1
|
Du J, Zhao Y, Dong J, Li P, Hu Y, Fan H, Zhang F, Sun L, Zhang D, Zhang Y. Single-cell transcriptomics reveal the prognostic roles of epithelial and T cells and DNA methylation-based prognostic models in pancreatic cancer. Clin Epigenetics 2024; 16:188. [PMID: 39709423 DOI: 10.1186/s13148-024-01800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PDAC) exhibits a complex microenvironment with diverse cell populations influencing patient prognosis. Single-cell RNA sequencing (scRNA-seq) was used to identify prognosis-related cell types, and DNA methylation (DNAm)-based models were developed to predict outcomes based on their cellular characteristics. METHODS We integrated scRNA-seq, bulk data, and clinical information to identify key cell populations associated with prognosis. The TCGA dataset was used for validation, and cell composition was inferred from DNAm data. Prognostic models were constructed based on cell-type-specific DNAm markers, and genomic features were compared across risk groups. Nomograms were created to assess treatment responses in different risk levels. RESULTS Epithelial and T cells were major prognostic factors. Genomic analysis showed that epithelial cells in PDAC followed a malignant trajectory. DNAm data from TCGA confirmed the association of higher epithelial and T cell proportions with worse prognosis. Prognostic models based on DNAm markers of these cells effectively predicted patient survival, especially 5-year overall survival (AUC = 0.834). High-risk group with epithelial cell model showed altered pathways (tight junctions, NOTCH, and P53 signaling), while high-risk group with T cell model had changes in glycolysis, hypoxia, and NOTCH signaling, with more KRAS or TP53 mutations. Low-risk groups in the T cell model displayed stronger antitumor immune responses. Treatment predictions and nomograms were developed for clinical use. CONCLUSIONS scRNA-seq and DNAm data integration enabled the creation of predictive models based on epithelial and T cell-specific methylation patterns, offering robust prognosis prediction for PDAC patients.
Collapse
Affiliation(s)
- Jing Du
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yaqian Zhao
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jie Dong
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Peng Li
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yan Hu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Hailang Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Feifan Zhang
- Department of Computer Science, University College London, London, UK
| | - Lanlan Sun
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Yuhua Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Zheng BW, Zheng BY, Yang Z, Niu HQ, Zhu GQ, Zou MX, Liu FS, Xia C. Clinicopathologic and prognostic characteristics of tumor budding-like in giant cell tumor of bone. Cancer 2024; 130:4085-4095. [PMID: 39239786 DOI: 10.1002/cncr.35551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Currently, tumor budding (TB) is defined as an important factor for a poor prognosis in various types of cancers. The authors identified a significant presence of TB-like structures at the tumor invasive front in giant cell tumor of bone (GCTB), which may have the same biologic function as TB. The objective of this report was to describe the distribution of TB in GCTB and investigate its correlation with clinicopathologic characteristics, the immune microenvironment, survival prognosis, and response to denosumab treatment. METHODS This multicenter cohort study included 426 patients with GCTB who received treatment between 2012 and 2021 at four centers. Two independent pathologists performed visual assessments of TBL structures in hematoxylin-and-eosin-stained tumor sections. Immunohistochemistry was used to evaluate tumor-infiltrating lymphocyte subtypes (CD3-positive, CD4-positive, CD8-positive, CD20-positive, programmed cell death protein-1-positive, programmed cell death-ligand 1positive, and FoxP3-positive) as well as Ki-67 expression levels in 426 tissue samples. These parameters were then analyzed for associations with patient outcomes (local recurrence-free survival [LRFS] and overall survival [OS]), clinicopathologic characteristics, and response to denosumab treatment. RESULTS High-grade TB was associated with poorer LRFS and OS in both patient groups. In addition, TB was correlated with various clinicopathologic features, tumor-infiltrating lymphocyte expression, and response to denosumab treatment. TB outperformed the traditional Enneking and Campanacci staging systems in predicting patient LRFS and OS. CONCLUSIONS The current data support the assessment of TBL structures as a reliable prognostic tool in GCTB, potentially aiding in the development of personalized treatment strategies for patients.
Collapse
Affiliation(s)
- Bo-Wen Zheng
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Bo-Yv Zheng
- Department of Orthopedic Surgery, General Hospital of the Central Theater Command, Wuhan, China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Hua-Qing Niu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guo-Qiang Zhu
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Xia
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
3
|
Debesset A, Pilon C, Meunier S, Cuelenaere-Bonizec O, Richer W, Thiolat A, Houppe C, Ponzo M, Magnan J, Caron J, Caudana P, Tosello Boari J, Baulande S, To NH, Salomon BL, Piaggio E, Cascone I, Cohen JL. TNFR2 blockade promotes antitumoral immune response in PDAC by targeting activated Treg and reducing T cell exhaustion. J Immunother Cancer 2024; 12:e008898. [PMID: 39562007 PMCID: PMC11580249 DOI: 10.1136/jitc-2024-008898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, highly resistant to standard chemotherapy and immunotherapy. Regulatory T cells (Tregs) expressing tumor necrosis factor α receptor 2 (TNFR2) contribute to immunosuppression in PDAC. Treg infiltration correlates with poor survival and tumor progression in patients with PDAC. We hypothesized that TNFR2 inhibition using a blocking monoclonal antibody (mAb) could shift the Treg-effector T cell balance in PDAC, thus enhancing antitumoral responses. METHOD To support this hypothesis, we first described TNFR2 expression in a cohort of 24 patients with PDAC from publicly available single-cell analysis data. In orthotopic and immunocompetent mouse models of PDAC, we also described the immune environment of PDAC after immune cell sorting and single-cell analysis. The modifications of the immune environment before and after anti-TNFR2 mAb treatment were evaluated as well as the effect on tumor progression. RESULTS Patients with PDAC exhibited elevated TNFR2 expression in Treg, myeloid cells and endothelial cells and lower level in tumor cells. By flow cytometry and single-cell RNA-seq analysis, we identified two Treg populations in orthotopic mouse models: Resting and activated Tregs. The anti-TNFR2 mAb selectively targeted activated tumor-infiltrating Tregs, reducing T cell exhaustion markers in CD8+ T cells. However, anti-TNFR2 treatment alone had limited efficacy in activating CD8+ T cells and only slightly reduced the tumor growth. The combination of the anti-TNFR2 mAb with agonistic anti-CD40 mAb promoted stronger T cell activation, tumor growth inhibition, and improved survival and immunological memory in PDAC-bearing mice. CONCLUSION Our data suggest that combining a CD40 agonist with a TNFR2 antagonist represents a promising therapeutic strategy for patients with PDAC.
Collapse
Affiliation(s)
- Anais Debesset
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Caroline Pilon
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| | - Sylvain Meunier
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | | | - Wilfrid Richer
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Allan Thiolat
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Claire Houppe
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Matteo Ponzo
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jeanne Magnan
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jonathan Caron
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Pamela Caudana
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Jimena Tosello Boari
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Research Center, ICGex Next-Generation Sequencing Platform, Single Cell Initiative, PSL Research University, Paris, France
| | - Nhu Han To
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- Department of Radiation Oncology, Henri Mondor Breast Center, AP-HP, GH Henri Mondor, Paris, France
| | - Benoit Laurent Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Eliane Piaggio
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Ilaria Cascone
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - José Laurent Cohen
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| |
Collapse
|
4
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zanoletti E, Daloiso A, Nicolè L, Cazzador D, Mondello T, Franz L, Astolfi L, Marioni G. Tumor budding to investigate local invasion, metastasis, and prognosis of head and neck carcinoma: A systematic review. Head Neck 2024; 46:651-671. [PMID: 38013617 DOI: 10.1002/hed.27583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
The aim of this systematic review is to shed light on the role of tumor budding (TB) in the biology, behavior, and prognosis of head and neck squamous cell carcinoma (HNSCC). A search was run in PubMed, Scopus, and Embase databases following PRISMA guidelines. After full-text screening and application of inclusion/exclusion criteria, 36 articles were included. Several investigations support the prognostic role of TB, which might play a role in selecting rational treatment strategies. To achieve this goal, further research is needed for greater standardization in TB quantification. Although TB is not included as a negative prognostic factor in the current management guidelines, it might be reasonable to consider a closer follow-up for HNSCC cases with high histopathological evidence of TB.
Collapse
Affiliation(s)
- Elisabetta Zanoletti
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, Padova, Italy
| | - Antonio Daloiso
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, Padova, Italy
| | - Lorenzo Nicolè
- Department of Medicine (DIMED), University of Padova, Padova, Italy
- Pathology & Cytopathology Unit, Ospedale dell'Angelo, Venezia-Mestre, Italy
| | - Diego Cazzador
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, Padova, Italy
| | - Tiziana Mondello
- Otolaryngology Section, Department of Neuroscience DNS, University of Padova, Padova, Italy
| | - Leonardo Franz
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, Treviso, Italy
| | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neuroscience DNS, University of Padova, Padova, Italy
| | - Gino Marioni
- Phoniatrics and Audiology Unit, Department of Neuroscience DNS, University of Padova, Treviso, Italy
| |
Collapse
|
6
|
Schoumacher C, Derangère V, Gaudillière-Le Dain G, Huppe T, Rageot D, Ilie A, Vienot A, Borg C, Monnien F, Bibeau F, Truntzer C, Ghiringhelli F, For the CGE-Pancreas investigators. CD3-CD8 immune score associated with a clinical score stratifies PDAC prognosis regardless of adjuvant or neoadjuvant chemotherapy. Oncoimmunology 2023; 13:2294563. [PMID: 38169969 PMCID: PMC10761164 DOI: 10.1080/2162402x.2023.2294563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Stratification of the prognosis of pancreatic cancer (PDAC) patients treated by surgery is based solely on clinical variables, such as tumor stage and node status. The development of biomarkers of relapse is needed, especially to drive administration of adjuvant therapy in this at-risk population. Our study evaluates the prognostic performance of a CD3- and CD8-based immune score. CD3, CD8 and Foxp3 expression were evaluated on whole slides in two retrospective PDAC cohorts totaling 334 patients. For this study, we developed an immune score to estimate CD3 and CD8 infiltration in both tumor core and invasive margin using computer-guided analysis with QuPath software. Variables were combined in a dichotomous immune score. The association between immune and clinical scores, and both PFS and OS was investigated. We observed that a dichotomous immune score predicts both PFS and OS of localized PDAC. By univariate and multivariate analysis, immune score, tumor grade, adjuvant therapy, lymph node status, and adjuvant chemotherapy administration were associated with PFS and OS. We subsequently associated the PDAC immune score and clinical variables in a combined score. This combined score predicted patient outcomes independently of adjuvant or neoadjuvant treatment, and improved patient prognostic prediction compared to clinical variables or immune score alone.
Collapse
Affiliation(s)
- Coralie Schoumacher
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
| | - Valentin Derangère
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- INSERM LNC-UMR1231 Research Center, TIRECS Team, Dijon, France
| | | | - Titouan Huppe
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
| | - David Rageot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- INSERM LNC-UMR1231 Research Center, TIRECS Team, Dijon, France
| | - Alis Ilie
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
| | | | - Christophe Borg
- Department of Medical Oncology, CHU Besançon, Besançon, France
| | | | | | - Caroline Truntzer
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- INSERM LNC-UMR1231 Research Center, TIRECS Team, Dijon, France
| | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- INSERM LNC-UMR1231 Research Center, TIRECS Team, Dijon, France
- Genetic and Immunology Medical Institute, GIMI, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | | |
Collapse
|
7
|
Pea A, Paolino G, Martelli F, Bariani E, Piccoli P, Sereni E, Salvia R, Lawlor RT, Cheng L, Chang D, Scarpa A, Luchini C. Characterization and digital spatial deconvolution of the immune microenvironment of intraductal oncocytic papillary neoplasms (IOPN) of the pancreas. Virchows Arch 2023; 483:157-165. [PMID: 37086293 PMCID: PMC10412653 DOI: 10.1007/s00428-023-03543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
Intraductal oncocytic papillary neoplasm (IOPN) of the pancreas is a distinct entity from intraductal papillary mucinous neoplasms (IPMNs) and is considered one of the precursor lesions of pancreatic cancer. Through immunohistochemistry (IHC) and an artificial intelligence (AI)-based approach, this study aims at characterizing its immune microenvironment. Whole-slide IHC was performed on a cohort of 15 IOPNs, 2 of which harboring an associated adenocarcinoma. The following markers were tested: CD3, CD4, CD8, CD20, CD68, CD163, PD-1, PD-L1, MLH1, PMS2, MSH2, and MSH6. The main findings can be summarized as follows: (i) CD8+ T lymphocytes were the predominant immune cells (p < 0.01); (ii) the vast majority of macrophages were concurrently CD68+ and CD163+; (iii) all tumors showed an activated PD-1/PD-L1 axis, but none had mismatch repair deficiency; (iv) AI-based analysis revealed the presence of 2 distinct regions in each case, namely, Re1, localized at the center of the tumor, and Re2, located at tumor periphery; (v) the infiltrating component of the 2 invasive IOPNs showed a smaller extent of Re1 and a reduced rate of CD4+ cells, as well as a larger extent of Re2 and increased rate of CD8+ cells. IOPNs are lesions enriched in immune cells, with a predominance of CD8+ T lymphocytes and class 2 macrophages. Differently from IPMN-oncogenesis, the progression towards invasive carcinoma is accompanied by an increased rate of CD8+ lymphocytes. This finding may suggest the presence of an active self-immune surveillance in invasive IOPNs, potentially explaining, at least in part, the excellent survival rate of IOPN patients.
Collapse
Affiliation(s)
- Antonio Pea
- Department of Surgery, the Pancreas Institute, University and Hospital Trust of Verona, 37134, Verona, Italy
- The Institute of Cancer Sciences, University of Glasgow, G128QQ, Glasgow, UK
| | - Gaetano Paolino
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy
| | - Filippo Martelli
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy
| | - Elena Bariani
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy
| | - Paola Piccoli
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy
| | - Elisabetta Sereni
- Department of Surgery, the Pancreas Institute, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Roberto Salvia
- Department of Surgery, the Pancreas Institute, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Rita T Lawlor
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, RI, 02903, USA
| | - David Chang
- The Institute of Cancer Sciences, University of Glasgow, G128QQ, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, G40SF, Glasgow, UK
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy.
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134, Verona, Italy.
| |
Collapse
|
8
|
Okuyama K, Suzuki K, Yanamoto S. Relationship between Tumor Budding and Partial Epithelial-Mesenchymal Transition in Head and Neck Cancer. Cancers (Basel) 2023; 15:cancers15041111. [PMID: 36831453 PMCID: PMC9953904 DOI: 10.3390/cancers15041111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Tumor budding (TB), a microscopic finding in the stroma ahead of the invasive fronts of tumors, has been well investigated and reported as a prognostic marker in head and neck squamous cell carcinoma (HNSCC). Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and metastasis, and its status cannot be distinguished from TB. The current understanding of partial EMT (p-EMT), the so-called halfway step of EMT, focuses on the tumor microenvironment (TME). Although this evidence has been investigated, the clinicopathological and biological relationship between TB and p-EMT remains debatable. At the invasion front, previous research suggested that cancer-associated fibroblasts (CAFs) are important for tumor progression, metastasis, p-EMT, and TB formation in the TME. Although there is biological evidence of TB drivers, no report has focused on their organized functional relationships. Understanding the mechanism of TB onset and the relationship between p-EMTs may facilitate the development of novel diagnostic and prognostic methods, and targeted therapies for the prevention of metastasis in epithelial cancer. Thus far, major pieces of evidence have been established from colorectal cancer (CRC), due to a large number of patients with the disease. Herein, we review the current understanding of p-EMT and TME dynamics and discuss the relationship between TB development and p-EMT, focusing on CAFs, hypoxia, tumor-associated macrophages, laminin-integrin crosstalk, membrane stiffness, enzymes, and viral infections in cancers, and clarify the gap of evidence between HNSCC and CRC.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ave, Ann Arbor, MI 48109, USA
- University of Michigan Rogel Cancer Center, 1600 Huron Pathway, Ann Arbor, MI 48105, USA
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Correspondence: or
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
9
|
Panahi M, Rezagholizadeh F, Mollazadehghomi S, Farhangnia P, Niya MHK, Ajdarkosh H, Tameshkel FS, Heshmati SM. The association between CD3+ and CD8+tumor-infiltrating lymphocytes (TILs) and prognosis in patients with pancreatic adenocarcinoma. Cancer Treat Res Commun 2023; 35:100699. [PMID: 36996584 DOI: 10.1016/j.ctarc.2023.100699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PDAC), with more than 250,000 deaths each year, is the eighth leading cause of death worldwide, with a five-year survival of less than 5% and a median recurrence time between 5 and 23 months. The association between PDAC and CD3+/CD8+ tumor-infiltrating lymphocytes (TILs) and the extent of tumor spread and clinical outcomes has been recently shown. This study aimed to determine and compare the density of TILs and their association with disease prognosis in patients with PDAC. MATERIALS AND METHODS In this study, we collected PDAC tissues and corresponding adjacent normal tissues from 64 patients with TIL-positive PDAC. The immunohistochemistry method was used for the detection of the expression levels of CD3+ and CD8+ TILs in PDAC tissues. Also, the completed follow-up history was evaluated for at least five years. RESULTS The frequency of intratumoral and peritumoral TILs was 20 (31.2%) and 44 (68.8%), respectively. The mean density of CD3+ TILs and CD8+ TILs was 67.73%±20.17% and 69.45%±17.82%, respectively. The density of CD3+ TILs and CD8+ TILs was not associated with overall survival nor metastasis-free survival of the patients and tumor grade. However, the density of TILs was significantly lower in those patients who experienced tumor recurrence than those without this recurrence. CONCLUSION TILs density was high in patients with PDAC. The density of both CD3+ and CD8+ TILs was significantly lower in patients who experienced tumor recurrence. Thus, this study suggests that tracking and determining the density of CD3+ and CD8+ TILs might be effective in predicting PDAC recurrence.
Collapse
|
10
|
Gupta S, Sreeram S, Pinto AC, Suresh PK, Basavaiah SH. Tumor Budding Assessment with Cytokeratin and Its Significance in Laryngeal Squamous Cell Carcinomas. Indian J Otolaryngol Head Neck Surg 2022; 74:494-500. [PMID: 36514426 PMCID: PMC9741683 DOI: 10.1007/s12070-021-02981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
There is a need for novel prognostic parameters in assessing laryngeal squamous cell carcinoma (LSCC). Tumor budding is an instrumental parameter, which has hardly been studied before in this organ. This study aimed to assess tumor budding in LSCCs with routine hematoxylin and eosin (H&E) stain as well as cytokeratin (CK) immunohistochemistry (IHC). Objectives were to compare the effectiveness of both these methods to assess tumor budding, to investigate the association of tumor budding and clinicopathologic features, and to determine the prognostic significance of tumor budding in LSCCs. Fifty laryngectomy specimens were included. Tumor budding was counted (20x) on slides stained with IHC-CK, and highest count per slide was noted. The cases were classified as positive (> 1 buds) or negative (no buds present). The budding index was categorized as low (< 5 buds) or high (> 5 buds). Tumor budding on H&E was absent, low and high grade in 28%, 30% and 42% cases respectively, when compared to CK-IHC in 17%, 24% and 59% of cases, respectively. Presence of lymphoplasmacytic infiltration significantly correlated with tumor budding and higher grade. Transglottic location of tumor and pT stage was associated with high budding. Presence of lymphoplasmacytic infiltrate significantly correlated with worse prognosis. Tumor budding, an easily assessable, inexpensive histopathologic parameter has seldom been studied in LSCCs. Presence of lymphoplasmacytic infiltrate in routine preoperative biopsy reporting could be useful in prognostication. CK-IHC is helpful to detect especially cases with low-grade tumor budding.
Collapse
Affiliation(s)
- Shreyanshi Gupta
- Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Saraswathy Sreeram
- Department of Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Amanda Christina Pinto
- Department of Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Pooja Kundapur Suresh
- Department of Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
11
|
Teramatsu K, Oono T, Oyama K, Fujimori N, Murakami M, Yasumori S, Ohno A, Matsumoto K, Takeno A, Nakata K, Nakamura M, Ogawa Y. Circulating CD8+CD122+ T cells as a prognostic indicator of pancreatic cancer. BMC Cancer 2022; 22:1134. [PMCID: PMC9636831 DOI: 10.1186/s12885-022-10207-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Purpose
The distribution of tissue infiltrating lymphocytes has been shown to affect the prognosis of patients with pancreatic cancer in some previous studies. However, the role of peripheral lymphocytes in pancreatic cancer remains debated. The purpose of this study was to analyze the peripheral subtypes of T lymphocytes, and establish their association with the prognosis of patients with pancreatic cancer.
Methods
Blood and tissue samples were collected from patients with metastatic pancreatic cancer (n = 54), resectable pancreatic cancer (n = 12), and benign pancreatic cysts (n = 52) between April 2019 and January 2022 and analyzed.
Results
Patients with metastatic pancreatic cancer had a larger proportion of both tumor-suppressive and tumor-promoting cells than those with benign pancreatic cysts. In addition, the proportion of peripheral CD4+ T cells positively correlated with the survival of patients with metastatic pancreatic cancer, and the proportion of peripheral CD8+CD122+ T cells was associated with early mortality (< 90 days). After chemotherapy, CD8+CD122+ T cells decreased in patients who had a partial response or stable disease. Moreover, by analyzing resected specimens, we first proved that the existence of CD8+CD122+ T cells in a tumor microenvironment (TME) depends on their proportion in peripheral blood.
Conclusion
Circulating CD8+CD122+ T cells can be a prognostic indicator in patients with pancreatic cancer.
Collapse
|
12
|
Chen Y, Gao Y, Ma X, Wang Y, Liu J, Yang C, Wang Y, Bao C, Song X, Feng Y, Sun Y, Qiao S. A study on the correlation between M2 macrophages and regulatory T cells in the progression of colorectal cancer. Int J Biol Markers 2022; 37:412-420. [DOI: 10.1177/03936155221132572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background M2 macrophages and regulatory T cells (Tregs) can promote tumors and development by inhibiting the anti-tumor immune response. This study investigated the effect of CD163-positive M2 macrophages and Foxp3-positive Tregs in the progression of colorectal cancer and lymph node metastasis. It also investigated the correlation between M2 macrophages and Tregs. Methods Postoperative tissue specimens and clinical data were collected from 197 patients with colorectal cancer who underwent initial surgical treatment in The Second Ward of Colorectal Surgery of the First Affiliated Hospital of Jinzhou Medical University from March 2020 to December 2020. Immunohistochemical methods were used to detect the expression levels of CD163 protein-labeled M2 macrophages and Foxp3 protein-labeled Tregs in colorectal cancer tissues, matched paracancer tissues, and lymph node tissues. The correlation between CD163 and Foxp3 in cancer tissues and lymph node tissues were analyzed, as well as the relationship between clinicopathological characteristics and preoperative tumor markers. Results M2 macrophages and Tregs were importantly positively correlated in cancer and lymph node tissues, which significantly increased in cancer and metastatic lymph node tissues. Interestingly, M2 macrophages in non-metastatic lymph nodes also increased significantly in patients with metastatic lymph nodes. In addition, both CD163 and Foxp3 were upregulated with increasing tumor node metastasis stage, depth of infiltration, and lymphatic metastasis; and both were positively correlated with carcinoembryonic antigen. Conclusion CD163 may be a good predictor of pre-metastatic status of colorectal cancer lymph nodes. carcinoembryonic antigen affects the distribution of M2 macrophages and Tregs in colorectal cancer. There is a certain correlation between the two types of cells. It is possible that M2 macrophages, together with suppressor Tregs cells, promote an immunosuppressive environment.
Collapse
Affiliation(s)
- Yanlei Chen
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yu Gao
- Computer Teaching and Research Section, Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Xueqian Ma
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yanping Wang
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Jinhao Liu
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Chunyu Yang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yue Wang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Cuifen Bao
- Basic Medical Experimental Teaching Center, Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Xiaoyu Song
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yang Feng
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yan Sun
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Shifeng Qiao
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
13
|
Luo L, Wang X, Liao YP, Chang CH, Nel AE. Nanocarrier Co-formulation for Delivery of a TLR7 Agonist plus an Immunogenic Cell Death Stimulus Triggers Effective Pancreatic Cancer Chemo-immunotherapy. ACS NANO 2022; 16:13168-13182. [PMID: 35920660 PMCID: PMC10117630 DOI: 10.1021/acsnano.2c06300] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although toll-like receptor (TLR) agonists hold great promise as immune modulators for reprogramming the suppressive immune landscape in pancreatic ductal adenocarcinoma (PDAC), their use is limited by poor pharmacokinetics (PK) and off-target systemic inflammatory effects. To overcome these challenges as well as to attain drug synergy, we developed a lipid bilayer (LB)-coated mesoporous silica nanoparticle (silicasome) platform for co-delivery of the TLR7/8 agonist 3M-052 with the immunogenic chemotherapeutic agent irinotecan. This was accomplished by incorporating the C18 lipid tail of 3M-052 in the coated LB, also useful for irinotecan remote loading in the porous interior. Not only did the co-formulated carrier improve PK, but it strengthened the irinotecan-induced immunogenic cell death response by 3M-052-mediated dendritic cell activation at the tumor site as well as participating lymph nodes. The accompanying increase in CD8+ T-cell infiltration along with a reduced number of regulatory T-cells was associated with tumor shrinkage and metastasis disappearance in subcutaneous and orthotopic KRAS-mediated pancreatic carcinoma tumor models. Moreover, this therapeutic outcome was accomplished without drug or nanocarrier toxicity. All considered, dual-delivery strategies that combine chemo-immunotherapy with co-formulated TLR agonists or other lipid-soluble immune modulators predict successful intervention in heterogeneous PDAC immune landscapes.
Collapse
Affiliation(s)
- Lijia Luo
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Andre E. Nel
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Song J, Lin Z, Liu Q, Huang S, Han L, Fang Y, Zhong P, Dou R, Xiang Z, Zheng J, Zhang X, Wang S, Xiong B. MiR-192-5p/RB1/NF-κBp65 signaling axis promotes IL-10 secretion during gastric cancer EMT to induce Treg cell differentiation in the tumour microenvironment. Clin Transl Med 2022; 12:e992. [PMID: 35969010 PMCID: PMC9377151 DOI: 10.1002/ctm2.992] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells are important components of the tumour microenvironment (TME) that play roles in gastric cancer (GC) metastasis. Although tumour cells that undergo epithelial-mesenchymal transition (EMT) regulate Treg cell function, their regulatory mechanism in GC remains unclear. METHODS The miR-192-5p was identified by examining three Gene Expression Omnibus GC miRNA expression datasets. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were conducted to identify interactions between miR-192-5p and RB1. The role of miR-192-5p/RB1 in GC progression was evaluated based on EdU incorporation, wound healing and Transwell assays. An in vitro co-culture assay was performed to measure the effect of miR-192-5p/RB1 on Treg cell differentiation. In vivo experiments were conducted to explore the role of miR-192-5p in GC progression and Treg cell differentiation. RESULTS MiR-192-5p was overexpressed in tumour and was associated with poor prognosis in GC. MiR-192-5p bound to the RB1 3'-untranslated region, resulting in GC EMT, proliferation, migration and invasion. MiR-192-5p/RB1 mediated interleukin-10 (IL-10) secretion by regulating nuclear factor-kappaBp65 (NF-κBp65), affecting Treg cell differentiation. NF-κBp65, in turn, promoted miR-192-5p expression and formed a positive feedback loop. Furthermore, in vivo experiments confirmed that miR-192-5p/RB1 promotes GC growth and Treg cell differentiation. CONCLUSION Collectively, our studies indicate that miR-192-5p/RB1 promotes EMT of tumour cells, and the miR-192-5p/RB1/NF-κBp65 signaling axis induces Treg cell differentiation by regulating IL-10 secretion in GC. Our results suggest that targeting miR-192-5p/RB1/NF-κBp65 /IL-10 may pave the way for the development of new immune treatments for GC.
Collapse
Affiliation(s)
- Jialin Song
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Zaihuan Lin
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Qing Liu
- Department of Respiratory and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhanChina
| | - Sihao Huang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Lei Han
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Yan Fang
- Department of obstetrics and gynecologyGuangzhou Women and Children's Medical CenterGuangzhouChina
| | - Panyi Zhong
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Rongzhang Dou
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Zhenxian Xiang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Jinsen Zheng
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Xinyao Zhang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Shuyi Wang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Bin Xiong
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| |
Collapse
|
15
|
Plesca I, Benešová I, Beer C, Sommer U, Müller L, Wehner R, Heiduk M, Aust D, Baretton G, Bachmann MP, Feldmann A, Weitz J, Seifert L, Seifert AM, Schmitz M. Clinical Significance of Tumor-Infiltrating Conventional and Plasmacytoid Dendritic Cells in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14051216. [PMID: 35267524 PMCID: PMC8909898 DOI: 10.3390/cancers14051216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The tumor immune contexture plays a pivotal role for the clinical outcome of cancer patients and the efficacy of various treatment modalities. Dendritic cells (DCs) represent a major component of the tumor immune architecture that can either efficiently promote antitumor immunity or contribute to immunosuppression. Here, we investigated the frequency, spatial organization, and clinical significance of tumor-infiltrating conventional DCs type 1 (cDC1s) and type 2 (cDC2s) and plasmacytoid DCs (pDCs) in pancreatic ductal adenocarcinoma (PDAC). A higher frequency of whole tumor area (WTA)- and tumor stroma (TS)-infiltrating cDC1s, and of intraepithelial tumor-infiltrating cDC2s, was significantly associated with improved survival. Furthermore, a higher density of both WTA- and TS-infiltrating cDC1s and pDCs emerged as an independent prognostic factor for better survival. These results provide evidence that tumor-infiltrating DCs are associated with survival of PDAC patients and may support the design of novel DC-based immunotherapeutic strategies. Abstract Dendritic cells (DCs) play a key role in the orchestration of antitumor immunity. Activated DCs efficiently enhance antitumor effects mediated by natural killer cells and T lymphocytes. Conversely, tolerogenic DCs essentially contribute to an immunosuppressive tumor microenvironment. Thus, DCs can profoundly influence tumor progression and clinical outcome of tumor patients. To gain novel insights into the role of human DCs in pancreatic ductal adenocarcinoma (PDAC), we explored the frequency, spatial organization, and clinical significance of conventional DCs type 1 (cDC1s) and type 2 (cDC2s) and plasmacytoid DCs (pDCs) in primary PDAC tissues. A higher density of whole tumor area (WTA)- and tumor stroma (TS)-infiltrating cDC1s was significantly associated with better disease-free survival (DFS). In addition, an increased frequency of intraepithelial tumor-infiltrating cDC2s was linked to better DFS and overall survival (OS). Furthermore, an increased density of WTA- and TS-infiltrating pDCs tended to improve DFS. Moreover, a higher frequency of WTA- and TS-infiltrating cDC1s and pDCs emerged as an independent prognostic factor for better DFS and OS. These findings indicate that tumor-infiltrating DCs can significantly influence the clinical outcome of PDAC patients and may contribute to the design of novel treatment options that target PDAC-infiltrating DCs.
Collapse
Affiliation(s)
- Ioana Plesca
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (I.P.); (I.B.); (C.B.); (L.M.); (R.W.)
| | - Iva Benešová
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (I.P.); (I.B.); (C.B.); (L.M.); (R.W.)
| | - Carolin Beer
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (I.P.); (I.B.); (C.B.); (L.M.); (R.W.)
| | - Ulrich Sommer
- Institute of Pathology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (U.S.); (D.A.); (G.B.)
| | - Luise Müller
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (I.P.); (I.B.); (C.B.); (L.M.); (R.W.)
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (I.P.); (I.B.); (C.B.); (L.M.); (R.W.)
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.H.); (M.P.B.); (J.W.); (L.S.); (A.M.S.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Max Heiduk
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.H.); (M.P.B.); (J.W.); (L.S.); (A.M.S.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Daniela Aust
- Institute of Pathology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (U.S.); (D.A.); (G.B.)
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.H.); (M.P.B.); (J.W.); (L.S.); (A.M.S.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Gustavo Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (U.S.); (D.A.); (G.B.)
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.H.); (M.P.B.); (J.W.); (L.S.); (A.M.S.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Michael P Bachmann
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.H.); (M.P.B.); (J.W.); (L.S.); (A.M.S.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, Bautzener Straße 400, 01328 Dresden, Germany;
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, Bautzener Straße 400, 01328 Dresden, Germany;
| | - Jürgen Weitz
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.H.); (M.P.B.); (J.W.); (L.S.); (A.M.S.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Lena Seifert
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.H.); (M.P.B.); (J.W.); (L.S.); (A.M.S.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Adrian M Seifert
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.H.); (M.P.B.); (J.W.); (L.S.); (A.M.S.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (I.P.); (I.B.); (C.B.); (L.M.); (R.W.)
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.H.); (M.P.B.); (J.W.); (L.S.); (A.M.S.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-351-458-6501
| |
Collapse
|
16
|
Wang X, Li L, Yang Y, Fan L, Ma Y, Mao F. Reveal the Heterogeneity in the Tumor Microenvironment of Pancreatic Cancer and Analyze the Differences in Prognosis and Immunotherapy Responses of Distinct Immune Subtypes. Front Oncol 2022; 12:832715. [PMID: 35252003 PMCID: PMC8891159 DOI: 10.3389/fonc.2022.832715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose The current clinical classification of pancreatic ductal adenocarcinoma (PDAC) cannot well predict the patient’s possible response to the treatment plan, nor can it predict the patient’s prognosis. We use the gene expression patterns of PDAC patients to reveal the heterogeneity of the tumor microenvironment of pancreatic cancer and analyze the differences in the prognosis and immunotherapy response of different immune subtypes. Methods Firstly, use ICGC’s PACA-AU PDAC expression profile data, combined with the ssGSEA algorithm, to analyze the immune enrichment of the patient’s tumor microenvironment. Subsequently, the spectral clustering algorithm was used to extract different classifications, the PDAC cohort was divided into four subtypes, and the correlation between immune subtypes and clinical characteristics and survival prognosis was established. The patient’s risk index is obtained through the prognostic prediction model, and the correlation between the risk index and immune cells is prompted. Results We can divide the PDAC cohort into four subtypes: immune cell and stromal cell enrichment (Immune-enrich-Stroma), non-immune enrichment but stromal cell enrichment (Non-immune-Stroma), immune-enriched Collective but non-matrix enrichment (Immune-enrich-non-Stroma) and non-immune enrichment and non-stromal cell enrichment (Non-immune-non-Stroma). The five-year survival rate of immune-enrich-Stroma and non-immune-Stroma of PACA-CA is quite different. TCGA-PAAD’s immune-enrich-Stroma and immune-enrich-non-Stroma groups have a large difference in productivity in one year. The results of the correlation analysis between the risk index and immune cells show that the patient’s disease risk is significantly related to epithelial cells, megakaryocyte-erythroid progenitor (MEP), and Th2 cells. Conclusion The tumor gene expression characteristics of pancreatic cancer patients are related to immune response, leading to morphologically recognizable PDAC subtypes with prognostic/predictive significance.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Feifei Mao, ; Xiaoqin Wang,
| | - Lifang Li
- Emergency Department, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Changzhou, Changzhou, China
| | - Linlin Fan
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Feifei Mao
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Feifei Mao, ; Xiaoqin Wang,
| |
Collapse
|
17
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
18
|
Tiwari JK, Negi S, Kashyap M, Nizamuddin S, Singh A, Khattri A. Pan-Cancer Analysis Shows Enrichment of Macrophages, Overexpression of Checkpoint Molecules, Inhibitory Cytokines, and Immune Exhaustion Signatures in EMT-High Tumors. Front Oncol 2022; 11:793881. [PMID: 35096592 PMCID: PMC8790577 DOI: 10.3389/fonc.2021.793881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a highly dynamic process that occurs under normal circumstances; however, EMT is also known to play a central role in tumor progression and metastasis. Furthermore, role of tumor immune microenvironment (TIME) in shaping anticancer immunity and inducing the EMT is also well recognized. Understanding the key features of EMT is critical for the development of effective therapeutic interventions. Given the central role of EMT in immune escape and cancer progression and treatment, we have carried out a pan-cancer TIME analysis of The Cancer Genome Atlas (TCGA) dataset in context to EMT. We have analyzed infiltration of various immune cells, expression of multiple checkpoint molecules and cytokines, and inflammatory and immune exhaustion gene signatures in 22 cancer types from TCGA dataset. A total of 16 cancer types showed a significantly increased (p < 0.001) infiltration of macrophages in EMT-high tumors (mesenchymal samples). Furthermore, out of the 17 checkpoint molecules we analyzed, 11 showed a significant overexpression (p < 0.001) in EMT-high samples of at least 10 cancer types. Analysis of cytokines showed significant enrichment of immunosuppressive cytokines-TGFB1 and IL10-in the EMT-high group of almost all cancer types. Analysis of various gene signatures showed enrichment of inflammation, exhausted CD8+ T cells, and activated stroma signatures in EMT-high tumors. In summary, our pan-cancer EMT analysis of TCGA dataset shows that the TIME of EMT-high tumors is highly immunosuppressive compared to the EMT-low (epithelial) tumors. The distinctive features of EMT-high tumors are as follows: (i) the enrichment of tumor-associated macrophages, (ii) overexpression of immune checkpoint molecules, (iii) upregulation of immune inhibitory cytokines TGFB1 and IL10, and (iv) enrichment of inflammatory and exhausted CD8+ T-cell signatures. Our study shows that TIMEs of different EMT groups differ significantly, and this would pave the way for future studies analyzing and targeting the TIME regulators for anticancer immunotherapy.
Collapse
Affiliation(s)
- Jayesh Kumar Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Shloka Negi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Manju Kashyap
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Concepción, Chile
| | - Sheikh Nizamuddin
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Arun Khattri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
19
|
Palamaris K, Felekouras E, Sakellariou S. Epithelial to Mesenchymal Transition: Key Regulator of Pancreatic Ductal Adenocarcinoma Progression and Chemoresistance. Cancers (Basel) 2021; 13:cancers13215532. [PMID: 34771695 PMCID: PMC8582651 DOI: 10.3390/cancers13215532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma’s (PDAC) dismal prognosis is associated with its aggressive biological behavior and resistance to chemotherapy. Epithelial to mesenchymal transition (EMT) has been recognized as a key driver of PDAC progression and development of drug resistance. EMT is a transient and reversible process leading to transdifferentiation of epithelial cells into a more mesenchymal phenotype. It is regulated by multiple signaling pathways that control the activity of a transcription factors network. Activation of EMT in pre-invasive stages of PDAC has been accused for early dissemination. Furthermore, it contributes to the development of intratumoral heterogeneity and drug resistance. This review summarizes the available data regarding signaling networks regulating EMT and describes the integral role of EMT in different aspects of PDAC pathogenesis. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies, characterized by aggressive biological behavior and a lack of response to currently available chemotherapy. Emerging evidence has identified epithelial to mesenchymal transition (EMT) as a key driver of PDAC progression and a central regulator in the development of drug resistance. EMT is a reversible transdifferentiation process controlled by complex interactions between multiple signaling pathways such as TGFb, Wnt, and Notch, which converge to a network of specific transcription factors. Activation of EMT transcriptional reprogramming converts cancer cells of epithelial differentiation into a more mesenchymal phenotypic state. EMT occurrence in pre-invasive pancreatic lesions has been implicated in early PDAC dissemination. Moreover, cancer cell phenotypic plasticity driven by EMT contributes to intratumoral heterogeneity and drug tolerance and is mechanistically associated with the emergence of cells exhibiting cancer stem cells (CSCs) phenotype. In this review we summarize the available data on the signaling cascades regulating EMT and the molecular isnteractions between pancreatic cancer and stromal cells that activate them. In addition, we provide a link between EMT, tumor progression, and chemoresistance in PDAC.
Collapse
Affiliation(s)
- Kostas Palamaris
- 1ST Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelos Felekouras
- 1ST Department of Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stratigoula Sakellariou
- 1ST Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence:
| |
Collapse
|
20
|
Prognostic Implications of Intratumoral and Peritumoral Infiltrating Lymphocytes in Pancreatic Ductal Adenocarcinoma. Curr Oncol 2021; 28:4367-4376. [PMID: 34898543 PMCID: PMC8628731 DOI: 10.3390/curroncol28060371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to elucidate the prognostic implications of intratumoral and peritumoral infiltrating T-lymphocytes in pancreatic ductal adenocarcinoma (PDAC) through a meta-analysis. A total of 18 eligible studies and 2453 PDAC patients were included in the present study. Intratumoral and peritumoral infiltrating lymphocytes were evaluated using various markers, such as CD3, CD4, CD8, FOXP3, and immune cell score. The correlations between these parameters and overall and disease-free survival were investigated and used in the meta-analysis. High intratumoral infiltration of CD3-, CD4-, and CD8-expressing lymphocytes was significantly correlated with better overall survival (hazard ratio (HR) 0.747, 95% confidence interval (CI) 0.620-0.900, HR 0.755, 95% CI 0.632-0.902, and HR 0.754, 95% CI 0.611-0.930, respectively). However, there was no significant correlation between PDAC prognosis and intratumoral FOXP3 or immune cell score (HR 1.358, 95% CI 1.115-1.655 and HR 0.776, 95% CI 0.566-1.065, respectively). Moreover, there was no significant correlation between the prognosis and peritumoral infiltrating T-lymphocytes. In evaluations of disease-free survival, only high intratumoral CD4 infiltration was correlated with a better prognosis (HR 0.525, 95% CI 0.341-0.810). Our results showed that high intratumoral infiltrating lymphocytes were significantly correlated with a better PDAC prognosis. However, among the tumor-infiltrating lymphocytes, CD3, CD4, and CD8 had prognostic implications, but not FOXP3 and immune cell score.
Collapse
|
21
|
Hu L, Zhu M, Shen Y, Zhong Z, Wu B. The prognostic value of intratumoral and peritumoral tumor-infiltrating FoxP3+Treg cells in of pancreatic adenocarcinoma: a meta-analysis. World J Surg Oncol 2021; 19:300. [PMID: 34654443 PMCID: PMC8520308 DOI: 10.1186/s12957-021-02420-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs) are major participants in the tumor microenvironment. The prognostic value of TILs in patients with pancreatic cancer is still controversial. Methods The aim of our meta-analysis was to determine the impact of FoxP3+Treg cells on the survival of pancreatic cancer patients. We searched for related studies in PubMed, EMBASE, Ovid, and Cochrane Library from the time the databases were established to Mar 30, 2017. We identified studies reporting the prognostic value of FoxP3+Treg cells in patients with pancreatic cancer. Overall survival (OS) and disease-free survival (DFS)/progression-free survival (PFS)/relapse-free survival (RFS) were investigated by pooling the data. The pooled hazard ratios (HRs) with 95% confidence intervals (95% CI) were used to evaluate the association between FoxP3+Treg cells and survival outcomes of pancreatic cancer patients. A total of 972 pancreatic cancer patients from 8 studies were included in our meta-analysis. Results High levels of infiltration with FoxP3+Treg cells were significantly associated with poor OS (HR=2.13; 95% CI 1.64–2.77; P<0.05) and poor DFS/PFS/RFS (HR=1.70; 95% CI 1.04 ~ 2.78; P< 0.05). Similar results were also observed in the peritumoral tissue; high levels of FoxP3+Treg cells were associated with poor OS (HR =2.1795% CI, CI 1.50–3.13). Conclusion This meta-analysis indicated that high levels of intratumoral or peritumoral FoxP3+Treg cell infiltration could be recognized as a negative factor in the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Lingyu Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China
| | - Mingyuan Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China.
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
22
|
Carbone C, Piro G, Agostini A, Delfino P, De Sanctis F, Nasca V, Spallotta F, Sette C, Martini M, Ugel S, Corbo V, Cappello P, Bria E, Scarpa A, Tortora G. Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer. J Immunother Cancer 2021; 9:jitc-2021-002876. [PMID: 34479922 PMCID: PMC8420705 DOI: 10.1136/jitc-2021-002876] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 02/04/2023] Open
Abstract
Background Complex tumor and immune microenvironment render pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint inhibitors (ICIs). Therefore, a strategy to convert the immune hostile into an immunopermissive tumor is required. Recent studies showed that intratumoral injection of Toll-like receptor 9 agonist IMO-2125 primes the adaptive immune response. Phase I and II trials with intratumoral IMO-2125 demonstrated its safety and antitumoral activity. Methods We generated an array of preclinical models by orthotopically engrafting PDAC-derived cell lines in syngeneic mice and categorized them as high, low and no immunogenic potential, based on the ability of tumor to evoke T lymphocyte or NK cell response. To test the antitumor efficacy of IMO-2125 on locally treated and distant sites, we engrafted cancer cells on both flanks of syngeneic mice and treated them with intratumoral IMO-2125 or vehicle, alone or in combination with anti-PD1 ICI. Tumor tissues and systemic immunity were analyzed by transcriptomic, cytofluorimetric and immunohistochemistry analysis. Results We demonstrated that intratumoral IMO-2125 as single agent triggers immune system response to kill local and distant tumors in a selected high immunogenic subtype affecting tumor growth and mice survival. Remarkably, intratumoral IMO-2125 in combination with systemic anti-PD1 causes a potent antitumor effect on primary injected and distant sites also in pancreatic cancer models with low immunogenic potential, preceded by a transition toward an immunopermissive microenvironment, with increase in tumor-infiltrating dendritic and T cells in tumor and lymph nodes. Conclusion We demonstrated a potent antitumor activity of IMO-2125 and anti-PD1 combination in immunotherapy-resistant PDAC models through the modulation of immune microenvironment, providing the rationale to translate this strategy into a clinical setting.
Collapse
Affiliation(s)
- Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy.,ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Vincenzo Nasca
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Francesco Spallotta
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI - CNR), Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Catholic University of the Sacred Heart, Milano, Italy
| | - Maurizio Martini
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy.,ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Bria
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy.,ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy .,Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
23
|
Sivakumar S, Abu-Shah E, Ahern DJ, Arbe-Barnes EH, Jainarayanan AK, Mangal N, Reddy S, Rendek A, Easton A, Kurz E, Silva M, Soonawalla Z, Heij LR, Bashford-Rogers R, Middleton MR, Dustin ML. Activated Regulatory T-Cells, Dysfunctional and Senescent T-Cells Hinder the Immunity in Pancreatic Cancer. Cancers (Basel) 2021; 13:1776. [PMID: 33917832 PMCID: PMC8068251 DOI: 10.3390/cancers13081776] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has one of the worst prognoses of any human malignancy and leukocyte infiltration is a major prognostic marker of the disease. As current immunotherapies confer negligible survival benefits, there is a need to better characterise leukocytes in pancreatic cancer to identify better therapeutic strategies. In this study, we analysed 32 human pancreatic cancer patients from two independent cohorts. A multi-parameter mass-cytometry analysis was performed on 32,000 T-cells from eight patients. Single-cell RNA sequencing dataset analysis was performed on a cohort of 24 patients. Multiplex immunohistochemistry imaging and spatial analysis were performed to map immune infiltration into the tumour microenvironment. Regulatory T-cell populations demonstrated highly immunosuppressive states with high TIGIT, ICOS and CD39 expression. CD8+ T-cells were found to be either in senescence or an exhausted state. The exhausted CD8 T-cells had low PD-1 expression but high TIGIT and CD39 expression. These findings were corroborated in an independent pancreatic cancer single-cell RNA dataset. These data suggest that T-cells are major players in the suppressive microenvironment of pancreatic cancer. Our work identifies multiple novel therapeutic targets that should form the basis for rational design of a new generation of clinical trials in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Shivan Sivakumar
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (S.S.); (A.E.); (M.R.M.)
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
- Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David J. Ahern
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
| | | | - Ashwin K. Jainarayanan
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
- Interdisciplinary Bioscience Doctoral Training Program and Exeter College, University of Oxford, Oxford OX3 7DQ, UK
| | - Nagina Mangal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Srikanth Reddy
- Department of Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.R.); (M.S.); (Z.S.)
| | - Aniko Rendek
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Alistair Easton
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (S.S.); (A.E.); (M.R.M.)
| | - Elke Kurz
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
| | - Michael Silva
- Department of Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.R.); (M.S.); (Z.S.)
| | - Zahir Soonawalla
- Department of Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.R.); (M.S.); (Z.S.)
| | - Lara R. Heij
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany;
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | | | - Mark R. Middleton
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (S.S.); (A.E.); (M.R.M.)
- Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
| |
Collapse
|
24
|
Väyrynen SA, Zhang J, Yuan C, Väyrynen JP, Dias Costa A, Williams H, Morales-Oyarvide V, Lau MC, Rubinson DA, Dunne RF, Kozak MM, Wang W, Agostini-Vulaj D, Drage MG, Brais L, Reilly E, Rahma O, Clancy T, Wang J, Linehan DC, Aguirre AJ, Fuchs CS, Coussens LM, Chang DT, Koong AC, Hezel AF, Ogino S, Nowak JA, Wolpin BM. Composition, Spatial Characteristics, and Prognostic Significance of Myeloid Cell Infiltration in Pancreatic Cancer. Clin Cancer Res 2021; 27:1069-1081. [PMID: 33262135 PMCID: PMC8345232 DOI: 10.1158/1078-0432.ccr-20-3141] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Although abundant myeloid cell populations in the pancreatic ductal adenocarcinoma (PDAC) microenvironment have been postulated to suppress antitumor immunity, the composition of these populations, their spatial locations, and how they relate to patient outcomes are poorly understood. EXPERIMENTAL DESIGN To generate spatially resolved tumor and immune cell data at single-cell resolution, we developed two quantitative multiplex immunofluorescence assays to interrogate myeloid cells (CD15, CD14, ARG1, CD33, HLA-DR) and macrophages [CD68, CD163, CD86, IFN regulatory factor 5, MRC1 (CD206)] in the PDAC tumor microenvironment. Spatial point pattern analyses were conducted to assess the degree of colocalization between tumor cells and immune cells. Multivariable-adjusted Cox proportional hazards regression was used to assess associations with patient outcomes. RESULTS In a multi-institutional cohort of 305 primary PDAC resection specimens, myeloid cells were abundant, enriched within stromal regions, highly heterogeneous across tumors, and differed by somatic genotype. High densities of CD15+ARG1+ immunosuppressive granulocytic cells and M2-polarized macrophages were associated with worse patient survival. Moreover, beyond cell density, closer proximity of M2-polarized macrophages to tumor cells was strongly associated with disease-free survival, revealing the clinical significance and biologic importance of immune cell localization within tumor areas. CONCLUSIONS A diverse set of myeloid cells are present within the PDAC tumor microenvironment and are distributed heterogeneously across patient tumors. Not only the densities but also the spatial locations of myeloid immune cells are associated with patient outcomes, highlighting the potential role of spatially resolved myeloid cell subtypes as quantitative biomarkers for PDAC prognosis and therapy.
Collapse
Affiliation(s)
- Sara A Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jinming Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Juha P Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Hannah Williams
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Vicente Morales-Oyarvide
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Douglas A Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Richard F Dunne
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Margaret M Kozak
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - Wenjia Wang
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Michael G Drage
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Emma Reilly
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Osama Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas Clancy
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jiping Wang
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David C Linehan
- Department of General Surgery, University of Rochester Medical Center, Rochester, New York
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Charles S Fuchs
- Department of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Medical Oncology, Smilow Cancer Hospital, New Haven, Connecticut
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon
- Knight Cancer Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aram F Hezel
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
25
|
Zhang N, Wang D, Duan Y, Ayarick VA, Cao M, Wang Y, Zhang G, Wang Y. The special immune microenvironment of tumor budding and its impact on prognosis in gastric adenocarcinoma. Pathol Res Pract 2020; 216:152926. [PMID: 32327282 DOI: 10.1016/j.prp.2020.152926] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/23/2020] [Accepted: 03/14/2020] [Indexed: 12/30/2022]
Abstract
Recent studies showed that the tumor-infiltrating lymphocytes (TILs) are not randomly distributed, but organized to accumulate more or less densely in different regions within tumors, which have provoked new thoughts on cancer management. In this study we explored the characteristics of tumor immunemicroenvironment (TIME) for the tumor budding (TB) and lymphocytes in patients with gastric adenocarcinoma (GAC) as well as their prognostic significance. The TILs around the TB at the invasive margin were assessed by double-immunohistochemistry staining for the CD8, FOXP3, OX40 and GrB phenotypes. Results showed that there was a negative correlation between the density of TB and TILs in the budding area, tumor stroma and parenchyma. And the number of TILs around the TB was evidently reduced, compared with TILs in the non-budding region (P < 0.001). Additionally, the number of TILs in turn changed from non-budding area CD8+>FOXP3+>OX40+> GrB + T cells to FOXP3+>CD8+>OX40 + T > GrB + T cells in budding area. Survival rate was significantly lower in patients who had a higher density of TB (P < 0.001) and a lower density of TILs (P = 0.013). We concluded that TB was surrounded by a weak immune surveillance and immunosuppressive response supported the spatial heterogeneity in the TIME of gastric adenocarcinomas. The regional heterogeneity should be attached importance for identifying the influence of the TIME on cancer development and evolution.
Collapse
Affiliation(s)
- Nana Zhang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Depu Wang
- Department of Science and Technology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yixin Duan
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Vivian Adiila Ayarick
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Meng Cao
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ying Wang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guanjun Zhang
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi, 710061, China.
| | - Yili Wang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
26
|
Melzer MK, Arnold F, Stifter K, Zengerling F, Azoitei N, Seufferlein T, Bolenz C, Kleger A. An Immunological Glance on Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21093345. [PMID: 32397303 PMCID: PMC7246613 DOI: 10.3390/ijms21093345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Different factors such as mutational landscape, intra- and intertumoral heterogeneity, stroma, and immune cells impact carcinogenesis of PDAC associated with an immunosuppressive microenvironment. Different cell types with partly opposing roles contribute to this milieu. In recent years, immunotherapeutic approaches, including checkpoint inhibitors, were favored to treat cancers, albeit not every cancer entity exhibited benefits in a similar way. Indeed, immunotherapies rendered little success in pancreatic cancer. In this review, we describe the communication between the immune system and pancreatic cancer cells and propose some rationale why immunotherapies may fail in the context of pancreatic cancer. Moreover, we delineate putative strategies to sensitize PDAC towards immunological therapeutics and highlight the potential of targeting neoantigens.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Frank Arnold
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
- Correspondence:
| |
Collapse
|
27
|
Orhan A, Vogelsang RP, Andersen MB, Madsen MT, Hölmich ER, Raskov H, Gögenur I. The prognostic value of tumour-infiltrating lymphocytes in pancreatic cancer: a systematic review and meta-analysis. Eur J Cancer 2020; 132:71-84. [PMID: 32334338 DOI: 10.1016/j.ejca.2020.03.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Tumour-infiltrating lymphocytes (TILs) have previously been found to influence patient prognosis in other gastrointestinal cancers, for instance in colorectal cancer. An immunosuppressive phenotype often characterizes pancreatic cancer with a low degree of immune cell infiltration. Cytotoxic CD8+ T cell infiltration in tumours is found to be the best predictive variable for response to immune checkpoint inhibitor therapy, emphasizing the importance of investigating TILs in pancreatic cancer, especially focussing on CD8+ T cells. OBJECTIVE Here, we systematically review the literature and perform meta-analyses to examine the prognostic value of TILs in human pancreatic ductal adenocarcinomas (PDAC). Secondarily, we review the literature regarding the histological localization of TILs and the impact on survival in PDAC. EVIDENCE REVIEW A literature search was conducted on PubMed, Embase, The Cochrane Library and Web of Science. Studies examining patients with PDAC and the impact of high vs. low infiltration of immune cells on long-term oncological survival measures were included. Time-to-event meta-analysis and frequency analysis were conducted using a random effects model. The risk of bias was assessed using the Newcastle-Ottowa Scale. Quality of the cumulative evidence was evaluated using the GRADE approach for prognostic studies. FINDINGS In total, 1971 articles were screened, of which 43 studies were included in the systematic review and 39 in the meta-analysis. High infiltration of CD8+ lymphocytes was significantly associated with improved overall survival (OS) [hazard ratio (HR) = 0.58, 95% confidence intervals (CIs): 0.50-0.68], disease-free survival (DFS) [HR = 0.64, 95% CI: 0.52-0.78], progression-free survival [HR = 0.66, 95% CI: 0.51-0.86] and cancer-specific survival [HR = 0.56, 95% CI: 0.32-0.99]. A high infiltration of CD3+ T cells was correlated with increased OS [HR = 0.58, 95% CI: 0.50-0.68] and DFS [HR = 0.74, 95% CI: 0.38-1.43]. Infiltration of CD4+ lymphocytes was associated with improved 12-months OS [risk ratio = 0.59, 95% CI: 0.35-0.99] and DFS [risk ratio = 0.68, 95% CI: 0.53-0.88]. High expression of FoxP3+ lymphocytes was associated with poor OS [HR = 1.48, 95% CI: 1.20-1.83]. The greatest impact on survival was observed in the CD8+ T cell and OS group, when infiltration was located to the tumour centre [HR = 0.53, 95% CI: 0.45-0.63]. However, subgroup analysis on the impact of the histological location of infiltration revealed no significant differences between the subgroups (tumour centre, invasive margin, stroma and all locations) in any of the examined cell types and outcomes. CONCLUSIONS AND RELEVANCE Subsets of TILs, especially CD3+, CD8+ and FoxP3+ T cells are strongly associated with long-term oncological outcomes in patients with PDAC. To our knowledge, this is the first systematic review and meta-analysis on the prognostic value of TILs in pancreatic cancer.
Collapse
Affiliation(s)
- Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus P Vogelsang
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Malene B Andersen
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Michael T Madsen
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Emma R Hölmich
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Delayre T, Guilbaud T, Resseguier N, Mamessier E, Rubis M, Moutardier V, Fara R, Berdah SV, Garcia S, Birnbaum DJ. Prognostic impact of tumour-infiltrating lymphocytes and cancer-associated fibroblasts in patients with pancreatic adenocarcinoma of the body and tail undergoing resection. Br J Surg 2020; 107:720-733. [PMID: 31960955 DOI: 10.1002/bjs.11434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/20/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The prognosis of patients with pancreatic cancer remains poor and novel therapeutic targets are required urgently. Treatment resistance could be due to the tumour microenvironment, a desmoplastic stroma consisting of cancer-associated fibroblasts and tumour-infiltrating lymphocytes (TILs). The aim of the study was to evaluate the prognostic value of TILs and cancer-associated fibroblasts (CAFs) in pancreatic cancer of the body and tail. METHODS Using tissue microarray from resected left-sided pancreatic cancer specimens, the immunohistochemistry of TILs (cluster of differentiation (CD) 45, CD3, CD4, FoxP3 and CD8), CAFs (vimentin and α-smooth muscle actin (αSMA)) and functional markers (PD-L1 and Ki-67) was examined, and the association with disease-free (DFS) and overall (OS) survival investigated using a computer-assisted quantitative analysis. Patients were classified into two groups, with low or high levels or ratios, using the 75th percentile value as the cut-off. RESULTS Forty-three patients were included in the study. Their median DFS and OS were 9 and 27 months respectively. A high CD4/CD3 lymphocyte ratio was associated with poorer DFS (8 months versus 11 months for a low ratio) (hazard ratio (HR) 2·23, 95 per cent c.i. 1·04 to 4·61; P = 0·041) and OS (13 versus 27 months respectively) (HR 2·62, 1·11 to 5·88; P = 0·028). A low αSMA/vimentin ratio together with a high CD4/CD3 ratio was correlated with poorer outcomes. No significant association was found between Ki-67, PD-L1 and survival. CONCLUSION In patients with resected left-sided pancreatic cancer, a tumour microenvironment characterized by a high CD4/CD3 lymphocyte ratio along with a low αSMA/vimentin ratio is correlated with poorer survival.
Collapse
Affiliation(s)
- T Delayre
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - T Guilbaud
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - N Resseguier
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - E Mamessier
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - M Rubis
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - V Moutardier
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - R Fara
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - S V Berdah
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - S Garcia
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - D J Birnbaum
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| |
Collapse
|
29
|
Bassani-Sternberg M, Digklia A, Huber F, Wagner D, Sempoux C, Stevenson BJ, Thierry AC, Michaux J, Pak H, Racle J, Boudousquie C, Balint K, Coukos G, Gfeller D, Martin Lluesma S, Harari A, Demartines N, Kandalaft LE. A Phase Ib Study of the Combination of Personalized Autologous Dendritic Cell Vaccine, Aspirin, and Standard of Care Adjuvant Chemotherapy Followed by Nivolumab for Resected Pancreatic Adenocarcinoma-A Proof of Antigen Discovery Feasibility in Three Patients. Front Immunol 2019; 10:1832. [PMID: 31440238 PMCID: PMC6694698 DOI: 10.3389/fimmu.2019.01832] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the promising therapeutic effects of immune checkpoint blockade (ICB), most patients with solid tumors treated with anti-PD-1/PD-L1 monotherapy do not achieve objective responses, with most tumor regressions being partial rather than complete. It is hypothesized that the absence of pre-existing antitumor immunity and/or the presence of additional tumor immune suppressive factors at the tumor microenvironment are responsible for such therapeutic failures. It is therefore clear that in order to fully exploit the potential of PD-1 blockade therapy, antitumor immune response should be amplified, while tumor immune suppression should be further attenuated. Cancer vaccines may prime patients for treatments with ICB by inducing effective anti-tumor immunity, especially in patients lacking tumor-infiltrating T-cells. These "non-inflamed" non-permissive tumors that are resistant to ICB could be rendered sensitive and transformed into "inflamed" tumor by vaccination. In this article we describe a clinical study where we use pancreatic cancer as a model, and we hypothesize that effective vaccination in pancreatic cancer patients, along with interventions that can reprogram important immunosuppressive factors in the tumor microenvironment, can enhance tumor immune recognition, thus enhancing response to PD-1/PD-L1 blockade. We incorporate into the schedule of standard of care (SOC) chemotherapy adjuvant setting a vaccine platform comprised of autologous dendritic cells loaded with personalized neoantigen peptides (PEP-DC) identified through our own proteo-genomics antigen discovery pipeline. Furthermore, we add nivolumab, an antibody against PD-1, to boost and maintain the vaccine's effect. We also demonstrate the feasibility of identifying personalized neoantigens in three pancreatic ductal adenocarcinoma (PDAC) patients, and we describe their optimal incorporation into long peptides for manufacturing into vaccine products. We finally discuss the advantages as well as the scientific and logistic challenges of such an exploratory vaccine clinical trial, and we highlight its novelty.
Collapse
Affiliation(s)
- Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dorothea Wagner
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | - Anne-Christine Thierry
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Julien Racle
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Caroline Boudousquie
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Silvia Martin Lluesma
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Lana E. Kandalaft
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Farran B, Nagaraju GP. The dynamic interactions between the stroma, pancreatic stellate cells and pancreatic tumor development: Novel therapeutic targets. Cytokine Growth Factor Rev 2019; 48:11-23. [PMID: 31331827 DOI: 10.1016/j.cytogfr.2019.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023]
|
31
|
Mäkitie AA, Almangush A, Rodrigo JP, Ferlito A, Leivo I. Hallmarks of cancer: Tumor budding as a sign of invasion and metastasis in head and neck cancer. Head Neck 2019; 41:3712-3718. [PMID: 31328847 DOI: 10.1002/hed.25872] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Invasion and metastasis are hallmarks of cancer. The concept of tumor budding at tumor-host interface has been documented in many carcinomas. A growing body of evidence indicates that tumor budding is a sign of invasion and early step for metastasis of many epithelial cancers including head and neck squamous cell carcinoma (HNSCC). In addition, recent research has underlined the importance of tumor budding as a promising prognosticator in HNSCC. This review summarizes the findings regarding tumor budding in HNSCC and focuses on the role of tumor budding in invasion and metastasis. Also, we highlight the prognostic significance of tumor budding in HNSCC and its potential for improving clinical decision making in terms of recommending optimal individualized treatment for this patient population.
Collapse
Affiliation(s)
- Antti A Mäkitie
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska Hospital, Stockholm, Sweden
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland.,Institute of Biomedicine, Pathology, University of Turku, Turku, Finland.,Institute of Dentistry, University of Misurata, Misurata, Libya
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias, University of Oviedo, ISPA, IUOPA, CIBERONC, Oviedo, Spain
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| |
Collapse
|
32
|
Karamitopoulou E, Gloor B. Clinical Scenarios Emerging from Combined Immunophenotypic, Molecular and Morphologic Analysis of Pancreatic Cancer: The Good, the Bad and the Ugly Scenario. Cancers (Basel) 2019; 11:E968. [PMID: 31295960 PMCID: PMC6678850 DOI: 10.3390/cancers11070968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with increasing incidence and dismal prognosis. The composition of the immune cell infiltrates in the tumor microenvironment (TME) and the dynamic interplay between cancer- and immune cells can influence and/or be influenced by tumor-intrinsic characteristics like molecular profiles and tumor cell morphology. The combined analyses of pancreatic cancer by using morphologic, genetic, and immunologic features help us understand the significant heterogeneity of the TME and recognize the different mechanisms of immune evasion. Moreover, this information may lead to the identification of novel biomarkers for more precise patient stratification and therapy guidance.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Pancreatic Cancer Research Group, Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland.
| | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland.
| |
Collapse
|
33
|
Tumour microenvironment of pancreatic cancer: immune landscape is dictated by molecular and histopathological features. Br J Cancer 2019; 121:5-14. [PMID: 31110329 PMCID: PMC6738327 DOI: 10.1038/s41416-019-0479-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/03/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is a lethal disease, with fewer than 7% of patients surviving beyond 5 years following diagnosis. Immune responses are known to influence tumour progression. The dynamic interaction between cancer cells and immune cells in the tumour microenvironment (TME) can not only result in, or be influenced by, different tumour characteristics, but it can also lead to diverse mechanisms of immune evasion. At present, there is much interest in classifying pancreatic cancer according to its morphologic, genetic and immunologic features in order to understand the significant heterogeneity of this tumour type. Such information can contribute to the identification of highly needed novel prognostic and predictive biomarkers, and can be used for accurate patient stratification and therapy guidance. This review focuses on the characteristics of the local immune contexture of pancreatic ductal adenocarcinoma and the interaction between tumour cells and immune cells within the TME, by simultaneously taking into account the histomorphologic and genetic features of the tumours. The emerging opportunities for approaches that could predict the most-effective therapeutic modalities towards more targeted, personalised treatments to improve patient care are also discussed.
Collapse
|
34
|
Barry S, Carlsen E, Marques P, Stiles CE, Gadaleta E, Berney DM, Roncaroli F, Chelala C, Solomou A, Herincs M, Caimari F, Grossman AB, Crnogorac-Jurcevic T, Haworth O, Gaston-Massuet C, Korbonits M. Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene 2019; 38:5381-5395. [PMID: 30867568 PMCID: PMC6755983 DOI: 10.1038/s41388-019-0779-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/07/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms leading to aryl hydrocarbon receptor interacting protein (AIP) mutation-induced aggressive, young-onset growth hormone-secreting pituitary tumors are not fully understood. In this study, we have identified that AIP-mutation-positive tumors are infiltrated by a large number of macrophages compared to sporadic tumors. Tissue from pituitary-specific Aip-knockout (AipFlox/Flox;Hesx1Cre/+) mice recapitulated this phenotype. Our human pituitary tumor transcriptome data revealed the "epithelial-to-mesenchymal transition (EMT) pathway" as one of the most significantly altered pathways in AIPpos tumors. Our in vitro data suggest that bone marrow-derived macrophage-conditioned media induces more prominent EMT-like phenotype and enhanced migratory and invasive properties in Aip-knockdown somatomammotroph cells compared to non-targeting controls. We identified that tumor-derived cytokine CCL5 is upregulated in AIP-mutation-positive human adenomas. Aip-knockdown GH3 cell-conditioned media increases macrophage migration, which is inhibited by the CCL5/CCR5 antagonist maraviroc. Our results suggest that a crosstalk between the tumor and its microenvironment plays a key role in the invasive nature of AIP-mutation-positive tumors and the CCL5/CCR5 pathway is a novel potential therapeutic target.
Collapse
Affiliation(s)
- Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | | | - Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Craig E Stiles
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Emanuela Gadaleta
- Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Dan M Berney
- Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Federico Roncaroli
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester, M13 9PL, UK
| | - Claude Chelala
- Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Antonia Solomou
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Maria Herincs
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Francisca Caimari
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Tatjana Crnogorac-Jurcevic
- Molecular Oncology, Barts Cancer Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Oliver Haworth
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
35
|
Erlandsson A, Carlsson J, Lundholm M, Fält A, Andersson S, Andrén O, Davidsson S. M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate 2019; 79:363-369. [PMID: 30500076 PMCID: PMC6587459 DOI: 10.1002/pros.23742] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most frequently diagnosed cancers in the world. Emerging evidence suggests that inflammatory cells such as M2 macrophages and regulatory T cells (Tregs ) can contribute to cancer progression by suppressing the anti-tumor immune response. This study investigated the number of CD163-positive M2 macrophages in PCa tissue. It also investigated the correlation and interaction of M2 macrophages and Tregs . METHODS This nested case-control study included subjects from a cohort of men diagnosed with PCa as an incidental finding during transurethral resection of the prostate. The cases were 225 men who died from PCa, and the controls were 367 men who survived more than 10 years after PCa diagnosis without disease progression. Infiltrating CD163-positive M2 macrophages and FOXP3/CD4-positive Tregs in PCa tissue were identified using immunohistochemistry. The correlation and interaction of M2 macrophages and Tregs were assessed using Spearman's rank-order correlation and a likelihood test, respectively. Logistic regression was used to estimate odds ratios (ORs) for lethal PCa and macrophage counts. RESULTS The number of M2 macrophages and Tregs showed a significant correlation (P < 0.001) but no interactions. The OR for lethal PCa was 1.93 (95%CI: 1.23-3.03) for men with high numbers of M2 macrophages. Also for cases with uncertain outcome (GS categories 3 + 4 and 4 + 3) high numbers of M2 macrophages does predict a poorer prognosis. CONCLUSIONS Our data showed that men with high numbers of M2 macrophages in the prostate tumor environment had increased odds of dying of PCa. It is possible that M2 macrophages, together with other suppressor cells such as Tregs , promote an immunosuppressive environment.
Collapse
Affiliation(s)
- Ann Erlandsson
- Department of Urology, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Marie Lundholm
- Department of Medical BiosciencesUmeå UniversityUmeåSweden
| | - Anna Fält
- Clinical Epidemiology and BiostatisticsSchool of Medical SciencesÖrebro UniversityÖrebroSweden
| | - Sven‐Olof Andersson
- Department of Urology, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Ove Andrén
- Department of Urology, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Sabina Davidsson
- Department of Urology, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| |
Collapse
|
36
|
Prognostic Impact of Tumor-Infiltrating Lymphocytes and Neutrophils on Survival of Patients with Upfront Resection of Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11010039. [PMID: 30609853 PMCID: PMC6356339 DOI: 10.3390/cancers11010039] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
In patients with pancreatic ductal adenocarcinoma (PDAC), the tumor microenvironment consists of cellular and stromal components that influence prognosis. Hence, tumor-infiltrating lymphocytes (TILs) may predict prognosis more precisely than conventional staging systems. Studies on the impact of TILs are heterogeneous and further research is needed. Therefore, this study aims to point out the importance of peritumoral TILs, tumor-infiltrating neutrophils (TINs), and immune subtype classification in PDAC. Material from 57 patients was analyzed with immunohistochemistry performed for CD3, CD8, CD20, CD66b, α-sma, and collagen. Hot spots with peritumoral TILs and TINs were quantified according to the QTiS algorithm and the distance of TILs hot spots to the tumor front was measured. Results were correlated with overall (OS) and progression-free survival (PFS). High densities of peritumoral hot spots with CD3⁺, CD8⁺, and CD20⁺ TILs correlated significantly with improved OS and PFS. Combined immune cell subtypes predicted improved OS and PFS. High infiltration of CD3⁺ TILs predicted progression after 12 months. The location of TILs' hot spots and their distance to the tumor front did not correlate with patient survival. Peritumoral TILs and the composition of the stroma predict OS and PFS in PDAC.
Collapse
|
37
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
38
|
Berg KB, Schaeffer DF. Tumor budding as a standardized parameter in gastrointestinal carcinomas: more than just the colon. Mod Pathol 2018; 31:862-872. [PMID: 29403085 DOI: 10.1038/s41379-018-0028-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 02/08/2023]
Abstract
Tumor budding, defined as single cells or clusters of less than five cells, is thought to be a histomorphologic marker of an aggressive tumor behavior mimicking the embryologic epithelial-mesenchymal transition, and has been well established in the past two decades as a poor prognostic factor in colorectal carcinoma. Slow uptake in routine reporting of this important pathologic prognostic feature was in part due to differing methods of assessment of budding reported in the literature, but has recently been clarified at a consensus conference on tumor budding in colorectal carcinoma. Tumor budding is also increasingly being reported as a useful pathologic prognostic feature in other gastrointestinal carcinomas, including esophageal squamous cell carcinoma and adenocarcinoma, gastric intestinal-type adenocarcinoma, pancreatic ductal adenocarcinoma, and ampullary adenocarcinoma. In this review, we will summarize the studies on tumor budding in gastrointestinal carcinomas, with a focus on the methods of assessment used and the potential clinical applications of the findings.
Collapse
Affiliation(s)
- Kyra B Berg
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,Division of Anatomical Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
39
|
Wartenberg M, Cibin S, Zlobec I, Vassella E, Eppenberger-Castori S, Terracciano L, Eichmann MD, Worni M, Gloor B, Perren A, Karamitopoulou E. Integrated Genomic and Immunophenotypic Classification of Pancreatic Cancer Reveals Three Distinct Subtypes with Prognostic/Predictive Significance. Clin Cancer Res 2018; 24:4444-4454. [PMID: 29661773 DOI: 10.1158/1078-0432.ccr-17-3401] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Current clinical classification of pancreatic ductal adenocarcinoma (PDAC) is unable to predict prognosis or response to chemo- or immunotherapy and does not take into account the host reaction to PDAC cells. Our aim is to classify PDAC according to host- and tumor-related factors into clinically/biologically relevant subtypes by integrating molecular and microenvironmental findings.Experimental Design: A well-characterized PDAC cohort (n = 110) underwent next-generation sequencing with a hot spot cancer panel while next-generation tissue microarrays were immunostained for CD3, CD4, CD8, CD20, PD-L1, p63, hyaluronan-mediated motility receptor (RHAMM), and DNA mismatch repair proteins. Previous data on FOXP3 were integrated. Immune cell counts and protein expression were correlated with tumor-derived driver mutations, clinicopathologic features (TNM 8th edition, 2017), survival, and epithelial-mesenchymal transition (EMT)-like tumor budding.Results: Three PDAC subtypes were identified: the "immune escape" (54%), poor in T and B cells and enriched in FOXP3+ regulatory T cells (Treg), with high-grade budding, frequent CDKN2A, SMAD4, and PIK3CA mutations, and poor outcome; the "immune rich" (35%), rich in T and B cells and poorer in FOXP3+ Tregs, with infrequent budding, lower CDKN2A and PIK3CA mutation rate, and better outcome and a subpopulation with tertiary lymphoid tissue (TLT), mutations in DNA damage response genes (STK11 and ATM), and the best outcome; and the "immune exhausted" (11%), with immunogenic microenvironment and two subpopulations-one with PD-L1 expression and a high PIK3CA mutation rate and a microsatellite-unstable subpopulation with a high prevalence of JAK3 mutations. The combination of low budding, low stromal FOXP3 counts, presence of TLTs, and absence of CDKN2A mutations confers significant survival advantage in patients with PDAC.Conclusions: Immune host responses correlate with tumor characteristics, leading to morphologically recognizable PDAC subtypes with prognostic/predictive significance. Clin Cancer Res; 24(18); 4444-54. ©2018 AACRSee related commentary by Khalil and O'Reilly, p. 4355.
Collapse
Affiliation(s)
| | - Silvia Cibin
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | | | | - Mathias Worni
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
40
|
Fujii-Nishimura Y, Yamazaki K, Masugi Y, Douguchi J, Kurebayashi Y, Kubota N, Ojima H, Kitago M, Shinoda M, Hashiguchi A, Sakamoto M. Mesenchymal-epithelial transition of pancreatic cancer cells at perineural invasion sites is induced by Schwann cells. Pathol Int 2018; 68:214-223. [DOI: 10.1111/pin.12641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/29/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Yoko Fujii-Nishimura
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Ken Yamazaki
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Yohei Masugi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Junya Douguchi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Yutaka Kurebayashi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Naoto Kubota
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Hidenori Ojima
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Minoru Kitago
- Department of Surgery; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Masahiro Shinoda
- Department of Surgery; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Akinori Hashiguchi
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| | - Michiie Sakamoto
- Department of Pathology; Keio University School of Medicine; 35 Shinanomachi Shinjuku-ku Tokyo 160-8582 Japan
| |
Collapse
|
41
|
Hahn SA, Neuhoff A, Landsberg J, Schupp J, Eberts D, Leukel P, Bros M, Weilbaecher M, Schuppan D, Grabbe S, Tueting T, Lennerz V, Sommer C, Jonuleit H, Tuettenberg A. A key role of GARP in the immune suppressive tumor microenvironment. Oncotarget 2018; 7:42996-43009. [PMID: 27248166 PMCID: PMC5190003 DOI: 10.18632/oncotarget.9598] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/14/2016] [Indexed: 12/26/2022] Open
Abstract
In melanoma patients, one of the main reasons for tumor immune escape and therapy failure is the immunosuppressive tumor microenvironment. Herein, suppressive immune cells and inhibitory factors secreted by the tumor itself play a central role. In the present study we show that the Treg activation marker GARP (glycoprotein A repetitions predominant), known to induce peripheral tolerance in a TGF-β dependent way, is also expressed on human primary melanoma. Interestingly, membrane bound GARP is shed from the surface of both, activated Treg and melanoma cells, and, in its soluble form (sGARP), not only induces peripheral Treg but also a tumor associated (M2) macrophage phenotype. Notably, proliferation of cytotoxic T cells and their effector function is inhibited in the presence of sGARP. GARP expression on Treg and melanoma cells is significantly decreased in the presence of agents such as IFN-α, thus explaining at least in part a novel mechanism of action of this adjuvant therapy. In conclusion, GARP in its soluble and membrane bound form contributes to peripheral tolerance in a multipronged way, potentiates the immunosuppressive tumor microenvironment and thus acts as a negative regulator in melanoma patients. Therefore, it may qualify as a promising target and a new checkpoint for cancer immunotherapy.
Collapse
Affiliation(s)
- Susanne A Hahn
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Annemarie Neuhoff
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Jenny Landsberg
- Department of Dermatology, University Medical Center, Bonn, Germany
| | - Jonathan Schupp
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Daniela Eberts
- Department of Medicine II, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Martin Weilbaecher
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Tueting
- Department of Dermatology, University Medical Center, Bonn, Germany
| | - Volker Lennerz
- Department of Medicine II, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
42
|
Nejati R, Goldstein JB, Halperin DM, Wang H, Hejazi N, Rashid A, Katz MH, Lee JE, Fleming JB, Rodriguez-Canales J, Blando J, Wistuba II, Maitra A, Wolff RA, Varadhachary GR, Wang H. Prognostic Significance of Tumor-Infiltrating Lymphocytes in Patients With Pancreatic Ductal Adenocarcinoma Treated With Neoadjuvant Chemotherapy. Pancreas 2017; 46:1180-1187. [PMID: 28902789 PMCID: PMC5790553 DOI: 10.1097/mpa.0000000000000914] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to examine tumor-infiltrating lymphocytes (TILs) and their prognostic value in patients with pancreatic ductal adenocarcinoma (PDAC) after neoadjuvant therapy. METHODS Intratumoral CD4, CD8, and FOXP3 lymphocytes were examined by immunohistochemistry using a computer-assisted quantitative analysis in 136 PDAC patients who received neoadjuvant therapy and pancreaticoduodenectomy. The results were correlated with clinicopathological parameters and survival. RESULTS High CD4 TILs in treated PDAC were associated with high CD8 TILs (P = 0.003), differentiation (P = 0.04), and a lower frequency of recurrence (P = 0.02). Patients with high CD4 TILs had longer disease-free survival and overall survival (OS) than did patients with low CD4 TILs (P < 0.01). The median OS of patients with a high CD8/FOXP3 lymphocyte ratio (39.5 [standard deviation, 6.1] months) was longer than that of patients with a low CD8/FOXP3 lymphocyte ratio (28.3 [standard deviation, 2.3] months; P = 0.01). In multivariate analysis, high CD4 TILs were an independent prognostic factor for disease-free survival (hazard ratio, 0.49; 95% confidence interval, 0.30-0.81; P = 0.005) and OS (hazard ratio, 0.54; 95% confidence interval, 0.33-0.89; P = 0.02). CONCLUSIONS High level of CD4 lymphocytes is associated with tumor differentiation and lower recurrence and is an independent prognostic factor for survival in PDAC patients treated with neoadjuvant therapy.
Collapse
Affiliation(s)
- Reza Nejati
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer B. Goldstein
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel M. Halperin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nazila Hejazi
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew H. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason B. Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jorge Blando
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gauri R. Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
43
|
Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun 2017; 8:15095. [PMID: 28447602 PMCID: PMC5414182 DOI: 10.1038/ncomms15095] [Citation(s) in RCA: 471] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
The exact nature and dynamics of pancreatic ductal adenocarcinoma (PDAC) immune composition remains largely unknown. Desmoplasia is suggested to polarize PDAC immunity. Therefore, a comprehensive evaluation of the composition and distribution of desmoplastic elements and T-cell infiltration is necessary to delineate their roles. Here we develop a novel computational imaging technology for the simultaneous evaluation of eight distinct markers, allowing for spatial analysis of distinct populations within the same section. We report a heterogeneous population of infiltrating T lymphocytes. Spatial distribution of cytotoxic T cells in proximity to cancer cells correlates with increased overall patient survival. Collagen-I and αSMA+ fibroblasts do not correlate with paucity in T-cell accumulation, suggesting that PDAC desmoplasia may not be a simple physical barrier. Further exploration of this technology may improve our understanding of how specific stromal composition could impact T-cell activity, with potential impact on the optimization of immune-modulatory therapies. The functional significance of T-cell infiltration in pancreatic ductal adenocarcinoma in relation to desmoplastic stroma is unclear. Here the authors develop a method to spatially resolve tumour stroma composition and find that spatial T-cell infiltration correlates with patient prognosis regardless of desmoplasia.
Collapse
|
44
|
Bethmann D, Feng Z, Fox BA. Immunoprofiling as a predictor of patient's response to cancer therapy-promises and challenges. Curr Opin Immunol 2017; 45:60-72. [PMID: 28222333 DOI: 10.1016/j.coi.2017.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 12/26/2022]
Abstract
Immune cell infiltration is common to many tumors and has been recognized by pathologists for more than 100 years. The application of digital imaging and objective assessment software allowed a concise determination of the type and quantity of immune cells and their location relative to the tumor and, in the case of colon cancer, characterized overall survival better than AJCC TNM staging. Subsequently, expression of PD-L1, by 50% or more tumor cells, identified NSCLC patients with double the response rate to anti-PD-1. Soon, automated staining methods will improve reproducibility of multiplex staining and allow for CLIA standards so that multiplex staining can be used to make clinical decisions. Ultimately, machine-learning algorithms will help interpret data from tissue images and lead to improved delivery of precision medicine.
Collapse
Affiliation(s)
- Daniel Bethmann
- Martin Luther University Halle-Wittenberg, Institute of Pathology, Halle, Germany; Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, United States
| | - Zipei Feng
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, United States; School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Bernard A Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, United States; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
45
|
Stein AV, Dislich B, Blank A, Guldener L, Kröll D, Seiler CA, Langer R. High intratumoural but not peritumoural inflammatory host response is associated with better prognosis in primary resected oesophageal adenocarcinomas. Pathology 2016; 49:30-37. [PMID: 27916317 DOI: 10.1016/j.pathol.2016.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/30/2022]
Abstract
The host inflammatory response plays an important role in many solid malignancies. Studies on oesophageal adenocarcinomas (EACs) point towards a beneficial role of pronounced immunoreaction, however, congruent results have yet to be obtained. We analysed 111 primary resected EAC using a tissue microarray containing three cores of the tumour centre and the periphery per case. Overall inflammation was assessed by histomorphology. Tumour infiltrating lymphocytes (TILs) were characterised by immunohistochemistry for CD3, CD8 and FoxP3, and evaluated by image analysis (Aperio ImageScope). High levels of inflammation in the tumour centre, but not the periphery were associated with better patient survival (p = 0.001), similar to high counts of intratumoural FoxP3+, CD3+, CD8+ TILs (p = 0.001; p = 0.027; p = 0.038) and a combination of CD3+/CD8+/FoxP3+ TILs, the latter displaying three different prognostic groups (triple high/mixed/triple low; p=0.003). Intratumoural inflammation [hazard ratio (HR) = 0.432; p = 0.030], FoxP3+ TIL counts (HR = 0.411; p = 0.033) and the combination CD3+/CD8+/FoxP3+ TILs (HR = 0.173; p = 0.006) were also independent prognostic parameters. In summary, both high grade total inflammation and high TIL counts in the tumour centre, but not the tumour periphery, show a beneficial prognostic impact on EAC. This may be a target for novel therapeutic options but also serves as prognostic indicator in these tumours.
Collapse
Affiliation(s)
- Alexandra V Stein
- Institute of Pathology, Department of Clinical Pathology, University of Bern, Switzerland
| | - Bastian Dislich
- Institute of Pathology, Department of Clinical Pathology, University of Bern, Switzerland
| | - Annika Blank
- Institute of Pathology, Department of Clinical Pathology, University of Bern, Switzerland
| | - Lars Guldener
- Institute of Pathology, Department of Clinical Pathology, University of Bern, Switzerland
| | - Dino Kröll
- Department of Visceral Surgery and Medicine, Inselspital Bern, University of Bern, Switzerland
| | - Christian A Seiler
- Department of Visceral Surgery and Medicine, Inselspital Bern, University of Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, Department of Clinical Pathology, University of Bern, Switzerland.
| |
Collapse
|
46
|
Huang B, Cai J, Xu X, Guo S, Wang Z. High-Grade Tumor Budding Stratifies Early-Stage Cervical Cancer with Recurrence Risk. PLoS One 2016; 11:e0166311. [PMID: 27861522 PMCID: PMC5115730 DOI: 10.1371/journal.pone.0166311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES This study investigated prognostic significance of tumor budding in early-stage cervical cancer (ESCC) following radical surgery and its contribution to improve the stratification of patients with recurrence risk. METHODS The archival medical records and H&E-stained slides of 643 patients with IA2-IIA stage cervical cancer who underwent radical surgery were retrospectively reviewed. Clinicopathological parameters were noted, and tumor buds were counted using immunohistochemistry for each case. The prognostic significance of tumor budding was analyzed. Prediction models that comprised tumor budding were established, and the performance was compared between the novel models and classic criteria via log-rank test and receiver operating characteristic analysis. RESULTS Tumors with high-grade tumor budding (HTB) exhibited a substantially increased risk of recurrence (hazard ratio = 4.287, P < 0.001). Nine predictive models for recurrence were established, in which HTB was combined with recognized risk factors. The model using of at least two risk factors of HTB, tumor size ≥ 4 cm, deep stromal invasion of outer 1/3, and lymphovascular space invasion to stratify patients with an intermediate risk was most predictive of recurrence compared with the classic criteria. CONCLUSIONS Tumor budding is an independent, unfavorable, prognostic factor for ESCC patients following radical surgery and holds promise for improved recurrence risk stratification.
Collapse
Affiliation(s)
- Bangxing Huang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Cai
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Xu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Guo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zehua Wang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
47
|
Zhang L, Xiu D, Zhan J, He X, Guo L, Wang J, Tao M, Fu W, Zhang H. High expression of muscarinic acetylcholine receptor 3 predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. Onco Targets Ther 2016; 9:6719-6726. [PMID: 27826198 PMCID: PMC5096762 DOI: 10.2147/ott.s111382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims Recent studies showed that muscarinic acetylcholine receptor 3 (M3), as a muscarinic acetylcholine receptor family member that plays an important role in normal physiological function, is engaged in cancer progression. However, the role of M3 in pancreatic ductal adenocarcinoma (PDAC) is not known. The aim of this study is to investigate the expression and prognostic value of M3 in patients with PDAC. Materials and methods The localization and expression of M3 in PDAC were examined by immunohistochemistry. VAChT was employed to detect parasympathetic nerve fibers in the corresponding M3 PDAC tissues. The correlation between M3 expression and patients’ survival was assessed by Kaplan–Meier analysis. Results M3 was discovered predominantly localized in the cell cytoplasm and expressed in all specimens of PDAC patients. Significant correlation was noted between increased M3 intensity and high grade of PDAC (P<0.01), more lymph node metastasis (P<0.01) as well as shorter patient overall survival (P<0.01). Morphologically, cells with high M3 expression were more frequently located at the invasive tumor front/tumor budding cells, metastatic lymph nodes and parasympathetic nerve fibers. Conclusion High expression of M3 is a prognostic marker for PDAC.
Collapse
Affiliation(s)
- Lingfu Zhang
- Department of General Surgery, Peking University Third Hospital
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology
| | - Xiaokun He
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology
| | - Limei Guo
- Department of Pathology, Peking University Health Science Center; Department of Pathology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jilian Wang
- Department of General Surgery, Peking University Third Hospital
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology
| |
Collapse
|
48
|
Karamitopoulou E, Zlobec I, Koelzer VH, Langer R, Dawson H, Lugli A. Tumour border configuration in colorectal cancer: proposal for an alternative scoring system based on the percentage of infiltrating margin. Histopathology 2015; 67:464-73. [PMID: 25648412 DOI: 10.1111/his.12665] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/31/2015] [Indexed: 01/08/2023]
Abstract
AIMS Information on tumour border configuration (TBC) in colorectal cancer (CRC) is currently not included in most pathology reports, owing to lack of reproducibility and/or established evaluation systems. The aim of this study was to investigate whether an alternative scoring system based on the percentage of the infiltrating component may represent a reliable method for assessing TBC. METHODS AND RESULTS Two hundred and fifteen CRCs with complete clinicopathological data were evaluated by two independent observers, both 'traditionally' by assigning the tumours into pushing/infiltrating/mixed categories, and alternatively by scoring the percentage of infiltrating margin. With the pushing/infiltrating/mixed pattern method, interobserver agreement (IOA) was moderate (κ = 0.58), whereas with the percentage of infiltrating margins method, IOA was excellent (intraclass correlation coefficient of 0.86). A higher percentage of infiltrating margin correlated with adverse features such as higher grade (P = 0.0025), higher pT (P = 0.0007), pN (P = 0.0001) and pM classification (P = 0.0063), high-grade tumour budding (P < 0.0001), lymphatic invasion (P < 0.0001), vascular invasion (P = 0.0032), and shorter survival (P = 0.0008), and was significantly associated with an increased probability of lymph node metastasis (P < 0.001). CONCLUSIONS Information on TBC gives additional prognostic value to pathology reports on CRC. The novel proposed scoring system, by using the percentage of infiltrating margin, outperforms the 'traditional' way of reporting TBC. Additionally, it is reproducible and simple to apply, and can therefore be easily integrated into daily diagnostic practice.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Institute of Pathology, Clinical Pathology Division, University of Bern, Bern, Switzerland.,Translational Research Unit, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Translational Research Unit, University of Bern, Bern, Switzerland
| | - Viktor Hendrik Koelzer
- Institute of Pathology, Clinical Pathology Division, University of Bern, Bern, Switzerland.,Translational Research Unit, University of Bern, Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, Clinical Pathology Division, University of Bern, Bern, Switzerland.,Translational Research Unit, University of Bern, Bern, Switzerland
| | - Heather Dawson
- Institute of Pathology, Clinical Pathology Division, University of Bern, Bern, Switzerland.,Translational Research Unit, University of Bern, Bern, Switzerland
| | - Alessandro Lugli
- Institute of Pathology, Clinical Pathology Division, University of Bern, Bern, Switzerland.,Translational Research Unit, University of Bern, Bern, Switzerland
| |
Collapse
|