1
|
Garcia NMG, Becerra JN, McKinney BJ, DiMarco AV, Wu F, Fitzgibbon M, Alvarez JV. APOBEC3 activity promotes the survival and evolution of drug-tolerant persister cells during acquired resistance to EGFR inhibitors in lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.02.547443. [PMID: 37461590 PMCID: PMC10350004 DOI: 10.1101/2023.07.02.547443] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
APOBEC mutagenesis is one of the most common endogenous sources of mutations in human cancer and is a major source of genetic intratumor heterogeneity. High levels of APOBEC mutagenesis are associated with poor prognosis and aggressive disease across diverse cancers, but the mechanistic and functional impacts of APOBEC mutagenesis on tumor evolution and therapy resistance remain relatively unexplored. To address this, we investigated the contribution of APOBEC mutagenesis to acquired therapy resistance in a model of EGFR-mutant non-small cell lung cancer. We find that inhibition of EGFR in lung cancer cells leads to a rapid and pronounced induction of APOBEC3 expression and activity. Functionally, APOBEC expression promotes the survival of drug-tolerant persister cells (DTPs) following EGFR inhibition. Constitutive expression of APOBEC3B alters the evolutionary trajectory of acquired resistance to the EGFR inhibitor gefitinib, making it more likely that resistance arises through de novo acquisition of the T790M gatekeeper mutation and squamous transdifferentiation during the DTP state. APOBEC3B expression is associated with increased expression of the squamous cell transcription factor ΔNp63 and squamous cell transdifferentiation in gefitinib-resistant cells. Knockout of p63 in gefitinib-resistant cells reduces the expression of the ΔNp63 target genes IL1α/β and sensitizes these cells to the third-generation EGFR inhibitor osimertinib. These results suggest that APOBEC activity promotes acquired resistance by facilitating evolution and transdifferentiation in DTPs, and suggest that approaches to target ΔNp63 in gefitinib-resistant lung cancers may have therapeutic benefit.
Collapse
Affiliation(s)
- Nina Marie G Garcia
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine
| | - Jessica N Becerra
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Brock J McKinney
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Ashley V DiMarco
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine
| | - Feinan Wu
- Genomics and Bioinformatics, Fred Hutchinson Cancer Center
| | | | - James V Alvarez
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
| |
Collapse
|
2
|
Cai P, Yang B, Zhao J, Ye P, Yang D. Detection of KRAS mutation using plasma samples in non-small-cell lung cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1207892. [PMID: 37483491 PMCID: PMC10357383 DOI: 10.3389/fonc.2023.1207892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background The aim of this study was to investigate the diagnostic accuracy of KRAS mutation detection using plasma sample of patients with non-small cell lung cancer (NSCLC). Methods Databases of Pubmed, Embase, Cochrane Library, and Web of Science were searched for studies detecting KRAS mutation in paired tissue and plasma samples of patients with NSCLC. Data were extracted from each eligible study and analyzed using MetaDiSc and STATA. Results After database searching and screening of the studies with pre-defined criteria, 43 eligible studies were identified and relevant data were extracted. After pooling the accuracy data from 3341 patients, the pooled sensitivity, specificity and diagnostic odds ratio were 71%, 94%, and 59.28, respectively. Area under curve of summary receiver operating characteristic curve was 0.8883. Subgroup analysis revealed that next-generation sequencing outperformed PCR-based techniques in detecting KRAS mutation using plasma sample of patients with NSCLC, with sensitivity, specificity, and diagnostic odds ratio of 73%, 94%, and 82.60, respectively. Conclusion Compared to paired tumor tissue sample, plasma sample showed overall good performance in detecting KRAS mutation in patients with NSCLC, which could serve as good surrogate when tissue samples are not available.
Collapse
Affiliation(s)
- Peiling Cai
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Bofan Yang
- School of Clinical Medicine, Chengdu University, Chengdu, China
| | - Jiahui Zhao
- School of Clinical Medicine, Chengdu University, Chengdu, China
| | - Peng Ye
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Dongmei Yang
- Clinical Laboratory & Clinical Research and Translational Center, Second People’s Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, China
| |
Collapse
|
3
|
Sattler M, Mambetsariev I, Fricke J, Tan T, Liu S, Vaidehi N, Pisick E, Mirzapoiazova T, Rock AG, Merla A, Sharma S, Salgia R. A Closer Look at EGFR Inhibitor Resistance in Non-Small Cell Lung Cancer through the Lens of Precision Medicine. J Clin Med 2023; 12:jcm12051936. [PMID: 36902723 PMCID: PMC10003860 DOI: 10.3390/jcm12051936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
The development of EGFR small-molecule inhibitors has provided significant benefit for the affected patient population. Unfortunately, current inhibitors are no curative therapy, and their development has been driven by on-target mutations that interfere with binding and thus inhibitory activity. Genomic studies have revealed that, in addition to these on-target mutations, there are also multiple off-target mechanisms of EGFR inhibitor resistance and novel therapeutics that can overcome these challenges are sought. Resistance to competitive 1st-generation and covalent 2nd- and 3rd-generation EGFR inhibitors is overall more complex than initially thought, and novel 4th-generation allosteric inhibitors are expected to suffer from a similar fate. Additional nongenetic mechanisms of resistance are significant and can include up to 50% of the escape pathways. These potential targets have gained recent interest and are usually not part of cancer panels that look for alterations in resistant patient specimen. We discuss the duality between genetic and nongenetic EGFR inhibitor drug resistance and summarize current team medicine approaches, wherein clinical developments, hand in hand with drug development research, drive potential opportunities for combination therapy.
Collapse
Affiliation(s)
- Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Jeremy Fricke
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Tingting Tan
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Sariah Liu
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Evan Pisick
- City of Hope Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Adam G. Rock
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Amartej Merla
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Sunil Sharma
- Division of Applied Cancer Research and Drug Discovery, Translational Genomic Research Institute (Tgen), 445 N 5th St, Phoenix, AZ 85004, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Drugging KRAS: current perspectives and state-of-art review. J Hematol Oncol 2022; 15:152. [PMID: 36284306 PMCID: PMC9597994 DOI: 10.1186/s13045-022-01375-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
After decades of efforts, we have recently made progress into targeting KRAS mutations in several malignancies. Known as the ‘holy grail’ of targeted cancer therapies, KRAS is the most frequently mutated oncogene in human malignancies. Under normal conditions, KRAS shuttles between the GDP-bound ‘off’ state and the GTP-bound ‘on’ state. Mutant KRAS is constitutively activated and leads to persistent downstream signaling and oncogenesis. In 2013, improved understanding of KRAS biology and newer drug designing technologies led to the crucial discovery of a cysteine drug-binding pocket in GDP-bound mutant KRAS G12C protein. Covalent inhibitors that block mutant KRAS G12C were successfully developed and sotorasib was the first KRAS G12C inhibitor to be approved, with several more in the pipeline. Simultaneously, effects of KRAS mutations on tumour microenvironment were also discovered, partly owing to the universal use of immune checkpoint inhibitors. In this review, we discuss the discovery, biology, and function of KRAS in human malignancies. We also discuss the relationship between KRAS mutations and the tumour microenvironment, and therapeutic strategies to target KRAS. Finally, we review the current clinical evidence and ongoing clinical trials of novel agents targeting KRAS and shine light on resistance pathways known so far.
Collapse
|
5
|
Palmieri M, Zulato E, Wahl SGF, Guibert N, Frullanti E. Diagnostic accuracy of circulating free DNA testing for the detection of KRAS mutations in non-small cell lung cancer: A systematic review and meta-analysis. Front Genet 2022; 13:1015161. [PMID: 36386815 PMCID: PMC9640997 DOI: 10.3389/fgene.2022.1015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) gene encodes a GTPase that acts as a molecular switch for intracellular signal transduction, promoting cell growth and proliferation. Mutations in the KRAS gene represent important biomarkers for NSCLC targeted therapy. However, detection of KRAS mutations in tissues has shown some limitations. During the last years, analyses of circulating free DNA (cfDNA) has emerged as an alternative and minimally invasive, approach to investigate tumor molecular changes. Here, we assessed the diagnostic performance of cfDNA analysis, compared to tissues through a meta-analysis and systematic review of existing literature. From 561 candidate papers, we finally identified 40 studies, including 2,805 NSCLC patients. We extracted values relating to the number of true-positive, false-positive, false-negative, and true-negative. Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio, each with 95% CI, were calculated. A summary receiver operating characteristic curve and the area under curve (AUC) were used to evaluate the overall diagnostic performance. The pooled sensitivity was 0.71 (95% CI 0.68–0.74) and the specificity was 0.93 (95% CI 0.92–0.94). The diagnostic odds ratio was 35.24 (95% CI 24.88–49.91) and the area under the curve was 0.92 (SE = 0.094). These results provide evidence that detection of KRAS mutation using cfDNA testing is of adequate diagnostic accuracy thus offering to the clinicians a new promising screening test for NSCLC patients.
Collapse
Affiliation(s)
- Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisabetta Zulato
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV—IRCCS, Padova, Italy
| | - Sissel Gyrid Freim Wahl
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Technology and Science, Trondheim, Norway
| | - Nicolas Guibert
- Thoracic Oncology Department, Larrey Hospital, University Hospital of Toulouse, Toulouse, France
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France
- University of Toulouse III (Paul Sabatier), Toulouse, France
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- *Correspondence: Elisa Frullanti,
| |
Collapse
|
6
|
Chow YP, Zainul Abidin N, Kow KS, Tho LM, Wong CL. Analytical and clinical validation of a custom 15-gene next-generation sequencing panel for the evaluation of circulating tumor DNA mutations in patients with advanced non-small-cell lung cancer. PLoS One 2022; 17:e0276161. [PMID: 36256645 PMCID: PMC9578623 DOI: 10.1371/journal.pone.0276161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This is a pilot proof-of-concept study to evaluate the utility of a custom 15-gene circulating tumor DNA (ctDNA) panel as a potential companion molecular next-generation sequencing (NGS) assay for identifying somatic single nucleotide variants and indels in non-small-cell lung cancer (NSCLC) patients. The custom panel covers the hotspot mutations in EGFR, KRAS, NRAS, BRAF, PIK3CA, ERBB2, MET, KIT, PDGFRA, ALK, ROS1, RET, NTRK1, NTRK2 and NTRK3 genes which serve as biomarkers for guiding treatment decisions in NSCLC patients. METHOD The custom 15-gene ctDNA NGS panel was designed using ArcherDX Assay Designer. A total of 20 ng or 50 ng input ctDNA was used to construct the libraries. The analytical performance was evaluated using reference standards at different allellic frequencies (0.1%, 1%, 5% and parental). The clinical performance was evaluated using plasma samples collected from 10 treatment naïve advanced stage III or IV NSCLC patients who were tested for tissue EGFR mutations. The bioinformatics analysis was performed using the proprietary Archer Analysis Software. RESULTS For the analytical validation, we achieved 100% sensitivity and specificity for the detection of known mutations in the reference standards. The limit of detection was 1% allelic frequency. Clinical validation showed that the clinical sensitivity and specificity of the assay for detecting EGFR mutation were 83.3% and 100% respectively. In addition, the NGS panel also detected other mutations of uncertain significance in 6 out of 10 patients. CONCLUSION This preliminary analysis showed that the custom 15-gene ctDNA NGS panel demonstrated good analytical and clinical performances for the EGFR mutation. Further studies incorporating the validation of other candidate gene mutations are warranted.
Collapse
Affiliation(s)
- Yock Ping Chow
- Clinical Research Centre, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Norziha Zainul Abidin
- Molecular Diagnostics Laboratory, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Ken Siong Kow
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Lye Mun Tho
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Chieh Lee Wong
- Clinical Research Centre, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Molecular Diagnostics Laboratory, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Haematology Unit, Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Centre for Haematology, Hammersmith Hospital, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
8
|
Kolesar J, Peh S, Thomas L, Baburaj G, Mukherjee N, Kantamneni R, Lewis S, Pai A, Udupa KS, Kumar An N, Rangnekar VM, Rao M. Integration of liquid biopsy and pharmacogenomics for precision therapy of EGFR mutant and resistant lung cancers. Mol Cancer 2022; 21:61. [PMID: 35209919 PMCID: PMC8867675 DOI: 10.1186/s12943-022-01534-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The advent of molecular profiling has revolutionized the treatment of lung cancer by comprehensively delineating the genomic landscape of the epidermal growth factor receptor (EGFR) gene. Drug resistance caused by EGFR mutations and genetic polymorphisms of drug metabolizing enzymes and transporters impedes effective treatment of EGFR mutant and resistant lung cancer. This review appraises current literature, opportunities, and challenges associated with liquid biopsy and pharmacogenomic (PGx) testing as precision therapy tools in the management of EGFR mutant and resistant lung cancers. Liquid biopsy could play a potential role in selection of precise tyrosine kinase inhibitor (TKI) therapies during different phases of lung cancer treatment. This selection will be based on the driver EGFR mutational status, as well as monitoring the development of potential EGFR mutations arising during or after TKIs treatment, since some of these new mutations may be druggable targets for alternative TKIs. Several studies have identified the utility of liquid biopsy in the identification of EGFR driver and acquired resistance with good sensitivities for various blood-based biomarkers. With a plethora of sequencing technologies and platforms available currently, further evaluations using randomized controlled trials (RCTs) in multicentric, multiethnic and larger patient cohorts could enable optimization of liquid-based assays for the detection of EGFR mutations, and support testing of CYP450 enzymes and drug transporter polymorphisms to guide precise dosing of EGFR TKIs.
Collapse
Affiliation(s)
- Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Spencer Peh
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nayonika Mukherjee
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raveena Kantamneni
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shirley Lewis
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ananth Pai
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Naveena Kumar An
- Department of Surgical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vivek M Rangnekar
- Markey Cancer Centre and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Treatment-driven tumour heterogeneity and drug resistance: lessons from solid tumours. Cancer Treat Rev 2022; 104:102340. [DOI: 10.1016/j.ctrv.2022.102340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
10
|
Rivas S, Armisén R. El cáncer de pulmón de células no pequeñas en la era de la medicina de precisión. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Hondelink LM, Jebbink M, von der Thüsen JH, Cohen D, Dubbink HJ, Paats MS, Dingemans AMC, de Langen AJ, Boelens MC, Smit EF, Postmus PE, van Wezel T, Monkhorst K. Real-World Approach for Molecular Analysis of Acquired EGFR Tyrosine Kinase Inhibitor Resistance Mechanisms in NSCLC. JTO Clin Res Rep 2021; 2:100252. [PMID: 34849493 PMCID: PMC8608608 DOI: 10.1016/j.jtocrr.2021.100252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION With the approval of first-line osimertinib treatment in stage IV EGFR-mutated NSCLC, detection of resistance mechanisms will become increasingly important-and complex. Clear guidelines for analyses of these resistance mechanisms are currently lacking. Here, we provide our recommendations for optimal molecular diagnostics in the post-EGFR tyrosine kinase inhibitor (TKI) resistance setting. METHODS We compared molecular workup strategies from three hospitals of 161 first- or second-generation EGFR TKI-treated cases and 159 osimertinib-treated cases. Laboratories used combinations of DNA next-generation sequencing (NGS), RNA NGS, in situ hybridization (ISH), and immunohistochemistry (IHC). RESULTS Resistance mechanisms were identified in 72 first-generation TKI cases (51%) and 85 osimertinib cases (57%). RNA NGS, when performed, revealed fusions or exon-skipping events in 4% of early TKI cases and 10% of osimertinib cases. Of the 30 MET and HER2 amplifications, 10 were exclusively detected by ISH or IHC, and not detected by DNA NGS, mostly owing to low tumor cell percentage (<30%) and possibly tumor heterogeneity. CONCLUSIONS Our real-world data support a method for molecular diagnostics, consisting of a parallel combination of DNA NGS, RNA NGS, MET ISH, and either HER2 ISH or IHC. Combining RNA and DNA isolation into one step limits dropout rates. In case of financial or tissue limitations, a sequential approach is justifiable, in which RNA NGS is only performed in case no resistance mechanisms are identified. Yet, this is suboptimal as-although rare-multiple acquired resistance mechanisms may occur.
Collapse
Affiliation(s)
- Liesbeth M. Hondelink
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Merel Jebbink
- Department of Thoracic Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | - Danielle Cohen
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Hendrikus J. Dubbink
- Department of Pathology, Erasmus Medical Center (EMC), Rotterdam, The Netherlands
| | - Marthe S. Paats
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Anne-Marie C. Dingemans
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Adrianus J. de Langen
- Department of Thoracic Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Mirjam C. Boelens
- Department of Pathology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Egbert F. Smit
- Department of Thoracic Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Pieter E. Postmus
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Pathology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| |
Collapse
|
12
|
Genomic alterations and possible druggable mutations in carcinoma of unknown primary (CUP). Sci Rep 2021; 11:15112. [PMID: 34302033 PMCID: PMC8302572 DOI: 10.1038/s41598-021-94678-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Carcinoma of Unknown Primary (CUP) is a heterogeneous and metastatic disease where the primary site of origin is undetectable. Currently, chemotherapy is the only state-of-art treatment option for CUP patients. The molecular profiling of the tumour, particularly mutation detection, offers a new treatment approach for CUP in a personalized fashion using targeted agents. We analyzed the mutation and copy number alterations profile of 1709 CUP samples deposited in the AACR Project Genomics Evidence Neoplasia Information Exchange (GENIE) cohort and explored potentially druggable mutations. We identified 52 significant mutated genes (SMGs) among CUP samples, in which 13 (25%) of SMGs were potentially targetable with either drugs are approved for the know primary tumour or undergoing clinical trials. The most variants detected were TP53 (43%), KRAS (19.90%), KMT2D (12.60%), and CDKN2A (10.30%). Additionally, using pan-cancer analysis, we found similar variants of TERT promoter in CUP and NSCLC samples, suggesting that these mutations may serve as a diagnostic marker for identifying the primary tumour in CUP. Taken together, the mutation profiling analysis of the CUP tumours may open a new way of identifying druggable targets and consequently administrating appropriate treatment in a personalized manner.
Collapse
|
13
|
Nardo G, Carlet J, Marra L, Bonanno L, Boscolo A, Dal Maso A, Boscolo Bragadin A, Indraccolo S, Zulato E. Detection of Low-Frequency KRAS Mutations in cfDNA From EGFR-Mutated NSCLC Patients After First-Line EGFR Tyrosine Kinase Inhibitors. Front Oncol 2021; 10:607840. [PMID: 33520716 PMCID: PMC7844327 DOI: 10.3389/fonc.2020.607840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
Background Molecular profiling of advanced EGFR mutated NSCLC has recently demonstrated the co-existence of multiple genetic alterations. Specifically, co-existing KRAS-mutations in EGFR NSCLCs have been described, despite their prevalence at progression and their role in the response to EGFR tyrosine kinase inhibitors (TKIs) remain marginally explored. Aim of our study was to investigate the prevalence of co-existing KRAS mutations at the time of progressive disease and explore their impact on clinical outcome. Materials and Methods We retrospectively analyzed by digital droplet PCR prevalence of KRAS co-mutations in 106 plasma samples of EGFR mutated NSCLC patients, in progressive disease after EGFR TKI treatment as first-line therapy. Results KRAS co-mutations (codon 12 and 13) were identified in 3 patients (2.8% of analyzed samples), with low allelic frequency (<0.2%), and had a negative impact on clinical outcome to first-line EGFR TKI. Conclusion Detection of KRAS mutations in cell-free DNA of EGFR mutant NSCLC patients at progression after first or second generation EGFR TKI is a rare event. Due to their low abundance, the negative impact of KRAS mutations on the response to EGFR TKI remains to be confirmed in larger studies.
Collapse
Affiliation(s)
- Giorgia Nardo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Jessica Carlet
- Medical Oncology 2, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Ludovica Marra
- Medical Oncology 2, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Laura Bonanno
- Medical Oncology 2, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Alice Boscolo
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | - Alessandro Dal Maso
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | | | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Elisabetta Zulato
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| |
Collapse
|
14
|
Del Re M, Cucchiara F, Rofi E, Fontanelli L, Petrini I, Gri N, Pasquini G, Rizzo M, Gabelloni M, Belluomini L, Crucitta S, Ciampi R, Frassoldati A, Neri E, Porta C, Danesi R. A multiparametric approach to improve the prediction of response to immunotherapy in patients with metastatic NSCLC. Cancer Immunol Immunother 2021; 70:1667-1678. [PMID: 33315149 PMCID: PMC8139911 DOI: 10.1007/s00262-020-02810-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND It is still unclear how to combine biomarkers to identify patients who will truly benefit from anti-PD-1 agents in NSCLC. This study investigates exosomal mRNA expression of PD-L1 and IFN-γ, PD-L1 polymorphisms, tumor mutational load (TML) in circulating cell-free DNA (cfDNA) and radiomic features as possible predictive markers of response to nivolumab and pembrolizumab in metastatic NSCLC patients. METHODS Patients were enrolled and blood (12 ml) was collected at baseline before receiving anti-PD-1 therapy. Exosome-derived mRNA and cfDNA were extracted to analyse PD-L1 and IFN-γ expression and tumor mutational load (TML) by digital droplet PCR (ddPCR) and next-generation sequencing (NGS), respectively. The PD-L1 single nucleotide polymorphisms (SNPs) c.-14-368 T > C and c.*395G > C, were analysed on genomic DNA by Real-Time PCR. A radiomic analysis was performed on the QUIBIM Precision® V3.0 platform. RESULTS Thirty-eight patients were enrolled. High baseline IFN-γ was independently associated with shorter median PFS (5.6 months vs. not reached p = 0.0057), and levels of PD-L1 showed an increase at 3 months vs. baseline in patients who progressed (p = 0.01). PD-L1 baseline levels showed significant direct and inverse relationships with radiomic features. Radiomic features also inversely correlated with PD-L1 expression in tumor tissue. In subjects receiving nivolumab, median PFS was shorter in carriers of c.*395GG vs. c.*395GC/CC genotype (2.3 months vs. not reached, p = 0.041). Lastly, responders had higher non-synonymous mutations and more links between co-occurring genetic somatic mutations and ARID1A alterations as well. CONCLUSIONS A combined multiparametric approach may provide a better understanding of the molecular determinants of response to immunotherapy.
Collapse
Affiliation(s)
- Marzia Del Re
- grid.5395.a0000 0004 1757 3729Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- grid.5395.a0000 0004 1757 3729Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Rofi
- grid.5395.a0000 0004 1757 3729Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Fontanelli
- grid.5395.a0000 0004 1757 3729Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- grid.5395.a0000 0004 1757 3729General Pathology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Nicole Gri
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Giulia Pasquini
- grid.5395.a0000 0004 1757 3729General Pathology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Mimma Rizzo
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Michela Gabelloni
- grid.5395.a0000 0004 1757 3729Diagnostic and Interventional Radiology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Belluomini
- grid.416315.4Unit of Clinical Oncology, Specialist Medical Department, S. Anna University Hospital, Ferrara, Italy
| | - Stefania Crucitta
- grid.5395.a0000 0004 1757 3729Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Raffaele Ciampi
- grid.5395.a0000 0004 1757 3729Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Frassoldati
- grid.416315.4Unit of Clinical Oncology, Specialist Medical Department, S. Anna University Hospital, Ferrara, Italy
| | - Emanuele Neri
- grid.5395.a0000 0004 1757 3729Diagnostic and Interventional Radiology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Camillo Porta
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy ,grid.8982.b0000 0004 1762 5736Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy ,grid.7644.10000 0001 0120 3326Present Address: Unit of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘A. Moro’, Bari, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
15
|
Cucchiara F, Del Re M, Valleggi S, Romei C, Petrini I, Lucchesi M, Crucitta S, Rofi E, De Liperi A, Chella A, Russo A, Danesi R. Integrating Liquid Biopsy and Radiomics to Monitor Clonal Heterogeneity of EGFR-Positive Non-Small Cell Lung Cancer. Front Oncol 2020; 10:593831. [PMID: 33489892 PMCID: PMC7819134 DOI: 10.3389/fonc.2020.593831] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background EGFR-positive Non-small Cell Lung Cancer (NSCLC) is a dynamic entity and tumor progression and resistance to tyrosine kinase inhibitors (TKIs) arise from the accumulation, over time and across different disease sites, of subclonal genetic mutations. For instance, the occurrence of EGFR T790M is associated with resistance to gefitinib, erlotinib, and afatinib, while EGFR C797S causes osimertinib to lose activity. Sensitive technologies as radiomics and liquid biopsy have great potential to monitor tumor heterogeneity since they are both minimally invasive, easy to perform, and can be repeated over patient’s follow-up, enabling the extraction of valuable information. Yet, to date, there are no reported cases associating liquid biopsy and radiomics during treatment. Case presentation In this case series, seven patients with metastatic EGFR-positive NSCLC have been monitored during target therapy. Plasma-derived cell free DNA (cfDNA) was analyzed by a digital droplet PCR (ddPCR), while radiomic analyses were performed using the validated LifeX® software on computed tomography (CT)-images. The dynamics of EGFR mutations in cfDNA was compared with that of radiomic features. Then, for each EGFR mutation, a radiomic signature was defines as the sum of the most predictive features, weighted by their corresponding regression coefficients for the least absolute shrinkage and selection operator (LASSO) model. The receiver operating characteristic (ROC) curves were computed to estimate their diagnostic performance. The signatures achieved promising performance on predicting the presence of EGFR mutations (R2 = 0.447, p <0.001 EGFR activating mutations R2 = 0.301, p = 0.003 for T790M; and R2 = 0.354, p = 0.001 for activating plus resistance mutations), confirmed by ROC analysis. Conclusion To our knowledge, these are the first cases to highlight a potentially promising strategy to detect clonal heterogeneity and ultimately identify patients at risk of progression during treatment. Together, radiomics and liquid biopsy could detect the appearance of new mutations and therefore suggest new therapeutic management.
Collapse
Affiliation(s)
- Federico Cucchiara
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Valleggi
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Romei
- Radiology Unit 2, Department of Diagnostics and Imaging, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Iacopo Petrini
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa De Liperi
- Radiology Unit 2, Department of Diagnostics and Imaging, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Antonio Chella
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Vicidomini G, Cascone R, Carlucci A, Fiorelli A, Di Domenico M, Santini M. Diagnostic and prognostic role of liquid biopsy in non-small cell lung cancer: evaluation of circulating biomarkers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:343-354. [PMID: 36046486 PMCID: PMC9400689 DOI: 10.37349/etat.2020.00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022] Open
Abstract
Lung cancer is still one of the main causes of cancer-related death, together with prostate and colorectal cancers in males and breast and colorectal cancers in females. The prognosis for non-small cell lung cancer (NSCLC) is strictly dependent on feasibility of a complete surgical resection of the tumor at diagnosis. Since surgery is indicated only in early stages tumors, it is necessary to anticipate the timing of diagnosis in clinical practice. In the diagnostic and therapeutic pathway for NSCLC, sampling of neoplastic tissue is usually obtained using invasive methods that are not free from disadvantages and complications. A valid alternative to the standard biopsy is the liquid biopsy (LB), that is, the analysis of samples from peripheral blood, urine, and other biological fluids, with a simple and non-invasive collection. In particular, it is possible to detect in the blood different tumor derivatives, such as cell-free DNA (cfDNA) with its subtype circulating tumor DNA (ctDNA), cell-free RNA (cfRNA), and circulating tumor cells (CTCs). Plasma-based testing seems to have several advantages over tumor tissue biopsy; firstly, it reduces medical costs, risk of complications related to invasive procedures, and turnaround times; moreover, the analysis of genes alteration, such as EGFR, ALK, ROS1, and BRAF is faster and safer with this method, compared to tissue biopsy. Despite all these advantages, the evidences in literatures indicate that assays performed on liquid biopsies have a low sensitivity, making them unsuitable for screening in lung cancer at the current state. This is caused by lack of standardization in sampling and preparation of specimen and by the low concentration of biomarkers in the bloodstream. Instead, routinely use of LB should be preferred in revaluation of patients with advanced NSCLC resistant to chemotherapy, due to onset of new mutations.
Collapse
Affiliation(s)
- Giovanni Vicidomini
- Department of Translation Medicine, Thoracic Surgery Unit, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Roberto Cascone
- Department of Translation Medicine, Thoracic Surgery Unit, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Annalisa Carlucci
- Department of Translation Medicine, Thoracic Surgery Unit, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Alfonso Fiorelli
- Department of Translation Medicine, Thoracic Surgery Unit, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Mario Santini
- Department of Translation Medicine, Thoracic Surgery Unit, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| |
Collapse
|
17
|
Wang Y, He Y, Tian P, Wang W, Wang K, Chuai S, Li Y, Zhao S, Wang Y, Li W. Low T790M relative allele frequency indicates concurrent resistance mechanisms and poor responsiveness to osimertinib. Transl Lung Cancer Res 2020; 9:1952-1962. [PMID: 33209615 PMCID: PMC7653156 DOI: 10.21037/tlcr-20-915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background T790M relative allele frequency (RAF) in plasma, calculated by the ratio of T790M to epidermal growth factor receptor (EGFR)-sensitizing mutation allele frequencies (AF), is associated with osimertinib response in patients with progressive non-small cell lung cancer (NSCLC) post 1st generation EGFR-tyrosine kinase inhibitor (TKI) treatment. However, which subgroup of patients carry concurrent resistance mechanisms and have poor responsiveness to osimertinib remains unknown. Methods Matched re-biopsy tissue and plasma samples obtained from 32 patients who had progression following 1st generation EGFR-TKI treatment were genotyped using next-generation sequencing (NGS) to investigate which subgroup of patients, classified by plasma position 790 (T790M) RAF, were more likely to carry concurrent resistance mechanisms. In another independent cohort, consisting of 21 T790M-positive patients, we validated whether these patients had a poor response to osimertinib treatment. Results In the discovery cohort, patients with T790M RAF less than 20% were more likely to harbor concurrent resistance mechanisms (P=0.018), such as MET or ERBB2 amplification, and small cell lung cancer transformation. In the validation cohort, we found that patients with low T790M RAF (<20%) had significantly lower objective response rates (ORRs) (0 vs. 68.8%, P=0.03) and disease control rates (DCRs) (60% vs. 100%, P=0.048) in response to osimertinib compared to patients with high T790M RAF. Conclusions In patients with progressive NSCLC post 1st generation EGFR-TKI treatment, plasma T790M RAFs of less than 20% can be used to identify patients who carry concurrent resistance mechanisms, and can predict a poorer response to osimertinib. Trial registration This study was registered on http://www.chictr.org.cn (registration number: ChiCTR-DDD-16007900).
Collapse
Affiliation(s)
- Ye Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China.,Lung Cancer Treatment Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yanqi He
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Panwen Tian
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China.,Lung Cancer Treatment Center, West China Hospital of Sichuan University, Chengdu, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China.,Lung Cancer Treatment Center, West China Hospital of Sichuan University, Chengdu, China
| | | | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Shuang Zhao
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Xiao F, Liu N, Ma X, Qin J, Liu Y, Wang X. M2 macrophages reduce the effect of gefitinib by activating AKT/mTOR in gefitinib-resistant cell lines HCC827/GR. Thorac Cancer 2020; 11:3289-3298. [PMID: 32956565 PMCID: PMC7606002 DOI: 10.1111/1759-7714.13670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The biological behavior of cells change after they develop drug resistance, and the degree of resistance will be affected by the tumor microenvironment. Here, we aimed to explore the changes in the biological behavior of tumors and to observe the differences in the release of cytokines and chemokines which can influence the tumor microenvironment. We also aimed to study how TKIs-resistant cell lines recruit macrophages to reduce the sensitivity of the cells following gefitinib administration. METHODS We generated and maintained gefitinib-resistant cell lines to study the differences between gefitinib-sensitive cell lines according to clone formation, cell growth curve analysis, whole-exome sequencing, and qPCR ARRAY technology. We used the WNT/β-catenin inhibitor, WNT/β-catenin activator and overexpression β-catenin lentivirus to observe the changes in CCL2. M2 macrophages and gefitinib-resistant cell lines HCC827/GR were cocultured to detect the viability gefitinib for inducing cell death. RESULTS The proliferation and migratory activities were much more pronounced in HCC827/GR cells. CCL2 expression was also enhanced and regulated by β-catenin in HCC827/GR. CCL2 promoted the chemotactic ability of M2 macrophages. M2 macrophages reduced the antitumor effect of gefitinib treatment by activating AKT/mTOR. CONCLUSIONS Gefitinib-resistant cell lines have stronger proliferation and migration capabilities, and attract macrophages by releasing more CCL2 to reduce the sensitivity of cells to gefitinib.
Collapse
Affiliation(s)
- Fengqi Xiao
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Ni Liu
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinchun Ma
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Qin
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Yanguo Liu
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
19
|
Chen H, Liu M, Dai Z, Li S, Luo Y, Wang Y, Su W, Cai W, Yang D, Huang J, Yang Z. Concomitant genetic alterations are associated with response to EGFR targeted therapy in patients with lung adenocarcinoma. Transl Lung Cancer Res 2020; 9:1225-1234. [PMID: 32953500 PMCID: PMC7481595 DOI: 10.21037/tlcr-20-679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are considered to be more effective than chemotherapy in the treatment of EGFR-mutant advanced non-small cell lung cancer (NSCLC). However, in addition to EGFR-sensitive mutations, the genetic factors that affect the prognosis of patients who receive TKI treatment are not yet clear. METHODS The clinical data of 36 NSCLC patients with EGFR mutation who received TKI treatment were retrospectively analyzed. Liquid re-biopsy with next generation sequencing (NGS) analysis was performed to analyze genetic alterations and potential resistance mechanisms. RESULTS All of the patients harbored actionable sensitive EGFR mutations by NGS, with the major types being 19del or 21L858R (52.78%, 19/36 and 55.56%, 20/36, respectively). The 3 most frequent accompanying somatic mutations were TP53 (12, 48.4%), KRAS (7, 19.44%) and PIK3CA (3, 8.33%). Concomitant mutations were present in 16 patients (44.44%). The occurrence of co-mutation was found to be significantly related to a history of smoking [87.5% (7 of 8) vs. 32.14% (9 of 28); Pearson chi-square, P=0.005]. Patients who received EGFR-TKIs treatment (P=0.0079) or third-generation EGFR-TKIs only (P=0.0468) had better progression-free survival (PFS). Concomitant mutations were significantly related to lower objective response rates (43.75% vs. 80.0%; P=0.024) and poorer PFS (P<0.001). Patients with concomitant genetic alterations had a worse response after receiving EGFR-TKIs treatment (P=0.0033). CONCLUSIONS Our research underscores the importance of using multiple molecular profiles. Concomitant genetic alterations were significantly associated with response to EGFR targeted therapy in NSCLC. Therefore, research on multi-drug or sequential therapy to address the covariation that drives drug resistance is urgently needed.
Collapse
Affiliation(s)
- Hualin Chen
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Meilian Liu
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiwei Dai
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shujun Li
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiping Luo
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongcun Wang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weijing Cai
- Shanghai Tongshu Biotechnology Co., Ltd., Shanghai, China
| | - Donghong Yang
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jian Huang
- Department of Pathology, Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Yang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
20
|
Chang N, Duan J, Wang L, Dong Z, Liu Z. Patients with advanced non-small cell lung cancer with EGFR mutations in addition to complex mutations treated with osimertinib have a poor clinical outcome: A real-world data analysis. Oncol Lett 2020; 20:2266-2272. [PMID: 32782544 PMCID: PMC7399948 DOI: 10.3892/ol.2020.11801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the clinical characteristics and outcomes of patients with advanced non-small cell lung cancer (NSCLC) treated with osimertinib, and focused on the resistance mechanism to osimertinib in a real-world setting. Data from 128 patients with advanced NSCLC who were treated with osimertinib between March 2015 and November 2018 at the Chinese People's Liberation Army General Hospital (Beijing, China) were retrospectively collected, and the associations between mutation types and survival were analysed. In patients treated with osimertinib, the objective response rate reached 60.9% (78/128) and the disease control rate reached 81.3% (104/128), with a median progression-free survival (PFS) time of 12.2 months. A number of complex mutations were identified in the re-analysis after the development of osimertinib resistance, including TP53, KRAS and PIK3CA mutations, epidermal growth factor receptor (EGFR) and MYC amplifications, and mutations associated with SCLC transformation, demonstrating that these mutations may account for osimertinib resistance. The median PFS time for patients with the EGFR T790M mutation (n=41) was significantly longer than that for patients with the T790M mutation and the aforementioned complex mutations (n=13) (16.7 vs. 10.8 months; P=0.001). Patients with a single EGFR mutation (n=87) had a longer median PFS time than those with an EGFR mutation and complex mutations (n=24) (14.63 vs. 6.63 months; P<0.0001). In conclusion, the present study analysed the effects of osimertinib in patients with advanced NSCLC with EGFR mutations, particularly T790M mutations. The results indicated that the efficacy of osimertinib was weakened when patients had complex mutations, suggesting that complex mutations may be responsible for resistance to osimertinib.
Collapse
Affiliation(s)
- Nijia Chang
- Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Jingjing Duan
- Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Lingxiong Wang
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zhouhuan Dong
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zhefeng Liu
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
21
|
Gini B, Thomas N, Blakely CM. Impact of concurrent genomic alterations in epidermal growth factor receptor ( EGFR)-mutated lung cancer. J Thorac Dis 2020; 12:2883-2895. [PMID: 32642201 PMCID: PMC7330397 DOI: 10.21037/jtd.2020.03.78] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Comprehensive characterization of the genomic landscape of epidermal growth factor receptor (EGFR)-mutated lung cancers have identified patterns of secondary mutations beyond the primary oncogenic EGFR mutation. These include concurrent pathogenic alterations affecting p53 (60–65%), RTKs (5–10%), PIK3CA/KRAS (3–23%), Wnt (5–10%), and cell cycle (7–25%) pathways as well as transcription factors such as MYC and NKX2-1 (10–15%). The majority of these co-occurring alterations were detected or enriched in samples collected from patients at resistance to tyrosine kinase inhibitor (TKI) treatment, indicating a potential functional role in driving resistance to therapy. Of note, these co-occurring tumor genomic alterations are not necessarily mutually exclusive, and evidence suggests that multiple clonal and sub-clonal cancer cell populations can co-exist and contribute to EGFR TKI resistance. Computational tools aimed to classify, track and predict the evolution of cancer clonal populations during therapy are being investigated in pre-clinical models to guide the selection of combination therapy switching strategies that may delay the development of treatment resistance. Here we review the most frequently identified tumor genomic alterations that co-occur with mutated EGFR and the evidence that these alterations effect responsiveness to EGFR TKI treatment.
Collapse
Affiliation(s)
- Beatrice Gini
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Nicholas Thomas
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| |
Collapse
|
22
|
The Validity and Predictive Value of Blood-Based Biomarkers in Prediction of Response in the Treatment of Metastatic Non-Small Cell Lung Cancer: A Systematic Review. Cancers (Basel) 2020; 12:cancers12051120. [PMID: 32365836 PMCID: PMC7280996 DOI: 10.3390/cancers12051120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
With the introduction of targeted therapies and immunotherapy, molecular diagnostics gained a more profound role in the management of non-small cell lung cancer (NSCLC). This study aimed to systematically search for studies reporting on the use of liquid biopsies (LB), the correlation between LBs and tissue biopsies, and finally the predictive value in the management of NSCLC. A systematic literature search was performed, including results published after 1 January 2014. Articles studying the predictive value or validity of a LB were included. The search (up to 1 September 2019) retrieved 1704 articles, 1323 articles were excluded after title and abstract screening. Remaining articles were assessed for eligibility by full-text review. After full-text review, 64 articles investigating the predictive value and 78 articles describing the validity were included. The majority of studies investigated the predictive value of LBs in relation to therapies targeting the epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) receptor (n = 38). Of studies describing the validity of a biomarker, 55 articles report on one or more EGFR mutations. Although a variety of blood-based biomarkers are currently under investigation, most studies evaluated the validity of LBs to determine EGFR mutation status and the subsequent targeting of EGFR tyrosine kinase inhibitors based on the mutation status found in LBs of NSCLC patients.
Collapse
|
23
|
Target-based genomic profiling of ctDNA from Chinese non-small cell lung cancer patients: a result of real-world data. J Cancer Res Clin Oncol 2020; 146:1867-1876. [PMID: 32221744 DOI: 10.1007/s00432-020-03192-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/20/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Approximately 30% of NSCLC patients cannot obtain tissue sample or sufficient tissue sample for molecular subtyping. Cell-free circulating tumor DNA (ctDNA) in plasma is a potential alternative specimen type to assess genomic variants in patients with non-small cell lung cancer (NSCLC). The purpose of this study was to identify the genomic alteration profile of ctDNA in real-world Chinese NSCLC patients. METHODS A total of 325 subjects with pathological diagnosis of NSCLC were enrolled. 10 ml Peripheral blood was collected in streck tube, and ctDNA NGS analysis was carried out using an Ampliseq-based 11-gene panel. RESULTS 295 out of 325 patients (90.8%) had detected ctDNA results. In 62.1% (183/295) of these cases, at least one genomic alterations was detected. Frequency altered genes were EGFR (27.8%), TP53 (22.7%), KRAS (21.36%), and PIK3CA (4.75%). EGFR mutation was associated with female, younger age (< 65 years), and adenocarcinoma. The most common mutations in EGFR were L858R (39.4%), exon19 deletions (31.73%), and T790M (18.3%); G13S was the most common alterations in KRAS. TP53 mutation was most occurred in exon7 and exon8. TP53 mutation was significantly more common in patients with history of radiochemotherapy/chemotherapy therapy, and T790M was mainly found in patients with TKIs treatments. Co-existence EGFR mutation with KRAS and different multiple gene co-mutation panels were detected. CONCLUSION In Chinese NSCLC patients, EGFR mutation was significantly associated with female, younger age (< 65 years), and adenocarcinoma. Genomic profiles of NSCLC were associated with the treatment history; TP53 mutation was significantly more frequent in the patients with history of radiochemotherapy/chemotherapy therapy. Various multiple genes co-mutation panels, especially EGFR and KRAS co-mutation, were observed in the ctDNA of Chinese NSCLC patients.
Collapse
|
24
|
Starrett JH, Guernet AA, Cuomo ME, Poels KE, van Alderwerelt van Rosenburgh IK, Nagelberg A, Farnsworth D, Price KS, Khan H, Ashtekar KD, Gaefele M, Ayeni D, Stewart TF, Kuhlmann A, Kaech SM, Unni AM, Homer R, Lockwood WW, Michor F, Goldberg SB, Lemmon MA, Smith PD, Cross DAE, Politi K. Drug Sensitivity and Allele Specificity of First-Line Osimertinib Resistance EGFR Mutations. Cancer Res 2020; 80:2017-2030. [PMID: 32193290 DOI: 10.1158/0008-5472.can-19-3819] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/06/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Osimertinib, a mutant-specific third-generation EGFR tyrosine kinase inhibitor, is emerging as the preferred first-line therapy for EGFR-mutant lung cancer, yet resistance inevitably develops in patients. We modeled acquired resistance to osimertinib in transgenic mouse models of EGFRL858R -induced lung adenocarcinoma and found that it is mediated largely through secondary mutations in EGFR-either C797S or L718V/Q. Analysis of circulating free DNA data from patients revealed that L718Q/V mutations almost always occur in the context of an L858R driver mutation. Therapeutic testing in mice revealed that both erlotinib and afatinib caused regression of osimertinib-resistant C797S-containing tumors, whereas only afatinib was effective on L718Q mutant tumors. Combination first-line osimertinib plus erlotinib treatment prevented the emergence of secondary mutations in EGFR. These findings highlight how knowledge of the specific characteristics of resistance mutations is important for determining potential subsequent treatment approaches and suggest strategies to overcome or prevent osimertinib resistance in vivo. SIGNIFICANCE: This study provides insight into the biological and molecular properties of osimertinib resistance EGFR mutations and evaluates therapeutic strategies to overcome resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/2017/F1.large.jpg.
Collapse
Affiliation(s)
| | - Alexis A Guernet
- Discovery Biology, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Maria Emanuela Cuomo
- Discovery Biology, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Kamrine E Poels
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Iris K van Alderwerelt van Rosenburgh
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | - Amy Nagelberg
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Hina Khan
- Warren Alpert Medical School, Brown University, Providence, Rhode Island; and Lifespan Cancer Institute, Providence, Rhode Island
| | - Kumar Dilip Ashtekar
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | | | - Deborah Ayeni
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Tyler F Stewart
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Alexandra Kuhlmann
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute, La Jolla, California
| | - Arun M Unni
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Pathology and Laboratory Medicine Service, VA CT HealthCare System, West Haven, Connecticut
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Franziska Michor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts; The Broad Institute of Harvard and MIT, Cambridge, Massachusetts; and The Ludwig Center at Harvard, Boston, Massachusetts
| | - Sarah B Goldberg
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Mark A Lemmon
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Paul D Smith
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | | | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
25
|
Li R, Zhou X, Yao H, Li L. Four generations of EGFR TKIs associated with different pathogenic mutations in non-small cell lung carcinoma. J Drug Target 2020; 28:861-872. [PMID: 32118494 DOI: 10.1080/1061186x.2020.1737934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Non-small cell lung carcinoma (NSCLC) is a malignant tumour with poor prognosis and high mortality. Platinum-based dual-agent chemotherapy is the main therapeutic regimen for this disease. In recent years, because of the introduction of molecular targeted therapy, various targeted therapeutic agents against epidermal growth factor receptor (EGFR) have been rapidly developed, which has become a research hotspot for NSCLC treatment. Here, we review the latest studies describing the features and types of EGFR pathogenic mutations, currently established EGFR-tyrosine kinase inhibitors from the first to fourth generation, including their action mechanisms, acquired resistance, and clinical applications, and potential challenges and perspectives that current researchers should address.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, P. R. China
| | - Xiaofei Zhou
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, P. R. China
| | - Hongjuan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, P. R. China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, P. R. China
| |
Collapse
|
26
|
Mardinian K, Okamura R, Kato S, Kurzrock R. Temporal and spatial effects and survival outcomes associated with concordance between tissue and blood KRAS alterations in the pan-cancer setting. Int J Cancer 2020; 146:566-576. [PMID: 31199507 PMCID: PMC6874714 DOI: 10.1002/ijc.32510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
We investigated the impact of time interval, primary vs. metastatic biopsy site, variant allele fraction (VAF) and histology on concordance of KRAS alterations in tissue vs. circulating tumor DNA (ctDNA), and association of concordance with survival. Blood and tissue were evaluated by next-generation sequencing in 433 patients with diverse cancers. Altogether, 101 patients (23.3%) had KRAS alterations: 56, ctDNA (12.9%); 81, tissue (18.7%); and 36, both (8.3%). The overall blood and tissue concordance rate for KRAS alterations was 85%, but was mainly driven by the large negative/negative subset. Therefore, specificity of one test for the other was high (88.1-94.3%), while sensitivity was not high (44.4-64.3%) and was lower still in patients with >6 vs. ≤2 months between blood and tissue sampling (31.0-40.9% vs. 51.2-84.0%; p = 0.14 time interval-dependent sensitivity of blood for tissue; p = 0.003, tissue for blood). Positive concordance rate for KRAS alterations was 57.1% vs. 27.4% (colorectal vs. noncolorectal cancer; p = 0.01), but site of biopsy (primary vs. metastatic) and VAF (%ctDNA) was not impactful. The presence of KRAS alterations in both tests was independently associated with shorter survival from diagnosis (hazard ratio, 1.72; 95% confidence interval, 1.04-2.86) and from recurrent/metastatic disease (1.70; 1.03-2.81). Positive concordance of KRAS alterations between ctDNA and tissue was negatively affected by a longer time period between blood and tissue sampling and was higher in colorectal cancer than in other malignancies. The presence of KRAS alterations in both tests was an independent prognostic factor for poor survival.
Collapse
|
27
|
Palmieri G. Circulating driver gene mutations: what is the impact on melanoma patients' management? Ann Oncol 2019; 30:669-671. [PMID: 30887019 DOI: 10.1093/annonc/mdz090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- G Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Sassari, Italy.
| |
Collapse
|
28
|
Zhou X, Ravichandran GC, Zhang P, Yang Y, Zeng Y. A microfluidic alternating-pull-push active digitization method for sample-loss-free digital PCR. LAB ON A CHIP 2019; 19:4104-4116. [PMID: 31720646 PMCID: PMC6894176 DOI: 10.1039/c9lc00932a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Digital polymerase chain reaction (dPCR) is a powerful tool for genetic analysis, providing superior sensitivity and accuracy. In many applications that demand minuscule reaction volumes, such as single cell analysis, efficient and reproducible sample handling and digitization is pivotal for accurate absolute quantification of targets, but remains a significant technical challenge. In this paper, we described a robust and flexible microfluidic alternating-pull-push active digitization (μAPPAD) strategy that confers close to 100% sample digitization efficiency for microwell-based dPCR. Our strategy employs pneumatic valve control to periodically manipulate air pressure inside the chip to greatly facilitate the vacuum-driven partition of solution into microwells, enabling efficient digitization of a small-volume solution with significantly reduced volume variability. The μAPPAD method was evaluated on both tandem-channel and parallel-channel chips, which achieved a digitization efficiency of 99.5 ± 0.3% and 94.6 ± 0.9% within 10.5 min and 2 min, respectively. To assess the analytical performance of the μAPPAD chip, we calibrated it for absolution dPCR quantitation of λDNA across a range of concentrations. The results obtained with our chip matched well with the theoretical curve computed from Poisson statistics. Compared to the existing methods for highly efficient sample digitization, not only does our technology greatly reduce the constraints on microwell geometries and channel design, but also benefits from the intrinsic amenability of the pneumatic valve technique with device integration and automation. Thus we envision that the μAPPAD technology will provide a scalable and widely adaptable platform to promote the development of advanced lab-on-a-chip systems integrating microscale sample processing with dPCR for a broad scope of applications, such as single cell analysis of tumor heterogeneity and genetic profiling of circulating exosomes directly in clinical samples.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | | | - Peng Zhang
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | - Yang Yang
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA. and University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
29
|
Papadopoulou E, Tsoulos N, Tsantikidi K, Metaxa-Mariatou V, Stamou PE, Kladi-Skandali A, Kapeni E, Tsaousis G, Pentheroudakis G, Petrakis D, Lampropoulou DI, Aravantinos G, Varthalitis I, Kesisis G, Boukovinas I, Papakotoulas P, Katirtzoglou N, Athanasiadis E, Stavridi F, Christodoulou C, Koumarianou A, Eralp Y, Nasioulas G. Clinical feasibility of NGS liquid biopsy analysis in NSCLC patients. PLoS One 2019; 14:e0226853. [PMID: 31860648 PMCID: PMC6924668 DOI: 10.1371/journal.pone.0226853] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Analysis of circulating tumor nucleic acids in plasma of Non-Small Cell Lung Cancer (NSCLC) patients is the most widespread and documented form of "liquid biopsy" and provides real-time information on the molecular profile of the tumor without an invasive tissue biopsy. Methods Liquid biopsy analysis was requested by the referral physician in 121 NSCLC patients at diagnosis and was performed using a sensitive Next Generation Sequencing assay. Additionally, a comparative analysis of NSCLC patients at relapse following EGFR Tyrosine Kinase Inhibitor (TKIs) treatment was performed in 50 patients by both the cobas and NGS platforms. Results At least one mutation was identified in almost 49% of the cases by the NGS approach in NSCLC patients analyzed at diagnosis. In 36 cases with paired tissue available a high concordance of 86.11% was observed for clinically relevant mutations, with a Positive Predictive Value (PPV) of 88.89%. Furthermore, a concordance rate of 82% between cobas and the NGS approach for the EGFR sensitizing mutations (in exons 18, 19, 21) was observed in patients with acquired resistance to EGFR TKIs, while this concordance was 94% for the p.T790M mutation, with NGS being able to detect this mutation in three 3 additional patients. Conclusions This study indicates the feasibility of circulating tumor nucleic acids (ctNA) analysis as a tumor biopsy surrogate in clinical practice for NSCLC personalized treatment decision making. The use of new sensitive NGS techniques can reliably detect tumor-derived mutations in liquid biopsy and provide clinically relevant information both before and after targeted treatment in patients with NSCLC. Thus, it could aid physicians in treatment decision making in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - George Pentheroudakis
- Department of Medical Oncology, School of Medicine, Ioannina, Greece
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | - Dimitrios Petrakis
- Department of Medical Oncology, School of Medicine, Ioannina, Greece
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | | | - Gerasimos Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | | | - George Kesisis
- Oncology Department, Saint Luke Private Hospital, Thessaloniki, Greece
| | | | - Pavlos Papakotoulas
- First Department of Clinical Oncology, Theagenio Hospital, Thessaloniki, Greece
| | | | | | - Flora Stavridi
- Fourth Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | | | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Yeşim Eralp
- Department of Medical Oncology, Istanbul University School of Medicine, İstanbul, Turkey
| | | |
Collapse
|
30
|
Chen Z, Miao H, Zeng Q, Xu S, Chen Z, Liu K. Circulating cell-free DNA as a diagnostic and prognostic biomarker for non-small-cell lung cancer: a systematic review and meta-analysis. Biomark Med 2019; 14:587-597. [PMID: 31845833 DOI: 10.2217/bmm-2018-0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: A meta-analysis was conducted to assess the application of circulating cell-free DNA (cfDNA) in non-small-cell lung carcinoma (NSCLC) screening, EGFR and KRAS mutation detection. Materials & methods: A comprehensive literature search was conducted. The summary sensitivity and specificity for cfDNA in NSCLC diagnosis, EGFR and KRAS mutation detection were calculated. Results: The sensitivity and specificity for NSCLC diagnosis, EGFR and KRAS mutation detection were 0.80 (95% CI: 0.72-0.87) and 0.81 (95% CI: 0.68-0.91), 0.780 (95% CI: 0.711-0.853) and 0.962 (95% CI: 0.942-0.984), 0.628 (95% CI: 0.244-0.919) and 0.959 (95% CI: 0.932-0.998), respectively. Conclusion: cfDNA was a minimally invasive approach for NSCLC diagnosis, but its clinical utility warranted more future investigations because of the suboptimal sensitivity.
Collapse
Affiliation(s)
- Zhoumiao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qinchun Road, Hangzhou, Zhejiang 310016, China
| | - Huiwen Miao
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qinchun Road, Hangzhou, Zhejiang 310016, China
| | - Qingxin Zeng
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qinchun Road, Hangzhou, Zhejiang 310016, China
| | - Shaohua Xu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qinchun Road, Hangzhou, Zhejiang 310016, China
| | - Zhao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qinchun Road, Hangzhou, Zhejiang 310016, China
| | - Kai Liu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qinchun Road, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
31
|
Patel H, Okamura R, Fanta P, Patel C, Lanman RB, Raymond VM, Kato S, Kurzrock R. Clinical correlates of blood-derived circulating tumor DNA in pancreatic cancer. J Hematol Oncol 2019; 12:130. [PMID: 31801585 PMCID: PMC6894333 DOI: 10.1186/s13045-019-0824-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Treatment outcomes for patients with advanced pancreatic ductal adenocarcinoma (PDAC) remain dismal. There are unmet needs for understanding the biologic basis of this malignancy using novel next-generation sequencing technologies. Herein, we investigated the clinical utility of circulating tumor DNA (ctDNA) (the liquid biopsy) in this malignancy. Methods ctDNA was analyzed in 112 patients with PDAC (54–73 genes) and tissue DNA in 66 patients (315 genes) (both clinical-grade next-generation sequencing). Number of alterations, %ctDNA, concordance between ctDNA and tissue DNA, and correlation of ctDNA results with survival were assessed. Results The most common genes altered in ctDNA were TP53 (46% of patients, N = 51) and KRAS (44%, N = 49). Median number of characterized ctDNA alterations per patient was 1 (range, 0–6), but patients with advanced PDAC had significantly higher numbers of ctDNA alterations than those with surgically resectable disease (median, 2 versus 0.5, P = 0.04). Overall, 75% (70/94) of advanced tumors had ≥ 1 ctDNA alteration. Concordance rate between ctDNA and tissue DNA alterations was 61% for TP53 and 52% for KRAS. Concordance for KRAS alterations between ctDNA and tissue DNA from metastatic sites was significantly higher than between ctDNA and primary tumor DNA (72% vs 39%, P = 0.01). Importantly, higher levels of total %ctDNA were an independent prognostic factor for worse survival (hazard ratio, 4.35; 95% confidence interval, 1.85–10.24 [multivariate, P = 0.001]). A patient with three ctDNA alterations affecting the MEK pathway (GNAS, KRAS, and NF1) attained a response to trametinib monotherapy ongoing at 6 months. Conclusions Our findings showed that ctDNA often harbored unique alterations some of which may be targetable and that significantly greater numbers of ctDNA alterations occur in advanced versus resectable disease. Furthermore, higher ctDNA levels were a poor prognostic factor for survival.
Collapse
Affiliation(s)
- Hitendra Patel
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA, 92093, USA
| | - Ryosuke Okamura
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA, 92093, USA.
| | - Paul Fanta
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA, 92093, USA
| | - Charmi Patel
- Department of Pathology, UC San Diego, La Jolla, CA, USA
| | - Richard B Lanman
- Department of Medical Affairs, Guardant Health, Inc., Redwood City, CA, USA
| | - Victoria M Raymond
- Department of Medical Affairs, Guardant Health, Inc., Redwood City, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA, 92093, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
32
|
Steendam CM, Atmodimedjo P, de Jonge E, Paats MS, van der Leest C, Oomen-de Hoop E, Jansen MP, Del Re M, von der Thüsen JH, Dinjens WN, van Schaik RH, Aerts JG, Dubbink HJ. Plasma Cell-Free DNA Testing of Patients With EGFR Mutant Non–Small-Cell Lung Cancer: Droplet Digital PCR Versus Next-Generation Sequencing Compared With Tissue-Based Results. JCO Precis Oncol 2019; 3:1-9. [DOI: 10.1200/po.18.00401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
PURPOSE To compare the results of plasma cell-free DNA (cfDNA) droplet digital PCR (ddPCR) and next-generation sequencing (NGS) on detection of epidermal growth factor receptor ( EGFR) primary activating mutations and p.T790M with results of tissue analysis in patients with EGFR mutated non–small-cell lung cancer. METHODS All patients with EGFR mutated non–small cell lung cancer for which a pathology and a plasma specimen were available upon progression between November 2016 and July 2018 were selected. Concordance, Cohen’s κ, and intraclass correlation coefficients were calculated. RESULTS Plasma cfDNA and pathology specimens of 36 patients were analyzed. Agreement between ddPCR and NGS was 86% (κ = 0.63) for the primary activating mutation and 94% (κ = 0.89) for the p.T790M detection. Allele ratios were comparable, with an intraclass correlation coefficient of 0.992 and 0.997, respectively. Discrepancies of some degree were found in 15 patients (41.7%). In six patients (16.7%), no mutations were detected in cfDNA. In three patients (8.3%), p.T790M was detected in plasma but not in the pathology specimen, whereas in three other patients (8.3%), p.T790M was demonstrated in the pathology specimen but not in plasma. Concordance of cfDNA and pathology for the primary activating mutation was 69% for ddPCR and 83% for NGS. For the detection of p.T790M, this was 75% (κ = 0.49) for ddPCR as well as for NGS. CONCLUSION Mutual agreement is high between NGS and ddPCR in cfDNA on the level of a specific mutation, with comparable ratio results. Plasma testing of EGFR primary activating mutations and p.T790M shows high concordance with pathology results, for NGS as well as for ddPCR, depending on the extent of the panel used. In NGS, more genetic aberrations can be investigated at once.
Collapse
Affiliation(s)
- Christi M.J. Steendam
- Erasmus MC Rotterdam, Rotterdam, the Netherlands
- Amphia Hospital, Breda, the Netherlands
| | | | | | | | | | | | | | - Marzia Del Re
- University Hospital of Pisa, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Southwood M, Krenz T, Cant N, Maurya M, Gazdova J, Maxwell P, McGready C, Moseley E, Hughes S, Stewart P, Salto-Tellez M, Groelz D, Rassl D. Systematic evaluation of PAXgene® tissue fixation for the histopathological and molecular study of lung cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 6:40-54. [PMID: 31571426 PMCID: PMC6966705 DOI: 10.1002/cjp2.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
Abstract
Whilst adequate for most existing pathological tests, formalin is generally considered a poor DNA preservative and use of alternative fixatives may prove advantageous for molecular testing of tumour material; an increasingly common approach to identify targetable driver mutations in lung cancer patients. We collected paired PAXgene® tissue-fixed and formalin-fixed samples of block-sized tumour and lung parenchyma, Temno-needle core tumour biopsies and fine needle tumour aspirates (FNAs) from non-small cell lung cancer resection specimens. Traditionally processed formalin fixed paraffin wax embedded (FFPE) samples were compared to paired PAXgene® tissue fixed paraffin-embedded (PFPE) samples. We evaluated suitability for common laboratory tests (H&E staining and immunohistochemistry) and performance for downstream molecular investigations relevant to lung cancer, including RT-PCR and next generation DNA sequencing (NGS). Adequate and comparable H&E staining was seen in all sample types and nuclear staining was preferable in PAXgene® fixed Temno tumour biopsies and tumour FNA samples. Immunohistochemical staining was broadly comparable. PFPE samples enabled greater yields of less-fragmented DNA than FFPE comparators. PFPE samples were also superior for PCR and NGS performance, both in terms of quality control metrics and for variant calling. Critically we identified a greater number of genetic variants in the epidermal growth factor receptor gene when using PFPE samples and the Ingenuity® Variant Analysis pipeline. In summary, PFPE samples are adequate for histopathological diagnosis and suitable for the majority of existing laboratory tests. PAXgene® fixation is superior for DNA and RNA integrity, particularly in low-yield samples and facilitates improved NGS performance, including the detection of actionable lung cancer mutations for precision medicine in lung cancer samples.
Collapse
Affiliation(s)
- Mark Southwood
- Pathology Research, Royal Papworth Hospital NHS Foundation Trust, University of Cambridge Clinical School of Medicine, Cambridge, UK
| | - Tomasz Krenz
- Sample Technologies Department, QIAGEN GmbH, Hilden, Germany
| | - Natasha Cant
- Sample Technologies Department, QIAGEN Ltd., Manchester, UK
| | - Manisha Maurya
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Jana Gazdova
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Perry Maxwell
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Claire McGready
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Ellen Moseley
- Pathology Research, Royal Papworth Hospital NHS Foundation Trust, University of Cambridge Clinical School of Medicine, Cambridge, UK
| | - Susan Hughes
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Peter Stewart
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Manuel Salto-Tellez
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Daniel Groelz
- Sample Technologies Department, QIAGEN GmbH, Hilden, Germany
| | - Doris Rassl
- Pathology Research, Royal Papworth Hospital NHS Foundation Trust, University of Cambridge Clinical School of Medicine, Cambridge, UK
| | | |
Collapse
|
34
|
Del Re M, Petrini I, Mazzoni F, Valleggi S, Gianfilippo G, Pozzessere D, Chella A, Crucitta S, Rofi E, Restante G, Miccoli M, Garassino MC, Danesi R. Incidence of T790M in Patients With NSCLC Progressed to Gefitinib, Erlotinib, and Afatinib: A Study on Circulating Cell-free DNA. Clin Lung Cancer 2019; 21:232-237. [PMID: 31735523 DOI: 10.1016/j.cllc.2019.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Insights into the mechanism of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) could provide important information for further patient management, including the choice of second-line treatment. The EGFR T790M mutation is the most common mechanism of resistance to first- and second-generation EGFR TKIs. Owing to its biologic relevance in the response of non-small-cell lung cancer (NSCLC) to the selective pressure of treatment, the present study investigated whether the occurrence of T790M at progression differed among patients receiving gefitinib, erlotinib, or afatinib. PATIENTS AND METHODS The present retrospective study included patients with NSCLC with an EGFR activating mutation, who had received gefitinib, erlotinib, or afatinib as first-line treatment. Plasma samples for the analysis of cell-free DNA were taken at disease progression and analyzed using a digital droplet polymerase chain reaction EGFR mutation assay. RESULTS A total of 83 patients were enrolled; 42 had received gefitinib or erlotinib and 41afatinib. The patient characteristics were comparable across the 2 groups. The median time to progression (TTP) was 14.4 months for the gefitinib and erlotinib group and 10.2 months for the afatinib group (P = .09). Of the 83 patients, 47 (56.6%) were positive for the T790M in plasma. A greater incidence of T790M was observed in patients with progression during gefitinib or erlotinib therapy compared with patients treated with afatinib (33 [79%] vs. 14 [34%], respectively; odds ratio, 7.1; 95% confidence interval, 2.7-18.5; P = .0001). CONCLUSIONS Although gefitinib, erlotinib, and afatinib showed a comparable TTP in patients receiving first-line therapy, the incidence of T790M differed among them, as demonstrated by the present study, which could have implications for the choice of second-line treatment.
Collapse
Affiliation(s)
- Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Azienda Ospedaliero-Universitaria Pisana and Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Francesca Mazzoni
- Unit of Medical Oncology, Department of Oncology, University Hospital of Firenze, Firenze, Italy
| | - Simona Valleggi
- Unit of Pneumology, Azienda Ospedaliero-Universitaria Pisana and Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giulia Gianfilippo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniele Pozzessere
- Unit of Medical Oncology, Department of Oncology, Hospital of Prato, Prato, Italy
| | - Antonio Chella
- Unit of Pneumology, Azienda Ospedaliero-Universitaria Pisana and Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuliana Restante
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marina Chiara Garassino
- Thoraco-pulmonary Medical Oncology Unit, Medical Oncology and Hematology Department, National Tumor Institute, IRCCS, Milan, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
35
|
Chai SY, Peng R, Zhang R, Zhou L, Pillay N, Tay KH, Badrick T, Li J, Horan MP. External Quality Assurance of Current Technology for the Testing of Cancer-Associated Circulating Free DNA Variants. Pathol Oncol Res 2019; 26:1595-1603. [PMID: 31487000 DOI: 10.1007/s12253-019-00744-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Liquid biopsy testing is rapidly emerging as a diagnostic means of identifying circulating free DNA (cfDNA) disease-associated variants. However, the reporting of cfDNA variants remains inconsistent due in part to the application of multiple testing pipelines which raise uncertainty about current cfDNA detection efficiency. External quality assurance (EQA) programs are required to monitor, evaluate and help improve laboratory performance for cfDNA variant detection and in clinical interpretation. This study therefore evaluated the performance of diagnostic laboratories currently performing cfDNA testing in China, Australia and New Zealand. A total of 89 laboratories participated in this EQA program. Reference testing material comprised of cfDNA manufactured to contain six different genotypes in four different genes (EGFR, KRAS, BRAF, NRAS). The predicted genotypic variant allelic frequencies ranged between 0.5% - 2.5%. Proficiency testing used a z-score on the laboratory consensus allelic frequency data to compare laboratory performance for the detection of the different genotypes. Allelic frequency genotyping data were received from 88 of the 89 laboratories. Next generation sequencing and digital PCR testing platforms were primarily used by participants in this pilot EQA. The average consensus data for each cfDNA genotype identified allelic frequencies ranging between 0.39% - 4.4%. Z-score proficiency testing found that >92% of clinical laboratories were concordant for detecting the cfDNA variants. The data from this pilot study suggest that current cfDNA testing platforms can detect cfDNA allelic frequency variants from 0.39% and above with high levels of confidence. In addition, these data highlight the importance of laboratories enrolling on EQA programs so that proficiency in cfDNA diagnostic testing can be determined and potential sources of error identified and addressed.
Collapse
Affiliation(s)
- Sze Yee Chai
- RCPAQAP Molecular Genetics, St Leonard's, Sydney, Australia
| | - Rongxue Peng
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, P R China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P R China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, P R China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P R China
| | - Li Zhou
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, P R China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P R China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P R China
| | | | - Kwang Hong Tay
- RCPAQAP Molecular Genetics, St Leonard's, Sydney, Australia
| | - Tony Badrick
- RCPAQAP Molecular Genetics, St Leonard's, Sydney, Australia
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, P R China. .,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P R China. .,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P R China.
| | - Martin P Horan
- RCPAQAP Molecular Genetics, St Leonard's, Sydney, Australia.
| |
Collapse
|
36
|
Del Re M, Crucitta S, Gianfilippo G, Passaro A, Petrini I, Restante G, Michelucci A, Fogli S, de Marinis F, Porta C, Chella A, Danesi R. Understanding the Mechanisms of Resistance in EGFR-Positive NSCLC: From Tissue to Liquid Biopsy to Guide Treatment Strategy. Int J Mol Sci 2019; 20:ijms20163951. [PMID: 31416192 PMCID: PMC6720634 DOI: 10.3390/ijms20163951] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy has emerged as an alternative source of nucleic acids for the management of Epidermal Growth Factor Receptor (EGFR)-mutant non-Small Cell Lung Cancer (NSCLC). The use of circulating cell-free DNA (cfDNA) has been recently introduced in clinical practice, resulting in the improvement of the identification of druggable EGFR mutations for the diagnosis and monitoring of response to targeted therapy. EGFR-dependent (T790M and C797S mutations) and independent (Mesenchymal Epithelial Transition [MET] gene amplification, Kirsten Rat Sarcoma [KRAS], Phosphatidyl-Inositol 4,5-bisphosphate 3-Kinase Catalytic subunit Alpha isoform [PI3KCA], and RAF murine sarcoma viral oncogene homolog B1 [BRAF] gene mutations) mechanisms of resistance to EGFR tyrosine kinase inhibitors (TKIs) have been evaluated in plasma samples from NSCLC patients using highly sensitive methods (i.e., digital droplet PCR, Next Generation Sequencing), allowing for the switch to other therapies. Therefore, liquid biopsy is a non-invasive method able to detect the molecular dynamic changes that occur under the pressure of treatment, and to capture tumor heterogeneity more efficiently than is allowed by tissue biopsy. This review addresses how liquid biopsy may be used to guide the choice of treatment strategy in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giulia Gianfilippo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, 20141 Milano, Italy
| | - Iacopo Petrini
- General Pathology, Department of Translational Research & New Technologies in Surgery and Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giuliana Restante
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Angela Michelucci
- Unit of Molecular Genetics, Department of Laboratory Medicine, University Hospital, 56126 Pisa, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, 20141 Milano, Italy
| | - Camillo Porta
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Division of Translational Oncology, I.R.C.C.S. Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy
| | - Antonio Chella
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital, 56126 Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
37
|
Identification and monitoring of somatic mutations in circulating cell-free tumor DNA in lung cancer patients. Lung Cancer 2019; 134:225-232. [PMID: 31319985 DOI: 10.1016/j.lungcan.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Circulating cell-free tumor DNA (ctDNA) isolated from the peripheral blood of non-small-cell lung cancer (NSCLC) patients provides biomarkers for both therapeutic target selection, particularly when direct tumor biopsy is unfeasible, and also for drug resistance monitoring. This study evaluates the reliability and feasibility of ctDNA analysis in an in-house clinical molecular diagnostic workflow. MATERIALS AND METHODS Mutation profiling by both standard methods and Next-Generation sequencing (NGS) was carried out and compared on 2 independent lung cancer patient cohorts. Cohort 1 consisted of 50 EGFR-mutated NSCLC patients, established on tumour biopsy, for whom ctDNA was collected at disease progression after TKI-inhibitor treatment and could be used to monitor drug resistance. Cohort 2 consisted of 50 newly diagnosed lung cancer patients for whom tumour biopsy was not possible and only ctDNA was available, providing the possibility of biomarker identification. RESULTS ctDNA analysis of Cohort 1 verified the persistence of the tumour-detected EGFR activating mutation at disease progression by both standard and NGS methods, in 84% and 92% of the cases respectively. The T790M EGFR resistance mutation was identified in 71% of the ctDNA EGFR mutated samples providing vital information for their disease management. In newly diagnosed Cohort 2 patients, EGFR activating mutations were detected in 16% of the patients by both standard and NGS analysis of ctDNA in peripheral blood, providing indication to targeted-therapy otherwise unavailable for this group of patients. CONCLUSION The presented study investigated lung cancer ctDNA analysis, comparing conventional methods versus NGS sequencing, and demonstrated the successful use of plasma ctDNA as a template for targeted NGS tumor gene panel in an in-house routine clinical practice. More importantly, these data underline the advantages of the clinical application of ctDNA NGS analysis for identification of therapeutic targets, real-time monitoring of therapy, and resistance mechanisms in lung cancer patients.
Collapse
|
38
|
Bordi P, Del Re M, Minari R, Rofi E, Buti S, Restante G, Squadrilli A, Crucitta S, Casartelli C, Gnetti L, Azzoni C, Bottarelli L, Petrini I, Cosenza A, Ferri L, Rapacchi E, Danesi R, Tiseo M. From the beginning to resistance: Study of plasma monitoring and resistance mechanisms in a cohort of patients treated with osimertinib for advanced T790M-positive NSCLC. Lung Cancer 2019; 131:78-85. [PMID: 31027702 DOI: 10.1016/j.lungcan.2019.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Analysis of circulating tumor DNA (ctDNA) for the identification of T790M mutation in advanced EGFR-mutated NSCLC patients can replace tissue re-biopsy for resistance characterization and, being non-invasive, may be applied for disease monitoring. We analysed ctDNA during osimertinib treatment to correlate mutational levels with clinical outcome and to predict pattern of resistance. MATERIALS AND METHODS Forty patients with advanced NSCLC receiving osimertinib for T790M + disease after previous EGFR-TKI were enrolled in a pilot study to collect plasma at baseline and every 12 weeks until progression. Molecular analysis of ctDNA was performed by ddPCR and Therascreen®. When feasible at progression, tissue re-biopsy and NGS analysis were performed. RESULTS Thirty-eight patients had baseline plasma samples suitable for molecular analysis. Patients with low levels of the EGFR activating mutation in ctDNA [< 2200 copies/mL or allele frequency (AF) < 6.1%] showed better progression-free survival (17.8 or 17.8 months vs. 4.3 or 2.7, p = 0.022 or p = 0.018, respectively) and overall survival (23.6 or 23.6 vs. 7.7 or 7.3, p = 0.016 or p = 0.013, respectively) than patients with high levels (≥ 2200 copies/mL or AF ≥ 6.1%). Patients with detectable EGFR mutations in plasma (shedders) presented worse outcome than negative subjects (non-shedders). Low levels of T790M, higher T790M/activating mutation ratio and complete clearance after 2 months were associated with a trend towards better outcome. Tissue re-biopsy at resistance showed 3 patients with EGFR C797S, 1 with MET amplification, 1 with MYC amplification, 1 with PTEN loss, 3 with SCLC transformation. CONCLUSIONS The mutational analysis performed on plasma plays a significant role in prognostic stratification, especially for the EGFR activating mutation, since patients with absence or low levels of mutations presented a better outcome to osimertinib. At progression, tissue re-biopsy remains a crucial issue for the identification of resistance mechanisms.
Collapse
Affiliation(s)
- Paola Bordi
- Medical Oncology Unit, University Hospital of Parma, Italy
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Italy.
| | - Eleonora Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Giuliana Restante
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Letizia Gnetti
- Pathology Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Cinzia Azzoni
- Pathology Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Lorena Bottarelli
- Pathology Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Iacopo Petrini
- Department of Translational Medicine and New Technologies, University of Pisa, Italy
| | - Agnese Cosenza
- Medical Oncology Unit, University Hospital of Parma, Italy
| | - Leonarda Ferri
- Medical Oncology Unit, University Hospital of Parma, Italy
| | - Elena Rapacchi
- Medical Oncology Unit, University Hospital of Parma, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
39
|
Del Re M, Rofi E, Cappelli C, Puppo G, Crucitta S, Valeggi S, Chella A, Danesi R, Petrini I. The increase in activating EGFR mutation in plasma is an early biomarker to monitor response to osimertinib: a case report. BMC Cancer 2019; 19:410. [PMID: 31039766 PMCID: PMC6492432 DOI: 10.1186/s12885-019-5604-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Systemic treatment of advanced non-small cell lung cancer (NSCLC) has changed dramatically since the introduction of targeted therapies. The analysis of circulating tumor DNA (ctDNA) is a valuable approach to monitor the clonal evolution of tumors during treatment with EGFR-tyrosine kinase inhibitors (TKIs) and to detect resistance mutations. Case presentation A NSCLC patient with exon 19 deletion (ex19del) of EGFR was treated with osimertinib after multiple lines of treatment and obtained a partial response that lasted over 26 months. Blood was collected at each visit and ctDNA was extracted to monitor ex19del by digital droplet PCR. Within a few weeks from the beginning of osimertinib, ex19del disappeared from plasma but appeared again and steadily increased a few months later anticipating tumor progression. Interestingly, the change in ex19del was much more pronounced than other mutations, since T790M appeared 3 months after the increase of ex19del, and C797S was detectable a few weeks before clinical disease progression. Then the patient received cytotoxic chemotherapy, which was associated with a decrease in ex19del and disappearance of T790M and C797S; however, at disease progression, all EGFR mutations increased again in plasma together with MET amplification which was detected by NGS. Conclusions The measurement of ex19del changes in ctDNA is a simple and sensitive approach to monitor clinical outcome to osimertinib and, potentially, to other therapeutic interventions.
Collapse
Affiliation(s)
- Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Carla Cappelli
- Unit of Diagnostic and Interventional Radiology, Department of Translational Research and New Technologies in Medicine and Surgery, University Hospital of Pisa, Pisa, Italy
| | - Gianfranco Puppo
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Simona Valeggi
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy.
| | - Iacopo Petrini
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
40
|
Wei B, Zhao C, Li J, Zhao J, Ren P, Yang K, Yan C, Sun R, Ma J, Guo Y. Combined plasma and tissue genotyping of EGFR T790M benefits NSCLC patients: a real-world clinical example. Mol Oncol 2019; 13:1226-1234. [PMID: 30927306 PMCID: PMC6487696 DOI: 10.1002/1878-0261.12481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Acquired resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is a prevalent clinical problem in the management of advanced non-small-cell lung cancer (NSCLC) with TKI-sensitizing mutations in the EGFR gene. Third-generation EGFR-TKIs have demonstrated potent activity against TKI resistance mediated by the EGFR T790M mutation, and standard rebiopsy and liquid biopsy are utilized to assess the T790M status of the NSCLC patients who experienced progressive disease (PD). Here, we conducted a retrospective study to assess 375 patients whose initial biopsy indicated a TKI-sensitizing mutation (either EGFR 19del or L858R) and who developed PD after treatment with first-generation TKIs, and assayed for T790M status. We adopted a combination approach in which tissue rebiopsy is preferred, utilizing liquid biopsies when tissue rebiopsy is not feasible. We analyzed the potential predictive clinical factors affecting T790M detection, evaluated the standard rebiopsy and liquid biopsy methods in T790M genotyping, and reported the clinical performance of osimertinib. Our results suggested that primary EGFR 19del, brain metastasis, and longer progression-free survival of initial EGFR-TKI treatment are associated with acquired T790M resistance. T790M-positive patients significantly benefited from osimertinib. In conclusion, the real-world clinical adoption of the combination approach with both tissue rebiopsy and liquid biopsy for T790M genotyping may provide significant benefits to patients who have developed PD after first-generation TKI treatments.
Collapse
Affiliation(s)
- Bing Wei
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Chengzhi Zhao
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Jun Li
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Jiuzhou Zhao
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Pengfei Ren
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Ke Yang
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Chi Yan
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Rui Sun
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Jie Ma
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, China
| | - Yongjun Guo
- Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, China
| |
Collapse
|
41
|
Lyu M, Zhou J, Ning K, Ying B. The diagnostic value of circulating tumor cells and ctDNA for gene mutations in lung cancer. Onco Targets Ther 2019; 12:2539-2552. [PMID: 31040697 PMCID: PMC6454989 DOI: 10.2147/ott.s195342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Detecting gene mutations by two competing biomarkers, circulating tumor cells (CTCs) and ctDNA has gradually paved a new diagnostic avenue for personalized medicine. We performed a comprehensive analysis to compare the diagnostic value of CTCs and ctDNA for gene mutations in lung cancer. METHODS Publications were electronically searched in PubMed, Embase, and Web of Science as of July 2018. Pooled sensitivity, specificity, and AUC, each with a 95% CI, were yielded. Subgroup analyses and sensitivity analyses were conducted. Quality assessment of included studies was also performed. RESULTS From 4,283 candidate articles, we identified 47 articles with a total of 7,244 patients for qualitative review and meta-analysis. When detecting EGFR, the CTC and ctDNA groups had pooled sensitivity of 75.4% (95% CI 0.683-0.817) and 67.1% (95% CI 0.647-0.695), respectively. When testing KRAS, pooled sensitivity was 38.7% (95% CI 0.266-0.519) in the CTC group and 65.1% (95% CI 0.558-0.736) in the ctDNA group. The diagnostic performance of ctDNA in testing ALK and BRAF was also evaluated. Heterogeneity among the 47 articles was acceptable. CONCLUSION ctDNA might be a more promising biomarker with equivalent performance to CTCs when detecting EGFR and its detailed subtypes, and superior diagnostic capacity when testing KRAS and ALK. In addition, the diagnostic performance of ctDNA and CTCs depends on the detection methods greatly, and this warrants further studies to explore more sensitive methods.
Collapse
Affiliation(s)
- Mengyuan Lyu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China,
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kang Ning
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China,
| |
Collapse
|
42
|
Potential Utility of Liquid Biopsy as a Diagnostic and Prognostic Tool for the Assessment of Solid Tumors: Implications in the Precision Oncology. J Clin Med 2019; 8:jcm8030373. [PMID: 30889786 PMCID: PMC6463095 DOI: 10.3390/jcm8030373] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/24/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsy is a technique that utilizes circulating biomarkers in the body fluids of cancer patients to provide information regarding the genetic landscape of the cancer. It is emerging as an alternative and complementary diagnostic and prognostic tool to surgical biopsy in oncology. Liquid biopsy focuses on the detection and isolation of circulating tumor cells, circulating tumor DNA and exosomes, as a source of genomic and proteomic information in cancer patients. Liquid biopsy is expected to provide the necessary acceleratory force for the implementation of precision oncology in clinical settings by contributing an enhanced understanding of tumor heterogeneity and permitting the dynamic monitoring of treatment responses and genomic variations. However, widespread implementation of liquid biopsy based biomarker-driven therapy in the clinical practice is still in its infancy. Technological advancements have resolved many of the hurdles faced in the liquid biopsy methodologies but sufficient clinical and technical validation for specificity and sensitivity has not yet been attained for routine clinical implementation. This article provides a comprehensive review of the clinical utility of liquid biopsy and its effectiveness as an important diagnostic and prognostic tool in colorectal, breast, hepatocellular, gastric and lung carcinomas which were the five leading cancer related mortalities in 2018.
Collapse
|
43
|
Rachiglio AM, Fenizia F, Piccirillo MC, Galetta D, Crinò L, Vincenzi B, Barletta E, Pinto C, Ferraù F, Lambiase M, Montanino A, Roma C, Ludovini V, Montagna ES, De Luca A, Rocco G, Botti G, Perrone F, Morabito A, Normanno N. The Presence of Concomitant Mutations Affects the Activity of EGFR Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer (NSCLC) Patients. Cancers (Basel) 2019; 11:E341. [PMID: 30857358 PMCID: PMC6468673 DOI: 10.3390/cancers11030341] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Recent findings suggest that a fraction of EGFR-mutant non-small-cell lung cancers (NSCLC) carry additional driver mutations that could potentially affect the activity of EGFR tyrosine kinase inhibitors (TKIs). We investigated the role of concomitant KRAS, NRAS, BRAF, PIK3CA, MET and ERBB2 mutations (other mutations) on the outcome of 133 EGFR mutant patients, who received first-line therapy with EGFR TKIs between June 2008 and December 2014. Analysis of genomic DNA by Next Generation Sequencing (NGS) revealed the presence of hotspot mutations in genes other than the EGFR, including KRAS, NRAS, BRAF, ERBB2, PIK3CA, or MET, in 29/133 cases (21.8%). A p.T790M mutation was found in 9/133 tumour samples (6.8%). The progression free survival (PFS) of patients without other mutations was 11.3 months vs. 7 months in patients with other mutations (log-rank test univariate: p = 0.047). In a multivariate Cox regression model including the presence of other mutations, age, performance status, smoking status, and the presence of p.T790M mutations, the presence of other mutations was the only factor significantly associated with PFS (Hazard Ratio 1.63, 95% CI 1.04⁻2.58; p = 0.035). In contrast, no correlation was found between TP53 mutations and patients' outcome. These data suggest that a subgroup of EGFR mutant tumours have concomitant driver mutations that might affect the activity of first-line EGFR TKIs.
Collapse
Affiliation(s)
- Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Francesca Fenizia
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Maria Carmela Piccirillo
- Clinical Trials Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Domenico Galetta
- Medical Oncology, National Cancer Research Center "Giovanni Paolo II", 70126 Bari, Italy.
| | - Lucio Crinò
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Bruno Vincenzi
- Medical Oncology, Campus Bio-Medico University of Rome, 00128 Rome, Italy.
| | | | - Carmine Pinto
- Medical Oncology, S. Maria Nuova Hospital-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Francesco Ferraù
- Medical Oncology, "S. Vincenzo" Hospital, 98039 Taormina (ME), Italy.
| | - Matilde Lambiase
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Agnese Montanino
- Medical Oncology, Thoraco-Pulmonary Department, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy.
| | | | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Gaetano Rocco
- Thoracic Surgery, Thoraco-Pulmonary Department, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Gerardo Botti
- Surgical Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Alessandro Morabito
- Medical Oncology, Thoraco-Pulmonary Department, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
| |
Collapse
|
44
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. BIOMOLECULAR DETECTION AND QUANTIFICATION 2019; 17:100087. [PMID: 30923679 PMCID: PMC6425120 DOI: 10.1016/j.bdq.2019.100087] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of studies demonstrate the potential use of cell-free DNA (cfDNA) as a surrogate marker for multiple indications in cancer, including diagnosis, prognosis, and monitoring. However, harnessing the full potential of cfDNA requires (i) the optimization and standardization of preanalytical steps, (ii) refinement of current analysis strategies, and, perhaps most importantly, (iii) significant improvements in our understanding of its origin, physical properties, and dynamics in circulation. The latter knowledge is crucial for interpreting the associations between changes in the baseline characteristics of cfDNA and the clinical manifestations of cancer. In this review we explore recent advancements and highlight the current gaps in our knowledge concerning each point of contact between cfDNA analysis and the different stages of cancer management.
Collapse
Affiliation(s)
| | | | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße. 36, D-80636, Munich, Germany
| |
Collapse
|
45
|
Myers MB, McKim KL, Banda M, George NI, Parsons BL. Low-Frequency Mutational Heterogeneity of Invasive Ductal Carcinoma Subtypes: Information to Direct Precision Oncology. Int J Mol Sci 2019; 20:E1011. [PMID: 30813596 PMCID: PMC6429455 DOI: 10.3390/ijms20051011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Information regarding the role of low-frequency hotspot cancer-driver mutations (CDMs) in breast carcinogenesis and therapeutic response is limited. Using the sensitive and quantitative Allele-specific Competitor Blocker PCR (ACB-PCR) approach, mutant fractions (MFs) of six CDMs (PIK3CA H1047R and E545K, KRAS G12D and G12V, HRAS G12D, and BRAF V600E) were quantified in invasive ductal carcinomas (IDCs; including ~20 samples per subtype). Measurable levels (i.e., ≥ 1 × 10-5, the lowest ACB-PCR standard employed) of the PIK3CA H1047R, PIK3CA E545K, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E mutations were observed in 34/81 (42%), 29/81 (36%), 51/81 (63%), 9/81 (11%), 70/81 (86%), and 48/81 (59%) of IDCs, respectively. Correlation analysis using available clinicopathological information revealed that PIK3CA H1047R and BRAF V600E MFs correlate positively with maximum tumor dimension. Analysis of IDC subtypes revealed minor mutant subpopulations of critical genes in the MAP kinase pathway (KRAS, HRAS, and BRAF) were prevalent across IDC subtypes. Few triple-negative breast cancers (TNBCs) had appreciable levels of PIK3CA mutation, suggesting that individuals with TNBC may be less responsive to inhibitors of the PI3K/AKT/mTOR pathway. These results suggest that low-frequency hotspot CDMs contribute significantly to the intertumoral and intratumoral genetic heterogeneity of IDCs, which has the potential to impact precision oncology approaches.
Collapse
Affiliation(s)
- Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Karen L McKim
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Malathi Banda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Nysia I George
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
46
|
Lu J, Han B. Liquid Biopsy Promotes Non-Small Cell Lung Cancer Precision Therapy. Technol Cancer Res Treat 2019; 17:1533033818801809. [PMID: 30244652 PMCID: PMC6153525 DOI: 10.1177/1533033818801809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The range of potential applications of liquid biopsies for non-small cell lung cancer management is expanded by the use of circulating tumor deoxyribonucleic acid and circulating tumor cells. Principal studies have demonstrated the predictive accuracy of droplet digital polymerase chain reaction detection, next-generation sequencing, and circulating tumor cells detection in patients with non-small cell lung cancer. The translational potential of these liquid biopsy technologies promotes the improvement of sensitivity and specificity in genomic and molecular methods. Here, we highlight the realities and challenges associated with the use of liquid biopsies for the detection of non-small cell lung cancer in patients. However, liquid biopsy technologies including circulating tumor cells detection, droplet digital polymerase chain reaction detection, and next-generation sequencing detection for precision therapy in non-small cell lung cancer will show substantive clinical applications in the future.
Collapse
Affiliation(s)
- Jun Lu
- 1 Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Baohui Han
- 1 Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
47
|
Wang Y, Li X, Liu X, Chen Y, Yang C, Tan C, Wang B, Sun Y, Zhang X, Gao Y, Ding J, Meng L. Simultaneous inhibition of PI3Kα and CDK4/6 synergistically suppresses KRAS-mutated non-small cell lung cancer. Cancer Biol Med 2019; 16:66-83. [PMID: 31119047 PMCID: PMC6528459 DOI: 10.20892/j.issn.2095-3941.2018.0361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Activating KRAS mutations are the most common drivers in the development of non-small cell lung cancer (NSCLC). However, unsuccess of treatment by direct inhibition of KRAS has been proven. Deregulation of PI3K signaling plays an important role in tumorigenesis and drug resistance in NSCLC. The activity of PI3Kα-selective inhibition against KRAS-mutated NSCLC remains largely unknown.
Methods Cell proliferation was detected by sulforhodamine B assay. Cell cycle distribution and apoptosis were measured by flow cytometry. Cell signaling was assessed by Western blot and immunohistochemistry. RNA interference was used to down-regulate the expression of cyclin D1. Human NSCLC xenografts were employed to detect therapeutic efficacy in vivo.
Results CYH33 possessed variable activity against a panel of KRAS-mutated NSCLC cell lines. Although CYH33 blocked AKT phosphorylation in all tested cells, Rb phosphorylation decreased in CYH33-sensitive, but not in CYH33-resistant cells, which was consistent with G1 phase arrest in sensitive cells. Combined treatment with the CDK4/6 inhibitor, PD0332991, and CYH33 displayed synergistic activity against the proliferation of both CYH33-sensitive and CYH33-resistant cells, which was accompanied by enhanced G1-phase arrest. Moreover, down-regulation of cyclin D1 sensitized NSCLC cells to CYH33. Reciprocally, CYH33 abrogated the PD0332991-induced up-regulation of cyclin D1 and phosphorylation of AKT in A549 cells. Co-treatment with these two drugs demonstrated synergistic activity against A549 and H23 xenografts, with enhanced inhibition of Rb phosphorylation. Conclusions Simultaneous inhibition of PI3Kα and CDK4/6 displayed synergistic activity against KRAS-mutated NSCLC. These data provide a mechanistic rationale for the combination of a PI3Kα inhibitor and a CDK4/6 inhibitor for the treatment of KRAS-mutated NSCLC.
Collapse
Affiliation(s)
- Yuxiang Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Li
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xueling Liu
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunhao Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200120, China
| | - Cun Tan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200120, China
| | - Bobo Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiming Sun
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Zhang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinglei Gao
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- University of Chinese Academy of Sciences, Beijing 100049, China.,Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Del Re M, Bordi P, Rofi E, Restante G, Valleggi S, Minari R, Crucitta S, Arrigoni E, Chella A, Morganti R, Tiseo M, Petrini I, Danesi R. The amount of activating EGFR mutations in circulating cell-free DNA is a marker to monitor osimertinib response. Br J Cancer 2018; 119:1252-1258. [PMID: 30397287 PMCID: PMC6251035 DOI: 10.1038/s41416-018-0238-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) may help understand the molecular response to pharmacologic treatment and provide information on dynamics of clonal heterogeneity. Therefore, this study evaluated the correlation between treatment outcome and activating EGFR mutations (act-EGFR) and T790M in cfDNA in patients with advanced NSCLC given osimertinib. METHODS Thirty-four NSCLC patients resistant to first/second-generation EGFR-TKIs, positive for both act-EGFR and T790M in cfDNA at the time of progression were enrolled in this study. Plasma samples were obtained at osimertinib baseline and after 3 months of therapy; cfDNA was analyzed by droplet digital PCR and results were expressed as mutant allele frequency (MAF). RESULTS At baseline, act-EGFR MAF was significantly higher than T790M (p < 0.0001). act-EGFR MAF and T790M/act-EGFR MAF ratio were significantly correlated with disease response (p = 0.02). Cut-off values of act-EGFR MAF and T790M/act-EGFR ratio of 2.6% and 0.22 were found, respectively. The PFS of patients with act-EGFR MAF of > 2.6% and < 2.6%, were 10 months vs. not reached, respectively (p = 0.03), whereas patients with T790M/act-EGFR ≤ 0.22 had poorer PFS than patients with a value of > 0.22 (6 months vs. not reached, respectively, p = 0.01). CONCLUSION act-EGFR MAF and T790M/act-EGFR MAF ratio are potential markers of outcome in patients treated with osimertinib.
Collapse
Affiliation(s)
- Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bordi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Eleonora Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuliana Restante
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Valleggi
- Pneumology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Chella
- Pneumology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Riccardo Morganti
- Section of Statistics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Iacopo Petrini
- Pneumology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy.
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
49
|
Demuth C, Spindler KLG, Johansen JS, Pallisgaard N, Nielsen D, Hogdall E, Vittrup B, Sorensen BS. Measuring KRAS Mutations in Circulating Tumor DNA by Droplet Digital PCR and Next-Generation Sequencing. Transl Oncol 2018; 11:1220-1224. [PMID: 30086420 PMCID: PMC6085225 DOI: 10.1016/j.tranon.2018.07.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
Measuring total cell-free DNA (cfDNA) or cancer-specific mutations herein has presented as new tools in aiding the treatment of cancer patients. Studies show that total cfDNA bears prognostic value in metastatic colorectal cancer (mCRC) and that measuring cancer-specific mutations could supplement biopsies. However, limited information is available on the performance of different methods. Blood samples from 28 patients with mCRC and known KRAS mutation status were included. cfDNA was extracted and quantified with droplet digital polymerase chain reaction (ddPCR) measuring Beta-2 Microglobulin. KRAS mutation detection was performed using ddPCR (Bio-Rad) and next-generation sequencing (NGS, Ion Torrent PGM). Comparing KRAS mutation status in plasma and tissue revealed concordance rates of 79% and 89% for NGS and ddPCR. Strong correlation between the methods was observed. Most KRAS mutations were also detectable in 10-fold diluted samples using the ddPCR. We find that for detection of KRAS mutations in ctDNA ddPCR was superior to NGS both in analysis success rate and concordance to tissue. We further present results indicating that lower amount of plasma may be used for detection of KRAS mutations in mCRC.
Collapse
Affiliation(s)
- Christina Demuth
- Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | | | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Niels Pallisgaard
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Dorte Nielsen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Estrid Hogdall
- Department of Pathology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Benny Vittrup
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | |
Collapse
|
50
|
Xu J, Zhao X, He D, Wang J, Li W, Liu Y, Ma L, Jiang M, Teng Y, Wang Z, Gu M, Wu J, Wang Y, Yue W, Zhang S. Loss of EGFR confers acquired resistance to AZD9291 in an EGFR-mutant non-small cell lung cancer cell line with an epithelial-mesenchymal transition phenotype. J Cancer Res Clin Oncol 2018; 144:1413-1422. [PMID: 29797219 DOI: 10.1007/s00432-018-2668-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE AZD9291 is an irreversible, small-molecule inhibitor which has potency against mutant EGFR- and T790M-resistant mutation. Despite the encouraging efficacy in clinical, the acquired resistance will finally occur. Further study will need to be done to identify the acquired resistance mechanisms and determine the next treatment. METHODS We established an AZD9291-resistant cell line (HCC827/AZDR) from parental HCC827 cell line through stepwise pulsed selection of AZD9291. The expression of EGFR and its downstream pathways were determined by western blot analysis or immunofluorescence assay. The sensitivity to indicated agents were evaluated by MTS. RESULTS Compared with parental HCC827 cells, the HCC827/AZDR cells showed high resistance to AZD9291 and other EGFR-TKIs, and exhibited a mesenchymal-like phenotype. Almost complete loss of EGFR expression was observed in HCC827/AZDR cells. But the activation of downstream pathway, MAPK signaling, was found in HCC827/AZDR cells even in the presence of AZD9291. Inhibition of MAPK signaling had no effect on cell viability of HCC827/AZDR and could not reverse AZD9291 resistance because of the subsequent activation of AKT signaling. When treated with the combination of AKT and MAPK inhibitor, HCC827/AZDR showed remarkable growth inhibition. CONCLUSIONS Loss of EGFR could be proposed as a potential acquired resistance mechanism of AZD9291 in EGFR-mutant NSCLC cells with an EMT phenotype. Despite the loss of EGFR, the activation of MAPK pathway which had crosstalk with AKT pathway could maintain the proliferation and survival of resistant cells. Blocking MAPK and AKT signaling may be a potential therapeutic strategy following AZD9291 resistance.
Collapse
Affiliation(s)
- Jing Xu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Xiaoting Zhao
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Dengfeng He
- Department of Traditional Chinese medicine, 263 Clinical Department of General Hospital of Beijing Military Region, Beijing, 101149, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Weiying Li
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Yinghui Liu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Li Ma
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mei Jiang
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Yu Teng
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Ziyu Wang
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Meng Gu
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jianbin Wu
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Yue Wang
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Wentao Yue
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|