1
|
León X, Valero C, Fuster G, Bragado P, Camacho M, Avilés-Jurado FX. Predictive capacity for local disease control of neogenin-1 (NEO1) transcriptional expression in patients with head and neck squamous cell carcinoma. Clin Transl Oncol 2025; 27:160-165. [PMID: 38898351 DOI: 10.1007/s12094-024-03535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE To analyze the predictive capacity for local disease control of the transcriptional expression of neogenin-1 (NEO1) gene in patients with head and neck squamous cell carcinoma (HNSCC). METHODS/PATIENTS A retrospective study was performed on tumor biopsies from 107 patients with HNSCC treated surgically. The transcriptional expression of NEO1 was determined by RT-PCR. NEO1 transcriptional expression value was categorized according to local disease control by recursive partitioning analysis. RESULTS Lower NEO1 transcriptional expression was associated with worse local control after surgical treatment. Patients with lower NEO1 expression (n = 25, 23.4%) had a 5-year local recurrence-free survival of 61.8% (95% CI: 42.1-81.5%), while patients with higher NEO1 expression (n = 82, 76.6%) had a 5-year local recurrence-free survival of 85.6% (95% CI: 77.6-93.6%), (P = 0.003). According to the result of multivariable analysis, patients with lower NEO1 expression had a 2.7-fold increased risk of local tumor recurrence (95% CI: 1.0-7.0, P = 0.043) compared to patients with higher NEO1 expression. CONCLUSIONS HNSCC patients with a lower transcriptional expression of NEO1 have a significantly higher risk of local recurrence after surgical treatment.
Collapse
Affiliation(s)
- Xavier León
- Otorhinolaryngology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, C/Mas Casanovas, 90, 08041, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Facultad de Medicina, UVIC, Universitat Central de Catalunya, Vic, Spain
| | - Cristina Valero
- Otorhinolaryngology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, C/Mas Casanovas, 90, 08041, Barcelona, Spain.
| | - Gemma Fuster
- Department of Biomedicine and Department of Biochemistry and Molecular Biomedicine, University of Barcelona (UB) and Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Biosciences Department, Sciences Technology and Engineering Faculty, Tissue Repair and Regeneration Group, UVIC, Vic, Spain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Camacho
- Genomics of Complex Diseases, Research Institute Hospital Sant Pau, IIB Sant Pau, Barcelona, Spain
| | | |
Collapse
|
2
|
Wang H, Wang C, Tian W, Yao Y. Retraction: The crucial role of SRPK1 in IGF-1-induced EMT of human gastric cancer. Oncotarget 2024; 15:573. [PMID: 39145532 PMCID: PMC11325585 DOI: 10.18632/oncotarget.28431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Affiliation(s)
- Hong Wang
- Department of General Surgery, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Chunlei Wang
- Thyroid Disease Prevention and Control Center, Shandong Provincial Institute of Endemic Disease Control, Jinan, Shandong, China
| | - Wenling Tian
- Department of General Surgery, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Yanfen Yao
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Jinan, Shandong, China
| |
Collapse
|
3
|
Jacob R, Gorek LS. Intracellular galectin interactions in health and disease. Semin Immunopathol 2024; 46:4. [PMID: 38990375 PMCID: PMC11239732 DOI: 10.1007/s00281-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 07/12/2024]
Abstract
In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany.
| | - Lena-Sophie Gorek
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| |
Collapse
|
4
|
Gao X, Ye J, Huang X, Huang S, Luo W, Zeng D, Li S, Tang M, Mai R, Li Y, Lin Y, Liang R. Research progress of the netrins and their receptors in cancer. J Cell Mol Med 2024; 28:e18241. [PMID: 38546656 PMCID: PMC10977403 DOI: 10.1111/jcmm.18241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 11/12/2024] Open
Abstract
Netrins, a family of secreted and membrane-associated proteins, can regulate axonal guidance, morphogenesis, angiogenesis, cell migration, cell survival, and tumorigenesis. Four secreted netrins (netrin 1, 3, 4 and 5) and two glycosylphosphatidylinositols-anchored membrane proteins, netrin-G1 and G2, have been identified in mammals. Netrins and their receptors can serve as a biomarker and molecular therapeutic target for pathological differentiation, diagnosis and prognosis of malignant cancers. We review here the potential roles of the netrins family and their receptors in cancer.
Collapse
Affiliation(s)
- Xing Gao
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Jiazhou Ye
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Xi Huang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Shilin Huang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Wenfeng Luo
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Dandan Zeng
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Shizhou Li
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Minchao Tang
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Rongyun Mai
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Yongqiang Li
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Yan Lin
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Rong Liang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| |
Collapse
|
5
|
Huang L, An X, Zhu Y, Zhang K, Xiao L, Yao X, Zeng X, Liang S, Yu J. Netrin-1 induces the anti-apoptotic and pro-survival effects of B-ALL cells through the Unc5b-MAPK axis. Cell Commun Signal 2022; 20:122. [PMID: 35974411 PMCID: PMC9380321 DOI: 10.1186/s12964-022-00935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND B-cell acute lymphoblastic leukemia (B-ALL) comprises over 85% of all acute lymphoblastic leukemia (ALL) cases and is the most common childhood malignancy. Although the 5 year overall survival of patients with B-ALL exceeds 90%, patients with relapsed or refractory B-ALL may suffer from poor prognosis and adverse events. The axon guidance factor netrin-1 has been reported to be involved in the tumorigenesis of many types of cancers. However, the impact of netrin-1 on B-ALL remains unknown. METHODS The expression level of netrin-1 in peripheral blood samples of children with B-ALL and children without neoplasia was measured by enzyme-linked immunosorbent assay (ELISA) kits. Then, CCK-8 cell proliferation assays and flow cytometric analysis were performed to detect the viability and apoptosis of B-ALL cells (Reh and Sup B15) treated with exogenous recombinant netrin-1 at concentrations of 0, 25, 50, and 100 ng/ml. Furthermore, co-immunoprecipitation(co-IP) was performed to detect the receptor of netrin-1. UNC5B expression interference was induced in B-ALL cells with recombinant lentivirus, and then CCK-8 assays, flow cytometry assays and western blotting assays were performed to verify that netrin-1 might act on B-ALL cells via the receptor Unc5b. Finally, western blotting and kinase inhibitor treatment were applied to detect the downstream signaling pathway. RESULTS Netrin-1 expression was increased in B-ALL, and netrin-1 expression was upregulated in patients with high- and intermediate-risk stratification group of patients. Then, we found that netrin-1 induced an anti-apoptotic effect in B-ALL cells, implying that netrin-1 plays an oncogenic role in B-ALL. co-IP results showed that netrin-1 interacted with the receptor Unc5b in B-ALL cells. Interference with UNC5B was performed in B-ALL cells and abolished the antiapoptotic effects of netrin-1. Further western blotting was applied to detect the phosphorylation levels of key molecules in common signaling transduction pathways in B-ALL cells treated with recombinant netrin-1, and the FAK-MAPK signaling pathway was found to be activated. The anti-apoptotic effect of netrin-1 and FAK-MAPK phosphorylation was abrogated by UNC5B interference. FAK inhibitor treatment and ERK inhibitor treatment were applied and verified that the FAK-MAPK pathway may be downstream of Unc5b. CONCLUSION Taken together, our findings suggested that netrin-1 induced the anti-apoptotic effect of B-ALL cells through activation of the FAK-MAPK signaling pathway by binding to the receptor Unc5b. Video Abstract.
Collapse
Affiliation(s)
- Lan Huang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xizhou An
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Yao Zhu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Kainan Zhang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Xiao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Xinyuan Yao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Xing Zeng
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Shaoyan Liang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.
| |
Collapse
|
6
|
Villanueva AA, Sanchez-Gomez P, Muñoz-Palma E, Puvogel S, Casas BS, Arriagada C, Peña-Villalobos I, Lois P, Ramírez Orellana M, Lubieniecki F, Casco Claro F, Gallegos I, García-Castro J, Torres VA, Palma V. The Netrin-1-Neogenin-1 signaling axis controls neuroblastoma cell migration via integrin-β1 and focal adhesion kinase activation. Cell Adh Migr 2021; 15:58-73. [PMID: 33724150 PMCID: PMC7971226 DOI: 10.1080/19336918.2021.1892397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma is a highly metastatic tumor that emerges from neural crest cell progenitors. Focal Adhesion Kinase (FAK) is a regulator of cell migration that binds to the receptor Neogenin-1 and is upregulated in neuroblastoma. Here, we show that Netrin-1 ligand binding to Neogenin-1 leads to FAK autophosphorylation and integrin β1 activation in a FAK dependent manner, thus promoting neuroblastoma cell migration. Moreover, Neogenin-1, which was detected in all tumor stages and was required for neuroblastoma cell migration, was found in a complex with integrin β1, FAK, and Netrin-1. Importantly, Neogenin-1 promoted neuroblastoma metastases in an immunodeficient mouse model. Taken together, these data show that Neogenin-1 is a metastasis-promoting protein that associates with FAK, activates integrin β1 and promotes neuroblastoma cell migration.
Collapse
Affiliation(s)
- Andrea A. Villanueva
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| | - Pilar Sanchez-Gomez
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ernesto Muñoz-Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| | - Sofía Puvogel
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| | - Bárbara S. Casas
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| | - Cecilia Arriagada
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Olivos 943, Independencia, Santiago, Chile
| | - Isaac Peña-Villalobos
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| | - Pablo Lois
- Postgraduate in Education Department, Faculty of Humanities, Universidad Mayor. Santiago, Chile
| | - Manuel Ramírez Orellana
- Postgraduate in Education Department, Faculty of Humanities, Universidad Mayor. Santiago, Chile
| | | | | | - Iván Gallegos
- Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Javier García-Castro
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, ISCIII, Madrid, Spain
| | - Vicente A. Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Olivos 943, Independencia, Santiago, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Kim SJ, Kang HG, Kim K, Kim H, Zetterberg F, Park YS, Cho HS, Hewitt SM, Chung JY, Nilsson UJ, Leffler H, Chun KH. Crosstalk between WNT and STAT3 is mediated by galectin-3 in tumor progression. Gastric Cancer 2021; 24:1050-1062. [PMID: 33834359 PMCID: PMC9907361 DOI: 10.1007/s10120-021-01186-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aberrant activation of the WNT/β-catenin and STAT3 signaling pathways plays a critical role in cancer progression. However, direct targeting of these pathways as an anti-cancer therapeutic approach needs to be reconsidered due to its serious side effects. Here, we demonstrate that overexpression of WNT induces STAT3 activation in a galectin-3-dependent manner. METHODS We investigated how galectin-3 mediates the crosstalk between WNT/β-catenin and STAT3 signaling and whether inhibition of galectin-3 can reduce gastric cancer. The molecular mechanisms were analyzed by biochemical assays using cultured gastric cancer cells, patient tissues, and genetically engineered mice. Moreover, we confirm of therapeutic effects of GB1107, a cell-penetrating galectin-3 specific inhibitor, using orthotopic gastric cancer-bearing mice RESULTS: Increased levels of galectin-3 and STAT3 phosphorylation were detected in the stomach tissues of WNT1-overexpressing mouse models. Also, high expression levels and co-localization of β-catenin, pSTAT3, and galectin-3 in patients with advanced gastric cancer were correlated with a poorer prognosis. Galectin-3 depletion significantly decreased STAT3 Tyr705 phosphorylation, which regulates its nuclear localization and transcriptional activation. A peptide of galectin-3 (Y45-Q48) directly bound to the STAT3 SH2 domain and enhanced its phosphorylation. GB1107, a specific membrane-penetrating inhibitor of galectin-3, significantly reduced the activation of both STAT3 and β-catenin and inhibited tumor growth in orthotopic gastric cancer-bearing mice. CONCLUSIONS We propose that galectin-3 mediates the crosstalk between the WNT and STAT3 signaling pathways. Therefore GB1107, a galectin-3-specific inhibitor, maybe a potent agent with anti-gastric cancer activity. Further studies are needed for its clinical application in gastric cancer therapy.
Collapse
Affiliation(s)
- Seok-Jun Kim
- Department of Biomedical Science, BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, College of Natural Science, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Hyeok-Gu Kang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungeun Kim
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Hoyoung Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Fredrik Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, 413 46 Gothenburg, Sweden
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Stephen M. Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB 124, 22100 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG-Microbiology, Immunology, Glycobiology, Lund University, Lund, Sweden
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
8
|
Kim SJ, Chun KH. Non-classical role of Galectin-3 in cancer progression: translocation to nucleus by carbohydrate-recognition independent manner. BMB Rep 2021. [PMID: 32172730 PMCID: PMC7196190 DOI: 10.5483/bmbrep.2020.53.4.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Galectin-3 is a carbohydrate-binding protein and regulates diverse functions, including cell proliferation and differentiation, mRNA splicing, apoptosis induction, immune surveillance and inflammation, cell adhesion, angiogenesis, and cancer-cell metastasis. Galectin-3 is also recommended as a diagnostic or prognostic biomarker of various diseases, including heart disease, kidney disease, and cancer. Galectin-3 exists as a cytosol, is secreted in extracellular spaces on cells, and is also detected in nuclei. It has been found that galectin-3 has different functions in cellular localization: (i) Extracellular galectin-3 mediates cell attachment and detachment. (ii) cytosolic galectin-3 regulates cell survival by blocking the intrinsic apoptotic pathway, and (iii) nuclear galectin-3 supports the ability of the transcriptional factor for target gene expression. In this review, we focused on the role of galectin-3 on translocation from cytosol to nucleus, because it happens in a way independent of carbohydrate recognition and accelerates cancer progression. We also suggested here that intracellular galecin-3 could be a potent therapeutic target in cancer therapy. [BMB Reports 2020; 53(4): 173-180].
Collapse
Affiliation(s)
- Seok-Jun Kim
- Department of Biomedical Science, College of Natural Science, Chosun University; Department of Life Science & Brain Korea 21 Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
9
|
Identification of NEO1 as a prognostic biomarker and its effects on the progression of colorectal cancer. Cancer Cell Int 2020; 20:510. [PMID: 33088218 PMCID: PMC7568410 DOI: 10.1186/s12935-020-01604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Background Due to the high morbidity and poor clinical outcomes, early predictive and prognostic biomarker identification is desiderated in colorectal cancer (CRC). As a homologue of the Deleted in Colorectal Cancer (DCC) gene, the role of Neogenin-1 (NEO1) in CRC remained unveiled. This study was designed to probe into the effects and potential function of NEO1 in CRC. Methods Online databases, Gene Set Enrichment Analysis (GSEA), quantitative real-time PCR and western blotting were used to evaluate NEO1 expression in colorectal cancer tissues. Survival analysis was performed to predict the prognosis of CRC patients based on NEO1 expression level. Then, cell proliferation was detected by colony formation and Cell Counting Kit 8 (CCK-8) assays. CRC cell migration and invasion were examined by transwell assays. Finally, we utilized the Gene Set Variation Analysis (GSVA) and GSEA to dig the potential mechanisms of NEO1 in CRC. Results Oncomine database and The Cancer Genome Atlas (TCGA) database showed that NEO1 was down-regulated in CRC. Further results validated that NEO1 mRNA and protein expression were both significantly lower in CRC tumor tissues than in the adjacent tissues in our clinical samples. NEO1 expression was decreased with the progression of CRC. Survival and other clinical characteristic analyses exhibited that low NEO1 expression was related with poor prognosis. A gain-of-function study showed that overexpression of NEO1 restrained proliferation, migration and invasion of CRC cells while a loss-of-function showed the opposite effects. Finally, functional pathway enrichment analysis revealed that NEO1 low expression samples were enriched in inflammation-related signaling pathways, EMT and angiogenesis. Conclusion A tumor suppressor gene NEO1 was identified and verified to be correlated with the prognosis and progression of CRC, which could serve as a prognostic biomarker for CRC patients.
Collapse
|
10
|
Liu J, Shangguan Y, Sun J, Cong W, Xie Y. BAIAP2L2 promotes the progression of gastric cancer via AKT/mTOR and Wnt3a/β-catenin signaling pathways. Biomed Pharmacother 2020; 129:110414. [PMID: 32570120 DOI: 10.1016/j.biopha.2020.110414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Gastric cancer is third leading cause of cancer-related deaths worldwide and remarkably threatens human health and life. BAIAP2L2 is an epithelial-specific BAR domain protein that considered to be closely related to cell migration. In this study, we explored the specific role of BAIAP2L2 in human gastric cancer. METHODS BAIAP2L2 expression was analyzed via online database and immunohistochemistry. The proliferation was detected using CCK8 and colony formation assay. The migration and invasion was confirmed by transwell assay, and the apoptosis of gastric cancer cells was detected by flow cytometry. RESULTS BAIAP2L2 was highly expressed in tumour tissues and its expression significantly correlated with tumor diameter, T stage, pTNM stage and lymph node metastasis, respectively. Compared with GES-1 cells, SGC7901, MKN28, MKN45, AGS and BGC-823 tumor cells were all presented a high-expression of BAIAP2L2. The in vitro results showed that knockdown of BAIAP2L2 inhibited the proliferation, migration and invasion, and induced the apoptosis of gastric cancer cell. Further, knockdown of BAIAP2L2 inhibited the expression of the related proteins of AKT/mTOR and Wnt3a/β-catenin signaling pathways. CONCLUSION BAIAP2L2 is upregulated in gastric cancer, and knockdown of BAIAP2L2 inhibited the proliferation and metastasis through the inactivation of AKT/mTOR and Wnt3a/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Jianing Liu
- Thyroid and Pancreatic Surgery, The Second Hospital of Shandong University, China.
| | - Yumeng Shangguan
- Outpatient Department, The Second Hospital of Shandong University, China
| | - Jingfu Sun
- Thyroid and Pancreatic Surgery, The Second Hospital of Shandong University, China
| | - Wei Cong
- Thyroid and Pancreatic Surgery, The Second Hospital of Shandong University, China
| | - Yuxiang Xie
- Thyroid and Pancreatic Surgery, The Second Hospital of Shandong University, China
| |
Collapse
|
11
|
Kang HG, Kim WJ, Noh MG, Chun KH, Kim SJ. SPON2 Is Upregulated through Notch Signaling Pathway and Promotes Tumor Progression in Gastric Cancer. Cancers (Basel) 2020; 12:cancers12061439. [PMID: 32492954 PMCID: PMC7352369 DOI: 10.3390/cancers12061439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Spondin-2 (SPON2) is involved in cancer progression and metastasis of many tumors; however, its role and underlying mechanism in gastric cancer are still obscure. In this study, we investigated the role of SPON2 and related signaling pathway in gastric cancer progression and metastasis. SPON2 expression levels were found to be upregulated in gastric cancer cell lines and patient tissues compared to normal gastric epithelial cells and normal controls. Furthermore, SPON2 silencing was observed to decrease cell proliferation and motility and reduce tumor growth in xenograft mice. Conversely, SPON2 overexpression was found to increase cell proliferation and motility. Subsequently, we focused on regulatory mechanism of SPON2 in gastric cancer. cDNA microarray and in vitro study showed that Notch signaling is significantly correlated to SPON2 expression. Therefore, we confirmed how Notch signaling pathway regulate SPON2 expression using Notch signaling-related transcription factor interaction and reporter gene assay. Additionally, activation of Notch signaling was observed to increase cell proliferation, migration, and invasion through SPON2 expression. Our study demonstrated that Notch signaling-mediated SPON2 upregulation is associated with aggressive progression of gastric cancer. In conclusion, we suggest upregulated SPON2 via Notch signaling as a potential target gene to inhibit gastric cancer progression.
Collapse
Affiliation(s)
- Hyeon-Gu Kang
- Department of Biomedical Science, Department of Life Science & BK21-Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (H.-G.K.); (W.-J.K.)
| | - Won-Jin Kim
- Department of Biomedical Science, Department of Life Science & BK21-Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (H.-G.K.); (W.-J.K.)
| | - Myung-Giun Noh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea;
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (K.-H.C.); (S.-J.K.); Tel.: +82-2-2228-1699 (K.-H.C.); +82-62-230-6664 (S.-J.K.); Fax: +82-2-312-5041 (K.-H.C.); +82-62-234-4326 (S.-J.K.)
| | - Seok-Jun Kim
- Department of Biomedical Science, Department of Life Science & BK21-Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (H.-G.K.); (W.-J.K.)
- Correspondence: (K.-H.C.); (S.-J.K.); Tel.: +82-2-2228-1699 (K.-H.C.); +82-62-230-6664 (S.-J.K.); Fax: +82-2-312-5041 (K.-H.C.); +82-62-234-4326 (S.-J.K.)
| |
Collapse
|
12
|
Laurent C, Arber DA, Johnston P, Fend F, Zamo A, Attygalle AD. Diagnosis of classic Hodgkin lymphoma on bone marrow biopsy. Histopathology 2020; 76:934-941. [PMID: 32092168 DOI: 10.1111/his.14085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Camille Laurent
- Pathology and Cytology Department, Centre Hospitalo-Universitaire de Toulouse, Toulouse III, Toulouse, France
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Peter Johnston
- Department of Pathology, NHS Grampian, University of Aberdeen, NHS Education for Scotland, Edinburgh, UK
| | - Falko Fend
- Institute of Pathology and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Alberto Zamo
- Department of Oncology, University of Turin, Italy and Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
13
|
Su R, Zhang J. Oncogenic role of LYN in human gastric cancer via the Wnt/β-catenin and AKT/mTOR pathways. Exp Ther Med 2020; 20:646-654. [PMID: 32509024 DOI: 10.3892/etm.2020.8672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
LYN kinase (LYN) is a member of the Src tyrosine kinase family, which plays an important role in multiple tumor-related functions. The current study demonstrated that LYN functions as a pro-oncogene in AGS gastric cancer cells. It was found that LYN expression levels were significantly raised in gastric cancer tissue and were significantly associated with the pathological grades of patients with gastric cancer. This was accomplished by knocking down LYN in AGS cells using short hairpin RNA (shRNA) plasmid transfection, with reverse transcription-quantitative PCR detection verifying the effectiveness of RNA interference. It was found that the cell proliferation and colony formation abilities of AGS cells were significantly inhibited, using CCK-8 and clone formation assays, respectively. Furthermore, LYN knockdown was found to induce apoptosis and inhibit both migration and invasion in AGS cells, using flow cytometry and Transwell assays, respectively. A mechanical investigation further suggested that LYN knockdown resulted in the activation of the mitochondrial apoptotic pathway. Likewise, the Wnt/β-catenin pathway was inactivated by LYN knockdown, including decreased levels of Wnt3a, β-catenin, snail family transcriptional repressor (Snail)1 and Snail2. Epithelial-mesenchymal transition mesenchymal markers (including N-cadherin and vimentin) were also found to be downregulated, and E-cadherin was upregulated in LYN-silenced AGS cells. Finally, the AKT/mTOR pathway was found to be downregulated by LYN knockdown in AGS cells, including decreased levels of phosphorylated (p)-AKT (Ser473), p-mTOR (Ser2448), and the down-stream effector p70S6 kinase (p70S6K). Furthermore, the AKT pathway activator, insulin like growth factor-1 (IGF-1), was found to reverse the inhibitory effects of LYN knockdown on the proliferation, migration and invasion of AGS cells. In conclusion, the current study demonstrated that LYN plays an oncogenic role in the proliferation, survival and movement of human gastric cancer cells by activating the mitochondrial apoptotic pathway, and downregulating the Wnt/β-catenin and AKT/mTOR pathways. The current research provides a comprehensive insight into the regulation of LYN in gastric cancer and may help with the development of new tumor treatment strategies.
Collapse
Affiliation(s)
- Rui Su
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China.,Department of Gastrointestinal Surgery, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
14
|
Kang HG, Kim WJ, Kang HG, Chun KH, Kim SJ. Galectin-3 Interacts with C/EBPβ and Upregulates Hyaluronan-Mediated Motility Receptor Expression in Gastric Cancer. Mol Cancer Res 2019; 18:403-413. [PMID: 31822520 DOI: 10.1158/1541-7786.mcr-19-0811] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/03/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022]
Abstract
The hyaluronan-mediated motility receptor (HMMR) is overexpressed in gastric cancer; however, the apparent role of HMMR has not been well defined owing to lack of detailed studies on gastric tumorigenesis. Therefore, we elucidated the functional and regulatory mechanisms of HMMR in gastric cancer. Using publicly available data, we confirmed HMMR overexpression in patients with gastric cancer. HMMR silencing decreased proliferation, migration, and invasion of gastric cancer cells, whereas HMMR overexpression reversed these effects. A gastric cancer xenograft mouse model showed statistically significant inhibition of tumor growth upon HMMR depletion. Previous data from cDNA microarray showed reduced HMMR expression upon inhibition of galectin-3. However, overexpression of galectin-3 increased HMMR expression, cell proliferation, and motility in gastric cancer cells, whereas HMMR silencing blocked these effects. Interestingly, galectin-3 interacted directly with C/EBPβ and bound to HMMR promoter to drive its transcription, and gastric cancer cell proliferation and motility. Altogether, high expression of HMMR promoted gastric cancer cell proliferation and motility and could be a prognostic factor in gastric cancer. In addition, HMMR expression was regulated by the interaction between C/EBPβ and galectin-3. Therefore, targeting HMMR along with galectin-3 and C/EBPβ complex could be a potential treatment strategy for inhibiting gastric cancer progression and metastasis. IMPLICATIONS: This study provides evidence that galectin-3 interacts with C/EBPβ in gastric cancer, and galectin-3 and C/EBPβ complex promotes gastric cancer cell progression and motility through upregulating HMMR expression.
Collapse
Affiliation(s)
- Hyeon-Gu Kang
- Department of Biomedical Science, College of Natural Sciences, Chosun University, 61452, Gwangju, Republic of Korea (South).,Department of Life Science & Brain Korea 21 Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea (South)
| | - Won-Jin Kim
- Department of Biomedical Science, College of Natural Sciences, Chosun University, 61452, Gwangju, Republic of Korea (South).,Department of Life Science & Brain Korea 21 Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea (South)
| | - Hyeok-Gu Kang
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea (South).,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (South)
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea (South). .,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (South)
| | - Seok-Jun Kim
- Department of Biomedical Science, College of Natural Sciences, Chosun University, 61452, Gwangju, Republic of Korea (South). .,Department of Life Science & Brain Korea 21 Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea (South)
| |
Collapse
|
15
|
aPKC in neuronal differentiation, maturation and function. Neuronal Signal 2019; 3:NS20190019. [PMID: 32269838 PMCID: PMC7104321 DOI: 10.1042/ns20190019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
The atypical Protein Kinase Cs (aPKCs)—PRKCI, PRKCZ and PKMζ—form a subfamily within the Protein Kinase C (PKC) family. These kinases are expressed in the nervous system, including during its development and in adulthood. One of the aPKCs, PKMζ, appears to be restricted to the nervous system. aPKCs are known to play a role in a variety of cellular responses such as proliferation, differentiation, polarity, migration, survival and key metabolic functions such as glucose uptake, that are critical for nervous system development and function. Therefore, these kinases have garnered a lot of interest in terms of their functional role in the nervous system. Here we review the expression and function of aPKCs in neural development and in neuronal maturation and function. Despite seemingly paradoxical findings with genetic deletion versus gene silencing approaches, we posit that aPKCs are likely candidates for regulating many important neurodevelopmental and neuronal functions, and may be associated with a number of human neuropsychiatric diseases.
Collapse
|
16
|
Yin K, Wang L, Xia Y, Dang S, Zhang X, He Z, Xu J, Shang M, Xu Z. Netrin-1 promotes cell neural invasion in gastric cancer via its receptor neogenin. J Cancer 2019; 10:3197-3207. [PMID: 31289590 PMCID: PMC6603376 DOI: 10.7150/jca.30230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/30/2019] [Indexed: 01/04/2023] Open
Abstract
Neural invasion (NI) is one of the important routes for local spread of gastric cancer (GC) correlated with poor prognosis. However, the exact cellular characteristics and molecular mechanisms of NI in GC are still unclear. Netrin-1(NTN1) as an axon guidance molecule was firstly found during neural system development. Importantly, NTN1 has an essential role in the progression of malignant tumor and specifically mediates the induction of invasion. In this study, we found NTN1 expression was significantly increased in 97 tumor tissues from GC patients and positively correlated with NI (p<0.05). In addition, we detected NTN1 knockdown significantly suppressed GC cells migration and invasion. Moreover, our results showed that reciprocity was observed between GC cells and neurites colonies in dorsal root ganglia (DRG)-GC cells co-culture vitro model. GC cells with NTN1 silencing could suppress their abilities to navigate along surrounding neuritis and this effect was depended on its receptor neogenin. In vivo, NTN1 inhibition also decreased GC cells sciatic nerve invasion. Taken together, our findings argue that NTN1 and its receptor neogenin might act synergistically in promoting GC cells neural invasion. Inhibiting the activity of NTN1 could be a potential strategy targeting NI in GC therapy.
Collapse
Affiliation(s)
- Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengchun Dang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuan Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengyuan Shang
- Department of Ultrasound Diagnosis, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Kim SJ, Lee SC, Kang HG, Gim J, Lee KH, Lee SH, Chun KH. Heat Shock Factor 1 Predicts Poor Prognosis of Gastric Cancer. Yonsei Med J 2018; 59:1041-1048. [PMID: 30328318 PMCID: PMC6192884 DOI: 10.3349/ymj.2018.59.9.1041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Heat shock factor 1 (HSF1) is a key regulator of the heat shock response and plays an important role in various cancers. However, the role of HSF1 in gastric cancer is still unknown. The present study evaluated the function of HSF1 and related mechanisms in gastric cancer. MATERIALS AND METHODS The expression levels of HSF1 in normal and gastric cancer tissues were compared using cDNA microarray data from the NCBI Gene Expression Omnibus (GEO) dataset. The proliferation of gastric cancer cells was analyzed using the WST assay. Transwell migration and invasion assays were used to evaluate the migration and invasion abilities of gastric cancer cells. Protein levels of HSF1 were analyzed using immunohistochemical staining of tissue microarrays from patients with gastric cancer. RESULTS HSF1 expression was significantly higher in gastric cancer tissue than in normal tissue. Knockdown of HSF1 reduced the proliferation, migration, and invasion of gastric cancer cells, while HSF1 overexpression promoted proliferation, migration, and invasion of gastric cancer cells. Furthermore, HSF1 promoted the proliferation of gastric cancer cells in vivo. In Kaplan-Meier analysis, high levels of HSF1 were associated with poor prognosis for patients with gastric cancer (p=0.028). CONCLUSION HSF1 may be closely associated with the proliferation and motility of gastric cancer cells and poor prognosis of patients with gastric cancer. Accordingly, HSF1 could serve as a prognostic marker for gastric cancer.
Collapse
Affiliation(s)
- Seok Jun Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea.
| | - Seok Cheol Lee
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea
| | - Hyun Gu Kang
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea
| | - Jungsoo Gim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung Hyun Lee
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Chun
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Mu J, Wang X, Dong L, Sun P. Curcumin derivative L6H4 inhibits proliferation and invasion of gastric cancer cell line BGC-823. J Cell Biochem 2018; 120:1011-1017. [PMID: 30242876 DOI: 10.1002/jcb.27542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
Curcumin and its chalcone derivatives have well-known, explicit biological antitumor properties, such as instance antiproliferative and apoptotic effects via multiple molecular targets. In this study, we investigated the anticancer activity of curcumin derivative L6H4 (curcumin L6H4) on gastric cancer cells. Inhibitory effects of curcumin L6H4 on gastric cancer cells (BGC-823) were studied by the diphenyltetrazolium (MTT) assay, and cell apoptosis was detected by Annexin-V/propidium iodide (PI) staining and then analyzed by flow cytometry. A mouse xenotransplant gastric tumor model was established to detect the role of curcumin L6H4 in vivo. The apoptosis-related proteins p53, p21, Bax, and Bcl-2 in BGC-823 cells and mouse xenotransplant models treated with curcumin L6H4 were determined by Western blot analysis. Curcumin L6H4 can significantly inhibit the proliferation and induce the apoptosis of BGC-823 cells, thus enhancing the expression levels of p53, p21, Bax, and Bcl-2 noticeably in vivo and in vitro. Meanwhile, curcumin L6H4 can remarkably suppress the growth of tumor cells in animal models. These results suggest that curcumin derivative L6H4 has potent of antitumor properties in vitro or in vivo.
Collapse
Affiliation(s)
- Jianfeng Mu
- Department of Gastrointestinal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiaodong Wang
- Department of Digestive Endoscopy, The Second Hospital of Jilin Unersity, Changchun, China
| | - Lihua Dong
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Zhang N, Xu J, Wang Y, Heng X, Yang L, Xing X. Loss of opioid binding protein/cell adhesion molecule-like gene expression in gastric cancer. Oncol Lett 2018; 15:9973-9977. [PMID: 29805691 DOI: 10.3892/ol.2018.8562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Previous studies have reported that the expression of the opioid binding protein/cell adhesion molecule-like (OPCML) gene was frequently downregulated in various of types of cancer. However, little is known regarding the expression of the OPCML gene in gastric cancer. The present study identified that OPCML was downregulated in the gastric cancer SGC7901, KATO III, MKN45, MKN74, SNU1, AGS, N87 and a gastric mucosa cell line GES1, compared with normal gastric tissues by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To investigate whether the downregulation of OPCML was due to promoter hypermethylation, the methylation of the OPCML promoter was assessed by methylation-specific polymerase chain reaction. Hypermethylation of the OPCML promoter was observed in the gastric cancer MKN45 cell lines, but was not as evident in normal gastric tissue. The methylation inhibitor 5-aza-2'-deoxycytidine was used to remove the methylation of the OPCML gene promoter, following which the expression of OPCML was restored. In addition, the function of the OPCML gene was studied in vitro, and it was found that the restoration expression of OPCML could lead to the suppression of cell growth. In conclusion, the present study has shown that OPCML, which acts as a tumor suppressor, was silenced in gastric cancer cell lines via aberrant hypermethylation of the promoter CpG islands, which may provide a novel molecular approach for the early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Respiratory Disease, Affiliated LuoHu Hospital of Shenzhen University, Shenzhen, Guangdong 518001, P.R. China
| | - Jide Xu
- Department of Physiology, Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yuhong Wang
- Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510000, P.R. China
| | - Xuhua Heng
- Department of Cardiogy, Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan 617000, P.R. China
| | - Liteng Yang
- Department of Respiratory Disease, Affiliated LuoHu Hospital of Shenzhen University, Shenzhen, Guangdong 518001, P.R. China
| | - Xiangbin Xing
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
20
|
Chen H, Yang Y, Wang J, Shen D, Zhao J, Yu Q. miR-130b-5p promotes proliferation, migration and invasion of gastric cancer cells via targeting RASAL1. Oncol Lett 2018; 15:6361-6367. [PMID: 29731849 PMCID: PMC5921226 DOI: 10.3892/ol.2018.8174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the targeted interaction between microRNA (miR)-130b-5p and RAS protein activator like 1 (RASAL1) gene and elucidate the function of miR-130b-5p in cell proliferation, migration and invasion in gastric cancer. Expression of miR-130b-5p and RASAL1 in seven gastric cell lines was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). MGC803 cells were selected for further study since they exhibited a marked increase in expression of miR-130b-5p accompanied by decreased expression of RASAL1. MGC803 cells were transfected with miR-130b-5p mimics and miR-130b-5p inhibitor using Lipofectamine 2000 for over- and underexpression, respectively, with cells transfected with negative control (NC) sequence as the control. In addition, a luciferase reporter gene assay was performed to evaluate the targeted interaction between miR-130b-5p and RASAL1. Then, alterations in RASAL1 expression were detected by RT-qPCR and western blot analysis following transfection with miR-130b-5p mimics and miR-130b-5p inhibitor. Cell proliferation, colony formation, and migration and invasion ability were detected by MTT, colony formation and Transwell assays, respectively. RASAL1 was demonstrated to be a target gene of miR-130b-5p by luciferase reporter gene assay. In addition, the expression of RASAL1 was significantly lower in MGC803 cells that were transfected with miR-130b-5p mimics and significantly higher in cells transfected with miR-130b-5p inhibitor in comparison with cells transfected with NC (P<0.05). Furthermore, the experimental group transfected with miR-130b-5p mimics manifested significantly higher cell proliferation, increased colony formation and increased migratory and invasive capacities (P<0.05). By contrast, cells transfected with miR-130b-5p inhibitor exhibited significantly lower cell proliferation, decreased colony formation and decreased migratory and invasive capacities, compared with cells transfected with NC (P<0.05). In conclusion, RASAL1 was demonstrated to be a target gene of miR-130b-5p. Overexpression of miR-130b-5p results in promoted proliferation, colony formation and migration and invasion abilities through targeted modulation of RASAL1.
Collapse
Affiliation(s)
- Hong Chen
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Yiqiong Yang
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Jing Wang
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Duo Shen
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Jiyi Zhao
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Qian Yu
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
21
|
Villanueva AA, Falcón P, Espinoza N, R LS, Milla LA, Hernandez-SanMiguel E, Torres VA, Sanchez-Gomez P, Palma V. The Netrin-4/ Neogenin-1 axis promotes neuroblastoma cell survival and migration. Oncotarget 2018; 8:9767-9782. [PMID: 28038459 PMCID: PMC5354769 DOI: 10.18632/oncotarget.14213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Neogenin-1 (NEO1) is a transmembrane receptor involved in axonal guidance, angiogenesis, neuronal cell migration and cell death, during both embryonic development and adult homeostasis. It has been described as a dependence receptor, because it promotes cell death in the absence of its ligands (Netrin and Repulsive Guidance Molecule (RGM) families) and cell survival when they are present. Although NEO1 and its ligands are involved in tumor progression, their precise role in tumor cell survival and migration remain unclear. Public databases contain extensive information regarding the expression of NEO1 and its ligands Netrin-1 (NTN1) and Netrin-4 (NTN4) in primary neuroblastoma (NB) tumors. Analysis of this data revealed that patients with high expression levels of both NEO1 and NTN4 have a poor survival rate. Accordingly, our analyses in NB cell lines with different genetic backgrounds revealed that knocking-down NEO1 reduces cell migration, whereas silencing of endogenous NTN4 induced cell death. Conversely, overexpression of NEO1 resulted in higher cell migration in the presence of NTN4, and increased apoptosis in the absence of ligand. Increased apoptosis was prevented when utilizing physiological concentrations of exogenous Netrin-4. Likewise, cell death induced after NTN4 knock-down was rescued when NEO1 was transiently silenced, thus revealing an important role for NEO1 in NB cell survival. In vivo analysis, using the chicken embryo chorioallantoic membrane (CAM) model, showed that NEO1 and endogenous NTN4 are involved in tumor extravasation and metastasis. Our data collectively demonstrate that endogenous NTN4/NEO1 maintain NB growth via both pro-survival and pro-migratory molecular signaling.
Collapse
Affiliation(s)
- Andrea A Villanueva
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Paulina Falcón
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Natalie Espinoza
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Luis Solano R
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Luis A Milla
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Current address: School of Medicine, Universidad de Santiago, Santiago, Chile
| | | | - Vicente A Torres
- Institute for Research in Dental Sciences and Advanced Center for Chronic Diseases (ACCDiS), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Kim HY, Cho Y, Kang H, Yim YS, Kim SJ, Song J, Chun KH. Targeting the WEE1 kinase as a molecular targeted therapy for gastric cancer. Oncotarget 2018; 7:49902-49916. [PMID: 27363019 PMCID: PMC5226556 DOI: 10.18632/oncotarget.10231] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 05/28/2016] [Indexed: 12/23/2022] Open
Abstract
Wee1 is a member of the Serine/Threonine protein kinase family and is a key regulator of cell cycle progression. It has been known that WEE1 is highly expressed and has oncogenic functions in various cancers, but it is not yet studied in gastric cancers. In this study, we investigated the oncogenic role and therapeutic potency of targeting WEE1 in gastric cancer. At first, higher expression levels of WEE1 with lower survival probability were determined in stage 4 gastric cancer patients or male patients with accompanied lymph node metastasis. To determine the function of WEE1 in gastric cancer cells, we determined that WEE1 ablation decreased the proliferation, migration, and invasion, while overexpression of WEE1 increased these effects in gastric cancer cells. We also validated the clinical application of WEE1 targeting by a small molecule, AZD1775 (MK-1775), which is a WEE1 specific inhibitor undergoing clinical trials. AZD1775 significantly inhibited cell proliferation and induced apoptosis and cell cycle arrest in gastric cancer cells, which was more effective in WEE1 high-expressing gastric cancer cells. Moreover, we performed combination treatments with AZD1775 and anti-cancer agents, 5- fluorouracil or Paclitaxel in gastric cancer cells and in gastric cancer orthotopic-transplanted mice to maximize the therapeutic effect and safety of AZD1775. The combination treatments dramatically inhibited the proliferation of gastric cancer cells and tumor burdens in stomach orthotopic-transplanted mice. Taken together, we propose that WEE1 is over-expressed and could enhance gastric cancer cell proliferation and metastasis. Therefore, we suggest that WEE1 is a potent target for gastric cancer therapy.
Collapse
Affiliation(s)
- Hye-Young Kim
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Seodaemun-gu, Seoul 03722, Korea
| | - Yunhee Cho
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - HyeokGu Kang
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Ye-Seal Yim
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Seok-Jun Kim
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Seodaemun-gu, Seoul 03722, Korea
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Korea.,Brain Korea 21 PlusProject for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
23
|
Li X, Zhong X, Pan X, Ji Y. Tumor-Suppressive MicroRNA-708 Targets Notch1 to Suppress Cell Proliferation and Invasion in Gastric Cancer. Oncol Res 2018; 26:1317-1326. [PMID: 29444743 PMCID: PMC7844794 DOI: 10.3727/096504018x15179680859017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Growing evidence has demonstrated that numerous microRNAs (miRNAs) may participate in the regulation of gastric carcinogenesis and progression. This phenomenon suggests that gastric cancer-related miRNAs can be identified as effective therapeutic targets for this disease. miRNA-708 (miR-708) has recently been reported to be aberrantly expressed in several types of cancer and contribute to carcinogenesis and progression. However, the expression level, biological roles, and underlying mechanisms of miR-708 in gastric cancer are poorly understood. Here we found that miR-708 was downregulated in gastric cancer tissues and cell lines. Downregulated miR-708 expression was significantly associated with lymphatic metastasis, invasive depth, and TNM stage. Further investigation indicated that ectopic expression of miR-708 prohibited cell proliferation and invasion in gastric cancer. Bioinformatics analysis showed that Notch1 was a potential target of miR-708. Notch1 was further confirmed as a direct target gene of miR-708 in gastric cancer by dual-luciferase reporter assay, reverse transcription quantitative polymerase chain reaction, and Western blot analysis. Furthermore, an inverse association was found between miR-708 and Notch1 mRNA levels in gastric cancer tissues. In addition, restored Notch1 expression rescued the inhibitory effects on gastric cancer cell proliferation and invasion induced by miR-708 overexpression. Our findings highlight the tumor-suppressive roles of miR-708 in gastric cancer and suggest that miR-708 may be investigated as a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Xuyan Li
- Clinical Laboratory Central, Huizhou Central People's Hospital, Guangdong, P.R. China
| | - Xuanfang Zhong
- Department of Digestion, Huizhou Central People's Hospital, Guangdong, P.R. China
| | - Xiuhua Pan
- Department of Radiotherapy, Huizhou Central People's Hospital, Guangdong, P.R. China
| | - Yan Ji
- Department of Prenatal Diagnosis, Huizhou Central People's Hospital, Guangdong, P.R. China
| |
Collapse
|
24
|
Yu X, Ma C, Fu L, Dong J, Ying J. MicroRNA-139 inhibits the proliferation, migration and invasion of gastric cancer cells by directly targeting ρ-associated protein kinase 1. Oncol Lett 2018; 15:5977-5982. [PMID: 29552227 DOI: 10.3892/ol.2018.8038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
The expression, function and underlying mechanisms of microRNA-139 (miR-139) in gastric cancer were investigated in the present study. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to detect miR-139 expression in gastric cancer tissues and cell lines. The effects of miR-139 overexpression on gastric cancer cell proliferation, migration and invasion were evaluated. ρ-associated protein kinase 1 (ROCK1) was predicted as a downstream target of miR-139 and its role in gastric cancer was assessed by bioinformatics analysis, luciferase reporter assay, RT-qPCR and western blot analysis. ROCK1 overexpression was established to investigate if the effects of miR-139 on gastric cancer cells may be attenuated. The results indicated that miR-139 was aberrantly downregulated in gastric cancer tissues and cell lines. Increased miR-139 expression reduced gastric cancer cell proliferation, migration and invasion. ROCK1 was demonstrated to be a direct target of miR-139 in gastric cancer and ROCK1 overexpression reversed the suppressive effects on gastric cancer cell proliferation, migration and invasion induced by miR-139 overexpression. The present study provides clear evidence demonstrating the anti-oncogenic activity of miR-139 in human gastric cancer, as mediated by the targeted downregulation of ROCK1.
Collapse
Affiliation(s)
- Xuechun Yu
- Department of Gastroenterology, People's Hospital of Xuyi, Huai'an, Jiangsu 211700, P.R. China
| | - Chaojian Ma
- Department of Gastroenterology, People's Hospital of Xuyi, Huai'an, Jiangsu 211700, P.R. China
| | - Ling Fu
- Department of Gastroenterology, People's Hospital of Xuyi, Huai'an, Jiangsu 211700, P.R. China
| | - Jingwu Dong
- Department of Gastroenterology, People's Hospital of Xuyi, Huai'an, Jiangsu 211700, P.R. China
| | - Jie Ying
- Department of Infectious Diseases, People's Hospital of Xuyi, Huai'an, Jiangsu 211700, P.R. China
| |
Collapse
|
25
|
Qian Y, Lu S, Shi Y, Zhao X, Yang T, Jin F, Liu Y. Celastrus orbiculatus extracts induce apoptosis and inhibit invasion by targeting the maspin gene in human gastric adenocarcinoma cells. Oncol Lett 2017; 15:243-249. [PMID: 29387218 PMCID: PMC5768137 DOI: 10.3892/ol.2017.7341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/03/2017] [Indexed: 12/17/2022] Open
Abstract
Celastrus orbiculatus Thunb. has been used as a remedy against cancer and inflammatory diseases for thousands of years in China. Maspin is expressed in normal cells and downregulated in prostate tumor cells. The underlying mechanisms between C. orbiculatus extract (COE) and maspin remain unclear. In the present study, 3 target-specific 19–25 nucleotide maspin small interfering RNAs were designed and synthesized to knockdown maspin expression. The effects of COE on MGC-803/maspin− cell proliferation were evaluated by the MTT assay. Apoptosis was measured by flow cytometry. Invasive activity was measured with the Transwell assay and the associated molecular mechanisms were assessed by western blot analysis. The results demonstrated that COE significantly promoted the expression of maspin (P<0.01) to induce apoptosis and inhibit invasion and migration in MGC803 cells. The expression levels of phosphorylated (p)-p38 mitogen-activated protein kinase (MAPK), phospho-extracellular regulated protein kinase (Erk), B cell lymphoma-2-associated X protein and caspase-3 were increased in the MGC-803/maspin− cells in a dose-dependent manner. The Erk, B-cell lymphoma 2, p-Akt, Akt and p-mechanistic target of rapamycin (mTOR) protein in MGC-803/maspin− cells were reduced in a dose-dependent manner. This indicated that COE may inhibit invasion and migration through phosphoinositide 3-kinase/Akt/mTOR and MAPK signaling pathways in MGC-803/maspin− cells. In conclusion, COE has the ability to improve the expression of maspin to induce apoptosis and inhibit invasion and migration in human gastric adenocarcinoma cells.
Collapse
Affiliation(s)
- Yayun Qian
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Songhua Lu
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Youyang Shi
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xueyu Zhao
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Ting Yang
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Feng Jin
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yanqing Liu
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
26
|
Yang H, Wang L, Tang X, Bai W. miR-203a suppresses cell proliferation by targeting E2F transcription factor 3 in human gastric cancer. Oncol Lett 2017; 14:7687-7690. [PMID: 29344215 DOI: 10.3892/ol.2017.7199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRs) are a class of short non-coding RNAs that serve an essential role in the tumorigenesis of gastric cancer (GC). MiR-203a has been reported as a tumor repressor in various types of human cancer. In the present study, the function of miR-203a on the proliferation of GC cells was investigated. Bioinformatics analyses revealed that miR-203a targets the 3'-untranslated region of E2F transcription factor 3 (E2F3) messenger RNA. A luciferase reporter assay and western blot analysis were performed to confirm whether E2F3 was a target of miR-203a. The relative luciferase activity was decreased when overexpressing miR-203a with E2F3-wild type pmirGLO-3'-untranslated region vector, compared with the control group in HEK293 cells. Overexpression of miR-203a suppressed cell proliferation and colony formation of SGC-7901 and AGS GC cells. Inhibition of miR-203a promoted the proliferation of GC cells. Collectively, the results indicated that miR-203a may function as a tumor suppressor in GC by targeting E2F3.
Collapse
Affiliation(s)
- Huiqin Yang
- Respiratory Department, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830016, P.R. China
| | - Lixia Wang
- Respiratory Department, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830016, P.R. China
| | - Xiaoli Tang
- Respiratory Department, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830016, P.R. China
| | - Wenmei Bai
- Respiratory Department, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830016, P.R. China
| |
Collapse
|
27
|
Qiao W, Cao N, Yang L. MicroRNA-154 inhibits the growth and metastasis of gastric cancer cells by directly targeting MTDH. Oncol Lett 2017; 14:3268-3274. [PMID: 28927076 PMCID: PMC5588056 DOI: 10.3892/ol.2017.6558] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/03/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of non-protein-coding, highly conserved single-stranded RNA molecules. The abnormal expression of miRNAs has been demonstrated to have an important function in the carcinogenesis and progression of gastric cancer. microRNA-154 (miR-154) has been reported to be downregulated in non-small cell lung, colorectal and prostate cancer. However, the expression and roles of miR-154 in gastric cancer remain to be established. The present study measured the expression levels of miR-154 in gastric cancer tissues and cell lines. miR-154 was found to be significantly downregulated in gastric cancer tissues and cell lines. In addition, functional studies indicated that the overexpression of miR-154 inhibited the proliferation, migration and invasion of gastric cancer cells. Using TargetScan, a dual luciferase reporter assay, reverse transcription-quantitative polymerase chain reaction and western blot analysis, metadherin (MTDH) was revealed as a novel miR-154 target. In addition, knocking down MTDH lead to a similar effect as overexpressing-154 in gastric cells. The present findings indicate that miR-154 was downregulated in gastric cancer, and inhibited tumor behaviors of gastric cancer cells partially through the downregulation of MTDH. Therefore, the miR-154/MTDH axis may be a novel therapeutic to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Wenhui Qiao
- Department of General Surgery, The First Hospital of Lanzhou University, Chengguan, Lanzhou, Gansu 730000, P.R. China,Correspondence to: Professor Wenhui Qiao, Department of General Surgery, The First Hospital of Lanzhou University. 1 Donggang Dong Road, Chengguan, Lanzhou, Gansu 730000, P.R. China, E-mail:
| | - Nong Cao
- Department of General Surgery, The First Hospital of Lanzhou University, Chengguan, Lanzhou, Gansu 730000, P.R. China
| | - Lei Yang
- Department of General Surgery, The First Hospital of Lanzhou University, Chengguan, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
28
|
Zhang X, Kang T, Zhang L, Tong Y, Ding W, Chen S. NFATc3 mediates the sensitivity of gastric cancer cells to arsenic sulfide. Oncotarget 2017; 8:52735-52745. [PMID: 28881766 PMCID: PMC5581065 DOI: 10.18632/oncotarget.17175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Arsenic sulfide (As4S4) is the main component of Realgar which is widely used in traditional Chinese medicine. Previously we showed that As4S4 inhibited the proliferation of colon cancer cells through regulating nuclear factor of activated T cells (NFAT) pathway. Here we explore the role of NFAT in gastric cancer. We showed that As4S4 inhibited the expression of NFATc1, NFATc3, and NFATc4, and modulated the expression of NFATc2 accompanying with p53. The baseline expression of NFATc3 varied distinctly in gastric cancer cell lines (AGS, MGC803, MKN28, MKN45, and SGC7901) and the sensitivity of these cells to As4S4 was dissimilar, with AGS and MGC803 cells showing higher sensitivity while the SGC7901 cells relatively resistant. Interestingly, the sensitivity to As4S4 was correlated with the level of expression of NFATc3, and the cells relatively sensitivity just showing higher expression of NFATc3. Furthermore, NFATc3 expression was significantly higher in gastric cancer tissues compared with the adjacent normal tissues. Our data also showed that, NFATc3 promoted the proliferation of gastric cancer cells by regulating c-Myc. In conclusion, As4S4 inhibited the proliferation of gastric cancer cells through NFATc3/c-Myc pathway and the diverse sensitivity among different cell lines correlated with the expression level of NFATc3 indicating that NFATc3 may be a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian Zhang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tong
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenping Ding
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Xu N, Lian YJ, Dai X, Wang YJ. miR-7 Increases Cisplatin Sensitivity of Gastric Cancer Cells Through Suppressing mTOR. Technol Cancer Res Treat 2017; 16:1022-1030. [PMID: 28693382 PMCID: PMC5762063 DOI: 10.1177/1533034617717863] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs have been reported to play an important role in diverse biological processes and cancer progression. MicroRNA-7 has been observed to be downregulated in human gastric cancer tissues, but the function of microRNA-7 in gastric cancer has not been well investigated. In this study, we demonstrate that the expression of microRNA-7 was significantly downregulated in 30 pairs of human gastric cancer tissues compared to adjacent normal tissues. Enforced expression of microRNA-7 inhibited cell proliferation and migration abilities of gastric cancer cells, BGC823 and SGC7901. Furthermore, microRNA-7 targeted mTOR in gastric cancer cells. In human clinical specimens, mTOR was higher expressed in gastric cancer tissues compared with adjacent normal tissues. More interestingly, microRNA-7 also sensitizes gastric cancer cells to cisplatin (CDDP) by targeting mTOR. Collectively, our results demonstrate that microRNA-7 is a tumor suppressor microRNA and indicate its potential application for the treatment of human gastric cancer in future.
Collapse
Affiliation(s)
- Ning Xu
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Yan-Jun Lian
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Xiang Dai
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Yuan-Jie Wang
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, China
| |
Collapse
|
30
|
Feng J, Wang X, Zhu W, Chen S, Feng C. MicroRNA-630 Suppresses Epithelial-to-Mesenchymal Transition by Regulating FoxM1 in Gastric Cancer Cells. BIOCHEMISTRY (MOSCOW) 2017; 82:707-714. [PMID: 28601080 DOI: 10.1134/s0006297917060074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present study, we investigated the functional role of microRNA (miR)-630 in epithelial-to-mesenchymal transition (EMT) of gastric cancer (GC) cells, as well as the regulatory mechanism. Cells of human GC cell line SGC 7901 were transfected with miR-630 mimic or miR-630 inhibitor. The transfection efficiency was confirmed by qRT-PCR. Cell migration and invasion were determined by Transwell assay. Protein expression of E-cadherin, vimentin, and Forkhead box protein M1 (FoxM1) was tested by Western blot. Moreover, the expression of FoxM1 was elevated or suppressed, and then the effects of miR-630 abnormal expression on EMT and properties of migration and invasion were examined again, as well as protein expression of Ras/phosphoinositide 3-kinase (PI3K)/AKT related factors. The results showed that (i) the EMT and properties of migration and invasion were statistically decreased by overexpression of miR-630 compared to the control group but markedly increased by suppression of miR-630. However, (ii) abnormal expression of FoxM1 reversed these effects in GC cells. Moreover, (iii) expression of GTP-Rac1, p-PI3K, and p-AKT was decreased by miR-630 overexpression but increased by FoxM1 overexpression. (iv) The decreased levels of GTP-Rac1, p-PI3K, and p-AKT induced by miR-630 overexpression were dramatically elevated by simultaneous overexpression of FoxM1. In conclusion, our results suggest that miR-630 might be a tumor suppressor in GC cells. MiR-630 suppresses EMT by regulating FoxM1 in GC cells, supposedly via inactivation of the Ras/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jing Feng
- The Second Affiliated Hospital of Zhengzhou University, Department of Gastroenterology, Zhengzhou, Henan Province, 450014, China.
| | | | | | | | | |
Collapse
|
31
|
Yin K, Wang L, Zhang X, He Z, Xia Y, Xu J, Wei S, Li B, Li Z, Sun G, Li Q, Xu H, Xu Z. Netrin-1 promotes gastric cancer cell proliferation and invasion via the receptor neogenin through PI3K/AKT signaling pathway. Oncotarget 2017; 8:51177-51189. [PMID: 28881639 PMCID: PMC5584240 DOI: 10.18632/oncotarget.17750] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/27/2017] [Indexed: 12/18/2022] Open
Abstract
Netrin-1 is a laminin-related protein found to promote proliferation and invasion in multiple types of cancers. Recent studies have identified the function role of netrin-1 in several cancers; however, the influence of netrin-1 in human gastric cancer(GC) remains largely unknown. In this study, we found netrin-1 was upregulated in human GC tissues, where its expression correlated inversely with cancer stage and lymph node metastasis. We detected netrin-1 and its receptor knockdown significantly suppressed GC cells proliferation and invasion, while overexpression netrin-1 reversed these effects. Xenografted analyses using GC cells displayed significantly inhibition of tumor growth and metastasis by netrin-1 depletion. Furthermore, we identified that netrin-1 as a regulator of PI3K/AKT pathway to modulate GC cells proliferation and invasion abilities via its receptor neogenin. Taken together, our findings argued that netrin-1 and its receptor neogenin might act synergistically in promoting GC cells proliferation and invasion through the PI3K/AKT signaling pathway. It is conceivable that netrin-1 could be new therapeutic target to GC therapy.
Collapse
Affiliation(s)
- Kai Yin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Hepatobiliary Surgery, Wuhu No.2 People 's Hospital, Wuhu, Anhui, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Ni J, Yang Y, Liu D, Sun H, Jin S, Li J. MicroRNA-429 inhibits gastric cancer migration and invasion through the downregulation of specificity protein 1. Oncol Lett 2017; 13:3845-3849. [PMID: 28521484 DOI: 10.3892/ol.2017.5869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/05/2016] [Indexed: 12/28/2022] Open
Abstract
microRNAs (miRs) have been reported to have an important role in tumorigenesis and tumor progression. Although miR-429 has been shown to be downregulated in gastric cancer (GC), the function of miR-429 in the metastasis of GC has yet to be investigated. In the present study, GC cells were transfected with miR-429, and reverse transcription-quantitative polymerase chain reaction, cell migration assays, cell invasion assays, western blot analysis and luciferase assays were conducted to investigate the role of miR-429 in GC cells. It was demonstrated that miR-429 expression was markedly increased following transfection of the cells with miR-429. Furthermore, miR-429 was shown to inhibit the migration and invasion of GC cell lines. In addition, this study provided evidence that miR-429 directly targets specificity protein 1 in GC cells. The results of the present study may enhance current knowledge regarding the molecular basis of cancer metastasis and provide a potential therapeutic strategy for GC.
Collapse
Affiliation(s)
- Jingbin Ni
- Department of Gastroenterology, Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Yisha Yang
- Department of Gastroenterology, Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Di Liu
- Department of Gastroenterology, Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Hui Sun
- Department of Gastroenterology, Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Shimao Jin
- Department of Gastroenterology, Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Jingying Li
- Department of Gastroenterology, Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
33
|
Huang M, Wu L, Luo S, Qin H, Yang Y, Chen J, Li Z, Qin Y. MicroRNA-1284 inhibits proliferation and induces apoptosis in SGC-7901 human gastric cancer cells. Biotechnol Lett 2016; 39:33-38. [DOI: 10.1007/s10529-016-2213-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
|
34
|
La SH, Kim SJ, Kang HG, Lee HW, Chun KH. Ablation of human telomerase reverse transcriptase (hTERT) induces cellular senescence in gastric cancer through a galectin-3 dependent mechanism. Oncotarget 2016; 7:57117-57130. [PMID: 27494887 PMCID: PMC5302977 DOI: 10.18632/oncotarget.10986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
The human Telomerase Reverse Transcriptase (hTERT) gene encodes a rate-limiting catalytic subunit of telomerase that maintains genomic integrity. Suppression of hTERT expression could induce cellular senescence and is considered a potent approach for gastric cancer therapy. However, control of hTERT expression and function remains poorly understood in gastric cancer. In this study, we demonstrated that high expression levels of hTERT in malignant tissues are correlated with poor survival probability in gastric cancer patients. Knockdown of hTERT expression retarded cell proliferation and cellular senescence, which was confirmed by increased protein expression levels of p21cip1 and p27kip1, and decreased phosphorylation of Rb. In contrast, overexpression of hTERT increased cell proliferation and decreased cellular senescence. Remarkably, the down-regulation of hTERT expression was detected in lgals3-/- mouse embryo fibroblasts (MEFs). Knockdown of galectin-3 decreased the expression of hTERT in gastric cancer cells. Galectin-3 ablation-induced cellular senescence was rescued by concomitant overexpression of hTERT. hTERT ablation-induced cellular senescence and p21cip1 and p27kip1 expression was rescued by concomitant overexpression of galectin-3. The size of tumor burdens was increased in hTERT-overexpressed gastric cancer cells xenografted mice, whereas it was repressed by concomitant depletion of galectin-3. Additionally, we determined that the N-terminal domain of galectin-3 directly interacted with hTERT. The telomeric activity of hTERT was also decreased by galectin-3 ablation. Taken together, ablation of hTERT induces cellular senescence and inhibits the growth of gastric cancer cells, suggesting that it could be a potent target in gastric cancer therapy. We also propose that galectin-3 is an important regulator of hTERT expression and telomeric activity in gastric tumorigenesis.
Collapse
Affiliation(s)
- Sun-Hyuk La
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seok-Jun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyeok-Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
35
|
Kaneko K, Ohkawa Y, Hashimoto N, Ohmi Y, Kotani N, Honke K, Ogawa M, Okajima T, Furukawa K, Furukawa K. Neogenin, Defined as a GD3-associated Molecule by Enzyme-mediated Activation of Radical Sources, Confers Malignant Properties via Intracytoplasmic Domain in Melanoma Cells. J Biol Chem 2016; 291:16630-43. [PMID: 27288875 DOI: 10.1074/jbc.m115.708834] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 11/06/2022] Open
Abstract
To investigate mechanisms for increased malignant properties in malignant melanomas by ganglioside GD3, enzyme-mediated activation of radical sources and subsequent mass spectrometry were performed using an anti-GD3 antibody and GD3-positive (GD3+) and GD3-negative (GD3-) melanoma cell lines. Neogenin, defined as a GD3-neighbored molecule, was largely localized in lipid/rafts in GD3+ cells. Silencing of neogenin resulted in the reduction of cell growth and invasion activity. Physical association between GD3 and neogenin was demonstrated by immunoblotting of the immunoprecipitates with anti-neogenin antibody from GD3+ cell lysates. The intracytoplasmic domain of neogenin (Ne-ICD) was detected in GD3+ cells at higher levels than in GD3- cells when cells were treated by a proteasome inhibitor but not when simultaneously treated with a γ-secretase inhibitor. Exogenous GD3 also induced increased Ne-ICD in GD3- cells. Overexpression of Ne-ICD in GD3- cells resulted in the increased cell growth and invasion activity, suggesting that Ne-ICD plays a role as a transcriptional factor to drive malignant properties of melanomas after cleavage with γ-secretase. γ-Secretase was found in lipid/rafts in GD3+ cells. Accordingly, immunocyto-staining revealed that GD3, neogenin, and γ-secretase were co-localized at the leading edge of GD3+ cells. All these results suggested that GD3 recruits γ-secretase to lipid/rafts, allowing efficient cleavage of neogenin. ChIP-sequencing was performed to identify candidates of target genes of Ne-ICD. Some of them actually showed increased expression after expression of Ne-ICD, probably exerting malignant phenotypes of melanomas under GD3 expression.
Collapse
Affiliation(s)
- Kei Kaneko
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065
| | - Yuki Ohkawa
- Department of Life Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasuigai, Aichi 487-8501
| | - Noboru Hashimoto
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065
| | - Yuhsuke Ohmi
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065
| | - Norihiro Kotani
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, and
| | - Koichi Honke
- Department of Biochemistry, Kochi University School of Medicine, Kochi 783-8505, Japan
| | - Mitsutaka Ogawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065
| | - Tetsuya Okajima
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065
| | - Keiko Furukawa
- Department of Life Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasuigai, Aichi 487-8501
| | - Koichi Furukawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Department of Life Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasuigai, Aichi 487-8501,
| |
Collapse
|
36
|
Upregulation of CDK7 in gastric cancer cell promotes tumor cell proliferation and predicts poor prognosis. Exp Mol Pathol 2016; 100:514-21. [PMID: 27155449 DOI: 10.1016/j.yexmp.2016.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/13/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
CDK7 has been known as a component of CDK activating kinase (CAK) complex, the complex was composed of CDK7, Cyclin H and RING finger protein Mat1 that contribute to cell cycle progression by phosphorylating other CDKs. In addition, the complex is also an essential component of general transcription factor TFIIH which controls transcription via activating RNA polymerase II by serines 5 and 7 phosphorylation of the carboxyl-terminal domain (CTD) of its largest subunit. However, the role of CDK7 in the pathogenesis of gastric cancer has not been identified. Our study showed that CDK7 was significantly upregulated and positively correlated with tumor grade, infiltration depth, lymph node, Ki-67, and predicted poor prognosis in 173 gastric cancer specimens by immunohistochemistrical analyses. Furthermore, in vitro results indicated that CDK7 promoted proliferation of gastric cancer cells by CCK8, clone formation analyses and flow cytometric analyses, while CDK7 knockdown led to decreased cell proliferation. Our study will provide a theoretical basis for the study of CDK7 in gastric cancer.
Collapse
|
37
|
Lv B, Song C, Wu L, Zhang Q, Hou D, Chen P, Yu S, Wang Z, Chu Y, Zhang J, Yang D, Liu J. Netrin-4 as a biomarker promotes cell proliferation and invasion in gastric cancer. Oncotarget 2016; 6:9794-806. [PMID: 25909166 PMCID: PMC4496398 DOI: 10.18632/oncotarget.3400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/15/2015] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) is the second most common cause of cancer-related death with limited serum biomarkers for diagnosis and prognosis. Netrin-4 (Ntn4) is a laminin-related secreted molecule found to regulate tumor progression and metastasis. However, it is completely unknown whether Ntn4 has roles in GC development. Here, we first reported Ntn4 knockdown significantly suppressed cell proliferation and motility, while overexpression or addition of exogenous Ntn4 reversed these effects. In addition, Ntn4 receptor, neogenin (Neo) was also found highly expressed in GC cells and mediated the Ntn4-induced cell proliferation and invasion. Moreover, Ntn4 or Neo silencing decreased the phosphorylation of Stat3, ERK, Akt and p38, indicating multi-oncogenic pathways (Jak/Stat, PI3K/Akt, and ERK/MAPK) were involved in Ntn4-induced effects on the GC cells. Importantly, Ntn4 level was significantly increased in 82 tumor tissues (p = 0.001) and 52 serum samples (p < 0.0001) from GC patients and positively correlated with Neo expression (p = 0.003). Ntn4 expression was negatively correlated with the survival period (p = 0.038), and positively associated with the severity of pathological stages of the tumors (p = 0.008). Taken together, Ntn4 promoted the proliferation and motility of GC cells which was mediated by its receptor Neo and through further activation of multi-oncogenic pathways. Elevated Ntn4 was detected in both tumor tissues and serum samples of GC patients and suggested a relatively poor survival, indicating Ntn4 may be used as a potential non-invasive biomarker for diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Bin Lv
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lijun Wu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Daisen Hou
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Ping Chen
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Shunji Yu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhicheng Wang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Dongqin Yang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Mitagami Y, Yasunaga JI, Kinosada H, Ohshima K, Matsuoka M. Interferon-γ Promotes Inflammation and Development of T-Cell Lymphoma in HTLV-1 bZIP Factor Transgenic Mice. PLoS Pathog 2015; 11:e1005120. [PMID: 26296091 PMCID: PMC4546626 DOI: 10.1371/journal.ppat.1005120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/30/2015] [Indexed: 11/19/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an etiological agent of several inflammatory diseases and a T-cell malignancy, adult T-cell leukemia (ATL). HTLV-1 bZIP factor (HBZ) is the only viral gene that is constitutively expressed in HTLV-1-infected cells, and it has multiple functions on T-cell signaling pathways. HBZ has important roles in HTLV-1-mediated pathogenesis, since HBZ transgenic (HBZ-Tg) mice develop systemic inflammation and T-cell lymphomas, which are similar phenotypes to HTLV-1-associated diseases. We showed previously that in HBZ-Tg mice, HBZ causes unstable Foxp3 expression, leading to an increase in regulatory T cells (Tregs) and the consequent induction of IFN-γ-producing cells, which in turn leads to the development of inflammation in the mice. In this study, we show that the severity of inflammation is correlated with the development of lymphomas in HBZ-Tg mice, suggesting that HBZ-mediated inflammation is closely linked to oncogenesis in CD4+ T cells. In addition, we found that IFN-γ-producing cells enhance HBZ-mediated inflammation, since knocking out IFN-γ significantly reduced the incidence of dermatitis as well as lymphoma. Recent studies show the critical roles of the intestinal microbiota in the development of Tregs in vivo. We found that even germ-free HBZ-Tg mice still had an increased number of Tregs and IFN-γ-producing cells, and developed dermatitis, indicating that an intrinsic activity of HBZ evokes aberrant T-cell differentiation and consequently causes inflammation. These results show that immunomodulation by HBZ is implicated in both inflammation and oncogenesis, and suggest a causal connection between HTLV-1-associated inflammation and ATL.
Collapse
Affiliation(s)
- Yu Mitagami
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Jun-ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail:
| | - Haruka Kinosada
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
39
|
Lee HW, Kim SJ, Choi IJ, Song J, Chun KH. Targeting Notch signaling by γ-secretase inhibitor I enhances the cytotoxic effect of 5-FU in gastric cancer. Clin Exp Metastasis 2015; 32:593-603. [PMID: 26134677 DOI: 10.1007/s10585-015-9730-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
Current medication for gastric cancer patients has a low success rate and the patients develop rapid tolerance to these drugs. Therefore, the development of new regimens is desired. In this study, we determined that Notch-signaling-related genes were overexpressed and activated in gastric cancer patients and gastric cancer cell lines. According to recent studies, γ-secretase inhibitors (GSIs), which function as Notch signaling inhibitors, could be used as therapeutic drugs in cancer. We demonstrated that GSI I (cbz-IL-CHO) is the most effective GSI in gastric cancer cells. We also determined the cell survival signaling-related proteins that were affected by GSI I. The levels of phosphorylated AKT were significantly decreased upon GSI I treatment, and constitutively activated myristoylated AKT completely blocked GSI I-induced apoptosis and cell survival, suggesting that inhibition of AKT signaling is critical for GSI I-mediated effects in gastric cancer cells. In order to maximize the effects and safety of GSI I, a combination treatment with GSI I and 5-FU was performed. Inhibition of gastric cancer cell proliferation with the combination treatment was significantly better than that with the single treatment. All phosphorylated forms of AKT, p44/42, JNK, and p38 were drastically changed by the combination treatment. Orthotopically transplanted gastric tumor burdens in mice were reduced using the combined treatment. The outcomes of this study clearly demonstrated the therapeutic potential of GSI I in gastric cancer, as well as the greater efficacy of the combined treatment of GSI I with 5-FU. Therefore, we suggest that further clinical trials examining the potential of combined GSI I and 5-FU treatment in gastric cancer patients be undertaken.
Collapse
Affiliation(s)
- Hyun-Woo Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Zhang Q, Liang F, Ke Y, Huo Y, Li M, Li Y, Yue J. Overexpression of neogenin inhibits cell proliferation and induces apoptosis in human MDA-MB-231 breast carcinoma cells. Oncol Rep 2015; 34:258-64. [PMID: 25998984 DOI: 10.3892/or.2015.4004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/13/2015] [Indexed: 11/05/2022] Open
Abstract
Neogenin has been documented as playing an important role in cancer development. Although an elevated expression of neogenin has been detected in human breast cancer, the role of neogenin in breast cancer cells is not clearly understood. In the present study, we investigated neogenin in breast cancer cell proliferation, migration and apoptosis. We found that neogenin overexpression markedly reduced the proliferation and migration of breast cancer cells (P<0.05). Neogenin overexpression resulted in a reduction in the apoptosis rate. Inhibition of neogenin expression by neogenin siRNA dramatically promoted the proliferation and migration of breast cancer cells, whereas it inhibited cell apoptosis. Furthermore, we found that BMP-2-induced phosphorylation of Smad1/5/8 which was inhibited by neogenin overexpression. The present study demonstrates that neogenin may be a tumor suppressor in breast cancer. Neogenin may serve as a potential diagnostic marker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Qingsong Zhang
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Fang Liang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Yang Ke
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Yanping Huo
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Mingchuang Li
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Yanyan Li
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Junmin Yue
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|