moreover, the ubiquitination level of vimentin was impaired by 2-D08, a sumoylation inhibitor. This suggests that Pias3 might accelerate the ubiquitination-degradation of vimentin by promoting its sumoylation. CONCLUSIONS These results indicate that Pias3 might ameliorate atherosclerosis progression by suppressing VSMCs phenotypic switching and reducing vimentin protein stability.
Collapse
Affiliation(s)
- Haole Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jingyi Zhang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ziyang Xue
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingke Chang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xinxin Feng
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yifan Cai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liang Bai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Rong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
4
|
Lara-Ureña N, Jafari V, García-Domínguez M. Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. Int J Mol Sci 2022; 23:8012. [PMID: 35887358 PMCID: PMC9316396 DOI: 10.3390/ijms23148012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.
Collapse
Affiliation(s)
| | | | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; (N.L.-U.); (V.J.)
| |
Collapse
|
5
|
Surolia R, Antony VB. Pathophysiological Role of Vimentin Intermediate Filaments in Lung Diseases. Front Cell Dev Biol 2022; 10:872759. [PMID: 35573702 PMCID: PMC9096236 DOI: 10.3389/fcell.2022.872759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Vimentin intermediate filaments, a type III intermediate filament, are among the most widely studied IFs and are found abundantly in mesenchymal cells. Vimentin intermediate filaments localize primarily in the cytoplasm but can also be found on the cell surface and extracellular space. The cytoplasmic vimentin is well-recognized for its role in providing mechanical strength and regulating cell migration, adhesion, and division. The post-translationally modified forms of Vimentin intermediate filaments have several implications in host-pathogen interactions, cancers, and non-malignant lung diseases. This review will analyze the role of vimentin beyond just the epithelial to mesenchymal transition (EMT) marker highlighting its role as a regulator of host-pathogen interactions and signaling pathways for the pathophysiology of various lung diseases. In addition, we will also examine the clinically relevant anti-vimentin compounds and antibodies that could potentially interfere with the pathogenic role of Vimentin intermediate filaments in lung disease.
Collapse
Affiliation(s)
| | - Veena B. Antony
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Shakhov AS, Alieva IB. The "Third Violin" in the Cytoskeleton Orchestra-The Role of Intermediate Filaments in the Endothelial Cell's Life. Biomedicines 2022; 10:828. [PMID: 35453578 PMCID: PMC9027429 DOI: 10.3390/biomedicines10040828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
The endothelium plays an important role in the transcytosis of lipoproteins. According to one of the theories, endothelial injury is a triggering factor for the development of atherosclerosis, and intracellular structures, including components of the endotheliocyte cytoskeleton (microtubules, actin, and intermediate filaments), are involved in its development. In contrast to the proteins of tubulin-based microtubules and actin microfilaments, intermediate filaments are comprised of various tissue-specific protein members. Vimentin, the main protein of endothelial intermediate filaments, is one of the most well-studied of these and belongs to type-III intermediate filaments, commonly found in cells of mesenchymal origin. Vimentin filaments are linked mechanically or by signaling molecules to microfilaments and microtubules by which coordinated cell polarisation and migration are carried out, as well as control over several endotheliocyte functions. Moreover, the soluble vimentin acts as an indicator of the state of the cardiovascular system, and the involvement of vimentin in the development and course of atherosclerosis has been demonstrated. Here we discuss current concepts of the participation of vimentin filaments in the vital activity and functioning of endothelial cells, as well as the role of vimentin in the development of inflammatory processes and atherosclerosis.
Collapse
Affiliation(s)
| | - Irina B. Alieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
7
|
Ostrowska-Podhorodecka Z, Ding I, Norouzi M, McCulloch CA. Impact of Vimentin on Regulation of Cell Signaling and Matrix Remodeling. Front Cell Dev Biol 2022; 10:869069. [PMID: 35359446 PMCID: PMC8961691 DOI: 10.3389/fcell.2022.869069] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Vimentin expression contributes to cellular mechanoprotection and is a widely recognized marker of fibroblasts and of epithelial-mesenchymal transition. But it is not understood how vimentin affects signaling that controls cell migration and extracellular matrix (ECM) remodeling. Recent data indicate that vimentin controls collagen deposition and ECM structure by regulating contractile force application to the ECM and through post-transcriptional regulation of ECM related genes. Binding of cells to the ECM promotes the association of vimentin with cytoplasmic domains of adhesion receptors such as integrins. After initial adhesion, cell-generated, myosin-dependent forces and signals that impact vimentin structure can affect cell migration. Post-translational modifications of vimentin determine its adaptor functions, including binding to cell adhesion proteins like paxillin and talin. Accordingly, vimentin regulates the growth, maturation and adhesive strength of integrin-dependent adhesions, which enables cells to tune their attachment to collagen, regulate the formation of cell extensions and control cell migration through connective tissues. Thus, vimentin tunes signaling cascades that regulate cell migration and ECM remodeling. Here we consider how specific properties of vimentin serve to control cell attachment to the underlying ECM and to regulate mesenchymal cell migration and remodeling of the ECM by resident fibroblasts.
Collapse
|
8
|
Liang Y, Li L, Chen Y, Zhang S, Li Z, Xiao J, Wei D. Research Progress on the Role of Intermediate Filament Vimentin in Atherosclerosis. DNA Cell Biol 2021; 40:1495-1502. [PMID: 34931866 DOI: 10.1089/dna.2021.0623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytoskeleton is a biopolymer network composed of intermediate filaments, actin, and microtubules, which is the main mechanical structure of cells. Vimentin is an intermediate filament protein that regulates the mechanical and contractile properties of cells, thereby reflecting their mechanical properties. In recent years, the "nonmechanical function" of vimentin inside and outside of cells has attracted extensive attention. The content of vimentin in atherosclerotic plaques is increased, and the serum secretion of vimentin in patients with coronary heart disease is remarkably increased. In this review, the mechanistic and nonmechanistic roles of vimentin in atherosclerosis progression were summarized on the basis of current studies.
Collapse
Affiliation(s)
- Yamin Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Lu Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yanmei Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shulei Zhang
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhaozhi Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jinyan Xiao
- YueYang Maternal-Child Medicine Health Hospital Hunan Province Innovative Training Base for Medical Postgraduates, University of China South China and Yueyang Women and Children's Medical Center, Yueyang, Hunan, China
| | - Dangheng Wei
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Ding Y, Lv C, Zhou Y, Zhang H, Zhao L, Xu Y, Fan X. Vimentin loss promotes cancer proliferation through up-regulating Rictor/AKT/β-catenin signaling pathway. Exp Cell Res 2021; 405:112666. [PMID: 34052237 DOI: 10.1016/j.yexcr.2021.112666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/09/2021] [Accepted: 05/22/2021] [Indexed: 11/18/2022]
Abstract
Vimentin protein is one of the main cytoskeleton and plays an important role in cell motility and metastasis. Nowadays, vimentin is widely studied as an epithelial-mesenchymal transition (EMT) marker of cancer cells while its involvement in cancer proliferation is poorly understood. In this study, we investigated the participation of vimentin in regulating cancer proliferation by silencing VIM gene in four cancer cell lines. Our results demonstrated that vimentin loss significantly induced cancer cell proliferation both in vitro and in vivo, which has not been reported so far. Mechanistically, knockdown of vimentin expression activated AKT phosphorylation and its downstream β-catenin signaling. Nuclear translocation and transcriptional activity of β-catenin was enhanced after silencing vimentin expression. Furthermore, vimentin loss could prevent Rictor from autophagy-dependent degradation via reducing AMPK-mediated autophagy signaling. AICAR, an AMPK activator, down-regulated Rictor and p-AKT levels while vimentin knockdown could rescue the effects. In vivo, it was also found that Ki67 expression and p-AKT/β-catenin signaling pathway were obviously up-regulated in the tumor tissues in which vimentin was silenced compared to control groups. Taken together, these data showed the novel function of vimentin in regulating cancer proliferation via Rictor/AKT/β-catenin signaling pathway, which suggested that it need more careful consideration before inhibiting metastatic cancers through targeting vimentin.
Collapse
Affiliation(s)
- Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Conggai Lv
- The Second Hospital of Shi JiaZhuang, Shi Jiazhuang, 050000, China
| | - You Zhou
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Heng Zhang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Yuting Xu
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
11
|
Kaus‐Drobek M, Mücke N, Szczepanowski RH, Wedig T, Czarnocki‐Cieciura M, Polakowska M, Herrmann H, Wysłouch‐Cieszyńska A, Dadlez M. Vimentin S-glutathionylation at Cys328 inhibits filament elongation and induces severing of mature filaments in vitro. FEBS J 2020; 287:5304-5322. [PMID: 32255262 PMCID: PMC7818121 DOI: 10.1111/febs.15321] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Vimentin intermediate filaments are a significant component of the cytoskeleton in cells of mesenchymal origin. In vivo, filaments assemble and disassemble and thus participate in the dynamic processes of the cell. Post-translational modifications (PTMs) such as protein phosphorylation regulate the multiphasic association of vimentin from soluble complexes to insoluble filaments and the reverse processes. The thiol side chain of the single vimentin cysteine at position 328 (Cys328) is a direct target of oxidative modifications inside cells. Here, we used atomic force microscopy, electron microscopy and a novel hydrogen-deuterium exchange mass spectrometry (HDex-MS) procedure to investigate the structural consequences of S-nitrosylation and S-glutathionylation of Cys328 for in vitro oligomerisation of human vimentin. Neither modification affects the lateral association of tetramers to unit-length filaments (ULF). However, S-glutathionylation of Cys328 blocks the longitudinal assembly of ULF into extended filaments. S-nitrosylation of Cys328 does not hinder but slows down the elongation. Likewise, S-glutathionylation of preformed vimentin filaments causes their extensive fragmentation to smaller oligomeric species. Chemical reduction of the S-glutathionylated Cys328 thiols induces reassembly of the small fragments into extended filaments. In conclusion, our in vitro results suggest S-glutathionylation as a candidate PTM for an efficient molecular switch in the dynamic rearrangements of vimentin intermediate filaments, observed in vivo, in response to changes in cellular redox status. Finally, we demonstrate that HDex-MS is a powerful method for probing the kinetics of vimentin filament formation and filament disassembly induced by PTMs.
Collapse
Affiliation(s)
- Magdalena Kaus‐Drobek
- Laboratory of Mass SpectrometryInstitute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Norbert Mücke
- Biophysics of MacromoleculesGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Chromatin NetworksGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Roman H. Szczepanowski
- Biophysics Core FacilityInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Tatjana Wedig
- Biophysics of MacromoleculesGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Magdalena Polakowska
- Laboratory of Mass SpectrometryInstitute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Harald Herrmann
- Institute of NeuropathologyUniversity Hospital ErlangenGermany
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Michał Dadlez
- Laboratory of Mass SpectrometryInstitute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
- Biology DepartmentInstitute of Genetics and BiotechnologyWarsaw UniversityPoland
| |
Collapse
|
12
|
Nissen NI, Karsdal M, Willumsen N. Post-translational modifications of vimentin reflect different pathological processes associated with non-small cell lung cancer and chronic obstructive pulmonary disease. Oncotarget 2019; 10:6829-6841. [PMID: 31827725 PMCID: PMC6887574 DOI: 10.18632/oncotarget.27332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Vimentin has shown to be highly implicated in cancer initiation and progression. Vimentin is often a target of post-translational modifications (PTMs) which can be disease specific, thus targeting these specific modifications can be of high biomarker potential. In this study we set out to evaluate the biological relevance and serum biomarker potential of citrullinated vimentin (VICM) and non-citrullinated vimentin (VIM) in non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease (COPD). METHODS A competitive ELISA targeting VIM was developed and quantified in serum from patients with NSCLC and COPD. VIM was compared with levels of VICM in the same indications. RESULTS VIM was significantly increased in NSCLC (n = 100) compared to healthy controls (n = 67) in two independent cohorts (p = 0.0003 and p < 0.0001). Furthermore, VIM was highly increased in late stages of NSCLC (p = 0.001), however VIM was not increased in COPD patients (n = 10). Contrarily, serum levels of VICM was not increased in late stages of NSCLC, but highly elevated in patients with COPD (p < 0.0001). CONCLUSIONS These findings suggest a biomarker potential of VIM in NSCLC. Our findings also indicate that PTMs of vimentin are highly relevant and that targeting these modifications can have differential biomarker potential.
Collapse
Affiliation(s)
- Neel Ingemann Nissen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark.,Nordic Bioscience, Biomarkers and Research, DK-2730 Herlev, Denmark
| | - Morten Karsdal
- Nordic Bioscience, Biomarkers and Research, DK-2730 Herlev, Denmark
| | | |
Collapse
|
13
|
Buttari B, Profumo E, Capozzi A, Saso L, Sorice M, Riganò R. Post-translational modifications of proteins in antiphospholipid antibody syndrome. Crit Rev Clin Lab Sci 2019; 56:511-525. [DOI: 10.1080/10408363.2019.1650714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology, “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rachele Riganò
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
14
|
Bhardwaj M, Sen S, Chosdol K, Bakhshi S, Pushker N, Sharma A, Kashyap S, Bajaj MS, Singh VK. Vimentin overexpression as a novel poor prognostic biomarker in eyelid sebaceous gland carcinoma. Br J Ophthalmol 2019; 104:879-884. [PMID: 30940620 DOI: 10.1136/bjophthalmol-2018-313285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/16/2019] [Accepted: 03/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vimentin is an intermediate-sized filament which is highly expressed in mesenchymal cells and is associated with epithelial-mesenchymal transition (EMT). EMT markers ZEB2 and Slug lead to Vimentin overexpression and E-cadherin loss, resulting in invasion and metastasis. However, the status of Vimentin remains unexplored in eyelid sebaceous gland carcinoma (SGC). The study aims to determine status of Vimentin in SGC and its association with EMT markers E-cadherin, ZEB2 and Slug. METHODS Vimentin protein expression was undertaken in 66 cases with SGC by immunohistochemistry (IHC). Messenger RNA (mRNA) expression was determined in 42 fresh tissues by quantitative real-time PCR. Association of Vimentin with E-cadherin, ZEB2 and Slug was also analysed. Patients were followed up for 17-69 months (mean 34.02 ± 14.73 months). RESULTS IHC revealed Vimentin overexpression in 37/66 (56%) cases. This overexpression showed significant association with lymph node metastasis (p=0.004) and pagetoid spread (p=0.05). Patients with high Vimentin expression also had poor disease-free survival (p=0.033). Univariate Cox regression model indicated that high Vimentin expression (p=0.043) and advanced tumour stage (p=0.002) were independent adverse prognostic factors. High Vimentin mRNA expression was seen in 16/42 (38%) cases and correlated significantly with lymph node metastasis (p=0.027), advanced tumour stage (p=0.002) and large tumour size (p=0.023). Vimentin expression overall showed a significant inverse association with E-cadherin and direct association with ZEB2 expression. CONCLUSIONS Vimentin overexpression in SGC is associated with EMT and leads to poor clinical outcome. It also emerged as a novel predictor for lymph node metastasis and poor survival.
Collapse
Affiliation(s)
- Mansi Bhardwaj
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sen
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Neelam Pushker
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Anjana Sharma
- Department of Ocular Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Kashyap
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Mandeep S Bajaj
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vijay Kumar Singh
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Abstract
Pritumumab, a natural human IgG1kappa mAb, was isolated from the regional lymph node of a patient with cervical cancer. This antibody has been reported to bind the cytoskeletal protein vimentin, and to cell surface expressed vimentin referred to as ecto-domain vimentin (EDV). Here, we report details of the development of a potency of binding assay for pritumumab as a prerequisite before pursuing clinical trials. The enzyme linked immunosorbent assay (ELISA) to detect antibody-binding antigen can serve as a potency assay for release of manufactured samples to be used in clinical studies. Several layers of controls for this assay along with suitability testing for reagents and components of the assay must be developed before the assay can be incorporated for stability testing and release of manufatured samples.
Collapse
|
16
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
17
|
Engineered 3D tumour model for study of glioblastoma aggressiveness and drug evaluation on a detachably assembled microfluidic device. Biomed Microdevices 2018; 20:80. [PMID: 30191323 DOI: 10.1007/s10544-018-0322-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
3D models of tumours have emerged as an advanced technique in pharmacology and tumour cell biology, in particular for studying malignant tumours such as glioblastoma multiforme (GBM). Herein, we developed a 3D GBM model on a detachably assembled microfluidic device, which could be used to study GBM aggressiveness and for anti-GBM drug testing. Fundamental characteristics of the GBM microenvironment in terms of 3D tissue organisation, extracellular matrices and blood flow were reproduced in vitro by serial manipulations in the integrated microfluidic device, including GBM spheroid self-assembly, embedding in a collagen matrix, and continuous perfusion culture, respectively. We could realize multiple spheroids parallel manipulation, whilst, compartmentalized culture, in a highly flexible manner. This method facilitated investigations into the viability, proliferation, invasiveness and phenotype transition of GBM in a 3D microenvironment and under continuous stimulation by drugs. Anti-invasion effect of resveratrol, a naturally isolated polyphenol, was innovatively evaluated using this in vitro 3D GBM model. Temozolomide and the combination of resveratrol and temozolomide were also evaluated as control. This scalable model enables research into GBM in a more physiologically relevant microenvironment, which renders it promising for use in translational or personalised medicine to examine the impact of, or identify combinations of, therapeutic agents.
Collapse
|
18
|
Musaelyan A, Lapin S, Nazarov V, Tkachenko O, Gilburd B, Mazing A, Mikhailova L, Shoenfeld Y. Vimentin as antigenic target in autoimmunity: A comprehensive review. Autoimmun Rev 2018; 17:926-934. [DOI: 10.1016/j.autrev.2018.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
|
19
|
Lao M, Shi M, Zou Y, Huang M, Ye Y, Qiu Q, Xiao Y, Zeng S, Liang L, Yang X, Xu H. Protein Inhibitor of Activated STAT3 Regulates Migration, Invasion, and Activation of Fibroblast-like Synoviocytes in Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2015; 196:596-606. [PMID: 26667168 DOI: 10.4049/jimmunol.1403254] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022]
Abstract
The aggressive phenotype displayed by fibroblast-like synoviocytes (FLSs) is a critical factor of cartilage destruction in rheumatoid arthritis (RA). Increased FLSs migration and subsequent degradation of the extracellular matrix are essential to the pathology of RA. Protein inhibitor of activated STAT (PIAS), whose family members include PIAS1, PIAS2 (PIASx), PIAS3, and PIAS4 (PIASy), play important roles in regulating various cellular events, such as cell survival, migration, and signal transduction in many cell types. However, whether PIAS proteins have a role in the pathogenesis of RA is unclear. In this study, we evaluated the role of PIAS proteins in FLSs migration, invasion, and matrix metalloproteinases (MMPs) expression in RA. We observed increased expression of PIAS3, but not PIAS1, PIAS2, or PIAS4, in FLSs and synovial tissues from patients with RA. We found that PIAS3 knockdown by short hairpin RNA reduced migration, invasion, and MMP-3, MMP-9, and MMP-13 expression in FLSs. In addition, we demonstrated that PIAS3 regulated lamellipodium formation during cell migration. To gain insight into molecular mechanisms, we evaluated the effect of PIAS3 knockdown on Rac1/PAK1 and JNK activation. Our results indicated that PIAS3-mediated SUMOylation of Rac1 controlled its activation and modulated the Rac1 downstream activity of PAK1 and JNK. Furthermore, inhibition of Rac1, PAK1, or JNK decreased migration and invasion of RA FLSs. Thus, our observations suggest that PIAS3 suppression may be protective against joint destruction in RA by regulating synoviocyte migration, invasion, and activation.
Collapse
Affiliation(s)
- Minxi Lao
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Maohua Shi
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yaoyao Zou
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Mingcheng Huang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yujin Ye
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qian Qiu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Youjun Xiao
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Liuqin Liang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiuyan Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hanshi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
20
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
21
|
Dave JM, Bayless KJ. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation 2015; 21:333-44. [PMID: 24387004 DOI: 10.1111/micc.12111] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a multistep process that requires intricate changes in cell shape to generate new blood vessels. IF are a large family of proteins that play an important structural and functional role in forming and regulating the cytoskeleton. Vimentin, a major type III intermediate filament protein is expressed in endothelial and other mesenchymal cells. The structure of vimentin is conserved in mammals and shows dynamic expression profiles in various cell types and different developmental stages. Although initial studies with vimentin-deficient mice demonstrated a virtually normal phenotype, subsequent studies have revealed several defects in cell attachment, migration, signaling, neurite extension, and vascularization. Regulation of vimentin is highly complex and is driven by posttranslational modifications such as phosphorylation and cleavage by intracellular proteases. This review discusses various novel functions which are now known to be mediated by vimentin, summarizing structure, regulation and roles of vimentin in cell adhesion, migration, angiogenesis, neurite extension, and cancer. We specifically highlight a pathway involving growth factor-mediated calpain activation, vimentin cleavage, and MT1-MMP membrane translocation that is required for endothelial cell invasion in 3D environments. This pathway may also regulate the analogous processes of neurite extension and tumor cell invasion.
Collapse
Affiliation(s)
- Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
22
|
Leduc C, Etienne-Manneville S. Intermediate filaments in cell migration and invasion: the unusual suspects. Curr Opin Cell Biol 2015; 32:102-12. [PMID: 25660489 DOI: 10.1016/j.ceb.2015.01.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/22/2022]
Abstract
Cell migration is a multistep process which relies on the coordination of cytoskeletal structures in space and time. While the roles of actin and microtubules have been investigated in great details, the lack of inhibitors and visualizing tools and the large number of proteins forming intermediate filaments (IFs) have delayed the characterization of IF functions during migration. However, a large body of evidence has progressively pointed to changes in IF composition as an important parameter in the regulation of cell migratory properties both during development and tumor invasion. More recent in-depth analyses show that IFs are dynamically reorganized to participate, together with microfilaments and microtubules, to the key steps leading to cell migration.
Collapse
Affiliation(s)
- Cécile Leduc
- Institut Pasteur - CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Sandrine Etienne-Manneville
- Institut Pasteur - CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
23
|
Stastna M, Van Eyk JE. Posttranslational modifications of lysine and evolving role in heart pathologies-recent developments. Proteomics 2015; 15:1164-80. [PMID: 25430483 DOI: 10.1002/pmic.201400312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Abstract
The alteration in proteome composition induced by environmental changes and various pathologies is accompanied by the modifications of proteins by specific cotranslational and PTMs. The type and site stoichiometry of PTMs can affect protein functions, alter cell signaling, and can have acute and chronic effects. The particular interest is drawn to those amino acid residues that can undergo several different PTMs. We hypothesize that these selected amino acid residues are biologically rare and act within the cell as molecular switches. There are, at least, 12 various lysine modifications currently known, several of them have been shown to be competitive and they influence the ability of a particular lysine to be modified by a different PTM. In this review, we discuss the PTMs that occur on lysine, specifically neddylation and sumoylation, and the proteomic approaches that can be applied for the identification and quantification of these PTMs. Of interest are the emerging roles for these modifications in heart disease and what can be inferred from work in other cell types and organs.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, v. v. i, Brno, Czech Republic
| | | |
Collapse
|
24
|
miR-125b inhibitor may enhance the invasion-prevention activity of temozolomide in glioblastoma stem cells by targeting PIAS3. BioDrugs 2014; 28:41-54. [PMID: 23857508 DOI: 10.1007/s40259-013-0053-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Temozolomide, an alkylating agent, is a promising chemotherapeutic agent for treating glioblastoma. Although chemotherapy with temozolomide may restrain tumor growth for some months, invariable tumor recurrence suggests that cancer stem cells maintaining these tumors persist. Previous research has shown that temozolomide can inhibit the proliferation of human glioblastoma stem cells (GSCs); however, no research has focused on the invasion of GSCs, which is an important factor for glioblastoma recurrence. Accumulating evidence indicates that microRNA (miR)-125b over-expression in GSCs may increase their invasiveness. OBJECTIVE Our objective was to identify the effects and mechanism of action of an miR-125b inhibitor combined with temozolomide in the invasive pathogenesis of GSCs. METHODS We modified the levels of miR-125b expression in primary GSCs in order to observe the effect on sensitivity to temozolomide on invasion, and we further analyzed the differences in mechanism between miR-125b treatment alone and treatment with miR-125b plus temozolomide using the Cancer PathwayFinder PCR Array. RESULTS Our results demonstrated that either an miR-125b inhibitor or temozolomide could modestly inhibit the invasiveness of GSCs. Furthermore, GSCs that were pre-transfected with an miR-125b inhibitor, then treated with temozolomide, showed significantly decreased invasiveness when compared with GSCs treated with an miR-125b inhibitor or temozolomide alone. Further research into the underlying mechanism demonstrated that the miR-125b inhibitor enhanced the invasion-prevention activity of temozolomide in GSCs through targeting PIAS3 (protein inhibitor of activated STAT [signal transducer and activator of transcription]), which contributed to reduced STAT3 transcriptional activity and subsequent decreased expression of matrix metalloproteinase (MMP)-2 and -9. CONCLUSIONS miR-125b could play a role in the development of temozolomide resistance in GSCs. Inhibition of miR-125b expression may enhance sensitivity of GSCs to temozolomide by targeting PIAS3 on cell invasion.
Collapse
|
25
|
Zhao W, Yue L, Zhou F, Xu C, Liang W, Sui A, Ding A, Qiu W. Clinical significance of vimentin expression and Her-2 status in patients with gastric carcinoma. Clin Transl Sci 2013; 6:184-90. [PMID: 23751022 DOI: 10.1111/cts.12043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To determine whether vimentin could be used as a marker of gastric carcinomas with more aggressive behavior. To detect the extent of Her-2 status in gastric carcinoma and explore the correlation between vimentin expression and Her-2 status. METHODS Vimentin expression was detected in surgically resected gastric carcinoma tissue specimens from 143 patients by immunohistochemistry. The human epidermal growth factor receptor 2 (Her2) status was evaluated by fluorescence in situ hybridization (FISH). Correlations between vimentin expression, Her-2 status and clinicopathological factors were evaluated using Kaplan-Meier method and Cox multivariate survival models. RESULTS Vimentin expression was significantly correlated with age, advanced stage, poorly differentiated type, venous invasion, hepatic metastasis, and recurrence (p < 0.05). Her-2 gene was amplified in 16 (11.2%) out of the 143 gastric carcinoma tissue specimens. Her-2 status was correlated with advanced cancer, poor differentiation, venous invasion, hepatic metastasis, and recurrence (p < 0.05). The result of multivariate analysis showed that vimentin expression and lymph node metastasis were independent prognostic factors. CONCLUSIONS Vimentin expression in epithelial cells of the surgically resected gastric adenocarcinoma tissue is an independent predictor of short survival, and Her-2 status shows a valuable correlation with clinical parameters.
Collapse
Affiliation(s)
- Wenwen Zhao
- Department of Oncology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, 266003, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hothi P, Martins TJ, Chen L, Deleyrolle L, Yoon JG, Reynolds B, Foltz G. High-throughput chemical screens identify disulfiram as an inhibitor of human glioblastoma stem cells. Oncotarget 2013; 3:1124-36. [PMID: 23165409 PMCID: PMC3717950 DOI: 10.18632/oncotarget.707] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma Multiforme (GBM) continues to have a poor patient prognosis despite optimal standard of care. Glioma stem cells (GSCs) have been implicated as the presumed cause of tumor recurrence and resistance to therapy. With this in mind, we screened a diverse chemical library of 2,000 compounds to identify therapeutic agents that inhibit GSC proliferation and therefore have the potential to extend patient survival. High-throughput screens (HTS) identified 78 compounds that repeatedly inhibited cellular proliferation, of which 47 are clinically approved for other indications and 31 are experimental drugs. Several compounds (such as digitoxin, deguelin, patulin and phenethyl caffeate) exhibited high cytotoxicity, with half maximal inhibitory concentrations (IC50) in the low nanomolar range. In particular, the FDA approved drug for the treatment of alcoholism, disulfiram (DSF), was significantly potent across multiple patient samples (IC50 of 31.1 nM). The activity of DSF was potentiated by copper (Cu), which markedly increased GSC death. DSF–Cu inhibited the chymotrypsin-like proteasomal activity in cultured GSCs, consistent with inactivation of the ubiquitin-proteasome pathway and the subsequent induction of tumor cell death. Given that DSF is a relatively non-toxic drug that can penetrate the blood-brain barrier, we suggest that DSF should be tested (as either a monotherapy or as an adjuvant) in pre-clinical models of human GBM. Data also support targeting of the ubiquitin-proteasome pathway as a therapeutic approach in the treatment of GBM.
Collapse
Affiliation(s)
- Parvinder Hothi
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Scatena R, Bottoni P, Giardina B. Circulating tumour cells and cancer stem cells: a role for proteomics in defining the interrelationships between function, phenotype and differentiation with potential clinical applications. Biochim Biophys Acta Rev Cancer 2012; 1835:129-43. [PMID: 23228700 DOI: 10.1016/j.bbcan.2012.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 01/22/2023]
Abstract
Research on the discovery and implementation of valid cancer biomarkers is one of the most challenging fields in oncology and oncoproteomics in particular. Moreover, it is generally accepted that an evaluation of cancer biomarkers from the blood could significantly enable biomarker assessments by providing a relatively non-invasive source of representative tumour material. In this regard, circulating tumour cells (CTCs) isolated from the blood of metastatic cancer patients have significant promise. It has been demonstrated that localised and metastatic cancers may give rise to CTCs, which are detectable in the bloodstream. Despite technical difficulties, recent studies have highlighted the prognostic significance of the presence and number of CTCs in the blood. Future studies are necessary not only to detect CTCs but also to characterise them. Furthermore, another pathogenically significant type of cancer cells, known as cancer stem cells (CSCs) or more recently termed circulating tumour stem cells (CTSCs), appears to have a significant role as a subpopulation of CTCs. This review discusses the potential application of proteomic methodologies to improve the isolation and characterisation of CTCs and to distinguish between CTCs with a poor clinical significance and those with important biological and clinical implications.
Collapse
|
28
|
Luo W, Fang W, Li S, Yao K. Aberrant expression of nuclear vimentin and related epithelial-mesenchymal transition markers in nasopharyngeal carcinoma. Int J Cancer 2012; 131:1863-1873. [PMID: 22307379 DOI: 10.1002/ijc.27467] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 01/17/2012] [Indexed: 02/05/2023]
Abstract
Expression of vimentin and the epithelial to mesenchymal transition (EMT) markers E-cadherin, β-catenin is essential for the progression of various human cancers. Our study aimed to investigate the aberrant localization E-cadherin, β-catenin and vimentin, and their prognostic significance in 122 nasopharyngeal carcinoma (NPC) patients by immunohistochemistry and immunofluorescence. Our results showed that both membranous and cytoplasmic localization of E-cadherin staining were associated with lymph node metastasis (p = 0.000 and 0.005, respectively) and clinical stage (p = 0.000 and 0.007, respectively). High cytoplasmic β-catenin correlated significantly with larger tumor size (p = 0.020), lymph node metastasis (p = 0.000) and advanced clinical stage (p = 0.036). However, no significant difference was observed between membranous β-catenin and clinicopathologic features (p ≥ 0.05). High nuclear vimentin expression correlated significantly with positive lymph node metastasis (p = 0.000) and advanced clinical stage (p = 0.000). Multivariate analysis showed that nuclear vimentin and cytoplasmic E-cadherin were independent prognostic factors (p = 0.016 and 0.001, respectively), as well as M classification (p = 0.001). More importantly, patients with high coexpression of nuclear vimentin and cytoplasmic E-cadherin had shorter survival time (p = 0.000). Furthermore, high coexpression of these two proteins was closely associated with lymph node metastasis (p = 0.000) and advanced clinical stage (p = 0.000). Our studies provide convincing evidence that EMT may play an important role in the biological progression of NPC, and nuclear vimentin and cytoplasmic E-cadherin might have independent prognostic value in NPC patients and serve as novel targets for prognostic therapeutics.
Collapse
Affiliation(s)
- Weiren Luo
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Ishihara K, Fatma N, Bhargavan B, Chhunchha B, Kubo E, Dey S, Takamura Y, Kumar A, Singh DP. Lens epithelium-derived growth factor deSumoylation by Sumo-specific protease-1 regulates its transcriptional activation of small heat shock protein and the cellular response. FEBS J 2012; 279:3048-70. [PMID: 22748127 DOI: 10.1111/j.1742-4658.2012.08686.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lens epithelium-derived growth factor (LEDGF), a ubiquitously expressed nuclear protein, acts by interacting with DNA and protein and is involved in widely varying cellular functions. Despite its importance, the mechanism(s) that regulate naturally occurring LEDGF activity are unidentified. In the present study, we report that LEDGF is constitutively Sumoylated, and that the dynamical regulatory mechanism(s) (i.e. Sumoylation and deSumoylation) act as a molecular switch in modulating the DNA-binding and transcriptional activity of LEDGF with the functional consequences. Using bioinformatics analysis coupled with in vitro and in vivo Sumoylation assays, we found that lysine (K) 364 of LEDGF was Sumoylated, repressing its transcriptional activity. Conversely, mutation of K364 to arginine (R) or deSumoylation by small ubiquitin-like modifier (Sumo)-specific protease-1, a nuclear deSumoylase, enhanced the transactivation capacity of LEDGF and its cellular abundance. The enhancements were directly correlated with an increase in the DNA-binding activity and small heat shock protein transcription of LEDGF, whereas the process was reversed in cells overexpressing Sumo1. Interestingly, cells expressing Sumoylation-deficient pEGFP-K364R protein showed increased cellular survival compared to wild-type LEDGF protein. The findings provide insights into the regulation and regulatory functions of LEDGF in Sumoylation-dependent transcriptional control that may be essential for modifying the physiology of cells to maintain cellular homeostasis. These studies also provide new evidence of the important role of post-translational modification in controlling LEDGF function.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Identification of Novel Function of Vimentin for Quality Standard for Regenerated Pulp Tissue. J Endod 2012; 38:920-6. [DOI: 10.1016/j.joen.2012.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/18/2012] [Accepted: 01/30/2012] [Indexed: 01/21/2023]
|
31
|
Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 2011; 68:3033-46. [PMID: 21637948 PMCID: PMC3162105 DOI: 10.1007/s00018-011-0735-1] [Citation(s) in RCA: 1138] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 02/06/2023]
Abstract
Vimentin, a major constituent of the intermediate filament family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Vimentin is overexpressed in various epithelial cancers, including prostate cancer, gastrointestinal tumors, tumors of the central nervous system, breast cancer, malignant melanoma, and lung cancer. Vimentin's overexpression in cancer correlates well with accelerated tumor growth, invasion, and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In recent years, vimentin has been recognized as a marker for epithelial-mesenchymal transition (EMT). Although EMT is associated with several tumorigenic events, vimentin's role in the underlying events mediating these processes remains unknown. By virtue of its overexpression in cancer and its association with tumor growth and metastasis, vimentin serves as an attractive potential target for cancer therapy; however, more research would be crucial to evaluate its specific role in cancer. Our recent discovery of a vimentin-binding mini-peptide has generated further impetus for vimentin-targeted tumor-specific therapy. Furthermore, research directed toward elucidating the role of vimentin in various signaling pathways would reveal new approaches for the development of therapeutic agents. This review summarizes the expression and functions of vimentin in various types of cancer and suggests some directions toward future cancer therapy utilizing vimentin as a potential molecular target.
Collapse
Affiliation(s)
- Arun Satelli
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, TX 77030 USA
| | - Shulin Li
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, TX 77030 USA
- UTMD, Graduate School of Biomedical Science, Houston, TX 77030 USA
| |
Collapse
|
32
|
Nagano Y, Fukushima T, Okemoto K, Tanaka K, Bowtell DDL, Ronai Z, Reed JC, Matsuzawa SI. Siah1/SIP regulates p27(kip1) stability and cell migration under metabolic stress. Cell Cycle 2011; 10:2592-602. [PMID: 21734459 DOI: 10.4161/cc.10.15.16912] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p27(kip1) has been implicated in cell cycle regulation, functioning as an inhibitor of cyclin-dependent kinase activity. In addition, p27 was also shown to affect cell migration, with accumulation of cytoplasmic p27 associated with tumor invasiveness. However, the mechanism underlying p27 regulation as a cytoplasmic protein is poorly understood. Here we show that glucose starvation induces proteasome-dependent degradation of cytoplasmic p27, accompanied by a decrease in cell motility. We also show that the glucose limitation-induced p27 degradation is regulated through an ubiquitin E3 ligase complex involving Siah1 and SIP/CacyBP. SIP (-/-) embryonic fibroblasts have increased levels of cytosolic p27 and exhibit increased cell motility compared to wild-type cells. These observations suggest that the Siah1/SIP E3 ligase complex regulates cell motility through degradation of p27.
Collapse
Affiliation(s)
- Yoshito Nagano
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|