1
|
Scussel R, Fagundes MÍ, Luiz GP, Galvani NC, Gava FF, De-Pieri E, Witt Tietbohl LT, Possamai-Della T, Aguiar-Geraldo JM, Valvassori SS, Moraes de Andrade V, Chávez-Olórtegui C, Machado-de-Ávila RA. Behavior and oxidative stress evaluation of scorpion Tityusserrulatus (Lutz & Mello,1922) envenomation with genomic modulation and dopaminergic neutralization by antiscorpionic serum treatment. Toxicon 2025; 255:108263. [PMID: 39864753 DOI: 10.1016/j.toxicon.2025.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Tityus serrulatus accident promote vast symptomatology related to toxins of the venom, which leads to a massive release of neurotransmitters, notably dopamine, affecting behavior and neurochemistry. The recommended treatment for envenomation is the antiscorpionic serum (SAEsc) administration. Related to this complexity of the Tityus serrulatus envenomation, this study aimed to assess organism responses to the venom, its impact on behavior, oxidative stress, neurochemistry, and genetic impacts, as well as the efficacy of SAEsc, especially concerning dopamine levels and genetic interactions. Swiss mice were divided into groups and administered different venom concentrations intracerebroventricularly to assess behavioral impacts and brain oxidative stress. Oxidative stress was evaluated through reactive oxygen species (ROS) analysis and antioxidant assays, including dichloro-dihydro-fluorescein diacetate (DCF), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and glutathione (GSH) measurements. Swiss mice were divided into four groups to evaluate genomic modulation, micronucleus enhancement, and dopamine levels. Additionally, SAEsc's neutralizing effect on dopamine was also investigated. Results showed that venom doses (100-300 ng/μL) increased lipid peroxidation in the brain, with SAEsc maintaining dopamine balance and neutralizing venom up to 24 h post-envenomation. After 24 h, cellular repair became less efficient, leading to mutagenic damage in both treated and untreated animals. The results highlight the importance of considering genomic and neurotransmitter function modulation in the treatment of Tityus serrulatus envenomation.
Collapse
Affiliation(s)
- Rahisa Scussel
- Laboratory of Experimental Pathophysiology, Universidade Do Extremo Sul Catarinense. Universitário, 88806-000. Criciúma. Santa Catarina, Brazil
| | - Mírian Ívens Fagundes
- Laboratory of Experimental Pathophysiology, Universidade Do Extremo Sul Catarinense. Universitário, 88806-000. Criciúma. Santa Catarina, Brazil
| | - Gabriel Paulino Luiz
- Laboratory of Experimental Pathophysiology, Universidade Do Extremo Sul Catarinense. Universitário, 88806-000. Criciúma. Santa Catarina, Brazil
| | - Nathalia Coral Galvani
- Laboratory of Experimental Pathophysiology, Universidade Do Extremo Sul Catarinense. Universitário, 88806-000. Criciúma. Santa Catarina, Brazil; Infectious Diseases and Tropical Medicine, Faculty of Medicine, Universidade Federal de Minas Gerais. 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Universidade Do Extremo Sul Catarinense, 88806-000. Criciúma. Santa Catarina, Brazil
| | - Ellen De-Pieri
- Laboratory of Experimental Pathophysiology, Universidade Do Extremo Sul Catarinense. Universitário, 88806-000. Criciúma. Santa Catarina, Brazil
| | - Lariani Tamires Witt Tietbohl
- Laboratory of Experimental Pathophysiology, Universidade Do Extremo Sul Catarinense. Universitário, 88806-000. Criciúma. Santa Catarina, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Universidade Do Extremo Sul Catarinense, 88806-000. Criciúma. Santa Catarina, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Universidade Do Extremo Sul Catarinense, 88806-000. Criciúma. Santa Catarina, Brazil
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Universidade Do Extremo Sul Catarinense, 88806-000. Criciúma. Santa Catarina, Brazil
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Universidade Do Extremo Sul Catarinense. Universitário, 88806-000. Criciúma. Santa Catarina, Brazil
| | - Carlos Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Pathophysiology, Universidade Do Extremo Sul Catarinense. Universitário, 88806-000. Criciúma. Santa Catarina, Brazil.
| |
Collapse
|
2
|
Bosch‐Calvet M, Pérez‐Venteo A, Cebria‐Xart A, Garcia‐Cajide M, Mauvezin C. Nuclear stiffness through lamin A/C overexpression differentially modulates chromosomal instability biomarkers. Biol Cell 2025; 117:e12001. [PMID: 40012191 PMCID: PMC11865694 DOI: 10.1111/boc.12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND INFORMATION Mitosis is crucial for the faithful transmission of genetic material, and disruptions can result in chromosomal instability (CIN), a hallmark of cancer. CIN is a known driver of tumor heterogeneity and anti-cancer drug resistance, thus highlighting the need to assess CIN levels in cancer cells to design effective targeted therapy. While micronuclei are widely recognized as CIN markers, we have recently identified the toroidal nucleus, a novel ring-shaped nuclear phenotype arising as well from chromosome mis-segregation. RESULTS Here, we examined whether increasing nuclear envelope stiffness through lamin A/C overexpression could affect the formation of toroidal nuclei and micronuclei. Interestingly, lamin A/C overexpression led to an increase in toroidal nuclei while reducing micronuclei prevalence. We demonstrated that chromatin compaction and nuclear stiffness drive the formation of toroidal nuclei. Furthermore, inhibition of autophagy and lysosomal function elevated the frequency of toroidal nuclei without affecting the number of micronuclei in the whole cell population. We demonstrated that this divergence between the two CIN biomarkers is independent of defects in lamin A processing. CONCLUSIONS AND SIGNIFICANCE These findings uncover a complex interplay between nuclear architecture and levels of CIN, advancing our understanding of the mechanisms supporting genomic stability and further contributing to cancer biology.
Collapse
Affiliation(s)
- Mireia Bosch‐Calvet
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Alejandro Pérez‐Venteo
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Alex Cebria‐Xart
- Institut de Recerca Sant Joan de Déu (IRSJD)BarcelonaSpain
- Cancer Science Programme, Laboratory of Pediatric Cancer EpigeneticsInstitute for Research in Biomedicine (IRB Barcelona)BarcelonaSpain
| | - Marta Garcia‐Cajide
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Caroline Mauvezin
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| |
Collapse
|
3
|
Shetty PJ, Khanam R, Sreedharan J, Shetty NJ. Effect of Age, Hot Beverages and Tobacco Related Products on Buccal Epithelial Cells of Cigarette Smokers and non-Smokers in Ajman, UAE. Asian Pac J Cancer Prev 2024; 25:4293-4298. [PMID: 39733421 PMCID: PMC12008321 DOI: 10.31557/apjcp.2024.25.12.4293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Indexed: 12/31/2024] Open
Abstract
OBJECTIVE This study aimed to find out the effect of age, hot beverages and tobacco related products on buccal mucosa cells between cigarette smokers and non-smokers in Ajman, UAE. METHODS A total of 122 samples were collected, with demographic data including age, hot beverage consumption, cigarette smoking and other tobacco practice using pre-designed questionnaires. Buccal cells were collected, stained, and screened for micronuclei (MN) under a microscope and two evaluators independently assessed all the slides. RESULTS Among the 122 participants, 61.5% were aged ≤35 years, and 38.5% were aged >35 years. All non-smokers had MN values <10, while 87% of smokers had MN values >10 (p<0.001), with a trend of dose-dependent relationship between cigarette consumption and MN frequency. Similar patterns were observed in individuals using other forms of tobacco, with 97.4% exhibiting MN values >10 (p<0.001). Hot beverage consumption ≥7 cups/day was associated with 87% of subjects having MN values >10, highlighting the pattern of alternative forms of tobacco and high consumption of hot beverages association with elevated MN occurrence. Significant associations were found between MN and variables, except for age. CONCLUSION The findings underscore the significance of tobacco and hot beverage consumption in MN occurrence, emphasizing the need to address these behaviors to mitigate genotoxicity and associated health risks. Despite age showing no significant correlation with MN frequency within the studied age range, aging combined with cigarette smoking amplifies genetic damage. .
Collapse
Affiliation(s)
- Preetha J Shetty
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| | - Razia Khanam
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| | - Jayadevan Sreedharan
- Department of Community Medicine, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| | - Neetha J Shetty
- Department of Periodontics, Manipal College of Dental Sciences, Mangalore, India.
| |
Collapse
|
4
|
Liang X, Liu H, Hu H, Ha E, Zhou J, Abedini A, Sanchez-Navarro A, Klötzer KA, Susztak K. TET2 germline variants promote kidney disease by impairing DNA repair and activating cytosolic nucleotide sensors. Nat Commun 2024; 15:9621. [PMID: 39511169 PMCID: PMC11543665 DOI: 10.1038/s41467-024-53798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified over 800 loci associated with kidney function, yet the specific genes, variants, and pathways involved remain elusive. By integrating kidney function GWAS with human kidney expression and methylation quantitative trait analyses, we identified Ten-Eleven Translocation (TET) DNA demethylase 2 (TET2) as a novel kidney disease risk gene. Utilizing single-cell chromatin accessibility and CRISPR-based genome editing, we highlight GWAS variants that influence TET2 expression in kidney proximal tubule cells. Experiments using kidney/tubule-specific Tet2 knockout mice indicated its protective role in cisplatin-induced acute kidney injury, as well as in chronic kidney disease and fibrosis induced by unilateral ureteral obstruction or adenine diet. Single-cell gene profiling of kidneys from Tet2 knockout mice and TET2-knockdown tubule cells revealed the altered expression of DNA damage repair and chromosome segregation genes, notably including INO80, another kidney function GWAS target gene itself. Remarkably, both TET2-null and INO80-null cells exhibited an increased accumulation of micronuclei after injury, leading to the activation of cytosolic nucleotide sensor cGAS-STING. Genetic deletion of cGAS or STING in kidney tubules, or pharmacological inhibition of STING, protected TET2-null mice from disease development. In conclusion, our findings highlight TET2 and INO80 as key genes in the pathogenesis of kidney diseases, indicating the importance of DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Xiujie Liang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Eunji Ha
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jianfu Zhou
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrea Sanchez-Navarro
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Konstantin A Klötzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
6
|
Zych MG, Hatch EM. Small spaces, big problems: The abnormal nucleoplasm of micronuclei and its consequences. Curr Opin Struct Biol 2024; 87:102839. [PMID: 38763098 DOI: 10.1016/j.sbi.2024.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Micronuclei (MN) form from missegregated chromatin that recruits its own nuclear envelope during mitotic exit and are a common consequence of chromosomal instability. MN are unstable due to errors in nuclear envelope organization and frequently rupture, leading to loss of compartmentalization, loss of nuclear functions, and major changes in genome stability and gene expression. However, recent work found that, even prior to rupture, nuclear processes can be severely defective in MN, which may contribute to rupture-associated defects and have lasting consequences for chromatin structure and function. In this review we discuss work that highlights nuclear function defects in intact MN, including their mechanisms and consequences, and how biases in chromosome missegregation into MN may affect the penetrance of these defects. Illuminating the nuclear environment of MN demonstrates that MN formation alone has major consequences for both the genome and cell and provides new insight into how nuclear content is regulated.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA; Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. https://twitter.com/ZychMolly
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
7
|
Messer CL, Fox DT. Broken chromosomes heading into mitosis: More than one way to patch a flat tire. J Cell Biol 2024; 223:e202401085. [PMID: 38477879 PMCID: PMC10937182 DOI: 10.1083/jcb.202401085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
A cell dealing with a broken chromosome in mitosis is like a driver dealing with a flat tire on the highway: damage repair must occur under non-ideal circumstances. Mitotic chromosome breaks encounter problems related to structures called micronuclei. These aberrant nuclei are linked to cell death, mutagenesis, and cancer. In the last few years, a flurry of studies illuminated two mechanisms that prevent mitotic problems related to micronuclei. One mechanism prevents micronuclei from forming during mitosis and involves DNA Polymerase Theta, a DNA repair regulator that patches up broken mitotic chromosomes. A second mechanism is activated after micronuclei form and then rupture, and involves CIP2A and TOPBP1 proteins, which patch micronuclear fragments to promote their subsequent mitotic segregation. Here, we review recent progress in this field of mitotic DNA damage and discuss why multiple mechanisms exist. Future studies in this exciting area will reveal new DNA break responses and inform therapeutic strategies.
Collapse
Affiliation(s)
- C. Luke Messer
- Department of Biology, St. Bonaventure University, St. Bonaventure, NY, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Donald T. Fox
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Naso FD, Polverino F, Cilluffo D, Latini L, Stagni V, Asteriti IA, Rosa A, Soddu S, Guarguaglini G. AurkA/TPX2 co-overexpression in nontransformed cells promotes genome instability through induction of chromosome mis-segregation and attenuation of the p53 signalling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167116. [PMID: 38447882 DOI: 10.1016/j.bbadis.2024.167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Danilo Cilluffo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Linda Latini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Signal Transduction Unit, Via del Fosso di Fiorano 64/65, 00143 Rome, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Viale Regina Elena, 291, 00161 Rome, Italy; Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
9
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
10
|
Liang X, Liu H, Hu H, Zhou J, Abedini A, Navarro AS, Klötzer KA, Susztak K. Genetic Studies Highlight the Role of TET2 and INO80 in DNA Damage Response and Kidney Disease Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578718. [PMID: 38370682 PMCID: PMC10871294 DOI: 10.1101/2024.02.02.578718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Genome-wide association studies (GWAS) have identified over 800 loci associated with kidney function, yet the specific genes, variants, and pathways involved remain elusive. By integrating kidney function GWAS, human kidney expression and methylation quantitative trait analyses, we identified Ten-Eleven Translocation (TET) DNA demethylase 2: TET2 as a novel kidney disease risk gene. Utilizing single-cell chromatin accessibility and CRISPR-based genome editing, we highlight GWAS variants that influence TET2 expression in kidney proximal tubule cells. Experiments using kidney-tubule-specific Tet2 knockout mice indicated its protective role in cisplatin-induced acute kidney injury, as well as chronic kidney disease and fibrosis, induced by unilateral ureteral obstruction or adenine diet. Single-cell gene profiling of kidneys from Tet2 knockout mice and TET2- knock-down tubule cells revealed the altered expression of DNA damage repair and chromosome segregation genes, notably including INO80 , another kidney function GWAS target gene itself. Remarkably both TET2- null and INO80- null cells exhibited an increased accumulation of micronuclei after injury, leading to the activation of cytosolic nucleotide sensor cGAS-STING. Genetic deletion of cGAS or STING in kidney tubules or pharmacological inhibition of STING protected TET2 null mice from disease development. In conclusion, our findings highlight TET2 and INO80 as key genes in the pathogenesis of kidney diseases, indicating the importance of DNA damage repair mechanisms.
Collapse
|
11
|
Shen Q, Xu P, Mei C. Role of micronucleus-activated cGAS-STING signaling in antitumor immunity. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:25-34. [PMID: 38273467 PMCID: PMC10945493 DOI: 10.3724/zdxbyxb-2023-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling is a significant component of the innate immune system and functions as a vital sentinel mechanism to monitor cellular and tissue aberrations in microbial invasion and organ injury. cGAS, a cytosolic DNA sensor, is specialized in recognizing abnormally localized cytoplasmic double-stranded DNA (dsDNA) and catalyzes the formation of a second messenger cyclic-GMP-AMP (cGAMP), which initiates a cascade of type Ⅰ interferon and inflammatory responses mediated by STING. Micronucleus, a byproduct of chromosomal missegregation during anaphase, is also a significant contributor to cytoplasmic dsDNA. These unstable subcellular structures are susceptible to irreversible nuclear envelope rupture, exposing genomic dsDNA to the cytoplasm, which potently recruits cGAS and activates STING-mediated innate immune signaling and its downstream activities, including type Ⅰ interferon and classical nuclear factor-κB (NF-κB) signaling pathways lead to senescence, apoptosis, autophagy activating anti-cancer immunity or directly killing tumor cells. However, sustained STING activation-induced endoplasmic reticulum stress, activated chronic type Ⅰ interferon and nonclassical NF-κB signaling pathways remodel immunosuppressive tumor microenvironment, leading to immune evasion and facilitating tumor metastasis. Therefore, activated cGAS-STING signaling plays a dual role of suppressing or facilitating tumor growth in tumorigenesis and therapy. This review elaborates on research advances in mechanisms of micronucleus inducing activation of cGAS-STING signaling and its implications in tumorigenesis and therapeutic strategies of malignant tumors.
Collapse
Affiliation(s)
- Qin Shen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Chen Mei
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
| |
Collapse
|
12
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Ashour AE, Albekairi NA, Al-Hamamah MA, Alshamrani AA, Bakheet SA. Saxagliptin, a selective dipeptidyl peptidase-4 inhibitor, alleviates somatic cell aneugenicity and clastogenicity in diabetic mice. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 892:503707. [PMID: 37973297 DOI: 10.1016/j.mrgentox.2023.503707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Diabetes-related complications are becoming increasingly common as the global prevalence of diabetes increases. Diabetes is also linked to a high risk of developing cancer. This raises the question of whether cancer vulnerability is caused by diabetes itself or the use of antidiabetic drugs. Chromosomal instability, a source of genetic modification involving either an altered chromosomal number or structure, is a hallmark of cancer. Saxagliptin has been approved by the FDA for diabetes treatment. However, the detailed in vivo effects of prolonged saxagliptin treatment on chromosomal instability have not yet been reported. In this study, streptozotocin was used to induce diabetes in mice, and both diabetic and non-diabetic mice received saxagliptin for five weeks. Fluorescence in situ hybridization was conducted in combination with a bone marrow micronucleus test for measuring chromosomal instability. Our results indicated that saxagliptin is neither mutagenic nor cytotoxic, under the given treatment regimen. Diabetic mice had a much higher incidence of micronuclei formation, and a centromeric DNA probe was present inside the majority of the induced micronuclei, indicating that most of these were caused by chromosome nondisjunction. Conversely, diabetic mice treated with saxagliptin exhibited a significant decrease in micronuclei induction, which were centromeric-positive and centromeric-negative. Diabetes also causes significant biochemical changes indicative of oxidative stress, such as increased lipid peroxidation and decreased reduced/oxidized glutathione ratio, which was reversed by saxagliptin administration. Overall, saxagliptin, the non-mutagenic antidiabetic drug, maintains chromosomal integrity in diabetes and reduces micronuclei formation by restoring redox imbalance, further indicating its usefulness in diabetic patients.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abdelkader E Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Bloomfield M, Cimini D. The fate of extra centrosomes in newly formed tetraploid cells: should I stay, or should I go? Front Cell Dev Biol 2023; 11:1210983. [PMID: 37576603 PMCID: PMC10413984 DOI: 10.3389/fcell.2023.1210983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
An increase in centrosome number is commonly observed in cancer cells, but the role centrosome amplification plays along with how and when it occurs during cancer development is unclear. One mechanism for generating cancer cells with extra centrosomes is whole genome doubling (WGD), an event that occurs in over 30% of human cancers and is associated with poor survival. Newly formed tetraploid cells can acquire extra centrosomes during WGD, and a generally accepted model proposes that centrosome amplification in tetraploid cells promotes cancer progression by generating aneuploidy and chromosomal instability. Recent findings, however, indicate that newly formed tetraploid cells in vitro lose their extra centrosomes to prevent multipolar cell divisions. Rather than persistent centrosome amplification, this evidence raises the possibility that it may be advantageous for tetraploid cells to initially restore centrosome number homeostasis and for a fraction of the population to reacquire additional centrosomes in the later stages of cancer evolution. In this review, we explore the different evolutionary paths available to newly formed tetraploid cells, their effects on centrosome and chromosome number distribution in daughter cells, and their probabilities of long-term survival. We then discuss the mechanisms that may alter centrosome and chromosome numbers in tetraploid cells and their relevance to cancer progression following WGD.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
14
|
Cimini D. Twenty years of merotelic kinetochore attachments: a historical perspective. Chromosome Res 2023; 31:18. [PMID: 37466740 PMCID: PMC10411636 DOI: 10.1007/s10577-023-09727-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Micronuclei, small DNA-containing structures separate from the main nucleus, were used for decades as an indicator of genotoxic damage. Micronuclei containing whole chromosomes were considered a biomarker of aneuploidy and were believed to form, upon mitotic exit, from chromosomes that lagged behind in anaphase as all other chromosomes segregated to the poles of the mitotic spindle. However, the mechanism responsible for inducing anaphase lagging chromosomes remained unknown until just over twenty years ago. Here, I summarize what preceded and what followed this discovery, highlighting some of the open questions and opportunities for future investigation.
Collapse
Affiliation(s)
- Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
15
|
Dittmar T, Hass R. Intrinsic signalling factors associated with cancer cell-cell fusion. Cell Commun Signal 2023; 21:68. [PMID: 37016404 PMCID: PMC10071245 DOI: 10.1186/s12964-023-01085-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Cellular fusion e.g. between cancer cells and normal cells represents a stepwise process that is tightly regulated. During a pre-hybrid preparation program somatic cells and/or cancer cells are promoted to a pro-fusogenic state as a prerequisite to prepare a fusion process. A pro-fusogenic state requires significant changes including restructure of the cytoskeleton, e.g., by the formation of F-actin. Moreover, distinct plasma membrane lipids such as phosphatidylserine play an important role during cell fusion. In addition, the expression of distinct fusogenic factors such as syncytins and corresponding receptors are of fundamental importance to enable cellular mergers. Subsequent hybrid formation and fusion are followed by a post-hybrid selection process. Fusion among normal cells is important and often required during organismal development. Cancer cells fusion appears more rarely and is associated with the generation of new cancer hybrid cell populations. These cancer hybrid cells contribute to an elevated tumour plasticity by altered metastatic behaviour, changes in therapeutic and apoptotic responses, and even in the formation of cancer stem/ initiating cells. While many parts within this multi-step cascade are still poorly understood, this review article predominantly focusses on the intracellular necessities for fusion among cancer cells or with other cell populations of the tumour microenvironment. Video Abstract.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynaecology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
16
|
Cosper PF, Hrycyniak LCF, Paracha M, Lee DL, Wan J, Jones K, Bice SA, Nickel K, Mallick S, Taylor AM, Kimple RJ, Lambert PF, Weaver BA. HPV16 E6 induces chromosomal instability due to polar chromosomes caused by E6AP-dependent degradation of the mitotic kinesin CENP-E. Proc Natl Acad Sci U S A 2023; 120:e2216700120. [PMID: 36989302 PMCID: PMC10083562 DOI: 10.1073/pnas.2216700120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
| | - Laura C. F. Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI53705
| | - Maha Paracha
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Denis L. Lee
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI53705
| | - Kathryn Jones
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Sophie A. Bice
- University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Kwangok Nickel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
| | - Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY10032
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
| | - Paul F. Lambert
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53705
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
17
|
Reimann H, Stopper H, Hintzsche H. Fate of micronuclei and micronucleated cells after treatment of HeLa cells with different genotoxic agents. Arch Toxicol 2023; 97:875-889. [PMID: 36564592 PMCID: PMC9968706 DOI: 10.1007/s00204-022-03433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Although micronuclei are well-known biomarkers of genotoxic damage, the biological consequences of micronucleus induction are only poorly understood. To further elucidate these consequences, HeLa cells stably expressing histone 2B coupled with green fluorescent protein were used for long-term live cell imaging to investigate the fate of micronuclei and micronucleated cells after treatment of cells with various genotoxic agents (doxorubicin (20, 30 and nM), tert-butyl hydroperoxide (tBHP, 50, 100 and 150 µM), radiation (0.5, 1 and 2 Gy), methyl methanesulfonate (MMS, 20, 25 and 30 µg/ml) and vinblastine (1, 2 and 3 nM)). Most micronuclei persist for multiple cell cycles or reincorporate while micronucleated cells were more prone to cell death, senescence and fatal mitotic errors compared to non-micronucleated cells, which is consistent with previous studies using etoposide. No clear substance-related effects on the fate of micronuclei and micronucleated cells were observed. To further investigate the fate of micronuclei, extrusion of micronuclei was studied with treatments reported as inducing the extrusion of micronuclei. Since extrusion was not observed in HeLa cells, the relevance of extrusion of micronuclei remains unclear. In addition, degradation of micronuclei was analysed via immunostaining of γH2AX, which demonstrated a high level of DNA damage in micronuclei compared to the main nuclei. Furthermore, transduction with two reporter genes (LC3B-dsRed and LaminB1-dsRed) was conducted followed by long-term live cell imaging. While autophagy marker LC3B was not associated with micronuclei, Lamin B1 was found in approximately 50% of all micronuclei. While degradation of micronuclei was not observed to be a frequent fate of micronuclei, the results show impaired stability of DNA and micronuclear envelope indicating rupture of micronuclei as a pre-step to chromothripsis.
Collapse
Affiliation(s)
- Hauke Reimann
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
18
|
Chromosome segregation fidelity requires microtubule polyglutamylation by the cancer downregulated enzyme TTLL11. Nat Commun 2022; 13:7147. [PMID: 36414642 PMCID: PMC9681853 DOI: 10.1038/s41467-022-34909-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Regulation of microtubule (MT) dynamics is key for mitotic spindle assembly and faithful chromosome segregation. Here we show that polyglutamylation, a still understudied post-translational modification of spindle MTs, is essential to define their dynamics within the range required for error-free chromosome segregation. We identify TTLL11 as an enzyme driving MT polyglutamylation in mitosis and show that reducing TTLL11 levels in human cells or zebrafish embryos compromises chromosome segregation fidelity and impairs early embryonic development. Our data reveal a mechanism to ensure genome stability in normal cells that is compromised in cancer cells that systematically downregulate TTLL11. Our data suggest a direct link between MT dynamics regulation, MT polyglutamylation and two salient features of tumour cells, aneuploidy and chromosome instability (CIN).
Collapse
|
19
|
Guscott M, Saha A, Maharaj J, McClelland SE. The multifaceted role of micronuclei in tumour progression: A whole organism perspective. Int J Biochem Cell Biol 2022; 152:106300. [PMID: 36189461 DOI: 10.1016/j.biocel.2022.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
Within most tumour types, cancerous cells exist in a state of aneuploidy, an incorrect chromosome number or structure. Additionally, tumour cells frequently exhibit chromosomal instability; the ongoing loss or gain of whole or parts of chromosomes during cell division. Chromosomal instability results in a high rate of chromosome segregation defects, and a constantly changing genomic landscape. A second consequence of recurrent chromosome segregation defects is the exclusion of mis-segregated chromatin from the newly reforming nucleus. Chromosomes, or chromosome fragments that are not incorporated into the main nucleus are often packaged into extranuclear structures called micronuclei. While the initial impact of micronucleus formation is an imbalance or loss of genetic material in the resulting daughter cells, several other downstream consequences are now known to result from this process. In this review, we discuss the further consequences of micronucleus formation, including how structural changes to the micronuclear envelope, and the rupturing of micronuclear membranes can contribute to metastasis, immune cell activation and overall, tumour progression.
Collapse
Affiliation(s)
- Molly Guscott
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Akash Saha
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jovanna Maharaj
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
20
|
Dacus D, Stancic S, Pollina SR, Rifrogiate E, Palinski R, Wallace NA. Beta Human Papillomavirus 8 E6 Induces Micronucleus Formation and Promotes Chromothripsis. J Virol 2022; 96:e0101522. [PMID: 36129261 PMCID: PMC9555153 DOI: 10.1128/jvi.01015-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cutaneous beta genus human papillomaviruses (β-HPVs) are suspected to promote the development of nonmelanoma skin cancer (NMSC) by destabilizing the host genome. Multiple studies have established the genome destabilizing capacities of β-HPV proteins E6 and E7 as a cofactor with UV. However, the E6 protein from β-HPV8 (HPV8 E6) induces tumors in mice without UV exposure. Here, we examined a UV-independent mechanism of HPV8 E6-induced genome destabilization. We showed that HPV8 E6 reduced the abundance of anaphase bridge resolving helicase, Bloom syndrome protein (BLM). The diminished BLM was associated with increased segregation errors and micronuclei. These HPV8 E6-induced micronuclei had disordered micronuclear envelopes but retained replication and transcription competence. HPV8 E6 decreased antiproliferative responses to micronuclei and time-lapse imaging revealed HPV8 E6 promoted cells with micronuclei to complete mitosis. Finally, whole-genome sequencing revealed that HPV8 E6 induced chromothripsis in nine chromosomes. These data provide insight into mechanisms by which HPV8 E6 induces genome instability independent of UV exposure. IMPORTANCE Some beta genus human papillomaviruses (β-HPVs) may promote skin carcinogenesis by inducing mutations in the host genome. Supporting this, the E6 protein from β-HPV8 (8 E6) promotes skin cancer in mice with or without UV exposure. Many mechanisms by which 8 E6 increases mutations caused by UV have been elucidated, but less is known about how 8 E6 induces mutations without UV. We address that knowledge gap by showing that 8 E6 causes mutations stemming from mitotic errors. Specifically, 8 E6 reduces the abundance of BLM, a helicase that resolves and prevents anaphase bridges. This hinders anaphase bridge resolution and increases their frequency. 8 E6 makes the micronuclei that can result from anaphase bridges more common. These micronuclei often have disrupted envelopes yet retain localization of nuclear-trafficked proteins. 8 E6 promotes the growth of cells with micronuclei and causes chromothripsis, a mutagenic process where hundreds to thousands of mutations occur in a chromosome.
Collapse
Affiliation(s)
- Dalton Dacus
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Steven Stancic
- Veterinary Diagnostic Laboratory, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Sarah R Pollina
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Elizabeth Rifrogiate
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Rachel Palinski
- Veterinary Diagnostic Laboratory, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
- Diagnostic Medicine/Pathobiology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Nicholas A Wallace
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| |
Collapse
|
21
|
Abstract
Lysosomes exert pleiotropic functions to maintain cellular homeostasis and degrade autophagy cargo. Despite the great advances that have boosted our understanding of autophagy and lysosomes in both physiology and pathology, their function in mitosis is still controversial. During mitosis, most organelles are reshaped or repurposed to allow the correct distribution of chromosomes. Mitotic entry is accompanied by a reduction in sites of autophagy initiation, supporting the idea of an inhibition of autophagy to protect the genetic material against harmful degradation. However, there is accumulating evidence revealing the requirement of selective autophagy and functional lysosomes for a faithful chromosome segregation. Degradation is the most-studied lysosomal activity, but recently described alternative functions that operate in mitosis highlight the lysosomes as guardians of mitotic progression. Because the involvement of autophagy in mitosis remains controversial, it is important to consider the specific contribution of signalling cascades, the functions of autophagic proteins and the multiple roles of lysosomes, as three entangled, but independent, factors controlling genomic stability. In this Review, we discuss the latest advances in this area and highlight the therapeutic potential of targeting autophagy for drug development.
Collapse
Affiliation(s)
- Eugenia Almacellas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline Mauvezin
- Department of Biomedicine, Faculty of Medicine, University of Barcelona c/ Casanova, 143 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), c/ Rosselló, 149-153 08036 Barcelona, Spain
| |
Collapse
|
22
|
Mammel AE, Hatch EM. Genome instability from nuclear catastrophe and DNA damage. Semin Cell Dev Biol 2022; 123:131-139. [PMID: 33839019 PMCID: PMC8494860 DOI: 10.1016/j.semcdb.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
The nuclear envelope compartmentalizes the eukaryotic genome, provides mechanical resistance, and regulates access to the chromatin. However, recent studies have identified several conditions where the nuclear membrane ruptures during interphase, breaking down this compartmentalization leading to DNA damage, chromothripsis, and kataegis. This review discusses three major circumstances that promote nuclear membrane rupture, nuclear deformation, chromatin bridges, and micronucleation, and how each of these nuclear catastrophes results in DNA damage. In addition, we highlight recent studies that demonstrate a single chromosome missegregation can initiate a cascade of events that lead to accumulating damage and even multiple rounds of chromothripsis.
Collapse
Affiliation(s)
- Anna E. Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emily M. Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
23
|
Mammel AE, Huang HZ, Gunn AL, Choo E, Hatch EM. Chromosome length and gene density contribute to micronuclear membrane stability. Life Sci Alliance 2022; 5:e202101210. [PMID: 34789512 PMCID: PMC8605325 DOI: 10.26508/lsa.202101210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Micronuclei are derived from missegregated chromosomes and frequently lose membrane integrity, leading to DNA damage, innate immune activation, and metastatic signaling. Here, we demonstrate that two characteristics of the trapped chromosome, length and gene density, are key contributors to micronuclei membrane stability and determine the timing of micronucleus rupture. We demonstrate that these results are not due to chromosome-specific differences in spindle position or initial protein recruitment during post-mitotic nuclear envelope assembly. Micronucleus size strongly correlates with lamin B1 levels and nuclear pore density in intact micronuclei, but, unexpectedly, lamin B1 levels do not completely predict nuclear lamina organization or membrane stability. Instead, small gene-dense micronuclei have decreased nuclear lamina gaps compared to large micronuclei, despite very low levels of lamin B1. Our data strongly suggest that nuclear envelope composition defects previously correlated with membrane rupture only partly explain membrane stability in micronuclei. We propose that an unknown factor linked to gene density has a separate function that inhibits the appearance of nuclear lamina gaps and delays membrane rupture until late in the cell cycle.
Collapse
Affiliation(s)
- Anna E Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Heather Z Huang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amanda L Gunn
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emma Choo
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
24
|
Bui TM, Sumagin R. Neutrophils and micronuclei: An emerging link between genomic instability and cancer-driven inflammation. Mutat Res 2022; 824:111778. [PMID: 35334355 PMCID: PMC9756381 DOI: 10.1016/j.mrfmmm.2022.111778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Two recent studies by Bui and Butin-Israeli et al. have established the novel contribution of neutrophils to genomic instability induction and aberrant shaping of the DNA repair landscape, particularly observed in patients with inflammatory bowel diseases (IBD) and/or progressive colorectal cancer (CRC). In addition, these back-to-back studies uncovered a sharp increase in the numbers of micronuclei and lagging chromosomes in pre-cancerous and cancerous epithelium in response to prolonged PMN exposure. Given the emerging link between neutrophils and micronuclei as well as the established role of micronuclei in cGAS/STING activation, this special commentary aims to elaborate on the mechanisms by which CRC cells may adapt to neutrophil-driven genomic instability while concurrently sustain an inflamed tumor niche. We postulate that such tumor microenvironment with constant immune cell presence, inflammatory milieu, and cumulative DNA damage can drive tumor adaptation and resistance to therapeutic interventions. Finally, we discuss potential novel therapeutic approaches that can be leveraged to target this emerging neutrophil-micronuclei pathological axis, thereby preventing perpetual CRC inflammation and unwanted tumor adaptation.
Collapse
Affiliation(s)
- Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL 60611, USA.
| |
Collapse
|
25
|
Cosper PF, Copeland SE, Tucker JB, Weaver BA. Chromosome Missegregation as a Modulator of Radiation Sensitivity. Semin Radiat Oncol 2022; 32:54-63. [PMID: 34861996 PMCID: PMC8883596 DOI: 10.1016/j.semradonc.2021.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chromosome missegregation over the course of multiple cell divisions, termed chromosomal instability (CIN), is a hallmark of cancer. Multiple causes of CIN have been identified, including defects in the mitotic checkpoint, altered kinetochore-microtubule dynamics, centrosome amplification, and ionizing radiation. Here we review the types, mechanisms, and cellular implications of CIN. We discuss the evidence that CIN can promote tumors, suppress them, or do neither, depending on the rates of chromosome missegregration and the cellular context. Very high rates of chromosome missegregation lead to cell death due to loss of essential chromosomes; thus elevating CIN above a tolerable threshold provides a mechanistic opportunity to promote cancer cell death. Lethal rates of CIN can be achieved by a single insult or through a combination of insults. Because ionizing radiation induces CIN, additional therapies that increase CIN may serve as useful modulators of radiation sensitivity. Ultimately, quantifying the intrinsic CIN in a tumor and modulating this level pharmacologically as well as with radiation may allow for a more rational, personalized radiation therapy prescription, thereby decreasing side effects and increasing local control.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sarah E. Copeland
- Molecular & Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John B. Tucker
- Cancer Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA,Department of Cellular and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA,Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA,Corresponding author: Beth A. Weaver, University of Wisconsin-Madison, 1111 Highland Ave, 6109 WIMR Tower 1, Madison, WI 53705-2275, Phone: 608-263-5309, Fax: 608-265-6905,
| |
Collapse
|
26
|
Tools used to assay genomic instability in cancers and cancer meiomitosis. J Cell Commun Signal 2021; 16:159-177. [PMID: 34841477 DOI: 10.1007/s12079-021-00661-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022] Open
Abstract
Genomic instability is a defining characteristic of cancer and the analysis of DNA damage at the chromosome level is a crucial part of the study of carcinogenesis and genotoxicity. Chromosomal instability (CIN), the most common level of genomic instability in cancers, is defined as the rate of loss or gain of chromosomes through successive divisions. As such, DNA in cancer cells is highly unstable. However, the underlying mechanisms remain elusive. There is a debate as to whether instability succeeds transformation, or if it is a by-product of cancer, and therefore, studying potential molecular and cellular contributors of genomic instability is of high importance. Recent work has suggested an important role for ectopic expression of meiosis genes in driving genomic instability via a process called meiomitosis. Improving understanding of these mechanisms can contribute to the development of targeted therapies that exploit DNA damage and repair mechanisms. Here, we discuss a workflow of novel and established techniques used to assess chromosomal instability as well as the nature of genomic instability such as double strand breaks, micronuclei, and chromatin bridges. For each technique, we discuss their advantages and limitations in a lab setting. Lastly, we provide detailed protocols for the discussed techniques.
Collapse
|
27
|
Sepaniac LA, Martin W, Dionne LA, Stearns TM, Reinholdt LG, Stumpff J. Micronuclei in Kif18a mutant mice form stable micronuclear envelopes and do not promote tumorigenesis. J Cell Biol 2021; 220:212637. [PMID: 34515734 PMCID: PMC8441830 DOI: 10.1083/jcb.202101165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Micronuclei, whole or fragmented chromosomes spatially separated from the main nucleus, are associated with genomic instability and have been identified as drivers of tumorigenesis. Paradoxically, Kif18a mutant mice produce micronuclei due to asynchronous segregation of unaligned chromosomes in vivo but do not develop spontaneous tumors. We report here that micronuclei in Kif18a mutant mice form stable nuclear envelopes. Challenging Kif18a mutant mice via deletion of the Trp53 gene led to formation of thymic lymphoma with elevated levels of micronuclei. However, loss of Kif18a had modest or no effect on survival of Trp53 homozygotes and heterozygotes, respectively. Micronuclei in cultured KIF18A KO cells form stable nuclear envelopes characterized by increased recruitment of nuclear envelope components and successful expansion of decondensing chromatin compared with those induced by nocodazole washout or radiation. Lagging chromosomes were also positioned closer to the main chromatin masses in KIF18A KO cells. These data suggest that not all micronuclei actively promote tumorigenesis.
Collapse
Affiliation(s)
- Leslie A Sepaniac
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | | | | | | | | | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| |
Collapse
|
28
|
Rafferty K, Archer KJ, Turner K, Brown R, Jackson-Cook C. Trisomy 21-associated increases in chromosomal instability are unmasked by comparing isogenic trisomic/disomic leukocytes from people with mosaic Down syndrome. PLoS One 2021; 16:e0254806. [PMID: 34283872 PMCID: PMC8291705 DOI: 10.1371/journal.pone.0254806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Down syndrome, which results from a trisomic imbalance for chromosome 21, has been associated with 80+ phenotypic traits. However, the cellular changes that arise in somatic cells due to this aneuploid condition are not fully understood. The primary aim of this study was to determine if germline trisomy 21 is associated with an increase in spontaneous somatic cell chromosomal instability frequencies (SCINF). To achieve this aim, we quantified SCINF in people with mosaic Down syndrome using a cytokinesis-blocked micronucleus assay. By comparing values in their isogenic trisomic/disomic cells, we obtained a measure of differences in SCINF that are directly attributable to a trisomy 21 imbalance, since differential effects attributable to "background" genetic factors and environmental exposures could be eliminated. A cross-sectional assessment of 69 people with mosaic Down syndrome (ages 1 to 44; mean age of 12.84 years) showed a significantly higher frequency of micronuclei in their trisomic (0.37 ± 0.35 [mean ± standard deviation]) compared to disomic cells (0.18 ± 0.11)(P <0.0001). The daughter binucleates also showed significantly higher levels of abnormal patterns in the trisomic (1.68 ± 1.21) compared to disomic (0.35 ± 0.45) cells (P <0.0001). Moreover, a significant Age x Cell Type interaction was noted (P = 0.0113), indicating the relationship between age and SCINF differed between the trisomic and disomic cells. Similarly, a longitudinal assessment (mean time interval of 3.9 years; range of 2 to 6 years) of 18 participants showed a mean 1.63-fold increase in SCINF within individuals over time for their trisomic cells (P = 0.0186), compared to a 1.13-fold change in their disomic cells (P = 0.0464). In summary, these results showed a trisomy 21-associated, age-related increase in SCINF. They also underscore the strength of the isogenic mosaic Down syndrome model system for "unmasking" cellular changes arising from a trisomy 21 imbalance.
Collapse
Affiliation(s)
- Kelly Rafferty
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kellie J. Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Kristi Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ruth Brown
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Colleen Jackson-Cook
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Barthel H, Darne C, Gaté L, Visvikis A, Seidel C. Continuous Long-Term Exposure to Low Concentrations of MWCNTs Induces an Epithelial-Mesenchymal Transition in BEAS-2B Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1742. [PMID: 34361127 PMCID: PMC8308165 DOI: 10.3390/nano11071742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
In the field of nanotechnology, the use of multi-walled carbon nanotubes (MWCNTs) is growing. Pulmonary exposure during their production, use, and handling is raising concerns about their potential adverse health effects. The purpose of this study is to assess how the physical characteristics of MWCNTs, such as diameter and/or length, can play a role in cellular toxicity. Our experimental design is based on the treatment of human bronchial epithelial cells (BEAS-2B) for six weeks with low concentrations (0.125-1 µg/cm2) of MWCNTs having opposite characteristics: NM-403 and Mitsui-7. Following treatment with both MWCNTs, we observed an increase in mitotic abnormalities and micronucleus-positive cells. The cytotoxic effect was delayed in cells treated with NM-403 compared to Mitsui-7. After 4-6 weeks of treatment, a clear cellular morphological change from epithelial to fibroblast-like phenotype was noted, together with a change in the cell population composition. BEAS-2B cells underwent a conversion from the epithelial to mesenchymal state as we observed a decrease in the epithelial marker E-cadherin and an increased expression of mesenchymal markers N-cadherin, Vimentin, and Fibronectin. After four weeks of recovery, we showed that the induced epithelial-mesenchymal transition is reversible, and that the degree of reversibility depends on the MWCNT.
Collapse
Affiliation(s)
- Hélène Barthel
- Institut National de Recherche et de Sécurité, CEDEX, F-54519 Vandœuvre-lès-Nancy, France; (H.B.); (C.D.); (L.G.)
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, Campus Biologie Santé, UMR 7365 CNRS-Université de Lorraine, CEDEX, F-54000 Vandœuvre-lès-Nancy, France;
| | - Christian Darne
- Institut National de Recherche et de Sécurité, CEDEX, F-54519 Vandœuvre-lès-Nancy, France; (H.B.); (C.D.); (L.G.)
| | - Laurent Gaté
- Institut National de Recherche et de Sécurité, CEDEX, F-54519 Vandœuvre-lès-Nancy, France; (H.B.); (C.D.); (L.G.)
| | - Athanase Visvikis
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, Campus Biologie Santé, UMR 7365 CNRS-Université de Lorraine, CEDEX, F-54000 Vandœuvre-lès-Nancy, France;
| | - Carole Seidel
- Institut National de Recherche et de Sécurité, CEDEX, F-54519 Vandœuvre-lès-Nancy, France; (H.B.); (C.D.); (L.G.)
| |
Collapse
|
30
|
Depletion of DNA Polymerase Theta Inhibits Tumor Growth and Promotes Genome Instability through the cGAS-STING-ISG Pathway in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133204. [PMID: 34206946 PMCID: PMC8268317 DOI: 10.3390/cancers13133204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary DNA polymerase theta, encoded by the human POLQ gene, is upregulated in several cancers and is associated with poor clinical outcomes. The importance of POLQ, however, has yet to be elucidated in esophageal cancer. In this study, we explored the functional impacts of POLQ and looked into its underlying mechanisms. POLQ was overexpressed in esophageal squamous cell carcinoma (ESCC) tumors associated with unfavorable prognosis and contributed to malignant phenotypes by promoting genome stability, suggesting that targeting polymerase theta may provide a potential therapeutic approach for improving ESCC management. Abstract Overexpression of the specialized DNA polymerase theta (POLQ) is frequent in breast, colon and lung cancers and has been correlated with unfavorable clinical outcomes. Here, we aimed to determine the importance and functional role of POLQ in esophageal squamous cell carcinoma (ESCC). Integrated analysis of four RNA-seq datasets showed POLQ was predominantly upregulated in ESCC tumors. High expression of POLQ was also observed in a cohort of 25 Hong Kong ESCC patients and negatively correlated with ESCC patient survival. POLQ knockout (KO) ESCC cells were sensitized to multiple genotoxic agents. Both rH2AX foci staining and the comet assay indicated a higher level of genomic instability in POLQ-depleted cells. Double KO of POLQ and FANCD2, known to promote POLQ recruitment at sites of damage, significantly impaired cell proliferation both in vitro and in vivo, as compared to either single POLQ or FANCD2 KOs. A significantly increased number of micronuclei was observed in POLQ and/or FANCD2 KO ESCC cells. Loss of POLQ and/or FANCD2 also resulted in the activation of cGAS and upregulation of interferon-stimulated genes (ISGs). Our results suggest that high abundance of POLQ in ESCC contributes to the malignant phenotype through genome instability and activation of the cGAS pathway.
Collapse
|
31
|
Baudoin NC, Bloomfield M. Karyotype Aberrations in Action: The Evolution of Cancer Genomes and the Tumor Microenvironment. Genes (Basel) 2021; 12:558. [PMID: 33921421 PMCID: PMC8068843 DOI: 10.3390/genes12040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of cellular evolution. For this cellular evolution to take place, a population of cells must contain functional heterogeneity and an assessment of this heterogeneity in the form of natural selection. Cancer cells from advanced malignancies are genomically and functionally very different compared to the healthy cells from which they evolved. Genomic alterations include aneuploidy (numerical and structural changes in chromosome content) and polyploidy (e.g., whole genome doubling), which can have considerable effects on cell physiology and phenotype. Likewise, conditions in the tumor microenvironment are spatially heterogeneous and vastly different than in healthy tissues, resulting in a number of environmental niches that play important roles in driving the evolution of tumor cells. While a number of studies have documented abnormal conditions of the tumor microenvironment and the cellular consequences of aneuploidy and polyploidy, a thorough overview of the interplay between karyotypically abnormal cells and the tissue and tumor microenvironments is not available. Here, we examine the evidence for how this interaction may unfold during tumor evolution. We describe a bidirectional interplay in which aneuploid and polyploid cells alter and shape the microenvironment in which they and their progeny reside; in turn, this microenvironment modulates the rate of genesis for new karyotype aberrations and selects for cells that are most fit under a given condition. We conclude by discussing the importance of this interaction for tumor evolution and the possibility of leveraging our understanding of this interplay for cancer therapy.
Collapse
Affiliation(s)
- Nicolaas C. Baudoin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
32
|
Majtánová Z, Dedukh D, Choleva L, Adams M, Ráb P, Unmack PJ, Ezaz T. Uniparental Genome Elimination in Australian Carp Gudgeons. Genome Biol Evol 2021; 13:6137838. [PMID: 33591327 PMCID: PMC8245195 DOI: 10.1093/gbe/evab030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Metazoans usually reproduce sexually, blending the unique identity of parental genomes for the next generation through functional crossing-over and recombination in meiosis. However, some metazoan lineages have evolved reproductive systems where offspring are either full (clonal) or partial (hemiclonal) genetic replicas. In the latter group, the process of uniparental genome elimination selectively eliminates either the maternal or paternal genome from germ cells, and only one parental genome is selected for transmission. Although fairly common in plants, hybridogenesis (i.e., clonal haploidization via chromosome elimination) remains a poorly understood process in animals. Here, we explore the proximal cytogenomic mechanisms of somatic and germ cell chromosomes in sexual and hybrid genotypes of Australian carp gudgeons (Hypseleotris) by tracing the fate of each set during mitosis (in somatic tissues) and meiosis (in gonads). Our comparative study of diploid hybrid and sexual individuals revealed visually functional gonads in male and female hybrid genotypes and generally high karyotype variability, although the number of chromosome arms remains constant. Our results delivered direct evidence for classic hybridogenesis as a reproductive mode in carp gudgeons. Two parental sets with integral structure in the hybrid soma (the F1 constitution) contrasted with uniparental chromosomal inheritance detected in gonads. The inheritance mode happens through premeiotic genome duplication of the parental genome to be transmitted, whereas the second parental genome is likely gradually eliminated already in juvenile individuals. The role of metacentric chromosomes in hybrid evolution is also discussed.
Collapse
Affiliation(s)
- Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Dmitrij Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Lukáš Choleva
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, Australia.,School of Biological Sciences, The University of Adelaide, SA, Australia
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, ACT, Australia
| | - Tariq Ezaz
- Centre for Conservation Ecology and Genetics, Institute for Applied Ecology, University of Canberra, ACT, Australia
| |
Collapse
|
33
|
Kagaya K, Noma-Takayasu N, Yamamoto I, Tashiro S, Ishikawa F, Hayashi MT. Chromosome instability induced by a single defined sister chromatid fusion. Life Sci Alliance 2020; 3:e202000911. [PMID: 33106324 PMCID: PMC7652394 DOI: 10.26508/lsa.202000911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Chromosome fusion is a frequent intermediate in oncogenic chromosome rearrangements and has been proposed to cause multiple tumor-driving abnormalities. In conventional experimental systems, however, these abnormalities were often induced by randomly induced chromosome fusions involving multiple different chromosomes. It was therefore not well understood whether a single defined type of chromosome fusion, which is reminiscent of a sporadic fusion in tumor cells, has the potential to cause chromosome instabilities. Here, we developed a human cell-based sister chromatid fusion visualization system (FuVis), in which a single defined sister chromatid fusion is induced by CRISPR/Cas9 concomitantly with mCitrine expression. The fused chromosome subsequently developed extra-acentric chromosomes, including chromosome scattering, indicative of chromothripsis. Live-cell imaging and statistical modeling indicated that sister chromatid fusion generated micronuclei (MN) in the first few cell cycles and that cells with MN tend to display cell cycle abnormalities. The powerful FuVis system thus demonstrates that even a single sporadic sister chromatid fusion can induce chromosome instability and destabilize the cell cycle through MN formation.
Collapse
Affiliation(s)
- Katsushi Kagaya
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
- Seto Marine Biological Laboratory, Field Science, Education and Research Center, Kyoto University, Wakayama, Japan
| | - Naoto Noma-Takayasu
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Io Yamamoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Sanki Tashiro
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| | - Makoto T Hayashi
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Kyoto, Japan
| |
Collapse
|
34
|
Abstract
The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.
Collapse
Affiliation(s)
- John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Emily M Hatch
- Division of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
35
|
Guo X, Dai X, Wu X, Cao N, Wang X. Small but strong: Mutational and functional landscapes of micronuclei in cancer genomes. Int J Cancer 2020; 148:812-824. [PMID: 32949152 DOI: 10.1002/ijc.33300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Micronuclei, small spatially-separated, nucleus-like structures, are a common feature of human cancer cells. There are considerable heterogeneities in the sources, structures and genetic activities of micronuclei. Accumulating evidence suggests that micronuclei and main nuclei represent separate entities with respect to DNA replication, DNA damage sensing and repairing capacity because micronuclei are not monitored by the same checkpoints nor covered by the same nuclear envelope as the main nuclei. Thus, micronuclei are spatially restricted "mutation factories." Several large-scale DNA sequencing and bioinformatics studies over the last few years have revealed that most micronuclei display a mutational signature of chromothripsis immediately after their generation and the underlying molecular mechanisms have been dissected extensively. Clonal expansion of the micronucleated cells is context-dependent and is associated with chromothripsis and several other mutational signatures including extrachromosomal circular DNA, kataegis and chromoanasynthesis. These results suggest what was once thought to be merely a passive indicator of chromosomal instability is now being recognized as a strong mutator phenotype that may drive intratumoral genetic heterogeneity. Herein, we revisit the actionable determinants that contribute to the bursts of mutagenesis in micronuclei and present the growing number of evidence which suggests that micronuclei have distinct short- and long-term mutational and functional effects to cancer genomes. We also pose challenges for studying the long-term effects of micronucleation in the upcoming years.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China.,Yunnan Environmental Society, Kunming, Yunnan, China
| | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Neng Cao
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China.,Yunnan Environmental Society, Kunming, Yunnan, China
| |
Collapse
|
36
|
Guo X, Dai X, Wu X, Zhou T, Ni J, Xue J, Wang X. Understanding the birth of rupture-prone and irreparable micronuclei. Chromosoma 2020; 129:181-200. [PMID: 32671520 DOI: 10.1007/s00412-020-00741-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Micronuclei are extra-nuclear bodies mainly derived from ana-telophase lagging chromosomes/chromatins (LCs) that are not incorporated into primary nuclei at mitotic exit. Unlike primary nuclei, most micronuclei are enclosed by nuclear envelope (NE) that is highly susceptible to spontaneous and irreparable rupture. Ruptured micronuclei act as triggers of chromothripsis-like chaotic chromosomal rearrangements and cGAS-mediated innate immunity and inflammation, raising the view that micronuclei play active roles in human aging and tumorigenesis. Thus, understanding the ways in which micronuclear envelope (mNE) goes awry acquires increased importance. Here, we review the data to present a general framework for this question. We firstly describe NE reassembly after mitosis and NE repair during interphase. Simultaneously, we briefly discuss how mNE is organized and how mNE rupture controls the fate of micronuclei and micronucleated cells. As a focus of this review, we highlight current knowledge about why mNE is rupture-prone and irreparable. For this, we survey observations from a series of elegant studies to provide a systematic overview. We conclude that the birth of rupture-prone and irreparable micronuclei may be the cumulative effects of their intracellular geographic origins, biophysical properties, and specific mNE features. We propose that DNA damage and immunogenicity in micronuclei increase stepwise from altered mNE components, mNE rupture, and refractory to repair. Throughout our discussion, we note interesting issues in mNE fragility that have yet to be resolved.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Tao Zhou
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
37
|
Cleal K, Baird DM. Catastrophic Endgames: Emerging Mechanisms of Telomere-Driven Genomic Instability. Trends Genet 2020; 36:347-359. [PMID: 32294415 DOI: 10.1016/j.tig.2020.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
When cells progress to malignancy, they must overcome a final telomere-mediated proliferative lifespan barrier called replicative crisis. Crisis is characterized by extensive telomere fusion that drives widespread genomic instability, mitotic arrest, hyperactivation of autophagy, and cell death. Recently, it has become apparent that that the resolution of dicentric chromosomes, which arise from telomere fusions during crisis, can initiate a sequence of events that leads to chromothripsis, a form of extreme genomic catastrophe. Chromothripsis is characterized by localized genomic regions containing tens to thousands of rearrangements and it is becoming increasingly apparent that chromothripsis occurs widely across tumor types and has a clinical impact. Here we discuss how telomere dysfunction can initiate genomic complexity and the emerging mechanisms of chromothripsis.
Collapse
Affiliation(s)
- Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
38
|
Dörnen J, Sieler M, Weiler J, Keil S, Dittmar T. Cell Fusion-Mediated Tissue Regeneration as an Inducer of Polyploidy and Aneuploidy. Int J Mol Sci 2020; 21:E1811. [PMID: 32155721 PMCID: PMC7084716 DOI: 10.3390/ijms21051811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
The biological phenomenon of cell fusion plays a crucial role in several physiological processes, including wound healing and tissue regeneration. Here, it is assumed that bone marrow-derived stem cells (BMSCs) could adopt the specific properties of a different organ by cell fusion, thereby restoring organ function. Cell fusion first results in the production of bi- or multinucleated hybrid cells, which either remain as heterokaryons or undergo ploidy reduction/heterokaryon-to-synkaryon transition (HST), thereby giving rise to mononucleated daughter cells. This process is characterized by a merging of the chromosomes from the previously discrete nuclei and their subsequent random segregation into daughter cells. Due to extra centrosomes concomitant with multipolar spindles, the ploidy reduction/HST could also be associated with chromosome missegregation and, hence, induction of aneuploidy, genomic instability, and even putative chromothripsis. However, while the majority of such hybrids die or become senescent, aneuploidy and genomic instability appear to be tolerated in hepatocytes, possibly for stress-related adaption processes. Likewise, cell fusion-induced aneuploidy and genomic instability could also lead to a malignant conversion of hybrid cells. This can occur during tissue regeneration mediated by BMSC fusion in chronically inflamed tissue, which is a cell fusion-friendly environment, but is also enriched for mutagenic reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany; (J.D.); (M.S.); (J.W.); (S.K.)
| |
Collapse
|
39
|
Guo X, Dai X, Zhou T, Wang H, Ni J, Xue J, Wang X. Mosaic loss of human Y chromosome: what, how and why. Hum Genet 2020; 139:421-446. [DOI: 10.1007/s00439-020-02114-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
40
|
Ben-David U, Amon A. Context is everything: aneuploidy in cancer. Nat Rev Genet 2019; 21:44-62. [DOI: 10.1038/s41576-019-0171-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|