1
|
Larrea Murillo L, Green M, Mahon N, Saiani A, Tsigkou O. Modelling Cancer Pathophysiology: Mechanisms and Changes in the Extracellular Matrix During Cancer Initiation and Early Tumour Growth. Cancers (Basel) 2025; 17:1675. [PMID: 40427172 PMCID: PMC12110603 DOI: 10.3390/cancers17101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Cancer initiation and early tumour growth are complex processes influenced by multiple cellular and microenvironmental factors. A critical aspect of tumour progression is the dynamic interplay between cancer cells and the extracellular matrix (ECM), which undergoes significant alterations to support malignancy. The loss of cell polarity is an early hallmark of tumour progression, disrupting normal tissue architecture and fostering cancerous transformation. Circumstantially, cancer-associated microRNAs (miRNAs) regulate key oncogenic processes, including ECM remodelling, epithelial-to-mesenchymal transition (EMT), and tumorigenic vascular development, further driving tumour growth. ECM alterations, particularly changes in stiffness and mechanotransduction signals, create a supportive niche for cancer cells, enhancing their survival, proliferation, and invasion. EMT and its subtype, epithelial-to-endothelial transition (EET), contribute to tumour plasticity, promote the generation of cancer stem cells (CSCs), and support tumour vascularisation. Furthermore, processes of vascular development like vasculogenesis and angiogenesis are critical for sustaining early tumour growth, supplying oxygen and nutrients to hypoxic malignant cells within the evolving cancerous microenvironments. This review explores key mechanisms underlying these changes in tumorigenic microenvironments, with an emphasis on their collective role for tumour initiation and early tumour growth. It will further delve into present in vitro modelling strategies developed to closely mimic early cancer pathophysiology. Understanding these processes is crucial for developing targeted therapies aimed at disrupting key cancer-promoting pathways and improving clinical outcomes.
Collapse
Affiliation(s)
- Luis Larrea Murillo
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.G.)
- The Henry Royce Institute, Royce Hub Building, Manchester M13 9PL, UK
| | - Megan Green
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.G.)
- The Henry Royce Institute, Royce Hub Building, Manchester M13 9PL, UK
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, UK
| | - Niall Mahon
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.G.)
- The Henry Royce Institute, Royce Hub Building, Manchester M13 9PL, UK
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, UK
| | - Alberto Saiani
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.G.)
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, UK
| | - Olga Tsigkou
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.G.)
- The Henry Royce Institute, Royce Hub Building, Manchester M13 9PL, UK
| |
Collapse
|
2
|
Bartoszewska E, Misiąg P, Czapla M, Rakoczy K, Tomecka P, Filipski M, Wawrzyniak-Dzierżek E, Choromańska A. The Role of microRNAs in Lung Cancer: Mechanisms, Diagnostics and Therapeutic Potential. Int J Mol Sci 2025; 26:3736. [PMID: 40332376 PMCID: PMC12027727 DOI: 10.3390/ijms26083736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that do not have coding functions but play essential roles in various biological processes. In lung cancer, miRNAs affect the processes of tumor initiation, progression, metastasis, and resistance to treatment by regulating gene expression. Tumor-suppressive miRNAs inhibit oncogenic pathways, while oncogenic miRNAs, known as oncomiRs, promote malignant transformation and tumor growth. These dual roles position miRNAs as critical players in lung cancer biology. Studies in recent years have shown the significant potential of miRNAs as both prognostic and diagnostic biomarkers. Circulating miRNAs in plasma or sputum demonstrate specificity and sensitivity in detecting early-stage lung cancer. Liquid biopsy-based miRNA panels distinguish malignant from benign lesions, and specific miRNA expression patterns correlate with disease progression, response to treatment, and overall survival. Therapeutically, miRNAs hold promise for targeted interventions. Strategies such as miRNA replacement therapy using mimics for tumor-suppressive miRNAs and inhibition of oncomiRs with antagomiRs or miRNA sponges have shown preclinical success. Key miRNAs, including the let-7 family, miR-34a, and miR-21, are under investigation for their therapeutic potential. It should be emphasized that delivery difficulties, side effects, and limited stability of therapeutic miRNA molecules remain obstacles to their clinical use. This article examines the roles of miRNAs in lung cancer by indicating their mechanisms of action, diagnostic significance, and therapeutic potential. By addressing current limitations, miRNA-based approaches could revolutionize lung cancer management, offering precise, personalized, and minimally invasive solutions for diagnosis and treatment.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Piotr Misiąg
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Melania Czapla
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Michał Filipski
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (P.M.); (M.C.); (K.R.); (P.T.); (M.F.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Elżbieta Wawrzyniak-Dzierżek
- Department and Clinic of Bone Marrow Transplantation, Oncology and Pediatric Hematology, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Horita H, Tsukiboshi Y, Ogata K, Ogata A, Kurita H, Yamashita S, Yamashita H, Inagaki N, Horiguchi H, Yoshioka H. Sasa veitchii Extract Mitigates Mycophenolate Mofetil-Induced Human Palatal Cell Proliferation Inhibition by Downregulating microRNA-4680-3p. PLANTS (BASEL, SWITZERLAND) 2025; 14:1150. [PMID: 40219219 PMCID: PMC11991523 DOI: 10.3390/plants14071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Cleft palate is a common birth defect worldwide and is caused by both genetic and environmental factors. Intrauterine drug exposure is one of the environmental factors that can induce cleft palate. Mycophenolate mofetil (MPM) is an immunosuppressant drug with teratogenic effects, including cleft palate. However, the research on MPM-induced cleft palate remains limited. Sasa veitchii extract (SE), a medical plant extract, is commercially available in Asia and has been reported to show effectiveness against oral diseases. The purpose of the present study is to evaluate whether SE protects against MPM-induced immunosuppression in human embryonic palatal mesenchymal (HEPM) cells. Cell viability and G1 phase-related cell cycle markers were assessed by co-treatment with MPM and SE. Furthermore, we quantified cleft palate-associated miRNA levels and the expression of its downstream genes. MPM treatment reduced cell viability in a concentration-dependent manner. Co-treatment with SE alleviated MPM-induced inhibition of HEPM cell proliferation. Additionally, SE reduced MPM-induced miR-4680-3p upregulation and the downregulation of its downstream genes (ERBB2 and JADE1). These results suggest that SE alleviated MPM-induced cell proliferation inhibition through modulating miR-4680-3p expression.
Collapse
Affiliation(s)
- Hanane Horita
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani 509-0293, Gifu, Japan
| | - Yosuke Tsukiboshi
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani 509-0293, Gifu, Japan
| | - Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Fukuoka, Japan
| | - Aya Ogata
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani 509-0293, Gifu, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Gifu, Japan
| | - Shuji Yamashita
- Laboratory of Community Pharmaceutical Practice and Science, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Gifu, Japan
| | - Hirotaka Yamashita
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani 509-0293, Gifu, Japan
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Okinawa, Japan
| | - Naoki Inagaki
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani 509-0293, Gifu, Japan
| | - Hyogo Horiguchi
- Department of Hygiene, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Hiroki Yoshioka
- Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani 509-0293, Gifu, Japan
- Department of Hygiene, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| |
Collapse
|
4
|
Köhler B, Brieger E, Brandstätter T, Hörterer E, Wilk U, Pöhmerer J, Jötten A, Paulitschke P, Broedersz CP, Zahler S, Rädler JO, Wagner E, Roidl A. Unraveling the metastasis-preventing effect of miR-200c in vitro and in vivo. Mol Oncol 2025; 19:1029-1053. [PMID: 39404181 PMCID: PMC11977663 DOI: 10.1002/1878-0261.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 04/09/2025] Open
Abstract
Advanced breast cancer, as well as ineffective treatments leading to surviving cancer cells, can result in the dissemination of these malignant cells from the primary tumor to distant organs. Recent research has shown that microRNA 200c (miR-200c) can hamper certain steps of the invasion-metastasis cascade. However, it is still unclear whether miR-200c expression alone is sufficient to prevent breast cancer cells from metastasis formation. Hence, we performed a xenograft mouse experiment with inducible miR-200c expression in MDA-MB 231 cells. The ex vivo analysis of metastatic sites in a multitude of organs, including lung, liver, brain, and spleen, revealed a dramatically reduced metastatic burden in mice with miR-200c-expressing tumors. A fundamental prerequisite for metastasis formation is the motility of cancer cells and, therefore, their migration. Consequently, we analyzed the effect of miR-200c on collective- and single-cell migration in vitro, utilizing MDA-MB 231 and MCF7 cell systems with genetically modified miR-200c expression. Analysis of collective-cell migration revealed confluence-dependent motility of cells with altered miR-200c expression. Additionally, scratch assays showed an enhanced predisposition of miR-200c-negative cells to leave cell clusters. The in-between stage of collective- and single-cell migration was validated using transwell assays, which showed reduced migration of miR-200c-positive cells. Finally, to measure migration at the single-cell level, a novel assay on dumbbell-shaped micropatterns was performed, which revealed that miR-200c critically determines confined cell motility. All of these results demonstrate that sole expression of miR-200c impedes metastasis formation in vivo and migration in vitro and highlights miR-200c as a metastasis suppressor in breast cancer.
Collapse
Affiliation(s)
- Bianca Köhler
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Emily Brieger
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Tom Brandstätter
- Department of Physics and AstronomyVrije Universiteit AmsterdamThe Netherlands
- Arnold‐Sommerfeld‐Center for Theoretical PhysicsLudwig‐Maximilians‐Universität MünchenGermany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Anna Jötten
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Philipp Paulitschke
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
- PHIO Scientific GmbHMunichGermany
| | - Chase P. Broedersz
- Department of Physics and AstronomyVrije Universiteit AmsterdamThe Netherlands
- Arnold‐Sommerfeld‐Center for Theoretical PhysicsLudwig‐Maximilians‐Universität MünchenGermany
| | - Stefan Zahler
- Pharmaceutical Biology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| |
Collapse
|
5
|
Ourailidis I, Stögbauer F, Zhou Y, Beck S, Romanovsky E, Eckert S, Wollenberg B, Wirth M, Steiger K, Kuster B, Gires O, Stenzinger A, Schirmacher P, Weichert W, Kuhn PH, Boxberg M, Budczies J. Multi-omics analysis to uncover the molecular basis of tumor budding in head and neck squamous cell carcinoma. NPJ Precis Oncol 2025; 9:73. [PMID: 40082664 PMCID: PMC11906922 DOI: 10.1038/s41698-025-00856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Tumor budding (TB) is a prognostic biomarker in HPV-negative and HPV-positive head and neck squamous cell carcinoma (HNSCC). Analyzing TCGA and CPTAC mutation, RNA, and RPPA data and performing proteomics and IHC in two independent in-house cohorts, we uncovered molecular correlates of TB in an unprecedentedly comprehensive manner. NSD1 mutations were associated with lower TB in HPV-negative HNSCC. Comparing budding and nonbudding tumors, 66 miRNAs, including the miRNA-200 family, were differentially expressed in HPV-negative HNSCC. 3,052 (HPV-negative HNSCC) and 360 (HPV-positive HNSCC) RNAs were differentially expressed. EMT, myogenesis, and other cancer hallmarks were enriched in the overexpressed RNAs. In HPV-negative HNSCC, 88 proteins were differentially expressed, significantly overlapping with the differentially expressed RNAs. CAV1 and MMP14 protein expression investigated by IHC increased gradually from nonbudding tumors to the bulk of budding tumors and tumor buds. The molecular insights gained support new approaches to therapy development and guidance for HNSCC.
Collapse
Affiliation(s)
- Iordanis Ourailidis
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Fabian Stögbauer
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yuxiang Zhou
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne Beck
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eva Romanovsky
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Eckert
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Markus Wirth
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Center Technical University of Munich, Munich, Germany
- Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Kuster
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Olivier Gires
- Clinic and Polyclinic for Otorhinolaryngology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | | | - Peer-Hendrik Kuhn
- Institute of Pathology Kaufbeuren Memmingen Ravensburg, Kaufbeuren, Germany
| | - Melanie Boxberg
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Center Technical University of Munich, Munich, Germany
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| |
Collapse
|
6
|
El-Daly SM, Abdelrahman SS, El-Bana MA, Abdel-Latif Y, Medhat D, Morsy SM, Wafay HA. Deciphering the Interplay of the PD-L1/MALT1/miR-200a Axis During Lung Cancer Development. Biotechnol Appl Biochem 2025. [PMID: 39910787 DOI: 10.1002/bab.2724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Lung cancer remains a leading cause of cancer-related mortality worldwide. Our study investigates the involvement of the PD-L1/MALAT1/miR-200a-3p axis in lung tumor progression using a murine model of lung carcinogenesis. Lung tumors were induced in rats, which were divided into groups and sacrificed at different stages of tumor development. A histopathological examination was performed to assess tumor progression. Immunohistochemistry was applied to evaluate the expression of Ki-67 and programmed death-ligand 1 (PD-L1). The level of carcinoembryonic antigen (CEA) and expression analysis of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), miR-200a-3p, and zinc finger E-box binding homeobox 1 (ZEB1) were evaluated for each stage of induction. Immunohistochemical analysis demonstrated a progressive upregulation of the proliferative marker Ki-67 and the immune checkpoint protein PD-L1 during the induction process, indicative of enhanced tumor proliferation and immune evasion. Additionally, CEA levels revealed a progressive increase across induction stages, with a significant increase in advanced tumor stages, highlighting its clinical relevance as a biomarker for lung cancer progression. Expression analysis revealed dynamic upregulation of MALAT1 and downregulation of miR-200a during lung tumor induction, which correlated with advanced tumor stages and elevated PD-L1 expression, suggesting that the negative correlation between MALAT1 and miR-200a is involved in the development of lung tumors. ZEB1 expression exhibited a notable increase in the advanced stages of induction, consistent with its association with aggressive lung cancer. Our findings underscore the interplay between molecular pathways involved in lung tumor development and the potential diagnostic and therapeutic implications of the PD-L1/MALAT1/miR-200a-3p axis.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Sahar S Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona A El-Bana
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yasmin Abdel-Latif
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October, Giza, Egypt
| | - Dalia Medhat
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Safaa M Morsy
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hanaa A Wafay
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
7
|
Kersten C, Zahler S, Schneider S. Design and Characterization of a Micro RNA-200c Detecting Broccoli Fluorescent Light-up Aptamer. Chembiochem 2025; 26:e202400772. [PMID: 39791276 DOI: 10.1002/cbic.202400772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23 nt provide challenges for their investigation. Here we report the conversion and optimization of the Broccoli fluorescent light-up RNA-aptamer into a specific sensor for miR-200c using a strand-displacement design principle. This aptamer can differentiate miR-200c from its family members whose sequence differ by more than one nucleotide. By adding this in vitro transcribed aptamer to RNA extracts from human cells, we can detect miR-200c in vitro in a plate reader assay.
Collapse
Affiliation(s)
- Corinna Kersten
- Department of Chemistry, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| |
Collapse
|
8
|
Kobayashi N, Katakura S, Fukuda N, Somekawa K, Kaneko A, Kaneko T. The Impact of Bevacizumab and miR200c on EMT and EGFR-TKI Resistance in EGFR-Mutant Lung Cancer Organoids. Genes (Basel) 2024; 15:1624. [PMID: 39766891 PMCID: PMC11675723 DOI: 10.3390/genes15121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: This research aims to investigate the mechanisms of resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC), particularly focusing on the role of the epithelial-mesenchymal transition (EMT) within the tumor microenvironment (TME). Materials and Methods: We employed an in vitro three-dimensional organoid model that mirrors the physiology of human lung cancer. These organoids consist of lung cancer cells harboring specific EGFR mutations, human mesenchymal stem cells, and human umbilical vein endothelial cells. We analyzed EMT and drug resistance markers, and evaluated the effects of the anti-angiogenic agent Bevacizumab and micro-RNA miR200c. Results: The study identified a significant link between EMT and EGFR-TKI resistance. Notable findings included a decrease in E-cadherin and an increase in Zinc Finger E-Box Binding Homeobox 1 (ZEB1), both of which influenced EMT and resistance to treatment. Bevacizumab showed promise in improving drug resistance and mitigating EMT, suggesting an involvement of the Vascular Endothelial Growth Factor (VEGF) cascade. Transfection with miR200c was associated with improved EMT and drug resistance, further highlighting the role of EMT in TKI resistance. Conclusions: Our research provides significant insights into the EMT-driven EGFR-TKI resistance in NSCLC and offers potential strategies to overcome resistance, including the use of Bevacizumab and miR200c. However, due to the limitations in organoid models in replicating precise human cancer TME and the potential influence of specific EGFR mutations, further in vivo studies and clinical trials are necessary for validation.
Collapse
Affiliation(s)
- Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| | - Seigo Katakura
- Department of Thoracic Oncology, Kanagawa Cancer Center, 2-3-2 Nakao, Yokohama 241-0815, Japan
| | - Nobuhiko Fukuda
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| |
Collapse
|
9
|
Pujari L, Suresh A, Chowdhury Z, Pradhan S, Tripathi M, Gupta A, Singh P, Giridhar P, Kapoor AR, Shinghal A, Sansar B, Mv M. Outcomes of De Novo Oligometastatic Breast Cancer Treated With Surgery of Primary and Metastasis Directed Radiotherapy. Am J Clin Oncol 2024; 47:566-573. [PMID: 38963014 DOI: 10.1097/coc.0000000000001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
OBJECTIVES With sensitive imaging for breast cancer, the question arises whether present-day oncologists treat dOMBC with palliative systemic therapy (ST), which, a few years earlier, would have been treated with curative intent. We retrospectively analyzed outcomes of dOMBC treated with curative intent using a combination of surgery, metastasis-directed radiotherapy (RT), and adjuvant/neoadjuvant ST and have also explored the possible role of total lesional glycolysis of metastases and p53 immunohistochemistry in predicting outcomes. METHODS Data were collected from a prospectively maintained database using electronic medical records and Radiation Oncology Information System. In the study, dOMBC was defined as up to 3 metastatic sites, all amenable to treatment with ablative RT and primary and axillary disease amenable to curative surgery. Patients were treated with surgery, ST, and RT. RESULTS Patients underwent either breast conservation surgery or modified radical mastectomy. Patients were treated with 6 to 8 cycles of chemotherapy in the neoadjuvant and/or adjuvant setting. Hormone receptor-positive patients received either tamoxifen or aromatase inhibitors. Trastuzumab was offered to Her-2-neu receptor-positive patients. RT included locoregional RT and metastases-directed ablative body RT. The median progression-free survival was 39 months (95% CI: -28.7 to 50.1 mo). Two and 3 year estimated disease-free survival (DFS) was 79% and 60.5%, respectively. The median overall survival was not reached. The estimated 3-year overall survival was 87.3%. Total lesional glycolysis of metastases score and p53 status did not affect DFS. CONCLUSION Combination treatment of surgery, metastases-directed ablative RT, and ST may provide prolonged DFS in dOMBC.
Collapse
Affiliation(s)
| | | | | | | | | | - Anuj Gupta
- Department of Medical Oncology, Mahamana Pandit Madanmohan Malaviya Cancer Centre/Homi Bhabha Cancer Hospital, Tata Memorial Centre, Varanasi, UP, India
| | | | | | | | | | - Bipinesh Sansar
- Department of Medical Oncology, Mahamana Pandit Madanmohan Malaviya Cancer Centre/Homi Bhabha Cancer Hospital, Tata Memorial Centre, Varanasi, UP, India
| | | |
Collapse
|
10
|
Yi X, Chen X, Li Z. miR-200c targeting GLI3 inhibits cell proliferation and promotes apoptosis in non-small cell lung cancer cells. Medicine (Baltimore) 2024; 103:e39658. [PMID: 39312343 PMCID: PMC11419521 DOI: 10.1097/md.0000000000039658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Lung cancer is a common malignant tumor with low cure rate. It has an easy recurrence and metastasis. This study explored whether miR-200c could regulate the biological behavior of non-small cell lung cancer cells through targeting GLI3. Luciferase reporter gene analysis was used to verify the interaction between miR-200c-3p and GLI3. miR-200c-3p and GLI3 were transiently overexpressed into A549 cells. The cell viability rate was detected by cell counting kit-8, cell invasion ability was detected with Transwell, cell apoptosis and cell cycle was determined by flow cytometry, and the expression of GLI3 was detected using quantitative polymerase chain reaction and Western blot, to verify the effect of the interaction between miR-200c-3p and GLI3 on the cell activities. miR-200c-3p overexpression could inhibit cell viability and invasion, promote apoptosis, induce G0/G1 arrest, and inhibit cell division. GLI3 overexpression could reverse the miR-200c-3p inhibition on cell cycle, reduce the number of cells in the G0/G1 phase and increase the number of cells in the S phase. miR-200c-3p overexpression in A549 cells could inhibit cell viability and invasion, and promote apoptosis. miR-200c-3p could target GLI3 to regulate cell cycle and inhibit cell proliferation.
Collapse
Affiliation(s)
- Xiangjun Yi
- Department of Oncology, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, P.R. China
| | - Xuan Chen
- Department of Oncology, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, P.R. China
| | - Zhenbin Li
- Department of Oncology, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, P.R. China
| |
Collapse
|
11
|
Mohd ON, Heng YJ, Wang L, Thavamani A, Massicott ES, Wulf GM, Slack FJ, Doyle PS. Sensitive Multiplexed MicroRNA Spatial Profiling and Data Classification Framework Applied to Murine Breast Tumors. Anal Chem 2024; 96:12729-12738. [PMID: 39044395 DOI: 10.1021/acs.analchem.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
MicroRNAs (miRNAs) are small RNAs that are often dysregulated in many diseases, including cancers. They are highly tissue-specific and stable, thus, making them particularly useful as biomarkers. As the spatial transcriptomics field advances, protocols that enable highly sensitive and spatially resolved detection become necessary to maximize the information gained from samples. This is especially true of miRNAs where the location their expression within tissue can provide prognostic value with regard to patient outcome. Equally as important as detection are ways to assess and visualize the miRNA's spatial information in order to leverage the power of spatial transcriptomics over that of traditional nonspatial bulk assays. We present a highly sensitive methodology that simultaneously quantitates and spatially detects seven miRNAs in situ on formalin-fixed paraffin-embedded tissue sections. This method utilizes rolling circle amplification (RCA) in conjunction with a dual scanning approach in nanoliter well arrays with embedded hydrogel posts. The hydrogel posts are functionalized with DNA probes that enable the detection of miRNAs across a large dynamic range (4 orders of magnitude) and a limit of detection of 0.17 zeptomoles (1.7 × 10-4 attomoles). We applied our methodology coupled with a data analysis pipeline to K14-Cre Brca1f/fTp53f/f murine breast tumors to showcase the information gained from this approach.
Collapse
Affiliation(s)
- Omar N Mohd
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yujing J Heng
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Lin Wang
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Abhishek Thavamani
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Erica S Massicott
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Gerburg M Wulf
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Frank J Slack
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Patrick S Doyle
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Čugura T, Boštjančič E, Uhan S, Hauptman N, Jeruc J. Epithelial-mesenchymal transition associated markers in sarcomatoid transformation of clear cell renal cell carcinoma. Exp Mol Pathol 2024; 138:104909. [PMID: 38876079 DOI: 10.1016/j.yexmp.2024.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays a pivotal role in the development and progression of many cancers. Partial EMT (pEMT) could represent a critical step in tumor migration and dissemination. Sarcomatoid renal cell carcinoma (sRCC) is an aggressive form of renal cell carcinoma (RCC) composed of a carcinomatous (sRCC-Ca) and sarcomatous (sRCC-Sa) component. The role of (p)EMT in the progression of RCC to sRCC remains unclear. The aim of this study was to investigate the involvement of (p)EMT in RCC and sRCC. Tissue samples from 10 patients with clear cell RCC (ccRCC) and 10 patients with sRCC were selected. The expression of main EMT markers (miR-200 family, miR-205, SNAI1/2, TWIST1/2, ZEB1/2, CDH1/2, VIM) was analyzed by qPCR in ccRCC, sRCC-Ca, and sRCC-Sa and compared to non-neoplastic tissue and between both groups. Expression of E-cadherin, N-cadherin, vimentin and ZEB2 was analyzed using immunohistochemistry. miR-200c was downregulated in sRCC-Ca compared to ccRCC, while miR-200a was downregulated in sRCC-Sa compared to ccRCC. CDH1 was downregulated in sRCC-Sa when compared to any other group. ZEB2 was downregulated in ccRCC and sRCC compared to corresponding non-neoplastic kidney. A positive correlation was observed between CDH1 expression and miR-200a/b/c. Our results suggest that full EMT is not present in sRCC. Instead, discreet molecular differences exist between ccRCC, sRCC-Ca, and sRCC-Sa, possibly representing distinct intermediary states undergoing pEMT.
Collapse
MESH Headings
- Humans
- Epithelial-Mesenchymal Transition/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- MicroRNAs/genetics
- Male
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Female
- Vimentin/metabolism
- Vimentin/genetics
- Zinc Finger E-box Binding Homeobox 2/genetics
- Zinc Finger E-box Binding Homeobox 2/metabolism
- Aged
- Cadherins/genetics
- Cadherins/metabolism
- Gene Expression Regulation, Neoplastic
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Twist-Related Protein 1/genetics
- Twist-Related Protein 1/metabolism
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Zinc Finger E-box-Binding Homeobox 1/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Adult
- Nuclear Proteins
Collapse
Affiliation(s)
- Tanja Čugura
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Uhan
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Tan J, Yang B, Qiu L, He R, Wu Z, Ye M, Zan L, Yang W. Bta-miR-200a Regulates Milk Fat Biosynthesis by Targeting IRS2 to Inhibit the PI3K/Akt Signal Pathway in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16449-16460. [PMID: 38996051 DOI: 10.1021/acs.jafc.4c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.
Collapse
Affiliation(s)
- Jianbing Tan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benshun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liang Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ruiying He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhangqing Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Miaomiao Ye
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
14
|
Zhang Q, Dunbar KB, Odze RD, Agoston AT, Wang X, Su T, Nguyen AD, Zhang X, Spechler SJ, Souza RF. Hypoxia-inducible factor-1α mediates reflux-induced epithelial-mesenchymal plasticity in Barrett's oesophagus patients. Gut 2024; 73:1269-1279. [PMID: 38641363 PMCID: PMC11239289 DOI: 10.1136/gutjnl-2023-331467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Epithelial-mesenchymal plasticity (EMP), the process through which epithelial cells acquire mesenchymal features, is needed for wound repair but also might contribute to cancer initiation. Earlier, in vitro studies showed that Barrett's cells exposed to acidic bile salt solutions (ABS) develop EMP. Now, we have (1) induced reflux oesophagitis in Barrett's oesophagus (BO) patients by stopping proton pump inhibitors (PPIs), (2) assessed their biopsies for EMP and (3) explored molecular pathways underlying reflux-induced EMP in BO cells and spheroids. METHODS 15 BO patients had endoscopy with biopsies of Barrett's metaplasia while on PPIs, and 1 and 2 weeks after stopping PPIs; RNA-seq data were assessed for enrichments in hypoxia-inducible factors (HIFs), angiogenesis and EMP pathways. In BO biopsies, cell lines and spheroids, EMP features (motility) and markers (vascular endothelial growth factor (VEGF), ZEB1, miR-200a&b) were evaluated by morphology, migration assays, immunostaining and qPCR; HIF-1α was knocked down with siRNA or shRNA. RESULTS At 1 and/or 2 weeks off PPIs, BO biopsies exhibited EMP features and markers, with significant enrichment for HIF-1α, angiogenesis and EMP pathways. In BO cells, ABS induced HIF-1α activation, which decreased miR-200a&b while increasing VEGF, ZEB1 and motility; HIF-1α knockdown blocked these effects. After ABS treatment, BO spheroids exhibited migratory protrusions showing nuclear HIF-1α, increased VEGF and decreased miR-200a&b. CONCLUSIONS In BO patients, reflux oesophagitis induces EMP changes associated with increased HIF-1α signalling in Barrett's metaplasia. In Barrett's cells, ABS trigger EMP via HIF-1α signalling. Thus, HIF-1α appears to play a key role in mediating reflux-induced EMP that might contribute to cancer in BO. TRIAL REGISTRATION NUMBER NCT02579460.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Department of Medicine, Baylor University Medical Center, Dallas, Texas, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Kerry B Dunbar
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Internal Medicine, VA North Texas Health Care System, Dallas, Texas, USA
| | - Robert D Odze
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, USA
- Robert D Odze Pathology, LLC, Boston, Massachusetts, USA
| | - Agoston T Agoston
- Department of Pathology, Brigham and Womens Hospital, Boston, Massachusetts, USA
| | - Xuan Wang
- Biostatistics Core, Baylor Scott & White Research Insitute, Dallas, Texas, USA
| | - Tianhong Su
- Department of Oncology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Anh D Nguyen
- Department of Medicine, Baylor University Medical Center, Dallas, Texas, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Xi Zhang
- Department of Medicine, Baylor University Medical Center, Dallas, Texas, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Stuart Jon Spechler
- Department of Medicine, Baylor University Medical Center, Dallas, Texas, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Rhonda F Souza
- Department of Medicine, Baylor University Medical Center, Dallas, Texas, USA
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas, USA
| |
Collapse
|
15
|
Morton LM, Lee OW, Karyadi DM, Bogdanova TI, Stewart C, Hartley SW, Breeze CE, Schonfeld SJ, Cahoon EK, Drozdovitch V, Masiuk S, Chepurny M, Zurnadzhy LY, Dai J, Krznaric M, Yeager M, Hutchinson A, Hicks BD, Dagnall CL, Steinberg MK, Jones K, Jain K, Jordan B, Machiela MJ, Dawson ET, Vij V, Gastier-Foster JM, Bowen J, Mabuchi K, Hatch M, Berrington de Gonzalez A, Getz G, Tronko MD, Thomas GA, Chanock SJ. Genomic characterization of cervical lymph node metastases in papillary thyroid carcinoma following the Chornobyl accident. Nat Commun 2024; 15:5053. [PMID: 38871684 PMCID: PMC11176192 DOI: 10.1038/s41467-024-49292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Childhood radioactive iodine exposure from the Chornobyl accident increased papillary thyroid carcinoma (PTC) risk. While cervical lymph node metastases (cLNM) are well-recognized in pediatric PTC, the PTC metastatic process and potential radiation association are poorly understood. Here, we analyze cLNM occurrence among 428 PTC with genomic landscape analyses and known drivers (131I-exposed = 349, unexposed = 79; mean age = 27.9 years). We show that cLNM are more frequent in PTC with fusion (55%) versus mutation (30%) drivers, although the proportion varies by specific driver gene (RET-fusion = 71%, BRAF-mutation = 38%, RAS-mutation = 5%). cLNM frequency is not associated with other characteristics, including radiation dose. cLNM molecular profiling (N = 47) demonstrates 100% driver concordance with matched primary PTCs and highly concordant mutational spectra. Transcriptome analysis reveals 17 differentially expressed genes, particularly in the HOXC cluster and BRINP3; the strongest differentially expressed microRNA also is near HOXC10. Our findings underscore the critical role of driver alterations and provide promising candidates for elucidating the biological underpinnings of PTC cLNM.
Collapse
Affiliation(s)
- Lindsay M Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Olivia W Lee
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M Karyadi
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tetiana I Bogdanova
- Laboratory of Morphology of the Endocrine System, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen W Hartley
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles E Breeze
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara J Schonfeld
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir Drozdovitch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergii Masiuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Mykola Chepurny
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla Yu Zurnadzhy
- Laboratory of Morphology of the Endocrine System, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Jieqiong Dai
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Marko Krznaric
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Casey L Dagnall
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Mia K Steinberg
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Komal Jain
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Ben Jordan
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric T Dawson
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Nvidia Corporation, Santa Clara, CA, USA
| | - Vibha Vij
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julie M Gastier-Foster
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH, USA
- Departments of Pathology and Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - Jay Bowen
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Hatch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy Berrington de Gonzalez
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mykola D Tronko
- Department of Fundamental and Applied Problems of Endocrinology, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Gerry A Thomas
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Garreau M, Weidner J, Hamilton R, Kolosionek E, Toki N, Stavenhagen K, Paris C, Bonetti A, Czechtizky W, Gnerlich F, Rydzik A. Chemical modification patterns for microRNA therapeutic mimics: a structure-activity relationship (SAR) case-study on miR-200c. Nucleic Acids Res 2024; 52:2792-2807. [PMID: 38421619 PMCID: PMC11014349 DOI: 10.1093/nar/gkae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
microRNA (miRNA) mimics are an emerging class of oligonucleotide therapeutics, with a few compounds already in clinical stages. Synthetic miRNAs are able to restore downregulated levels of intrinsic miRNAs, allowing for parallel regulation of multiple genes involved in a particular disease. In this work, we examined the influence of chemical modifications patterns in miR-200c mimics, assessing the regulation of a selection of target messenger RNAs (mRNA) and, subsequently, of the whole transcriptome in A549 cells. We have probed 37 mimics and provided an initial set of instructions for designing miRNA mimics with potency and selectivity similar to an unmodified miRNA duplex. Additionally, we have examined the stability of selected mimics in serum. Finally, the selected two modification patterns were translated to two other miRNAs, miR-34a and miR-155. To differing degrees, these designs acted on target mRNAs in a similar manner to the unmodified mimic. Here, for the first time, we describe a structured overview of 'miRNA mimics modification templates' that are chemically stabilised and optimised for use in an in vitro set up and highlight the need of further sequence specific optimization when mimics are to be used beyond in vitro tool experiments.
Collapse
Affiliation(s)
- Marion Garreau
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Julie Weidner
- Translational Science Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Russell Hamilton
- Translational Science Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Cambridge, UK
| | - Ewa Kolosionek
- Bioscience COPD/IPF, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Naoko Toki
- Translational Genomics, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Kathrin Stavenhagen
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Clément Paris
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Alessandro Bonetti
- Translational Genomics, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Werngard Czechtizky
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Felix Gnerlich
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Rydzik
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
17
|
Pivonello C, Patalano R, Simeoli C, Montò T, Negri M, Amatrudo F, Di Paola N, Larocca A, Crescenzo EM, Pirchio R, Solari D, de Angelis C, Auriemma RS, Cavallo LM, Colao A, Pivonello R. Circulating myomiRNAs as biomarkers in patients with Cushing's syndrome. J Endocrinol Invest 2024; 47:655-669. [PMID: 37682493 PMCID: PMC10904409 DOI: 10.1007/s40618-023-02184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE Impairment of skeletal muscle mass and strength affects 40-70% of patients with active Cushing's syndrome (CS). Glucocorticoid excess sustains muscle atrophy and weakness, while muscle-specific microRNAs (myomiRs) level changes were associated with muscle organization and function perturbation. The aim of the current study is to explore changes in circulating myomiRs in CS patients compared to healthy controls and their involvement in IGFI/PI3K/Akt/mTOR pathway regulation in skeletal muscle. METHODS C2C12, mouse myocytes, were exposed to hydrocortisone (HC), and atrophy-related gene expression was investigated by RT-qPCR, WB and IF to assess HC-mediated atrophic signalling. miRNAs were evaluated in HC-treated C2C12 by PCR Arrays. MyomiRs significantly overexpressed in C2C12 were investigated in 37 CS patients and 24 healthy controls serum by RT-qPCR. The anti-anabolic role of circulating miRNAs significantly upregulated in CS patients was explored in C2C12 by investigating the IGFI/PI3K/Akt/mTOR pathway regulation. RESULTS HC induced higher expression of atrophy-related genes, miR-133a-3p, miR-122-5p and miR-200b-3p in C2C12 compared to untreated cells. Conversely, the anabolic IGFI/PI3K/Akt/mTOR signalling was reduced and this effect was mediated by miR-133a-3p. In CS patients miR-133a-3p and miR-200b-3p revealed higher circulating levels (p < 0.0001, respectively) compared to controls. ROC curves for miR-133a-3p (AUC 0.823, p < 0.0001) and miR-200b-3p (AUC 0.850, p < 0.0001) demonstrated that both myomiRs represent potential biomarkers to discriminate between CS and healthy subjects. Pearson's correlation analysis revealed that circulating levels of miR-133a-3p are directly correlated with 24 h urinary-free cortisol level (r = 0.468, p = 0.004) in CS patients. CONCLUSIONS HC induces atrophic signals by miR-133a-3p overexpression in mouse myocytes and humans. Circulating miR-133a-3p is promising biomarkers of hypercortisolism.
Collapse
Affiliation(s)
- C Pivonello
- Department of Public Health, Federico II University, Naples, Italy
| | - R Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - C Simeoli
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - T Montò
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - M Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - F Amatrudo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - N Di Paola
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - A Larocca
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - E M Crescenzo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - R Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - D Solari
- Department of Neuroscience, Division of Neurosurgery, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - C de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - R S Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - L M Cavallo
- Department of Neuroscience, Division of Neurosurgery, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - A Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - R Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy.
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy.
| |
Collapse
|
18
|
Guan Y, Zhang J, Cai X, Cai Y, Song Z, Huang Y, Qian W, Pan Z, Zhang X. Astragaloside IV inhibits epithelial-mesenchymal transition and pulmonary fibrosis via lncRNA-ATB/miR-200c/ZEB1 signaling pathway. Gene 2024; 897:148040. [PMID: 38065426 DOI: 10.1016/j.gene.2023.148040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease involving multiple factors and genes. Astragaloside IV (ASV) is one of the main bioactive ingredients extracted from the root of Astragalus membranaceus, which plays an important role in anti-inflammatory, antioxidant and improve cardiopulmonary function. Epithelial-mesenchymal transition (EMT) is a key driver of the process of pulmonary fibrosis, and Zinc finger E-box-binding homeobox 1 (ZEB1) can promote pulmonary fibrosis in an EMT-dependent manner. Here, we found that ASV effectively inhibited the ZEB1 and EMT in both bleomycin (BLM)-induced rat pulmonary fibrosis and TGF-β1-treated A549 cells. To further elucidate the molecular mechanisms underlying effects of ASV in IPF, we explored the truth using bioinformatics, plasmid construction, immunofluorescence staining, western blotting and other experiments. Dual luciferase reporter assay and bioinformatics proved that miR-200c not only acts as an upstream regulatory miRNA of ZEB1 but also has binding sites for the lncRNA-ATB. In A549 cell-based EMT models, ASV reduced the expression of lncRNA-ATB and upregulated miR-200c. Furthermore, overexpression of lncRNA-ATB and silencing of miR-200c reversed the down-regulation of ZEB1 and the inhibition of EMT processes by ASV. In addition, the intervention of ASV prevented lncRNA-ATB as a ceRNA from regulating the expression of ZEB1 through sponging miR-200c. Taken together, the results showed that ASV inhibited the EMT process through the lncRNA-ATB/miR-200c/ZEB1 signaling pathway, which provides a novel approach to the treatment of IPF.
Collapse
Affiliation(s)
- Yanyun Guan
- Department of Poisoning and Occupational Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Xinrui Cai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yanan Cai
- Department of General Surgery, Tai'an 88 Hospital, Tai'an 271000, China
| | - Ziqiong Song
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuan Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| | - Zhifeng Pan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China.
| | - Xingguo Zhang
- Department of Poisoning and Occupational Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
19
|
Vedovatto S, Oliveira FD, Pereira LC, Scheffel TB, Beckenkamp LR, Bertoni APS, Wink MR, Lenz G. CD73 mitigates ZEB1 expression in papillary thyroid carcinoma. Cell Commun Signal 2024; 22:145. [PMID: 38388432 PMCID: PMC10882796 DOI: 10.1186/s12964-024-01522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND ZEB1, a core transcription factor involved in epithelial-mesenchymal transition (EMT), is associated with aggressive cancer cell behavior, treatment resistance, and poor prognosis across various tumor types. Similarly, the expression and activity of CD73, an ectonucleotidase implicated in adenosine generation, is an important marker of tumor malignancy. Growing evidence suggests that EMT and the adenosinergic pathway are intricately linked and play a pivotal role in cancer development. Therefore, this study focuses on exploring the correlations between CD73 and ZEB1, considering their impact on tumor progression. METHODS We employed CRISPR/Cas9 technology to silence CD73 expression in cell lines derived from papillary thyroid carcinoma. These same cells underwent lentiviral transduction of a reporter of ZEB1 non-coding RNA regulation. We conducted studies on cell migration using scratch assays and analyses of cellular speed and polarity. Additionally, we examined ZEB1 reporter expression through flow cytometry and immunocytochemistry, complemented by Western blot analysis for protein quantification. For further insights, we applied gene signatures representing different EMT states in an RNA-seq expression analysis of papillary thyroid carcinoma samples from The Cancer Genome Atlas. RESULTS Silencing CD73 expression led to a reduction in ZEB1 non-coding RNA regulation reporter expression in a papillary thyroid carcinoma-derived cell line. Additionally, it also mitigated ZEB1 protein expression. Moreover, the expression of CD73 and ZEB1 was correlated with alterations in cell morphology characteristics crucial for cell migration, promoting an increase in cell polarity index and cell migration speed. RNA-seq analysis revealed higher expression of NT5E (CD73) in samples with BRAF mutations, accompanied by a prevalence of partial-EMT/hybrid state signature expression. CONCLUSIONS Collectively, our findings suggest an association between CD73 expression and/or activity and the post-transcriptional regulation of ZEB1 by non-coding RNA, indicating a reduction in its absence. Further investigations are warranted to elucidate the relationship between CD73 and ZEB1, with the potential for targeting them as therapeutic alternatives for cancer treatment in the near future.
Collapse
Affiliation(s)
- Samlai Vedovatto
- Department of Biophysics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43431, sala 107, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43431, sala 107, UFRGS, Porto Alegre, RS, Brazil
| | - Luiza Cherobini Pereira
- Department of Biophysics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43431, sala 107, UFRGS, Porto Alegre, RS, Brazil
| | - Thamiris Becker Scheffel
- Department of Biophysics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43431, sala 107, UFRGS, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Paula Santin Bertoni
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43431, sala 107, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Włodarczyk M, Ciebiera M, Nowicka G, Łoziński T, Ali M, Al-Hendy A. Epigallocatechin Gallate for the Treatment of Benign and Malignant Gynecological Diseases-Focus on Epigenetic Mechanisms. Nutrients 2024; 16:559. [PMID: 38398883 PMCID: PMC10893337 DOI: 10.3390/nu16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, 35-302 Rzeszów, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszow, Poland;
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| |
Collapse
|
21
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
22
|
Sarrand J, Soyfoo MS. Involvement of Epithelial-Mesenchymal Transition (EMT) in Autoimmune Diseases. Int J Mol Sci 2023; 24:14481. [PMID: 37833928 PMCID: PMC10572663 DOI: 10.3390/ijms241914481] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex reversible biological process characterized by the loss of epithelial features and the acquisition of mesenchymal features. EMT was initially described in developmental processes and was further associated with pathological conditions including metastatic cascade arising in neoplastic progression and organ fibrosis. Fibrosis is delineated by an excessive number of myofibroblasts, resulting in exuberant production of extracellular matrix (ECM) proteins, thereby compromising organ function and ultimately leading to its failure. It is now well acknowledged that a significant number of myofibroblasts result from the conversion of epithelial cells via EMT. Over the past two decades, evidence has accrued linking fibrosis to many chronic autoimmune and inflammatory diseases, including systemic sclerosis (SSc), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), and inflammatory bowel diseases (IBD). In addition, chronic inflammatory states observed in most autoimmune and inflammatory diseases can act as a potent trigger of EMT, leading to the development of a pathological fibrotic state. In the present review, we aim to describe the current state of knowledge regarding the contribution of EMT to the pathophysiological processes of various rheumatic conditions.
Collapse
Affiliation(s)
- Julie Sarrand
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad S. Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
23
|
Fang A, Yuan Y, Sui B, Wang Z, Zhang Y, Zhou M, Chen H, Fu ZF, Zhao L. Inhibition of miR-200b-3p confers broad-spectrum resistance to viral infection by targeting TBK1. mBio 2023; 14:e0086723. [PMID: 37222520 PMCID: PMC10470528 DOI: 10.1128/mbio.00867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
The host innate immune system's defense against viral infections depends heavily on type I interferon (IFN-I) production. Research into the mechanisms of virus-host interactions is essential for developing novel antiviral therapies. In this study, we compared the effect of the five members of the microRNA-200 (miR-200) family on IFN-I production during viral infection and found that miR-200b-3p displayed the most pronounced regulatory effect. During viral infection, we discovered that the transcriptional level of microRNA-200b-3p (miR-200b-3p) increased with the infection of influenza virus (IAV) and vesicular stomatitis virus (VSV), and miR-200b-3p production was modulated by the activation of the ERK and p38 pathways. We identified cAMP response element binding protein (CREB) as a novel transcription factor that binds to the miR-200b-3p promoter. MiR-200b-3p reduces NF-κB and IRF3-mediated IFN-I production by targeting the 3' untranslated region (3' UTR) of TBK1 mRNA. Applying miR-200b-3p inhibitor enhances IFN-I production in IAV and VSV-infected mouse models, thus inhibiting viral replication and improving mouse survival ratio. Importantly, in addition to IAV and VSV, miR-200b-3p inhibitors exhibited potent antiviral effects against multiple pathogenic viruses threatening human health worldwide. Overall, our study suggests that miR-200b-3p might be a potential therapeutic target for broad-spectrum antiviral therapy. IMPORTANCE The innate immune response mediated by type I interferon (IFN-I) is essential for controlling viral replication. MicroRNAs (miRNAs) have been found to regulate the IFN signaling pathway. In this study, we describe a novel function of miRNA-200b-3p in negatively regulating IFN-I production during viral infection. miRNA-200b-3p was upregulated by the MAPK pathway activated by IAV and VSV infection. The binding of miRNA-200b-3p to the 3' UTR of TBK1 mRNA reduced IFN-I activation mediated by IRF3 and NF-κB. Application of miR-200b-3p inhibitors exhibited potent antiviral effects against multiple RNA and DNA viruses. These results provide fresh insight into understanding the impact of miRNAs on host-virus interactions and reveal a potential therapeutic target for common antiviral intervention.
Collapse
Affiliation(s)
- An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baokuen Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
24
|
Shin E, Han SH, Park IS, Wee JH, Lee JS, Kim H. Does the Necrotic Portion of Metastatic Lymphadenopathy from Squamous Cell Carcinoma Still Have Tumoral Oncologic Information? Differential Diagnosis of Benign Necrotic Lymphadenopathy Using microRNA. Biomedicines 2023; 11:2407. [PMID: 37760848 PMCID: PMC10525664 DOI: 10.3390/biomedicines11092407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Neck necrotic lymph nodes commonly correspond to metastasis or benign inflammatory conditions such as Kikuchi disease and tuberculosis. Ultrasound-guided biopsy can be used for differential diagnosis, but results may be unclear. Therefore, this study aimed to identify target microRNAs (miRNAs) and genes for the differential diagnosis of inflammatory and malignant necrotic lymph nodes. We selected six inflammatory lymphadenitis formalin-fixed paraffin-embedded (FFPE) samples that showed internal necrosis and five cancer necrotic FFPE samples. Tissue microarray (TMA) was performed to separate the necrotic and cancerous portions. Total RNA was extracted from six pairs of separated inflammatory necrosis, five pairs of cancer necrosis, and cancer portions. Differentially expressed miRNAs were analyzed by comparing inflammatory necrosis, cancer, and cancer necrosis. Seventeen miRNAs were upregulated in cancer necrosis compared to inflammatory necrosis, and two miRNAs (hsa-miR-155-5p and hsa-miR-146b-5p) showed lower expression in cancer necrotic cells. Nineteen miRNAs that were differentially expressed between inflammatory and cancer necrosis were analyzed for target gene expression; these transcripts demonstrated a clear relationship with cancer. The differentially expressed miRNAs in inflammatory and tumor necrosis were associated with cancer-related pathways. These preliminary results might help in the differential diagnosis of cervical metastatic necrotic lymphadenopathy and avoiding unnecessary excisional biopsies.
Collapse
Affiliation(s)
- Eun Shin
- Department of Pathology, Dongtan Sacred Heart Hospital, Hwaseong 18450, Republic of Korea;
| | - Seung Hoon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hwaseong 18450, Republic of Korea; (S.H.H.); (I.-S.P.)
| | - Il-Seok Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hwaseong 18450, Republic of Korea; (S.H.H.); (I.-S.P.)
| | - Jee Hye Wee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea; (J.H.W.); (J.S.L.)
| | - Joong Seob Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea; (J.H.W.); (J.S.L.)
| | - Heejin Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea; (J.H.W.); (J.S.L.)
| |
Collapse
|
25
|
Ochoa S, Hernández-Lemus E. Molecular mechanisms of multi-omic regulation in breast cancer. Front Oncol 2023; 13:1148861. [PMID: 37564937 PMCID: PMC10411627 DOI: 10.3389/fonc.2023.1148861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Breast cancer is a complex disease that is influenced by the concurrent influence of multiple genetic and environmental factors. Recent advances in genomics and other high throughput biomolecular techniques (-omics) have provided numerous insights into the molecular mechanisms underlying breast cancer development and progression. A number of these mechanisms involve multiple layers of regulation. In this review, we summarize the current knowledge on the role of multiple omics in the regulation of breast cancer, including the effects of DNA methylation, non-coding RNA, and other epigenomic changes. We comment on how integrating such diverse mechanisms is envisioned as key to a more comprehensive understanding of breast carcinogenesis and cancer biology with relevance to prognostics, diagnostics and therapeutics. We also discuss the potential clinical implications of these findings and highlight areas for future research. Overall, our understanding of the molecular mechanisms of multi-omic regulation in breast cancer is rapidly increasing and has the potential to inform the development of novel therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
26
|
Khalil EH, Shaker OG, Hasona NA. Impact of rs2107425 Polymorphism and Expression of lncH19 and miR-200a on the Susceptibility of Colorectal Cancer. Indian J Clin Biochem 2023; 38:331-337. [PMID: 37234185 PMCID: PMC10205921 DOI: 10.1007/s12291-022-01052-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 01/30/2023]
Abstract
Cancer is the most common leading cause of mortality, making it a critical public health issue worldwide. Environmental and genetic abnormalities play a role in carcinogenesis, characterized by single nucleotide polymorphisms (SNPs) and abnormal gene expression. Also, non-coding RNA is a hot spot in cancer growth and metastasis. This study aimed to demonstrate the contribution of LncRNA H-19 rs2107425 to colorectal cancer (CRC) susceptibility and the correlation between miR-200a and LncRNA H-19 in patients with CRC. The current study was conducted on 100 participants, divided into 70 subjects with colorectal cancer and 30 age- and sex-matched healthy subjects. Patients with CRC experienced a significant elevation in WBC count, platelets, ALT, AST, and CEA. However, hemoglobin and albumin notably declined in patients with CRC compared with those in healthy controls. The expression of LncRNA H-19 and miR-200a increased in patients with CRC with a significant difference compared to healthy controls. Moreover, LncRNA H-19 and miR-200a expression significantly increased in stage III CRC compared to stage II CRC. As compared to carriers with the homozygous CC genotype, the frequency of rs2107425 CT and rs2107425 TT increased in patients with CRC. Our results indicate that the rs2107425 SNP of LncRNA H-19 may serve as a novel susceptibility marker for colorectal cancer. Moreover, miR-200a and LncRNA H-19 are prospective biomarkers of colorectal cancer.
Collapse
Affiliation(s)
- Ebtsam Hamed Khalil
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nabil A. Hasona
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
27
|
Gujrati H, Ha S, Wang BD. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms. Cancers (Basel) 2023; 15:3140. [PMID: 37370750 PMCID: PMC10296615 DOI: 10.3390/cancers15123140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer deaths among American men. Complex genetic and epigenetic mechanisms are involved in the development and progression of PCa. MicroRNAs (miRNAs) are short noncoding RNAs that regulate protein expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. In the past two decades, the field of miRNA research has rapidly expanded, and emerging evidence has revealed miRNA dysfunction to be an important epigenetic mechanism underlying a wide range of diseases, including cancers. This review article focuses on understanding the functional roles and molecular mechanisms of deregulated miRNAs in PCa aggressiveness and drug resistance based on the existing literature. Specifically, the miRNAs differentially expressed (upregulated or downregulated) in PCa vs. normal tissues, advanced vs. low-grade PCa, and treatment-responsive vs. non-responsive PCa are discussed. In particular, the oncogenic and tumor-suppressive miRNAs involved in the regulation of (1) the synthesis of the androgen receptor (AR) and its AR-V7 splice variant, (2) PTEN expression and PTEN-mediated signaling, (3) RNA splicing mechanisms, (4) chemo- and hormone-therapy resistance, and (5) racial disparities in PCa are discussed and summarized. We further provide an overview of the current advances and challenges of miRNA-based biomarkers and therapeutics in clinical practice for PCa diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Otte M, Stachelscheid J, Glaß M, Wahnschaffe L, Jiang Q, Lone W, Ianevski A, Aittokallio T, Iqbal J, Hallek M, Hüttelmaier S, Schrader A, Braun T, Herling M. The miR-141/200c-STAT4 Axis Contributes to Leukemogenesis by Enhancing Cell Proliferation in T-PLL. Cancers (Basel) 2023; 15:2527. [PMID: 37173993 PMCID: PMC10177500 DOI: 10.3390/cancers15092527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
T-prolymphocytic leukemia (T-PLL) is a rare and mature T-cell malignancy with characteristic chemotherapy-refractory behavior and a poor prognosis. Molecular concepts of disease development have been restricted to protein-coding genes. Recent global microRNA (miR) expression profiles revealed miR-141-3p and miR-200c-3p (miR-141/200c) as two of the highest differentially expressed miRs in T-PLL cells versus healthy donor-derived T cells. Furthermore, miR-141/200c expression separates T-PLL cases into two subgroups with high and low expression, respectively. Evaluating the potential pro-oncogenic function of miR-141/200c deregulation, we discovered accelerated proliferation and reduced stress-induced cell death induction upon stable miR-141/200c overexpression in mature T-cell leukemia/lymphoma lines. We further characterized a miR-141/200c-specific transcriptome involving the altered expression of genes associated with enhanced cell cycle transition, impaired DNA damage responses, and augmented survival signaling pathways. Among those genes, we identified STAT4 as a potential miR-141/200c target. Low STAT4 expression (in the absence of miR-141/200c upregulation) was associated with an immature phenotype of primary T-PLL cells as well as with a shortened overall survival of T-PLL patients. Overall, we demonstrate an aberrant miR-141/200c-STAT4 axis, showing for the first time the potential pathogenetic implications of a miR cluster, as well as of STAT4, in the leukemogenesis of this orphan disease.
Collapse
Affiliation(s)
- Moritz Otte
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
| | - Johanna Stachelscheid
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
| | - Markus Glaß
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, 06120 Halle, Germany; (M.G.)
| | - Linus Wahnschaffe
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
| | - Qu Jiang
- Department of Hematology, Cellular Therapy, and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| | - Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.L.); (J.I.)
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (A.I.); (T.A.)
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (A.I.); (T.A.)
- Institute for Cancer Research, Oslo University Hospital, Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, 0372 Oslo, Norway
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.L.); (J.I.)
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
- Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, 06120 Halle, Germany; (M.G.)
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
- CIRI, Centre International de Recherche en Infectiologie, Team Lymphoma ImmunoBiology, INSERM, U1111 CNRS UMR 5308, University of Lyon, Université Claude Bernard Lyon 1, 69364 Lyon, France
| | - Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, University of Cologne, 50937 Cologne, Germany; (M.O.); (J.S.); (L.W.); (M.H.); (A.S.); (T.B.)
| | - Marco Herling
- Department of Hematology, Cellular Therapy, and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
29
|
Ahlberg E, Al-Kaabawi A, Thune R, Simpson MR, Pedersen SA, Cione E, Jenmalm MC, Tingö L. Breast milk microRNAs: Potential players in oral tolerance development. Front Immunol 2023; 14:1154211. [PMID: 36999032 PMCID: PMC10045994 DOI: 10.3389/fimmu.2023.1154211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Breast milk is an essential source of nutrition and hydration for the infant. In addition, this highly complex biological fluid contains numerous immunologically active factors such as microorganisms, immunoglobulins, cytokines and microRNAs (miRNAs). Here, we set out to predict the function of the top 10 expressed miRNAs in human breast milk, focusing on their relevance in oral tolerance development and allergy prevention in the infant. The top expressed miRNAs in human breast milk were identified on basis of previous peer-reviewed studies gathered from a recent systematic review and an updated literature search. The miRNAs with the highest expression levels in each study were used to identify the 10 most common miRNAs or miRNA families across studies and these were selected for subsequent target prediction. The predictions were performed using TargetScan in combination with the Database for Annotation, Visualization and Integrated Discovery. The ten top expressed miRNAs were: let-7-5p family, miR-148a-3p, miR-30-5p family, miR-200a-3p + miR-141-3p, miR-22-3p, miR-181-5p family, miR-146b-5p, miR-378a-3p, miR-29-3p family, miR-200b/c-3p and miR-429-3p. The target prediction identified 3,588 potential target genes and 127 Kyoto Encyclopedia of Genes and Genomes pathways; several connected to the immune system, including TGF-b and T cell receptor signaling and T-helper cell differentiation. This review highlights the role of breast milk miRNAs and their potential contribution to infant immune maturation. Indeed, breast milk miRNAs seem to be involved in several pathways that influence oral tolerance development.
Collapse
Affiliation(s)
- Emelie Ahlberg
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ahmed Al-Kaabawi
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rebecka Thune
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melanie Rae Simpson
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sindre Andre Pedersen
- Library Section for Research Support, Data and Analysis, NTNU University Library, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Maria Christina Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lina Tingö
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
- Food and Health Programme, Örebro University, Örebro, Sweden
- *Correspondence: Lina Tingö,
| |
Collapse
|
30
|
Jha NG, Dkhar DS, Singh SK, Malode SJ, Shetti NP, Chandra P. Engineered Biosensors for Diagnosing Multidrug Resistance in Microbial and Malignant Cells. BIOSENSORS 2023; 13:235. [PMID: 36832001 PMCID: PMC9954051 DOI: 10.3390/bios13020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To curtail pathogens or tumors, antimicrobial or antineoplastic drugs have been developed. These drugs target microbial/cancer growth and survival, thereby improving the host's health. In attempts to evade the detrimental effects of such drugs, these cells have evolved several mechanisms over time. Some variants of the cells have developed resistances against multiple drugs or antimicrobial agents. Such microorganisms or cancer cells are said to exhibit multidrug resistance (MDR). The drug resistance status of a cell can be determined by analyzing several genotypic and phenotypic changes, which are brought about by significant physiological and biochemical alterations. Owing to their resilient nature, treatment and management of MDR cases in clinics is arduous and requires a meticulous approach. Currently, techniques such as plating and culturing, biopsy, gene sequencing, and magnetic resonance imaging are prevalent in clinical practices for determining drug resistance status. However, the major drawbacks of using these methods lie in their time-consuming nature and the problem of translating them into point-of-care or mass-detection tools. To overcome the shortcomings of conventional techniques, biosensors with a low detection limit have been engineered to provide quick and reliable results conveniently. These devices are highly versatile in terms of analyte range and quantities that can be detected to report drug resistance in a given sample. A brief introduction to MDR, along with a detailed insight into recent biosensor design trends and use for identifying multidrug-resistant microorganisms and tumors, is presented in this review.
Collapse
Affiliation(s)
- Niharika G. Jha
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Daphika S. Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Sumit K. Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | - Shweta J. Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Nagaraj P. Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Panjab, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
31
|
Extra-Cellular Vesicles Derived from Thyroid Cancer Cells Promote the Epithelial to Mesenchymal Transition (EMT) and the Transfer of Malignant Phenotypes through Immune Mediated Mechanisms. Int J Mol Sci 2023; 24:ijms24032754. [PMID: 36769076 PMCID: PMC9917007 DOI: 10.3390/ijms24032754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Thyroid cancer is the most common endocrine cancer, and its incidence is increasing in many countries around the world. Among thyroid cancers, the papillary thyroid cancer (PTC) histotype is particularly prevalent. A small percentage of papillary tumors is associated with metastases and aggressive behavior due to de-differentiation obtained through the epithelial-mesenchymal transition (EMT) by which epithelial thyroid cells acquire a fibroblast-like morphology, reduce cellular adhesion, increase motility and expression of mesenchymal proteins. The tumor microenvironment plays an important role in promoting an aggressive phenotype through hypoxia and the secretion of HMGB1 and other factors. Hypoxia has been shown to drastically change the tumor cell phenotype and has been associated with increasing metastatic and migratory behavior. Cells transfer information to neighboring cells or distant locations by releasing extracellular membrane vesicles (EVs) that contain key molecules, such as mRNAs, microRNAs (miRNAs), and proteins, that are able to modify protein expression in recipient cells. In this study, we investigated the potential role of EVs released by the anaplastic cancer cell line CAL-62 in inducing a malignant phenotype in a papillary cancer cell line (BCPAP).
Collapse
|
32
|
Alves LF, Geraldo MV. MiR-495-3p regulates cell migration and invasion in papillary thyroid carcinoma. Front Oncol 2023; 13:1039654. [PMID: 36776296 PMCID: PMC9911110 DOI: 10.3389/fonc.2023.1039654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Background Papillary thyroid carcinoma (PTC) is the most prevalent histotype of thyroid cancer and the presence of BRAFV600E mutation in these tumors is related to the malignancy and prognosis of the disease. In recent years attention has been focused on the role of microRNAs in the biology of PTC cells, especially in their role in the modulation of pathways related to tumorigenesis. DLK1-DIO3-derived miRNAs have been shown to play important roles in tumor context and are globally downregulated in PTC. Methods Based on a previous in silico target prediction and gene enrichment analysis, we identified miR-495-3p as the candidate with the highest tumor suppressor potential role in PTC among DLK1-DIO3-derived miRNAs. We used bioinformatics and an in vitro model of miR-495-3p overexpression to further understand the influence of this molecule on the tumorigenic processes of PTC. Results Overexpression of miR-495-3p impaired cell migration and invasion of PTC cells harboring the BRAFV600E mutation and affected the expression of targets predicted in the bioinformatic analysis, such as TGFB2, EREG and CCND1. Conclusion Overall, our results indicate that the loss of miR-495-3p expression during PTC development might play an important role in its progression.
Collapse
Affiliation(s)
| | - Murilo Vieira Geraldo
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
33
|
Fotakopoulos G, Georgakopoulou VE, Spandidos DA, Papalexis P, Angelopoulou E, Aravantinou-Fatorou A, Trakas N, Trakas I, Brotis AG. Role of miR‑200 family in brain metastases: A systematic review. Mol Clin Oncol 2023; 18:15. [PMID: 36798467 PMCID: PMC9926042 DOI: 10.3892/mco.2023.2611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Brain metastasis (BM) represents the single most severe neurological complication of systemic cancer. The prognosis of patients with BM is poor, irrespective of the implemented treatment. The present study performed a systematic review of the literature using three online databases (PubMed, Scopus and Web of Science). Recently, a number of small RNA molecules, the microRNAs (miRNAs/miRs), have attracted increasing scientific attention. Members of the miR-200 family, which includes five miRNAs (miR-141, miR-200a, miR-200b, miR-200c and miR-429) appear to play pivotal roles in cancer initiation and metastasis. Indeed, a systematic review of the pertinent literature revealed that miR-200 family members regulate the brain metastatic cascade, particularly by modulating epithelial-to-mesenchymal transition. That holds true for the major representatives of BM, including lung and breast cancer, as well as for other less frequent secondary lesions originating from melanoma and the gastrointestinal tract. Therefore, the miRNAs may serve as potential diagnostic and/or prognostic markers, and under specific circumstances, as invaluable therapeutic targets. However, the available clinical evidence is relatively limited. A number of studies have suggested that the miR-200 family members are accurate prognostic markers of survival and resistance to chemotherapy in patients with breast cancer. Similarly, they may prove helpful in differentiating a metastatic lesion from a malignant glioma, or a hemangioblastoma from a renal cell carcinoma in patients with von Hippel Lindau syndrome, based on a cerebrospinal fluid sample. However, currently, there is no known therapeutic role for miR-200 family members in the setting of BM.
Collapse
Affiliation(s)
- George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece,Correspondence to: Dr George Fotakopoulos, Department of Neurosurgery, General University Hospital of Larissa, Mezourlo, 41221 Larissa, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Efthalia Angelopoulou
- Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Aikaterini Aravantinou-Fatorou
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Ilias Trakas
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandros G. Brotis
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| |
Collapse
|
34
|
Non-invasive diagnosis of endometriosis: Immunologic and genetic markers. Clin Chim Acta 2023; 538:70-86. [PMID: 36375526 DOI: 10.1016/j.cca.2022.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Endometriosis, a benign gynecologic and chronic inflammatory disease, is defined by the presence of endometrial tissue outside the uterus characterized mainly by pelvic pain and infertility. Because endometriosis affects approximately 10% of females, it represents a significant socioeconomic burden worldwide having tremendous impact on daily quality of life. Accurate and prompt diagnosis is crucial for the management of this debilitating disorder. Unfortunately, diagnosis is typically delayed to lack of specific symptoms and readily accessible biomarkers. Although histopathologic examination remains the current gold standard, this approach is highly invasive and not applicable for early screening. Recent work has focused on the identification of reliable biomarkers including immunologic, ie, immune cells, antibodies and cytokines, as well as genetic and biochemical markers, ie, microRNAs, lncRNAs, circulating and mitochondrial nucleic acids, along with some hormones, glycoproteins and signaling molecules. Confirmatory research studies are, however, needed to more fully establish these markers in the diagnosis, progression and staging of these endometrial lesions.
Collapse
|
35
|
Safonova TN, Zaitseva GV, Burdenny AM. [The role of miRNA in the pathogenesis of diseases associated with functional dysregulation of the lacrimal gland]. Vestn Oftalmol 2023; 139:112-118. [PMID: 37379117 DOI: 10.17116/oftalma2023139031112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
At this time, the mechanism causing lacrimal gland dysfunction is not understood completely. In diseases associated with lacrimal gland involvement (Sjogren's syndrome, sarcoidosis, IgG4-associated disease, etc.) patients have been observed to experience elevated cellular apoptosis, active production of autoantibodies to glandular tissue, increased level of pro-inflammatory cytokines, functional disruption of signaling molecules leading to changes in tear production. Difficulties in differential diagnosis of lacrimal gland dysfunction in above-listed diseases are associated, on the one hand, with similarity of the clinical picture of ophthalmological manifestations, and on the other hand - with complicated morphological interpretation of changes in the glandular tissues. In this view, miRNA is a promising diagnostic and prognostic marker that would help with differential diagnosis as well as with choosing the treatment tactics. Methods of molecular profiling and identification of "molecular phenotypes" of lacrimal gland and ocular surface damage will allow the use of miRNA as biomarkers and prognostic factors for personalized treatment.
Collapse
Affiliation(s)
- T N Safonova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - G V Zaitseva
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - A M Burdenny
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
36
|
Moore JA, Lehner MJ, Anfossi S, Datar S, Tidwell RS, Campbell M, Shah AY, Ward JF, Karam JA, Wood CG, Pisters LL, Calin GA, Tu S. Predictive capacity of a miRNA panel in identifying teratoma in post-chemotherapy consolidation surgeries. BJUI COMPASS 2023; 4:81-87. [PMID: 36569509 PMCID: PMC9766861 DOI: 10.1002/bco2.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
Objectives To investigate the utility of a novel serum miRNA biomarker panel to distinguish teratoma from nonmalignant necrotic/fibrotic tissues or nonviable tumours in patients with NSGCT undergoing post-chemotherapy consolidation surgery. Patients and methods We prospectively collected pre-surgical serum samples from 22 consecutive testicular NSGCT patients with residual NSGCT after chemotherapy undergoing post-chemotherapy consolidation surgery. We measured serum miRNA expression of four microRNAs (miRNA-375, miRNA-200a-3p, miRNA-200a-5p and miRNA-200b-3p) and compared with pathologic findings at time of surgery. Receiver operating characteristic (ROC) curves were performed to assess the ability of these miRNA to differentiate between teratoma and necrosis or viable malignancy. Results Twenty-two patients with NSGCT were split into two groups based on pathology at time of post-chemotherapy consolidation surgery (teratoma group vs. necrosis/fibrosis/viable tumour group, i.e., NFVT). Patients with teratoma were older at diagnosis compared with those patients with NFVT (median age 28.7 vs. 23.9). Patients with NFVT were more likely to have embryonal carcinoma in their primary tumour (81.8% vs. 27.3%; p = 0.01). The majority of patients in both groups were stage III (63.6% vs. 72.7%). In this analysis, none of the miRNAs had good sensitivity or specificity to predict teratoma. There was no significant association between the expression levels of the miRNAs and the presence of teratoma. There was no statistically significant correlation between any of the miRNAs and teratoma size. Conclusion This novel miRNA panel (miRNA-375, miRNA-200a-3p, miRNA-200a-5p and miRNA-200b-3p) did not distinguish teratoma from nonmalignant necrotic/fibrotic tissues or nonviable tumours in patients with NSGCT undergoing post-chemotherapy consolidation surgery.
Collapse
Affiliation(s)
- Joseph A. Moore
- Department of Genitourinary Medical OncologyDivision of Cancer Medicine, University of Texas MD Anderson Cancer CenterHoustonTX
| | - Michael J. Lehner
- Department of Internal MedicineUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Simone Anfossi
- Department of Translational Molecular PathologyDivision of Pathology/Lab Medicine, University of Texas MD Anderson Cancer CenterHoustonTX
| | - Saumil Datar
- Department of Internal MedicineUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Rebecca S. Tidwell
- Department of BiostatisticsUniversity of Texas MD Anderson Cancer CenterTXHoustonTX
| | - Matthew Campbell
- Department of Genitourinary Medical OncologyDivision of Cancer Medicine, University of Texas MD Anderson Cancer CenterHoustonTX
| | - Amishi Y. Shah
- Department of Genitourinary Medical OncologyDivision of Cancer Medicine, University of Texas MD Anderson Cancer CenterHoustonTX
| | - John F. Ward
- Department of UrologyDivision of Surgery, University of Texas MD Anderson Cancer CenterHoustonTX
| | - Jose A. Karam
- Department of UrologyDivision of Surgery, University of Texas MD Anderson Cancer CenterHoustonTX
| | - Christopher G. Wood
- Department of UrologyDivision of Surgery, University of Texas MD Anderson Cancer CenterHoustonTX
| | - Lois L. Pisters
- Department of UrologyDivision of Surgery, University of Texas MD Anderson Cancer CenterHoustonTX
| | - George A. Calin
- Department of Translational Molecular PathologyDivision of Pathology/Lab Medicine, University of Texas MD Anderson Cancer CenterHoustonTX
| | - Shi‐Ming Tu
- Department of Genitourinary Medical OncologyDivision of Cancer Medicine, University of Texas MD Anderson Cancer CenterHoustonTX
| |
Collapse
|
37
|
Bahmani L, Baghi M, Peymani M, Javeri A, Ghaedi K. The PBX1/miR-141-miR-200a/EGR2/SOCS3 Axis; Integrative Analysis of Interaction Networks to Discover the Possible Mechanism of MiR-141 and MiR-200a-Mediated Th17 Cell Differentiation. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3211. [PMID: 36811100 PMCID: PMC9938929 DOI: 10.30498/ijb.2022.317078.3211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/06/2022] [Indexed: 02/24/2023]
Abstract
Background Overexpression of miR-141 and miR-200a is known to be associated with the differentiation of T helper 17 (Th17) cells, which are key players in the pathophysiology of autoimmune disorders. However, the function and governing mechanism of these two microRNAs (miRNAs) in Th17 cell skewing are poorly defined. Objectives The aim of the present study was to identify the common upstream transcription factors and downstream target genes of miR-141 and miR-200a to obtain a better insight into the possible dysregulated molecular regulatory networks driving miR-141/miR-200a-mediated Th17 cell development. Materials and Methods A consensus-based prediction strategy was applied for in-silico identification of potential transcription factors and putative gene targets of miR-141 and miR-200a. Thereafter, we analyzed the expression patterns of candidate transcription factors and target genes during human Th17 cell differentiation by quantitative real-time PCR and examined the direct interaction between both miRNAs and their potential target sequences using dual-luciferase reporter assays. Results According to our miRNA-based and gene-based interaction network analyses, pre-B cell leukemia homeobox (PBX1) and early growth response 2 (EGR2) were respectively taken into account as the potential upstream transcription factor and downstream target gene of miR-141 and miR-200a. There was a significant overexpression of the PBX1 gene during the Th17 cell induction period. Furthermore, both miRNAs could directly target EGR2 and inhibit its expression. As a downstream gene of EGR2, the suppressor of cytokine signaling 3 (SOCS3) was also downregulated during the differentiation process. Conclusions These results indicate that activation of the PBX1/miR-141-miR-200a/EGR2/SOCS3 axis may promote Th17 cell development and, therefore, trigger or exacerbate Th17-mediated autoimmunity.
Collapse
Affiliation(s)
- Leila Bahmani
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoud Baghi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran,
Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
38
|
Han H, Park CK, Choi YD, Cho NH, Lee J, Cho KS. Androgen-Independent Prostate Cancer Is Sensitive to CDC42-PAK7 Kinase Inhibition. Biomedicines 2022; 11:101. [PMID: 36672609 PMCID: PMC9855385 DOI: 10.3390/biomedicines11010101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer is a common form of cancer in men, and androgen-deprivation therapy (ADT) is often used as a first-line treatment. However, some patients develop resistance to ADT, and their disease is called castration-resistant prostate cancer (CRPC). Identifying potential therapeutic targets for this aggressive subtype of prostate cancer is crucial. In this study, we show that statins can selectively inhibit the growth of these CRPC tumors that have lost their androgen receptor (AR) and have overexpressed the RNA-binding protein QKI. We found that the repression of microRNA-200 by QKI overexpression promotes the rise of AR-low mesenchymal-like CRPC cells. Using in silico drug/gene perturbation combined screening, we discovered that QKI-overexpressing cancer cells are selectively vulnerable to CDC42-PAK7 inhibition by statins. We also confirmed that PAK7 overexpression is present in prostate cancer that coexists with hyperlipidemia. Our results demonstrate a previously unseen mechanism of action for statins in these QKI-expressing AR-lost CRPCs. This may explain the clinical benefits of the drug and support the development of a biology-driven drug-repurposing clinical trial. This is an important finding that could help improve treatment options for patients with this aggressive form of prostate cancer.
Collapse
Affiliation(s)
- Hyunho Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Cheol Keun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Pathology Center, Seegene Medical Foundation, Seoul 04805, Republic of Korea
| | - Young-Deuk Choi
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jongsoo Lee
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kang Su Cho
- Department of Urology, Prostate Cancer Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| |
Collapse
|
39
|
Exploring craniofacial and dental development with microRNAs. Biochem Soc Trans 2022; 50:1897-1909. [DOI: 10.1042/bst20221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
microRNAs (miRs) are small RNA molecules that regulate many cellular and developmental processes. They control gene expression pathways during specific developmental time points and are required for tissue homeostasis and stem cell maintenance. miRs as therapeutic reagents in tissue regeneration and repair hold great promise and new technologies are currently being designed to facilitate their expression or inhibition. Due to the large amount of miR research in cells and cancer many cellular processes and gene networks have been delineated however, their in vivo response can be different in complex tissues and organs. Specifically, this report will discuss animal developmental models to understand the role of miRs as well as xenograft, disease, and injury models. We will discuss the role of miRs in clinical studies including their diagnostic function, as well as their potential ability to correct craniofacial diseases.
Collapse
|
40
|
Köhler B, Dubovik S, Hörterer E, Wilk U, Stöckl JB, Tekarslan-Sahin H, Ljepoja B, Paulitschke P, Fröhlich T, Wagner E, Roidl A. Combating Drug Resistance by Exploiting miRNA-200c-Controlled Phase II Detoxification. Cancers (Basel) 2022; 14:cancers14225554. [PMID: 36428646 PMCID: PMC9688189 DOI: 10.3390/cancers14225554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acquired drug resistance constitutes a serious obstacle to the successful therapy of cancer. In the process of therapy resistance, microRNAs can play important roles. In order to combat resistance formation and to improve the efficacy of chemotherapeutics, the mechanisms of the multifaceted hsa-miR-200c on drug resistance were elucidated. Upon knockout of hsa-miR-200c in breast carcinoma cells, a proteomic approach identified altered expression of glutathione S-transferases (GSTs) when cells were treated with the chemotherapeutic drug doxorubicin. In different hsa-miR-200c expression systems, such as knockout, inducible sponge and inducible overexpression, the differential expression of all members of the GST family was evaluated. Expression of hsa-miR-200c in cancer cells led to the repression of a multitude of these GSTs and as consequence, enhanced drug-induced tumor cell death which was evaluated for two chemotherapeutic drugs. Additionally, the influence of hsa-miR-200c on the glutathione pathway, which is part of the phase II detoxification mechanism, was investigated. Finally, the long-term effects of hsa-miR-200c on drug efficacy were studied in vitro and in vivo. Upon doxycycline induction of hsa-miR-200c, MDA-MB 231 xenograft mouse models revealed a strongly reduced tumor growth and an enhanced treatment response to doxorubicin. A combined treatment of these tumors with hsa-miR-200c and doxorubicin resulted in complete regression of the tumor in 60% of the animals. These results identify hsa-miR-200c as an important player regulating the cellular phase II detoxification, thus sensitizing cancer cells not expressing this microRNA to chemotherapeutics and reversing drug resistance through suppression of GSTs.
Collapse
Affiliation(s)
- Bianca Köhler
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Sviatlana Dubovik
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Jan Bernd Stöckl
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Hande Tekarslan-Sahin
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Bojan Ljepoja
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | | | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Correspondence: ; Tel.: +49-89-2180-77456
| |
Collapse
|
41
|
Ilieva M, Panella R, Uchida S. MicroRNAs in Cancer and Cardiovascular Disease. Cells 2022; 11:3551. [PMID: 36428980 PMCID: PMC9688578 DOI: 10.3390/cells11223551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although cardiac tumor formation is rare, accumulating evidence suggests that the two leading causes of deaths, cancers, and cardiovascular diseases are similar in terms of pathogenesis, including angiogenesis, immune responses, and fibrosis. These similarities have led to the creation of new exciting field of study called cardio-oncology. Here, we review the similarities between cancer and cardiovascular disease from the perspective of microRNAs (miRNAs). As miRNAs are well-known regulators of translation by binding to the 3'-untranslated regions (UTRs) of messenger RNAs (mRNAs), we carefully dissect how a specific set of miRNAs are both oncomiRs (miRNAs in cancer) and myomiRs (muscle-related miRNAs). Furthermore, from the standpoint of similar pathogenesis, miRNAs categories related to the similar pathogenesis are discussed; namely, angiomiRs, Immune-miRs, and fibromiRs.
Collapse
Affiliation(s)
| | | | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| |
Collapse
|
42
|
Davies M, Davey MG, Miller N. The Potential of MicroRNAs as Clinical Biomarkers to Aid Ovarian Cancer Diagnosis and Treatment. Genes (Basel) 2022; 13:2054. [PMID: 36360295 PMCID: PMC9690044 DOI: 10.3390/genes13112054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Ovarian cancer is a commonly diagnosed malignancy in women. When diagnosed at an early stage, survival outcomes are favourable for the vast majority, with up to 90% of ovarian cancer patients being free of disease at 5 years follow-up. Unfortunately, ovarian cancer is typically diagnosed at an advanced stage due to the majority of patients remaining asymptomatic until the cancer has metastasised, resulting in poor outcomes for the majority. While the molecular era has facilitated the subclassification of the disease into distinct clinical subtypes, ovarian cancer remains managed and treated as a single disease entity. MicroRNAs (miRNAs) are small (19-25 nucleotides), endogenous molecules which are integral to regulating gene expression. Aberrant miRNA expression profiles have been described in several cancers, and have been implicated to be useful biomarkers which may aid cancer diagnostics and treatment. Several preliminary studies have identified candidate tumour suppressor and oncogenic miRNAs which may be involved in the development and progression of ovarian cancer, highlighting their candidacy as oncological biomarkers; understanding the mechanisms by which these miRNAs regulate the key processes involved in oncogenesis can improve our overall understanding of cancer development and identify novel biomarkers and therapeutic targets. This review highlights the potential role of miRNAs which may be utilised to aid diagnosis, estimate prognosis and enhance therapeutic strategies in the management of primary ovarian cancer.
Collapse
|
43
|
Pavlič A, Boštjančič E, Kavalar R, Ilijevec B, Bonin S, Zanconati F, Zidar N. Tumour budding and poorly differentiated clusters in colon cancer - different manifestations of partial epithelial-mesenchymal transition. J Pathol 2022; 258:278-288. [PMID: 36062412 PMCID: PMC9825925 DOI: 10.1002/path.5998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 01/11/2023]
Abstract
Morphological features including infiltrative growth, tumour budding (TB), and poorly differentiated clusters (PDCs) have a firmly established negative predictive value in colorectal cancer (CRC). Despite extensive research, the mechanisms underlying different tumour growth patterns remain poorly understood. The aim of this study was to investigate the involvement of epithelial-mesenchymal transition (EMT) in TB and PDCs in CRC. Using laser-capture microdissection, we obtained distinct parts of the primary CRC including TB, PDCs, expansive tumour front, and the central part of the tumour, and analysed the expression of EMT-related markers, i.e. the miR-200 family, ZEB1/2, RND3, and CDH1. In TB, the miR-200 family and CDH1 were significantly downregulated, while ZEB2 was significantly upregulated. In PDCs, miR-141, miR-200c, and CDH1 were significantly downregulated. No significant differences were observed in the expression of any EMT-related markers between the expansive tumour front and the central part of the tumour. Our results suggest that both TB and PDCs are related to partial EMT. Discrete differences in morphology and expression of EMT-related markers between TB and PDCs indicate that they represent different manifestations of partial EMT. TB seems to be closer to complete EMT than PDCs. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ana Pavlič
- Institute of Pathology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Rajko Kavalar
- Department of PathologyUniversity Medical Centre MariborMariborSlovenia
| | - Bojan Ilijevec
- Department of Abdominal and General SurgeryUniversity Medical Centre MariborMariborSlovenia
| | - Serena Bonin
- Department of Medical SciencesUniversity of TriesteTriesteItaly
| | | | - Nina Zidar
- Institute of Pathology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
44
|
Kandettu A, Adiga D, Devi V, Suresh PS, Chakrabarty S, Radhakrishnan R, Kabekkodu SP. Deregulated miRNA clusters in ovarian cancer: Imperative implications in personalized medicine. Genes Dis 2022; 9:1443-1465. [PMID: 36157483 PMCID: PMC9485269 DOI: 10.1016/j.gendis.2021.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/04/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. OC is usually detected at the advanced stages of the disease, making it highly lethal. miRNAs are single-stranded, small non-coding RNAs with an approximate size ranging around 22 nt. Interestingly, a considerable proportion of miRNAs are organized in clusters with miRNA genes placed adjacent to one another, getting transcribed together to result in miRNA clusters (MCs). MCs comprise two or more miRNAs that follow the same orientation during transcription. Abnormal expression of the miRNA cluster has been identified as one of the key drivers in OC. MC exists both as tumor-suppressive and oncogenic clusters and has a significant role in OC pathogenesis by facilitating cancer cells to acquire various hallmarks. The present review summarizes the regulation and biological function of MCs in OC. The review also highlights the utility of abnormally expressed MCs in the clinical management of OC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Centre for Cardiovascular Pharmacology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal Campus, Manipal, Karnataka 576104, India
| | - Padmanaban S. Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
45
|
Ghasemi F, Alemzadeh E, Allahqoli L, Alemzadeh E, Mazidimoradi A, Salehiniya H, Alkatout I. MicroRNAs Dysregulation as Potential Biomarkers for Early Diagnosis of Endometriosis. Biomedicines 2022; 10:biomedicines10102558. [PMID: 36289820 PMCID: PMC9599310 DOI: 10.3390/biomedicines10102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Endometriosis is a benign chronic disease in women that is characterized by the presence of active foci of the endometrium or endometrial tissue occurring outside of the uterus. The disease causes disabling symptoms such as pelvic pain and infertility, which negatively affect a patient's quality of life. In addition, endometriosis imposes an immense financial burden on the healthcare system. At present, laparoscopy is the gold standard for diagnosing the disease because other non-invasive diagnostic tests have less accuracy. In addition, other diagnostic tests have low accuracy. Therefore, there is an urgent need for the development of a highly sensitive, more specific, and non-invasive test for the early diagnosis of endometriosis. Numerous researchers have suggested miRNAs as potential biomarkers for endometriosis diagnosis due to their specificity and stability. However, the greatest prognostic force is the determination of several miRNAs, the expression of which varies in a given disease. Despite the identification of several miRNAs, the studies are investigatory in nature, and there is no consensus on them. In the present review, we first provide an introduction to the dysregulation of miRNAs in patients with endometriosis and the potential use of miRNAs as biomarkers in the detection of endometriosis. Then we will describe the role of the mir-200 family in endometriosis. Several studies have shown that the expression of the mir-200 family changes in endometriosis patients, suggesting that they could be used as a diagnostic biomarker and therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Effat Alemzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Leila Allahqoli
- Midwifery Department, Ministry of Health and Medical Education, Tehran 1467664961, Iran
| | - Esmat Alemzadeh
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Afrooz Mazidimoradi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Hamid Salehiniya
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Ibrahim Alkatout
- Kiel School of Gynaecological Endoscopy, Campus Kiel, University Hospitals Schleswig-Holstein, Ar-nold-Heller-Str. 3, Haus 24, 24105 Kiel, Germany
- Correspondence:
| |
Collapse
|
46
|
Jayaraman S, Fathima SJ, Veeraraghavan VP, Raj AT, Patil S. Resveratrol and miR-200c: insights into the prevention of oral squamous cell carcinoma. Future Oncol 2022; 18:3471-3472. [PMID: 36268781 DOI: 10.2217/fon-2022-0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Selvaraj Jayaraman
- Center of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Shazia Jh Fathima
- Center of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.,Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospitals, Chennai, 600119, India
| | - Vishnu Priya Veeraraghavan
- Center of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, 600130, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
47
|
Stergiou IE, Bakasis AD, Giannouli S, Voulgarelis M. Biomarkers of lymphoma in Sjögren's syndrome: what's the latest? Expert Rev Clin Immunol 2022; 18:1155-1171. [PMID: 36097855 DOI: 10.1080/1744666x.2022.2123794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease standing in the crossroads of autoimmunity and lymphomagenesis, characterized by chronic B-cell hyperactivity and ectopic lymphoid tissue neoformation, potentially driving lymphoid malignant transformation. Lymphoma development is considered the most serious complication of pSS. AREAS COVERED: “ Old-classical" biomarkers (clinical, serological, hematological, and histological) validated in the past are analyzed under the perspective of recently published research. Biomarkers that have emerged during the last decade are subdivided to "old-new" and "newly proposed-novel" ones, including biomarkers pathophysiologically related to B-cell differentiation, lymphoid organization, and immune responses, identified in serum and tissue, both at genetic and protein level. Upcoming new imaging biomarkers, promising for further patient stratification, are also analyzed. EXPERT OPINION Salivary gland enlargement and cryoglobulinemia still remain the best validated "classical-old" biomarkers for lymphoma development. Though new biomarkers still need to be validated, some can be used for the identification of high-risk patients long before lymphoma diagnosis, some might be more relevant in distinct age subgroups, while others have an added value in the assessment of lymphoma remission or relapse. Future development of composite indices integrating old and recently proposed biomarkers could contribute to a more precise lymphoma prediction model.
Collapse
Affiliation(s)
- Ioanna E Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios-Dimitrios Bakasis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Giannouli
- Hematology Unit, Second Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Kujawa M, O’Meara M, Li H, Xu L, Meda Venkata SP, Nguyen H, Minjares M, Zhang K, Wang JM. MicroRNA-466 and microRNA-200 increase endothelial permeability in hyperglycemia by targeting Claudin-5. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:259-271. [PMID: 35892090 PMCID: PMC9307898 DOI: 10.1016/j.omtn.2022.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Endothelial cell (EC) permeability is essential to vascular homeostasis in diabetes. MicroRNAs are critical gene regulators whose roles in the EC permeability have yet to be characterized. This study aims to examine the change in cell permeability induced by miR-200 and miR-466 in ECs. Human aortic ECs and dermal microvascular ECs from healthy subjects and type 2 diabetic patients were used. Our in vitro experiments unveiled higher expressions of miR-200 family members and miR-466 in diabetic ECs and in healthy ECs when exposed to high glucose. Overexpression of both miR-200 and miR-466 significantly increased EC permeability through transcriptional suppression of Claudin-5, the cell tight junction protein, by directly binding to its 3' untranslated region. In a mouse model of chronic hyperglycemia mimicking type 2 diabetes in humans (db/db mice), the delayed closure rate of a full-thickness excisional wound was partly rescued by topical application of the miR-200 inhibitor. The topical application of both miR-200 and miR-466 inhibitors exhibited improved efficacy in accelerating wound closure compared with the topical application of miR-200 inhibitor alone. Our study demonstrated the potentially effective approach of miR-200/miR-466 cocktail inhibition to restore vascular integrity and tissue repair in hyperglycemia.
Collapse
Affiliation(s)
- Marisa Kujawa
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Megan O’Meara
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hainan Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sai Pranathi Meda Venkata
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Huong Nguyen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Kezhong Zhang
- Centers for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Centers for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
49
|
Integrated Analysis of the lncRNA-Associated ceRNA Network in Wilms Tumor via TARGET and GEO Databases. Genet Res (Camb) 2022; 2022:2365991. [PMID: 36101743 PMCID: PMC9452976 DOI: 10.1155/2022/2365991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Wilms tumor (WT) is the most common genitourinary renal tumor that typically occurs in children under 15 and is thought to be linked to somatic and germline mutations. However, the specific functional role of competing endogenous RNAs (ceRNAs) and their potential implications in WT remain unclear. In this study, we developed an lncRNA-mediated (long noncoding RNA-mediated) ceRNA network via the R packages for WT with expression data obtained from the tumor alterations relevant for genomics-driven therapy (TARGET) database. Unsupervised hierarchical clustering analysis revealed that the WT specimens could be clearly distinguished from healthy specimens with respect to the expression of disordered RNAs. A total of 1,607 differentially expressed (DE) lncRNAs, 116 DE microRNAs (DEmiRNAs), and 3,262 DE messenger RNAs (DEmRNAs) were identified as WT-specific RNAs, and a lncRNA-miRNA-mRNA ceRNA network with 159 DElncRNAs, 18 DEmiRNAs, 131 DEmRNAs, and 792 interactions was constructed. According to the clinical survival data, 12 DElncRNAs, 5 DEmRNAs, and 2 DEmiRNAs were selected from the ceRNA network that could significantly impact the overall survival of WT patients (P < 0.05). Functional enrichment analysis showed that the biological processes and pathways of DEmRNAs, such as cell cycle and virus infection, may be associated with WT. The present study constructed a dysregulated lncRNA-mediated ceRNA network in WT and discovered that lncRNA-mediated ceRNAs may serve as important regulators in WT development and progression. Survival-associated RNAs may serve as new potential biomarkers, suggesting that the constructed ceRNA network in WT might be important for determining optimal therapeutic strategies.
Collapse
|
50
|
Circulating miR-200 Family and CTCs in Metastatic Breast Cancer before, during, and after a New Line of Systemic Treatment. Int J Mol Sci 2022; 23:ijms23179535. [PMID: 36076930 PMCID: PMC9455626 DOI: 10.3390/ijms23179535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The extracellular circulating microRNA (miR)-200 regulates epithelial-mesenchymal transition and, thus, plays an essential role in the metastatic cascade and has shown itself to be a promising prognostic and predictive biomarker in metastatic breast cancer (MBC). Expression levels of the plasma miR-200 family were analyzed in relationship to systemic treatment, circulating tumor cells (CTC) count, progression-free survival (PFS), and overall survival (OS). Expression of miR-200a, miR-200b, miR-200c, miR-141, and miR-429, and CTC status (CTC-positive ≥ 5 CTC/7.5 mL) was assessed in 47 patients at baseline (BL), after the first completed cycle of a new line of systemic therapy (1C), and upon the progression of disease (PD). MiR-200a, miR-200b, and miR-141 expression was reduced at 1C compared to BL. Upon PD, all miR-200s were upregulated compared to 1C. At all timepoints, the levels of miR-200s were elevated in CTC-positive versus CTC-negative patients. Further, heightened miR-200s expression and positive CTC status were associated with poorer OS at BL and 1C. In MBC patients, circulating miR-200 family members decreased after one cycle of a new line of systemic therapy, were elevated during PD, and were indicative of CTC status. Notably, increased levels of miR-200s and elevated CTC count correlated with poorer OS and PFS. As such, both are promising biomarkers for optimizing the clinical management of MBC.
Collapse
|