1
|
Lee CM, Kim AS, Kim M, Jeong JW, Jo S, Hwang N, Fang S. Dynamics of T Cell-Mediated Immune Signaling Network During Pathogenesis of Chronic Obstructive Pulmonary Disease. Yonsei Med J 2025; 66:354-365. [PMID: 40414827 PMCID: PMC12116870 DOI: 10.3349/ymj.2024.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 05/27/2025] Open
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is characterized by alveolar destruction and increased inflammation, leading to respiratory symptoms. This study aimed to identify the traits for COPD progression from mild to severe stages. Additionally, we explored the correlation between coronavirus disease-2019 (COVID-19) and COPD to uncover overlapping respiratory patterns. MATERIALS AND METHODS Bulk RNA sequencing was conducted on data from 43 healthy individuals and 39 COPD patients across one dataset (GSE239897) to distinguish COPD characteristics. Single-cell RNA analysis was then performed on samples from seven mild patients, seven moderate patients, and three severe patients from three datasets (GSE167295, GSE173896, and GSE227691) to analyze disease progression. Finally, single-nuclei RNA analysis was applied to data from seven healthy individuals and 20 COVID-19 patients from one dataset (GSE171524) to compare the two conditions. RESULTS Bulk RNA sequencing revealed enhanced inflammatory pathways in COPD patients, indicating increased inflammation. Single-cell RNA sequencing showed a stronger inflammatory response from mild to moderate COPD with a decrease from moderate to severe stages. COVID-19 displayed similar biological patterns to moderate COPD, suggesting that stage-specific COPD analysis could enhance COVID-19 management. CONCLUSION The analysis found that immune responses increased from mild to moderate stages but declined in severe cases, marked by reduced pulmonary T cell activation. The overlap between moderate COPD and COVID-19 suggests shared therapeutic strategies, warranting further investigation.
Collapse
Affiliation(s)
- Chae Min Lee
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Andrew Sehoon Kim
- Department of Neuroscience, Vanderbilt University College of Arts and Science, Vanderbilt University, Nashville, USA
| | - Minki Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Woong Jeong
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sugyeong Jo
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Nahee Hwang
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Raucci L, Perrone CD, Barbera S, de Boer LJ, Tosi GM, Brunetti J, Bracci L, Pozzi C, Galvagni F, Orlandini M. Structural and antigen-binding surface definition of an anti-CD93 monoclonal antibody for the treatment of degenerative vascular eye diseases. Int J Biol Macromol 2025; 309:143118. [PMID: 40228767 DOI: 10.1016/j.ijbiomac.2025.143118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
CD93 is a receptor predominantly expressed on the surface of endothelial cells, where it plays a pivotal role in angiogenesis through its interaction with the extracellular matrix. In our previous studies, we identified the monoclonal antibody 4E1 as a potent inhibitor of angiogenesis by targeting the CD93-Multimerin-2 axis. Here, we report the development of 4E1 as a recombinant whole immunoglobulin and a single-chain variable fragment, designated sc-4E. Both formats retained the binding properties of the parental monoclonal antibody and exhibited comparable inhibitory effects on endothelial cell migration and differentiation. To elucidate the molecular basis of the 4E1-CD93 interaction, we initially employed machine learning-based modeling and docking analyses of the variable heavy and light domains of 4E1. Subsequent crystallographic analysis of sc-4E provided high-resolution structural insights, confirming and validating the predicted model. Further docking experiments and molecular dynamics simulations using the crystallographic structures of CD93 and sc-4E revealed that the interaction is primarily mediated by the CDR-H3 and CDR-L2 loops. Notably, these regions engage with the sushi-like domain of CD93, which is critical for its interaction with Multimerin-2. This comprehensive structural and functional characterization of 4E1 and sc-4E underscores their potential as anti-angiogenic agents. By effectively inhibiting endothelial cell migration and differentiation, 4E1 derivatives represent promising therapeutic candidates for the treatment of ocular vascular diseases driven by pathological angiogenesis.
Collapse
Affiliation(s)
- Luisa Raucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Cosimo Damiano Perrone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala SE-75185, Sweden
| | - Laurens Julius de Boer
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University of Siena, Siena 53100, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, Siena 53100, Italy
| | - Luisa Bracci
- Department of Medical Biotechnology, University of Siena, Siena 53100, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, FI 50019, Italy.
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy.
| |
Collapse
|
3
|
Orlandini M. Cellular role of CD93 and its potential as a future therapeutic target. Expert Opin Ther Targets 2025; 29:179-183. [PMID: 40302354 DOI: 10.1080/14728222.2025.2500427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Affiliation(s)
- Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Li X, Song W, Engle JW, Mixdorf JC, Barnhart TE, Sun Y, Zhu Y, Cai W. Immuno-PET Imaging of CD93 Expression with 64Cu-Radiolabeled NOTA-mCD93 ([ 64Cu]Cu-NOTA-mCD93) and Insulin-Like Growth Factor Binding Protein 7 ([ 64Cu]Cu-NOTA-IGFBP7). Mol Pharm 2024; 21:6411-6422. [PMID: 39533706 PMCID: PMC11832137 DOI: 10.1021/acs.molpharmaceut.4c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
CD93 is overexpressed in multiple solid tumor types, serving as a novel target for antiangiogenic therapy. The goal of this study was to develop a 64Cu-based positron emission tomography (PET) tracer for noninvasive imaging of CD93 expression. Antimouse-CD93 mAb (mCD93) and the CD93 ligand IGFBP7 were conjugated to a bifunctional chelator, p-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-NOTA) and labeled with 64Cu. To evaluate the pharmacokinetic properties and tumor-targeting efficacy of [64Cu]Cu-NOTA-mCD93 and [64Cu]Cu-NOTA-IGFBP7, PET imaging and biodistribution were performed on both 4T1 murine breast tumor-bearing mice and MDA-MB-231 human breast tumor-bearing mice. The tumor model HT1080-FAP, which does not overexpress CD93, was used as a negative control. Fluorescent immunostaining was conducted on different tissues to correlate radiotracer uptake with CD93 expression. 64Cu-labeling was achieved with high yield and specific activity. Serial PET imaging revealed that the in vivo performance of [64Cu]Cu-NOTA-IGFBP7 was superior to that of [64Cu]Cu-NOTA-mCD93, and that the tracer [64Cu]Cu-NOTA-IGFBP7 exhibited elevated tumor uptake values and excellent tumor retention in MDA-MB-231 mice, rather than in 4T1 murine mice. The MDA-MB-231 tumor uptake of [64Cu]Cu-NOTA-IGFBP7 was 2.85 ± 0.15, 3.69 ± 0.60, 6.91 ± 0.88, and 6.35 ± 0.55%ID/g at 1, 4, 24, and 48 h p.i., respectively, which were significantly higher than that in the CD93-negative HT1080-FAP tumor (0.73 ± 0.15, 0.97 ± 0.31, 1.00 ± 0.07, and 1.02 ± 0.11%ID/g, respectively). The significant difference between positive and negative tumors indicated [64Cu]Cu-NOTA-IGFBP7 was specifically binding to CD93. Biodistribution data as measured by gamma counting were consistent with the PET analysis. Ex vivo histology further confirmed the high CD93 expression on MDA-MB-231 tumor tissues. Herein, we prepared two novel radiotracers, [64Cu]Cu-NOTA-mCD93 and [64Cu]Cu-NOTA-IGFBP7, for the first immune-PET imaging of CD93 expression. Our results suggest that [64Cu]Cu-NOTA-IGFBP7 is a more potential radiotracer for visualizing angiogenesis due to its sensitive, persistent, and CD93-specific characteristics.
Collapse
Affiliation(s)
- Xiaoyan Li
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jason C Mixdorf
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53792, United States
| |
Collapse
|
5
|
Zhu Q, Nambiar R, Schultz E, Gao X, Liang S, Flamand Y, Stevenson K, Cole PD, Gennarini L, Harris MH, Kahn JM, Ladas EJ, Athale UH, Tran TH, Michon B, Welch JJ, Sallan SE, Silverman LB, Kelly KM, Yao S. Genome-wide study identifies novel genes associated with bone toxicities in children with acute lymphoblastic leukaemia. Br J Haematol 2024; 205:1889-1898. [PMID: 39143423 PMCID: PMC11568943 DOI: 10.1111/bjh.19696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024]
Abstract
Bone toxicities are common among paediatric patients treated for acute lymphoblastic leukaemia (ALL) with potentially major negative impact on patients' quality of life. To identify the underlying genetic contributors, we conducted a genome-wide association study (GWAS) and a transcriptome-wide association study (TWAS) in 260 patients of European-descent from the DFCI 05-001 ALL trial, with validation in 101 patients of European-descent from the DFCI 11-001 ALL trial. We identified a significant association between rs844882 on chromosome 20 and bone toxicities in the DFCI 05-001 trial (p = 1.7 × 10-8). In DFCI 11-001 trial, we observed a consistent trend of this variant with fracture. The variant was an eQTL for two nearby genes, CD93 and THBD. In TWAS, genetically predicted ACAD9 expression was associated with an increased risk of bone toxicities, which was confirmed by meta-analysis of the two cohorts (meta-p = 2.4 × 10-6). In addition, a polygenic risk score of heel quantitative ultrasound speed of sound was associated with fracture risk in both cohorts (meta-p = 2.3 × 10-3). Our findings highlight the genetic influence on treatment-related bone toxicities in this patient population. The genes we identified in our study provide new biological insights into the development of bone adverse events related to ALL treatment.
Collapse
Affiliation(s)
- Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Ram Nambiar
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Emily Schultz
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Xinyu Gao
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Shuyi Liang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Yael Flamand
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Kristen Stevenson
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Peter D. Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Lisa Gennarini
- Division of Pediatric Hematology, Oncology and Cellular Therapy, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY
| | | | - Justine M. Kahn
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, NY
| | - Elena J. Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, NY
| | - Uma H. Athale
- Division of Pediatric Hematology/Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Thai Hoa Tran
- Division of Pediatric Hematology and Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Bruno Michon
- Division of Hematology-Oncology, Centre Hospitalier Universitaire de Québec, Quebec City, Canada
| | - Jennifer J.G. Welch
- Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Stephen E. Sallan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
| | - Lewis B. Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
| | - Kara M. Kelly
- Department of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
6
|
Sun J, Zheng Q, Wu K. IGFBP7 mediates oxLDL-induced human vascular endothelial cell injury by suppressing the expression of SIRT1. Heliyon 2024; 10:e35359. [PMID: 39170442 PMCID: PMC11336593 DOI: 10.1016/j.heliyon.2024.e35359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Endothelial cell injury plays an important role in initiating atherosclerotic lesion formation. Insulin-like growth factor binding protein 7 (IGFBP7) is known to modulate the behaviors of tumor-associated endothelial cells. This study was conducted to test whether IGFBP7 is involved in endothelial cell injury during atherosclerosis. Oxidized low-density lipoprotein (oxLDL) treatment was used to mimic atherosclerosis-related endothelial cell apoptosis and inflammation response. Small interfering RNA (siRNA) technology was employed to deplete IGFBP7 expression in human aortic endothelial cells (HAECs). HAECs were exposed to recombinant human IGFBP7 protein to evaluate the function of IGFBP7. Notably, IGFBP7 expression in HAECs was induced by oxLDL treatment. Knockdown of IGFBP7 or treatment with anti-IGFBP7 abolished oxLDL-induced apoptosis and inflammation in HAECs. Moreover, recombinant IGFBP7 (40 ng/mL but not 25 ng/mL) promoted apoptosis and inflammation in HAECs. IGFBP7 co-localized with CD93 on the surface of HAECs. A mechanistic investigation uncovered that IGFBP7 induced endothelial cell injury through interaction with CD93 and reduction of SIRT1 expression via an autocrine manner. Overexpression of SIRT1 rescued IGFBP7-induced phenotype in HAECs. Taken together, IGFBP7 is induced by oxLDL and mediates oxLDL-induced endothelial cell apoptosis and inflammation, likely through downregulation of SIRT1. These observations support a rationale to prevent atherosclerosis by targeting IGFBP7 activity.
Collapse
Affiliation(s)
- Jiaju Sun
- Department of Cardiology, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Qingyong Zheng
- Infectious Disease Laboratory, Wenzhou Sixth People's Hospital, Wenzhou, China
| | - Kaijia Wu
- Electrocardiogram Room, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Yee EJ, Vigil I, Sun Y, Torphy RJ, Schulick RD, Zhu Y. Group XIV C-type lectins: emerging targets in tumor angiogenesis. Angiogenesis 2024; 27:173-192. [PMID: 38468017 PMCID: PMC11021320 DOI: 10.1007/s10456-024-09907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
C-type lectins, distinguished by a C-type lectin binding domain (CTLD), are an evolutionarily conserved superfamily of glycoproteins that are implicated in a broad range of physiologic processes. The group XIV subfamily of CTLDs are comprised of CD93, CD248/endosialin, CLEC14a, and thrombomodulin/CD141, and have important roles in creating and maintaining blood vessels, organizing extracellular matrix, and balancing pro- and anti-coagulative processes. As such, dysregulation in the expression and downstream signaling pathways of these proteins often lead to clinically relevant pathology. Recently, group XIV CTLDs have been shown to play significant roles in cancer progression, namely tumor angiogenesis and metastatic dissemination. Interest in therapeutically targeting tumor vasculature is increasing and the search for novel angiogenic targets is ongoing. Group XIV CTLDs have emerged as key moderators of tumor angiogenesis and metastasis, thus offering substantial therapeutic promise for the clinic. Herein, we review our current knowledge of group XIV CTLDs, discuss each's role in malignancy and associated potential therapeutic avenues, briefly discuss group XIV CTLDs in the context of two other relevant lectin families, and offer future direction in further elucidating mechanisms by which these proteins function and facilitate tumor growth.
Collapse
Affiliation(s)
- Elliott J Yee
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Isaac Vigil
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Robert J Torphy
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Xu Y, Sun Y, Zhu Y, Song G. Structural insight into CD93 recognition by IGFBP7. Structure 2024; 32:282-291.e4. [PMID: 38218180 DOI: 10.1016/j.str.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
The CD93/IGFBP7 axis proteins are key factors expressed in endothelial cells (EC) that mediate EC angiogenesis and migration. Their upregulation contributes to tumor vascular abnormality and a blockade of this interaction promotes a favorable tumor microenvironment for therapeutic interventions. However, the interactions of these proteins with each other remain unclear. In this study, we determined a partial structure of the human CD93-IGFBP7 complex comprising the EGF1 domain of CD93 and the IB domain of IGFBP7. Mutagenesis studies confirmed interactions and specificities. Cellular and mouse tumor studies demonstrated the physiological relevance of the CD93-IGFBP7 interaction in EC angiogenesis. Our study provides leads for the development of therapeutic agents to precisely disrupt unwanted CD93-IGFBP7 signaling in the tumor microenvironment. Additionally, analysis of the CD93 full-length architecture provides insights into how CD93 protrudes on the cell surface and forms a flexible platform for binding to IGFBP7 and other ligands.
Collapse
Affiliation(s)
- Yueming Xu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
9
|
Vemuri K, de Alves Pereira B, Fuenzalida P, Subashi Y, Barbera S, van Hooren L, Hedlund M, Pontén F, Lindskog C, Olsson AK, Lugano R, Dimberg A. CD93 maintains endothelial barrier function and limits metastatic dissemination. JCI Insight 2024; 9:e169830. [PMID: 38441970 PMCID: PMC11128212 DOI: 10.1172/jci.insight.169830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Compromised vascular integrity facilitates extravasation of cancer cells and promotes metastatic dissemination. CD93 has emerged as a target for antiangiogenic therapy, but its importance for vascular integrity in metastatic cancers has not been evaluated. Here, we demonstrate that CD93 participates in maintaining the endothelial barrier and reducing metastatic dissemination. Primary melanoma growth was hampered in CD93-/- mice, but metastatic dissemination was increased and associated with disruption of adherens and tight junctions in tumor endothelial cells and elevated expression of matrix metalloprotease 9 at the metastatic site. CD93 directly interacted with vascular endothelial growth factor receptor 2 (VEGFR2) and its absence led to VEGF-induced hyperphosphorylation of VEGFR2 in endothelial cells. Antagonistic anti-VEGFR2 antibody therapy rescued endothelial barrier function and reduced the metastatic burden in CD93-/- mice to wild-type levels. These findings reveal a key role of CD93 in maintaining vascular integrity, which has implications for pathological angiogenesis and endothelial barrier function in metastatic cancer.
Collapse
Affiliation(s)
- Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Beatriz de Alves Pereira
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Patricia Fuenzalida
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Yelin Subashi
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Stefano Barbera
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Marie Hedlund
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| |
Collapse
|
10
|
Trivigno SMG, Vismara M, Canobbio I, Rustichelli S, Galvagni F, Orlandini M, Torti M, Guidetti GF. The C-Type Lectin Receptor CD93 Regulates Platelet Activation and Surface Expression of the Protease Activated Receptor 4. Thromb Haemost 2024; 124:122-134. [PMID: 37669782 DOI: 10.1055/a-2166-5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
BACKGROUND The C-type lectin receptor CD93 is a single pass type I transmembrane glycoprotein involved in inflammation, immunity, and angiogenesis. This study investigates the role of CD93 in platelet function. CD93 knockout (KO) mice and wild-type (WT) controls were compared in this study. METHODS Platelet activation and aggregation were investigated by flow cytometry and light transmission aggregometry, respectively. Protein expression and phosphorylation were analyzed by immunoblotting. Subcellular localization of membrane receptors was investigated by wide-field and confocal microscopy. RESULTS The lack of CD93 in mice was not associated to any evident bleeding defect and no alterations of platelet activation were observed upon stimulation with thromboxane A2 analogue and convulxin. Conversely, platelet aggregation induced by stimulation of the thrombin receptor PAR4 was significantly reduced in the absence of CD93. This defect was associated with a significant reduction of α-granule secretion, integrin αIIbβ3 activation, and protein kinase C (PKC) stimulation. Resting WT and CD93-deficient platelets expressed comparable amounts of PAR4. However, upon stimulation with a PAR4 activating peptide, a more pronounced clearance of PAR4 from the platelet surface was observed in CD93-deficient platelets compared with WT controls. Confocal microscopy analysis revealed a massive movement of PAR4 in cytosolic compartments of activated platelets lacking CD93. Accordingly, platelet desensitization following PAR4 stimulation was more pronounced in CD93 KO platelets compared with WT controls. CONCLUSION These results demonstrate that CD93 supports platelet activation triggered by PAR4 stimulation and is required to stabilize the expression of the thrombin receptor on the cell surface.
Collapse
Affiliation(s)
- Silvia Maria Grazia Trivigno
- University School for Advanced Studies IUSS, Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Serena Rustichelli
- University School for Advanced Studies IUSS, Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
11
|
Xu Y, Jia Y, Wu N, Wang J, He L, Yang D. CD93 Ameliorates Diabetic Wounds by Promoting Angiogenesis via the p38MAPK/MK2/HSP27 Axis. Eur J Vasc Endovasc Surg 2023; 66:707-721. [PMID: 37295599 DOI: 10.1016/j.ejvs.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/04/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Diabetic wounds are a complication of diabetes mellitus, which is characterised by microcirculation dysfunction caused by decreased local blood supply and insufficient metabolic exchange. Clinically, in addition to glycaemic control, the most important treatment for diabetic wounds is to promote local angiogenesis, which accelerates wound healing. The authors previous study demonstrated that CD93, which is specifically expressed on vascular endothelial cells (ECs), redundantly regulates angiogenesis in zebrafish, suggesting that CD93 is a potential angiogenic molecule. However, the role of CD93 in diabetic wounds has not yet been elucidated. METHODS The angiogenic effects of CD93 were studied from four aspects: exogenous, endogenous, in vitro, and in vivo. CD93 recombinant protein was used in microvascular ECs and in mice to observe angiogenesis in vitro and in vivo. The wound model was established in CD93-/- and wild type diabetic mice, and the degree of wound healing as well as the amount and maturity of neovascularisation were investigated. The possible mechanism of CD93 in angiogenesis was determined by CD93 overexpression in cultured ECs. RESULTS CD93 recombinant protein was found to exogenously promote tube formation and sprouting of ECs. It also recruited cells to promote the formation of vascular like structures in subcutaneous tissue and accelerated wound healing by optimising angiogenesis and re-epithelisation. Furthermore, CD93 deficiency was observed to delay wound repair, characterised by reduced neovascularisation, vascular maturity, and re-epithelisation level. Mechanically, CD93 activated the p38MAPK/MK2/HSP27 signalling pathway, positively affecting the angiogenic functions of ECs. CONCLUSION This study demonstrated that CD93 promotes angiogenesis both in vitro and in vivo and that its angiogenic role in vitro is mediated by the p38MAPK/MK2/HSP27 signalling pathway. It was also found that CD93 exerts beneficial effects on wound healing in diabetic mice by promoting angiogenesis and re-epithelisation.
Collapse
Affiliation(s)
- Yuan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuhuan Jia
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Na Wu
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen He
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
12
|
Li Y, Fu L, Wu B, Guo X, Shi Y, Lv C, Yu Y, Zhang Y, Liang Z, Zhong C, Han S, Xu F, Tian Y. Angiogenesis modulated by CD93 and its natural ligands IGFBP7 and MMRN2: a new target to facilitate solid tumor therapy by vasculature normalization. Cancer Cell Int 2023; 23:189. [PMID: 37660019 PMCID: PMC10474740 DOI: 10.1186/s12935-023-03044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023] Open
Abstract
The tumor vasculature was different from the normal vasculature in both function and morphology, which caused hypoxia in the tumor microenvironment (TME). Previous anti-angiogenesis therapy had led to a modest improvement in cancer immunotherapy. However, antiangiogenic therapy only benefitted a few patients and caused many side effects. Therefore, there was still a need to develop a new approach to affect tumor vasculature formation. The CD93 receptor expressed on the surface of vascular endothelial cells (ECs) and its natural ligands, MMRN2 and IGFBP7, were now considered potential targets in the antiangiogenic treatment because recent studies had reported that anti-CD93 could normalize the tumor vasculature without impacting normal blood vessels. Here, we reviewed recent studies on the role of CD93, IGFBP7, and MMRN2 in angiogenesis. We focused on revealing the interaction between IGFBP7-CD93 and MMRN2-CD93 and the signaling cascaded impacted by CD93, IGFBP7, and MMRN2 during the angiogenesis process. We also reviewed retrospective studies on CD93, IGFBP7, and MMRN2 expression and their relationship with clinical factors. In conclusion, CD93 was a promising target for normalizing the tumor vasculature.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lei Fu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xingqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Shi
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yang Yu
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
13
|
Jiang Q, Kuai J, Jiang Z, Que W, Wang P, Huang W, Ding W, Zhong L. CD93 overexpresses in liver hepatocellular carcinoma and represents a potential immunotherapy target. Front Immunol 2023; 14:1158360. [PMID: 37483608 PMCID: PMC10359974 DOI: 10.3389/fimmu.2023.1158360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is one of the malignant tumors with high incidence as well as high death, which is ranked as the sixth most common tumor and the third highest mortality worldwide. CD93, a transmembrane protein, has been widely reported to play an important role in different types of diseases, including many types of cancer by mainly functioning in extracellular matrix formation and vascular maturation. However, there are few researches focusing on the role and potential function of CD93 in LIHC. Methods In this study, we comprehensively analyzed the relationship between CD93 and LIHC. We not only discovered transcriptional expression of CD93 in LIHC by using the TIMER, GEPIA and UALCAN database, but also performed WB and IHC to verify the protein expression of CD93 in LIHC. Meantime, Kaplan-Meier Plotter Database Analysis were used to assess the prognosis of CD93 in LIHC. After knowing close correlation between CD93 expression and LIHC, there were STRING, GeneMania and GO and KEGG enrichment analyses to find how CD93 functions in LIHC. We further applied CIBERSORT Algorithm to explore the correlation between CD93 and immune cells and evaluate prognostic value of CD93 based on them in LIHC patients. Results The transcriptional and protein expression of CD93 were both obviously increased in LIHC by above methods. There was also a significant and close correlation between the expression of CD93 and the prognosis of LIHC patients by using Kaplan-Meier Analysis, which showed that LIHC patients with elevated expression of CD93 were associated with a predicted poor prognosis. We found that the functions of CD93 in different cancers are mainly related to Insulin like growth factor binding protein 7 Gene (IGFBP7)/CD93 pathway via STRING, GeneMania and functional enrichment analyses. Further, our data obtained from CIBERSORT Algorithm suggested CD93 was also associated with the immune response. There is a close positive correlation between CD93 expression and the infiltration levels of all six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells). Importantly, CD93 can affect the prognosis of patients with LIHC partially due to immune infiltration. Conclusion Our results demonstrated CD93 may be a candidate predictor of clinical prognosis and immunotherapy response in LIHC.
Collapse
Affiliation(s)
- Qianwei Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Kuai
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Shandong, Weifang, Shandong, China
| | - Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weitao Que
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Ding
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Shandong, Weifang, Shandong, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Tossetta G, Piani F, Borghi C, Marzioni D. Role of CD93 in Health and Disease. Cells 2023; 12:1778. [PMID: 37443812 PMCID: PMC10340406 DOI: 10.3390/cells12131778] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
CD93 (also known as complement protein 1 q subcomponent receptor C1qR1 or C1qRp), is a transmembrane glycoprotein encoded by a gene located on 20p11.21 and composed of 652 amino acids. CD93 can be present in two forms: soluble (sCD93) and membrane-bound (CD93). CD93 is mainly expressed on endothelial cells, where it plays a key role in promoting angiogenesis both in physiology and disease, such as age-related macular degeneration and tumor angiogenesis. In fact, CD93 is highly expressed in tumor-associated vessels and its presence correlates with a poor prognosis, poor immunotherapy response, immune cell infiltration and high tumor, node and metastasis (TNM) stage in many cancer types. CD93 is also expressed in hematopoietic stem cells, cytotrophoblast cells, platelets and many immune cells, i.e., monocytes, neutrophils, B cells and natural killer (NK) cells. Accordingly, CD93 is involved in modulating important inflammatory-associated diseases including systemic sclerosis and neuroinflammation. Finally, CD93 plays a role in cardiovascular disease development and progression. In this article, we reviewed the current literature regarding the role of CD93 in modulating angiogenesis, inflammation and tumor growth in order to understand where this glycoprotein could be a potential therapeutic target and could modify the outcome of the abovementioned pathologies.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Federica Piani
- Cardiovascular Medicine Unit, Heart, Chest and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (C.B.)
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Claudio Borghi
- Cardiovascular Medicine Unit, Heart, Chest and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (C.B.)
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
15
|
Xu Y, Sun Y, Zhu Y, Song G. Structural insight into CD93 recognition by IGFBP7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543655. [PMID: 37333140 PMCID: PMC10274810 DOI: 10.1101/2023.06.07.543655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The CD93/IGFBP7 axis are key factors expressed in endothelial cells (EC) that mediate EC angiogenesis and migration. Upregulation of them contributes to tumor vascular abnormality and blockade of this interaction promotes a favorable tumor microenvironment for therapeutic interventions. However, how these two proteins associated to each other remains unclear. In this study, we solved the human CD93-IGFBP7 complex structure to elucidate the interaction between the EGF 1 domain of CD93 and the IB domain of IGFBP7. Mutagenesis studies confirmed the binding interactions and specificities. Cellular and mouse tumor studies demonstrated the physiological relevance of the CD93-IGFBP7 interaction in EC angiogenesis. Our study provides hints for development of therapeutic agents to precisely disrupt unwanted CD93-IGFBP7 signaling in the tumor microenvironment. Additionally, analysis of the CD93 full-length architecture provides insights into how CD93 protrudes on the cell surface and forms a flexible platform for binding to IGFBP7 and other ligands.
Collapse
|
16
|
Dimerization of the C-type lectin-like receptor CD93 promotes its binding to Multimerin-2 in endothelial cells. Int J Biol Macromol 2022; 224:453-464. [DOI: 10.1016/j.ijbiomac.2022.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
17
|
Ma K, Chen S, Chen X, Zhao X, Yang J. CD93 is Associated with Glioma-related Malignant Processes and Immunosuppressive Cell Infiltration as an Inspiring Biomarker of Survivance. J Mol Neurosci 2022; 72:2106-2124. [PMID: 36006582 DOI: 10.1007/s12031-022-02060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Previous reports have confirmed the significance of CD93 in the progression of multiple tumors; however, there are few studies examining its immune properties for gliomas. Here, we methodically investigated the pathophysiological characteristics and clinical manifestations of gliomas. Six hundred ninety-nine glioma patients in TCGA along with 325 glioma patients in CGGA were correspondingly collected for training and validating. We analyzed and visualized total statistics using RStudio. One-way ANOVA and Student's t-test were used to assess groups' differences. All differences were considered statistically significant at the level of P < 0.05. CD93 markedly upregulated among HGG, MGMT promoter unmethylated subforms, IDH wild forms, 1p19q non-codeletion subforms, and mesenchyme type gliomas. ROC analysis illustrated the favorable applicability of CD93 in estimating mesenchyme subform. Kaplan-Meier curves together with multivariable Cox analyses upon survivance identified high-expression CD93 as a distinct prognostic variable for glioma patients. GO analysis of CD93 documented its predominant part in glioma-related immunobiological processes and inflammation responses. We examined the associations of CD93 with immune-related meta-genes, and CD93 positively correlated with HCK, LCK, MHC I, MHC II, STAT1 and IFN, while adverse with IgG. Association analyses between CD93 and gliomas-infiltrating immunocytes indicated that the infiltrating degrees of most immunocytes exhibited positive correlations with CD93, particularly these immunosuppressive subsets such as TAM, Treg, and MDSCs. CD93 is markedly associated with adverse pathology types, unfavorable survival, and immunosuppressive immunocytes infiltration among gliomas, thus identifying CD93 as a practicable marker and a promising target for glioma-based precise diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China. .,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
18
|
Cicaloni V, Karmakar M, Frusciante L, Pettini F, Visibelli A, Orlandini M, Galvagni F, Mongiat M, Silk M, Nardi F, Ascher D, Santucci A, Spiga O. Bioinformatics Approaches to Predict Mutation Effects in the Binding Site of the Proangiogenic Molecule CD93. FRONTIERS IN BIOINFORMATICS 2022; 2:891553. [PMID: 36353214 PMCID: PMC9638713 DOI: 10.3389/fbinf.2022.891553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
The transmembrane glycoprotein CD93 has been identified as a potential new target to inhibit tumor angiogenesis. Recently, Multimerin-2 (MMRN2), a pan-endothelial extracellular matrix protein, has been identified as a ligand for CD93, but the interaction mechanism between these two proteins is yet to be studied. In this article, we aim to investigate the structural and functional effects of induced mutations on the binding domain of CD93 to MMRN2. Starting from experimental data, we assessed how specific mutations in the C-type lectin-like domain (CTLD) affect the binding interaction profile. We described a four-step workflow in order to predict the effects of variations on the inter-residue interaction network at the PPI, based on evolutionary information, complex network metrics, and energetic affinity. We showed that the application of computational approaches, combined with experimental data, allowed us to gain more in-depth molecular insights into the CD93–MMRN2 interaction, offering a platform for developing innovative therapeutics able to target these molecules and block their interaction. This comprehensive molecular insight might prove useful in drug design in cancer therapy.
Collapse
Affiliation(s)
| | - Malancha Karmakar
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Luisa Frusciante
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Francesco Pettini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| | - Anna Visibelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Michael Silk
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Federica Nardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - David Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| |
Collapse
|
19
|
Barbera S, Cucini C. A glimpse into the past: phylogenesis and protein domain analysis of the group XIV of C-type lectins in vertebrates. BMC Genomics 2022; 23:420. [PMID: 35659564 PMCID: PMC9167495 DOI: 10.1186/s12864-022-08659-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The group XIV of C-type lectin domain-containing proteins (CTLDcps) is one of the seventeen groups of CTLDcps discovered in mammals and composed by four members: CD93, Clec14A, CD248 and Thrombomodulin, which have shown to be important players in cancer and vascular biology. Although these proteins belong to the same family, their phylogenetic relationship has never been dissected. To resolve their evolution and characterize their protein domain composition we investigated CTLDcp genes in gnathostomes and cyclostomes and, by means of phylogenetic approaches as well as synteny analyses, we inferred an evolutionary scheme that attempts to unravel their evolution in modern vertebrates.
Results
Here, we evidenced the paralogy of the group XIV of CTLDcps in gnathostomes and discovered that a gene loss of CD248 and Clec14A occurred in different vertebrate groups, with CD248 being lost due to chromosome disruption in birds, while Clec14A loss in monotremes and marsupials did not involve chromosome rearrangements. Moreover, employing genome annotations of different lampreys as well as one hagfish species, we investigated the origin and evolution of modern group XIV of CTLDcps. Furthermore, we carefully retrieved and annotated gnathostome CTLDcp domains, pointed out important differences in domain composition between gnathostome classes, and assessed codon substitution rate of each domain by analyzing nonsynonymous (Ka) over synonymous (Ks) substitutions using one representative species per gnathostome order.
Conclusions
CTLDcps appeared with the advent of early vertebrates after a whole genome duplication followed by a sporadic tandem duplication. These duplication events gave rise to three CTLDcps in the ancestral vertebrate that underwent further duplications caused by the independent polyploidizations that characterized the evolution of cyclostomes and gnathostomes. Importantly, our analyses of CTLDcps in gnathostomes revealed critical inter-class differences in both extracellular and intracellular domains, which might help the interpretation of experimental results and the understanding of differences between animal models.
Collapse
|
20
|
Lau S, Gossen M, Lendlein A. Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. Int J Mol Sci 2021; 22:ijms222313120. [PMID: 34884923 PMCID: PMC8658568 DOI: 10.3390/ijms222313120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure–function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field.
Collapse
Affiliation(s)
- Skadi Lau
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Manfred Gossen
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 25, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
21
|
Barbera S, Raucci L, Lugano R, Tosi GM, Dimberg A, Santucci A, Galvagni F, Orlandini M. CD93 Signaling via Rho Proteins Drives Cytoskeletal Remodeling in Spreading Endothelial Cells. Int J Mol Sci 2021; 22:ijms222212417. [PMID: 34830297 PMCID: PMC8622518 DOI: 10.3390/ijms222212417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
During angiogenesis, cell adhesion molecules expressed on the endothelial cell surface promote the growth and survival of newly forming vessels. Hence, elucidation of the signaling pathways activated by cell-to-matrix adhesion may assist in the discovery of new targets to be used in antiangiogenic therapy. In proliferating endothelial cells, the single-pass transmembrane glycoprotein CD93 has recently emerged as an important endothelial cell adhesion molecule regulating vascular maturation. In this study, we unveil a signaling pathway triggered by CD93 that regulates actin cytoskeletal dynamics responsible of endothelial cell adhesion. We show that the Src-dependent phosphorylation of CD93 and the adaptor protein Cbl leads to the recruitment of Crk, which works as a downstream integrator in the CD93-mediated signaling. Moreover, confocal microscopy analysis of FRET-based biosensors shows that CD93 drives the coordinated activation of Rac1 and RhoA at the cell edge of spreading cells, thus promoting the establishment of cell polarity and adhesion required for cell motility.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (S.B.); (L.R.); (A.S.); (F.G.)
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, SE-75185 Uppsala, Sweden; (R.L.); (A.D.)
| | - Luisa Raucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (S.B.); (L.R.); (A.S.); (F.G.)
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, SE-75185 Uppsala, Sweden; (R.L.); (A.D.)
| | - Gian Marco Tosi
- Ophthalmology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, SE-75185 Uppsala, Sweden; (R.L.); (A.D.)
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (S.B.); (L.R.); (A.S.); (F.G.)
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (S.B.); (L.R.); (A.S.); (F.G.)
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (S.B.); (L.R.); (A.S.); (F.G.)
- Correspondence:
| |
Collapse
|
22
|
Bioinformatic analysis of key pathways and genes shared between endometriosis and ovarian cancer. Arch Gynecol Obstet 2021; 305:1329-1342. [DOI: 10.1007/s00404-021-06285-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
|
23
|
Fantone S, Tossetta G, Di Simone N, Tersigni C, Scambia G, Marcheggiani F, Giannubilo SR, Marzioni D. CD93 a potential player in cytotrophoblast and endothelial cell migration. Cell Tissue Res 2021; 387:123-130. [PMID: 34674045 DOI: 10.1007/s00441-021-03543-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022]
Abstract
CD93, also known as complement component C1q receptor, is expressed on the surface of different cellular types such as monocytes, neutrophils, platelets, microglia, and endothelial cells, and it plays a pivotal role in cell proliferation, cell migration, and formation of capillary-like structures. These processes are strictly regulated, and many fetal and maternal players are involved during placental development. At present, there are no studies in literature regarding CD93 in placental development, so we investigated CD93 expression in first and third trimester and PE placentas by immunohistochemistry and western blotting analysis. In addition, we performed in vitro experiments under oxidative stress conditions to demonstrate how oxidative stress acts on CD93 protein expression. Our data showed that CD93 was expressed in villous cytotrophoblast cells, in some fetal vessels of first and third trimester and PE placentas and in the extravillous cytotrophoblast of cell columns in the first trimester placentas. Moreover, we detected a significant decrease of CD93 expression in third trimester and PE placentas compared to first trimester placentas, while no differences were detected between third and PE placentas. No differences of CD93 expression were detected in oxidative stress conditions. We suggest that CD93 can guide extravillous cytotrophoblast migration through β1-integrin in uterine spiral arteries during placentation in the first trimester of pregnancy and that the decrease of CD93 expression in third trimester and PE placentas could be linked to the poor extravillous cytotrophoblast cells migration. So, it might be interesting to understand the role of CD93 in the first phases of PE onset.
Collapse
Affiliation(s)
- Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy. .,Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica Delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Nicoletta Di Simone
- Department of Biomedical Science, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.,IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Chiara Tersigni
- U.O.C. Di Ostetricia E Patologia Ostetrica, Dipartimento Di Scienze Della Salute Della Donna, Fondazione Policlinico Universitario A. Gemelli IRCCS, del Bambino E Di Sanità Pubblica, 00168, Roma, Italy.,Istituto Di Clinica Ostetrica E Ginecologica, Università Cattolica del Sacro Cuore, 00168, Roma, Italy
| | - Giovanni Scambia
- U.O.C. Di Ostetricia E Patologia Ostetrica, Dipartimento Di Scienze Della Salute Della Donna, Fondazione Policlinico Universitario A. Gemelli IRCCS, del Bambino E Di Sanità Pubblica, 00168, Roma, Italy.,Istituto Di Clinica Ostetrica E Ginecologica, Università Cattolica del Sacro Cuore, 00168, Roma, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131, Ancona, Italy
| | - Stefano R Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica Delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| |
Collapse
|
24
|
Sun Y, Chen W, Torphy RJ, Yao S, Zhu G, Lin R, Lugano R, Miller EN, Fujiwara Y, Bian L, Zheng L, Anand S, Gao F, Zhang W, Ferrara SE, Goodspeed AE, Dimberg A, Wang XJ, Edil BH, Barnett CC, Schulick RD, Chen L, Zhu Y. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy. Sci Transl Med 2021; 13:eabc8922. [PMID: 34321321 PMCID: PMC8749958 DOI: 10.1126/scitranslmed.abc8922] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
The immature and dysfunctional vascular network within solid tumors poses a substantial obstacle to immunotherapy because it creates a hypoxic tumor microenvironment that actively limits immune cell infiltration. The molecular basis underpinning this vascular dysfunction is not fully understood. Using genome-scale receptor array technology, we showed here that insulin-like growth factor binding protein 7 (IGFBP7) interacts with its receptor CD93, and we subsequently demonstrated that this interaction contributes to abnormal tumor vasculature. Both CD93 and IGFBP7 were up-regulated in tumor-associated endothelial cells. IGFBP7 interacted with CD93 via a domain different from multimerin-2, the known ligand for CD93. In two mouse tumor models, blockade of the CD93/IGFBP7 interaction by monoclonal antibodies promoted vascular maturation to reduce leakage, leading to reduced tumor hypoxia and increased tumor perfusion. CD93 blockade in mice increased drug delivery, resulting in an improved antitumor response to gemcitabine or fluorouracil. Blockade of the CD93 pathway triggered a substantial increase in intratumoral effector T cells, thereby sensitizing mouse tumors to immune checkpoint therapy. Last, analysis of samples from patients with cancer under anti-programmed death 1/programmed death-ligand 1 treatment revealed that overexpression of the IGFBP7/CD93 pathway was associated with poor response to therapy. Thus, our study identified a molecular interaction involved in tumor vascular dysfunction and revealed an approach to promote a favorable tumor microenvironment for therapeutic intervention.
Collapse
Affiliation(s)
- Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wei Chen
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310012, P. R. China
| | - Robert J Torphy
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sheng Yao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gefeng Zhu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ronggui Lin
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Emily N Miller
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuki Fujiwara
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Li Bian
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Linghua Zheng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sudarshan Anand
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Weizhou Zhang
- Department of Pathology, University of Florida, Gainesville, FL 32610, USA
| | - Sarah E Ferrara
- University of Colorado Comprehensive Cancer Center, Aurora, CO 80045, USA
| | - Andrew E Goodspeed
- University of Colorado Comprehensive Cancer Center, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Carlton C Barnett
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
25
|
Li J, Wang L, Yu D, Hao J, Zhang L, Adeola AC, Mao B, Gao Y, Wu S, Zhu C, Zhang Y, Ren J, Mu C, Irwin DM, Wang L, Hai T, Xie H, Zhang Y. Single-cell RNA Sequencing Reveals Thoracolumbar Vertebra Heterogeneity and Rib-genesis in Pigs. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:423-436. [PMID: 34775075 PMCID: PMC8864194 DOI: 10.1016/j.gpb.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 08/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Development of thoracolumbar vertebra (TLV) and rib primordium (RP) is a common evolutionary feature across vertebrates, although whole-organism analysis of the expression dynamics of TLV- and RP-related genes has been lacking. Here, we investigated the single-cell transcriptome landscape of thoracic vertebra (TV), lumbar vertebra (LV), and RP cells from a pig embryo at 27 days post-fertilization (dpf) and identified six cell types with distinct gene expression signatures. In-depth dissection of the gene expression dynamics and RNA velocity revealed a coupled process of osteogenesis and angiogenesis during TLV and RP development. Further analysis of cell type-specific and strand-specific expression uncovered the extremely high level of HOXA10 3'-UTR sequence specific to osteoblasts of LV cells, which may function as anti-HOXA10-antisense by counteracting the HOXA10-antisense effect to determine TLV transition. Thus, this work provides a valuable resource for understanding embryonic osteogenesis and angiogenesis underlying vertebrate TLV and RP development at the cell type-specific resolution, which serves as a comprehensive view on the transcriptional profile of animal embryo development.
Collapse
Affiliation(s)
- Jianbo Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junfeng Hao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adeniyi C. Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shifang Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chunling Zhu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yongqing Zhang
- State Key Laboratory for Molecular and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 10010, China
| | - Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changgai Mu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - David M. Irwin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haibing Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
26
|
Barbera S, Lugano R, Pedalina A, Mongiat M, Santucci A, Tosi GM, Dimberg A, Galvagni F, Orlandini M. The C-type lectin CD93 controls endothelial cell migration via activation of the Rho family of small GTPases. Matrix Biol 2021; 99:1-17. [PMID: 34062268 DOI: 10.1016/j.matbio.2021.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cell migration is essential to angiogenesis, enabling the outgrowth of new blood vessels both in physiological and pathological contexts. Migration requires the activation of several signaling pathways, the elucidation of which expands the opportunity to develop new drugs to be used in antiangiogenic therapy. In the proliferating endothelium, the interaction between the transmembrane glycoprotein CD93 and the extracellular matrix activates signaling pathways that regulate cell adhesion, migration, and vascular maturation. Here we identify a pathway, comprising CD93, the adaptor proteins Cbl and Crk, and the small GTPases Rac1, Cdc42, and RhoA, which we propose acts as a regulator of cytoskeletal movements responsible for endothelial cell migration. In this framework, phosphorylation of Cbl on tyrosine 774 leads to the interaction with Crk, which acts as a downstream integrator in the CD93-mediated signaling regulating cell polarity and migration. Moreover, confocal microscopy analyses of GTPase biosensors show that CD93 drives coordinated activation of Rho-proteins at the cell edge of migratory endothelial cells. In conclusion, together with the demonstration of the key contribution of CD93 to the migratory process in living cells, these findings suggest that the signaling triggered by CD93 converges to the activation and modulation of the Rho GTPase signaling pathways regulating cell dynamics.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Alessia Pedalina
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University of Siena, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy.
| |
Collapse
|
27
|
Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk. Nat Genet 2021; 53:455-466. [PMID: 33795864 PMCID: PMC9037575 DOI: 10.1038/s41588-021-00823-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) creates new opportunities to dissect cell type-specific mechanisms of complex diseases. Since pancreatic islets are central to type 2 diabetes (T2D), we profiled 15,298 islet cells by using combinatorial barcoding snATAC-seq and identified 12 clusters, including multiple alpha, beta and delta cell states. We cataloged 228,873 accessible chromatin sites and identified transcription factors underlying lineage- and state-specific regulation. We observed state-specific enrichment of fasting glucose and T2D genome-wide association studies for beta cells and enrichment for other endocrine cell types. At T2D signals localized to islet-accessible chromatin, we prioritized variants with predicted regulatory function and co-accessibility with target genes. A causal T2D variant rs231361 at the KCNQ1 locus had predicted effects on a beta cell enhancer co-accessible with INS and genome editing in embryonic stem cell-derived beta cells affected INS levels. Together our findings demonstrate the power of single-cell epigenomics for interpreting complex disease genetics.
Collapse
|
28
|
Tosi GM, Neri G, Barbera S, Mundo L, Parolini B, Lazzi S, Lugano R, Poletto E, Leoncini L, Pertile G, Mongiat M, Dimberg A, Galvagni F, Orlandini M. The Binding of CD93 to Multimerin-2 Promotes Choroidal Neovascularization. Invest Ophthalmol Vis Sci 2020; 61:30. [PMID: 32697305 PMCID: PMC7425738 DOI: 10.1167/iovs.61.8.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose The purpose of this study was to investigate the involvement of CD93 and Multimerin-2 in three choroidal neovascularization (CNV) models and to evaluate their contribution in the neovascular progression of age-related macular degeneration (AMD). Methods Choroidal neovascular membranes collected during surgery from AMD patients were analyzed by microscopy methods. Laser-induced CNV mouse models and choroid sprouting assays (CSAs) were carried out using the CD93 knockout mouse model. An original ex vivo CSA of vascular angiogenesis, employing choroid tissues isolated from human donors, was developed. Results In contrast to healthy choroid endothelium, hyperproliferative choroidal endothelial cells (ECs) of AMD patients expressed high levels of CD93, and Multimerin-2 was abundantly deposited along the choroidal neovasculature. CD93 knockout mice showed a significant reduced neovascularization after laser photocoagulation, and their choroidal ECs displayed a decreased ability to produce sprouts in ex vivo angiogenesis assays. Moreover, the presence of an antibody able to hamper the CD93/Multimerin-2 interaction reduced vascular sprouting in the human CSA. Conclusions Our results demonstrate that CD93 and its interaction with Multimerin-2 play an important role in pathological vascularization of the choroid, disclosing new possibilities for therapeutic intervention to neovascular AMD.
Collapse
Affiliation(s)
- Gian Marco Tosi
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giovanni Neri
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lucia Mundo
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | | | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Grazia Pertile
- IRCCS Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
29
|
Lee M, Park HS, Choi MY, Kim HZ, Moon SJ, Ha JY, Choi AR, Park YW, Park JS, Shin EC, Ahn CW, Kang S. Significance of Soluble CD93 in Type 2 Diabetes as a Biomarker for Diabetic Nephropathy: Integrated Results from Human and Rodent Studies. J Clin Med 2020; 9:jcm9051394. [PMID: 32397261 PMCID: PMC7290306 DOI: 10.3390/jcm9051394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 01/06/2023] Open
Abstract
Cluster of differentiation 93 (CD93) is a glycoprotein expressed in activated endothelial cells. The extracellular portion of CD93 can be secreted as a soluble form (sCD93) under inflammatory conditions. As diabetic nephropathy (DN) is a well-known inflammatory disease, we hypothesized that sCD93 would be a new biomarker for DN. We prospectively enrolled 97 patients with type 2 diabetes and evaluated the association between serum sCD93 and DN prevalence. The association between CD93 and development of DN was investigated using human umbilical cord endothelial cells (HUVECs) in vitro and diabetic db/db mice in vivo. Subjects with higher sCD93 levels had a lower estimated glomerular filtration rate (eGFR). The sCD93 level was an independent determinant of both the albumin-to-creatinine ratio (ACR) and the eGFR. The risk of prevalent DN was higher in the high sCD93 group (adjusted odds ratio 7.212, 95% confidence interval 1.244-41.796, p = 0.028). In vitro, CD93 was highly expressed in HUVECs and both CD93 expression and secretion were upregulated after lipopolysaccharides (LPS) stimulation. In vivo, peritoneal and urine sCD93 levels and the renal glomerular expression of CD93 were significantly higher in the db/db mice than in the control db/m+ mice. These results suggest the potential of sCD93 as a candidate biomarker associated with DN.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Ho Seon Park
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.S.P.); (M.Y.C.); (H.Z.K.); (J.Y.H.); (A.C.); (J.S.P.); (C.W.A.)
| | - Min Yeong Choi
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.S.P.); (M.Y.C.); (H.Z.K.); (J.Y.H.); (A.C.); (J.S.P.); (C.W.A.)
| | - Hak Zoo Kim
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.S.P.); (M.Y.C.); (H.Z.K.); (J.Y.H.); (A.C.); (J.S.P.); (C.W.A.)
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sung Jin Moon
- Department of Internal Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Korea;
| | - Ji Yoon Ha
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.S.P.); (M.Y.C.); (H.Z.K.); (J.Y.H.); (A.C.); (J.S.P.); (C.W.A.)
| | - ARim Choi
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.S.P.); (M.Y.C.); (H.Z.K.); (J.Y.H.); (A.C.); (J.S.P.); (C.W.A.)
| | | | - Jong Suk Park
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.S.P.); (M.Y.C.); (H.Z.K.); (J.Y.H.); (A.C.); (J.S.P.); (C.W.A.)
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Chul Woo Ahn
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.S.P.); (M.Y.C.); (H.Z.K.); (J.Y.H.); (A.C.); (J.S.P.); (C.W.A.)
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shinae Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (H.S.P.); (M.Y.C.); (H.Z.K.); (J.Y.H.); (A.C.); (J.S.P.); (C.W.A.)
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2019-3335; Fax: +82-2-3463-3882
| |
Collapse
|
30
|
Neubert L, Borchert P, Stark H, Hoefer A, Vogel-Claussen J, Warnecke G, Eubel H, Kuenzler P, Kreipe HH, Hoeper MM, Kuehnel M, Jonigk D. Molecular Profiling of Vascular Remodeling in Chronic Pulmonary Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1382-1396. [PMID: 32275906 DOI: 10.1016/j.ajpath.2020.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Pulmonary hypertension and pulmonary vascular remodeling (PVR) are common in many lung diseases leading to right ventricular dysfunction and death. Differences in PVR result in significant prognostic divergences in both the pulmonary arterial and venous compartments, as in pulmonary arterial hypertension (PAH) and pulmonary veno-occlusive disease (PVOD), respectively. Our goal was to identify compartment-specific molecular hallmarks of PVR, considering the risk of life-threatening pulmonary edema in PVOD, if treated by conventional pulmonary hypertension therapy. Formalin-fixed and paraffin-embedded tissues from fresh explanted human lungs of patients with PVOD (n = 19), PAH (n = 20), idiopathic pulmonary fibrosis (n = 13), and chronic obstructive pulmonary disease (n = 15), were analyzed for inflammation and kinome-related gene regulation. The generated neuronal network differentiated PVOD from PAH samples with a sensitivity of 100% and a specificity of 92% in a randomly chosen validation set, a level far superior to established diagnostic algorithms. Further, various alterations were identified regarding the gene expression of explanted lungs with PVR, compared with controls. Specifically, the dysregulation of microtubule-associated serine/threonine kinase 2 and protein-o-mannose kinase SGK196 in all disease groups suggests a key role in pulmonary vasculopathy for the first time. Our findings promise to help develop novel target-specific interventions and innovative approaches to facilitate clinical diagnostics in an elusive group of diseases.
Collapse
Affiliation(s)
- Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany; German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.
| | - Paul Borchert
- Institute of Pathology, Hannover Medical School, Hannover, Germany; German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Helge Stark
- Institute of Pathology, Hannover Medical School, Hannover, Germany; German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Anne Hoefer
- Institute of Pathology, Hannover Medical School, Hannover, Germany; German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Jens Vogel-Claussen
- German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany; Institute for Radiology, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany; Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School
| | - Holger Eubel
- Institute of Plant Genetics, Leibniz University Hanover, Hannover, Germany
| | - Patrick Kuenzler
- Institute of Plant Genetics, Leibniz University Hanover, Hannover, Germany
| | | | - Marius M Hoeper
- German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany; Clinic for Pneumology, Hannover Medical School, Hannover, Germany
| | - Mark Kuehnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany; German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany; German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
31
|
Borah S, Vasudevan D, Swain RK. C-type lectin family XIV members and angiogenesis. Oncol Lett 2019; 18:3954-3962. [PMID: 31579078 DOI: 10.3892/ol.2019.10760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
The growth and metastasis of tumors is dependent on angiogenesis. C-type lectins are carbohydrate-binding proteins with a diverse range of functions. The C-type lectin family XIV members are transmembrane glycoproteins, and all four members of this family have been reported to regulate angiogenesis, although the detailed mechanism of action has yet to be completely elucidated. They interact with extracellular matrix proteins and mediate cell-cell adhesion by their lectin-like domain. The aim of the present study was to summarize the available information on the function and mechanism of C-type lectin family XIV in angiogenesis and discuss their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Supriya Borah
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Rajeeb K Swain
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
32
|
Goiko M, de Bruyn JR, Heit B. Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular Trafficking. Biophys J 2019; 114:2887-2899. [PMID: 29925025 DOI: 10.1016/j.bpj.2018.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/06/2018] [Accepted: 04/16/2018] [Indexed: 10/28/2022] Open
Abstract
Diffusion in cellular membranes is regulated by processes that occur over a range of spatial and temporal scales. These processes include membrane fluidity, interprotein and interlipid interactions, interactions with membrane microdomains, interactions with the underlying cytoskeleton, and cellular processes that result in net membrane movement. The complex, non-Brownian diffusion that results from these processes has been difficult to characterize, and moreover, the impact of factors such as membrane recycling on membrane diffusion remains largely unexplored. We have used a careful statistical analysis of single-particle tracking data of the single-pass plasma membrane protein CD93 to show that the diffusion of this protein is well described by a continuous-time random walk in parallel with an aging process mediated by membrane corrals. The overall result is an evolution in the diffusion of CD93: proteins initially diffuse freely on the cell surface but over time become increasingly trapped within diffusion-limiting membrane corrals. Stable populations of freely diffusing and corralled CD93 are maintained by an endocytic/exocytic process in which corralled CD93 is selectively endocytosed, whereas freely diffusing CD93 is replenished by exocytosis of newly synthesized and recycled CD93. This trafficking not only maintained CD93 diffusivity but also maintained the heterogeneous distribution of CD93 in the plasma membrane. These results provide insight into the nature of the biological and biophysical processes that can lead to significantly non-Brownian diffusion of membrane proteins and demonstrate that ongoing membrane recycling is critical to maintaining steady-state diffusion and distribution of proteins in the plasma membrane.
Collapse
Affiliation(s)
- Maria Goiko
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada; Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - John R de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada; Centre for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
33
|
Wei H, Sundararaman A, Dickson E, Rennie-Campbell L, Cross E, Heesom KJ, Mellor H. Characterization of the polarized endothelial secretome. FASEB J 2019; 33:12277-12287. [PMID: 31431053 DOI: 10.1096/fj.201900262r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial cells (ECs) form an active barrier between the circulation and the body. In addition to controlling transport of molecules between these 2 compartments, the endothelium is a major secretory organ, releasing proteins both into the circulation and into the vascular matrix. Although it is clearly important that proteins are correctly sorted into these 2 spaces, we currently know little of the polarization of this secretion or how it is controlled. Here, we present an optimized system for the analysis of polarized secretion and show that it allows the derivation of deep, robust proteomes from small numbers of primary ECs. We present the first endothelial apically and basolaterally secreted proteomes, demonstrating that ECs polarize the secretion of extracellular vesicle cargoes to the apical surface. Conversely, we find that protein secretion at the basolateral surface is focused on components of the extracellular matrix (ECM). Finally, we examine the role of liprin-α1 in secretion toward the basolateral compartment and identify a subset of ECM components that share this route with fibronectin.-Wei, H., Sundararaman, A., Dickson, E., Rennie-Campbell, L., Cross, E., Heesom, K. J., Mellor, H. Characterization of the polarized endothelial secretome.
Collapse
Affiliation(s)
- Haoche Wei
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Centre for Growth, Metabolism, and Aging, College of Life Sciences, Sichuan University, Chengdu, China.,School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ananthalakshmy Sundararaman
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily Dickson
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Lewis Rennie-Campbell
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Eloise Cross
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Harry Mellor
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
34
|
Khan KA, McMurray JL, Mohammed F, Bicknell R. C-type lectin domain group 14 proteins in vascular biology, cancer and inflammation. FEBS J 2019; 286:3299-3332. [PMID: 31287944 PMCID: PMC6852297 DOI: 10.1111/febs.14985] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
The C‐type lectin domain (CTLD) group 14 family of transmembrane glycoproteins consist of thrombomodulin, CD93, CLEC14A and CD248 (endosialin or tumour endothelial marker‐1). These cell surface proteins exhibit similar ectodomain architecture and yet mediate a diverse range of cellular functions, including but not restricted to angiogenesis, inflammation and cell adhesion. Thrombomodulin, CD93 and CLEC14A can be expressed by endothelial cells, whereas CD248 is expressed by vasculature associated pericytes, activated fibroblasts and tumour cells among other cell types. In this article, we review the current literature of these family members including their expression profiles, interacting partners, as well as established and speculated functions. We focus primarily on their roles in the vasculature and inflammation as well as their contributions to tumour immunology. The CTLD group 14 family shares several characteristic features including their ability to be proteolytically cleaved and engagement of some shared extracellular matrix ligands. Each family member has strong links to tumour development and in particular CD93, CLEC14A and CD248 have been proposed as attractive candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Canada
| | - Jack L McMurray
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Roy Bicknell
- Institutes of Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|
35
|
Barbera S, Nardi F, Elia I, Realini G, Lugano R, Santucci A, Tosi GM, Dimberg A, Galvagni F, Orlandini M. The small GTPase Rab5c is a key regulator of trafficking of the CD93/Multimerin-2/β1 integrin complex in endothelial cell adhesion and migration. Cell Commun Signal 2019; 17:55. [PMID: 31138217 PMCID: PMC6537425 DOI: 10.1186/s12964-019-0375-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background In the endothelium, the single-pass membrane protein CD93, through its interaction with the extracellular matrix protein Multimerin-2, activates signaling pathways that are critical for vascular development and angiogenesis. Trafficking of adhesion molecules through endosomal compartments modulates their signaling output. However, the mechanistic basis coordinating CD93 recycling and its implications for endothelial cell (EC) function remain elusive. Methods Human umbilical vein ECs (HUVECs) and human dermal blood ECs (HDBEC) were used in this study. Fluorescence confocal microscopy was employed to follow CD93 retrieval, recycling, and protein colocalization in spreading cells. To better define CD93 trafficking, drug treatments and transfected chimeric wild type and mutant CD93 proteins were used. The scratch assay was used to evaluate cell migration. Gene silencing strategies, flow citometry, and quantification of migratory capability were used to determine the role of Rab5c during CD93 recycling to the cell surface. Results Here, we identify the recycling pathway of CD93 following EC adhesion and migration. We show that the cytoplasmic domain of CD93, by its interaction with Moesin and F-actin, is instrumental for CD93 retrieval in adhering and migrating cells and that aberrant endosomal trafficking of CD93 prevents its localization at the leading edge of migration. Moreover, the small GTPase Rab5c turns out to be a key component of the molecular machinery that is able to drive CD93 recycling to the EC surface. Finally, in the Rab5c endosomal compartment CD93 forms a complex with Multimerin-2 and active β1 integrin, which is recycled back to the basolaterally-polarized cell surface by clathrin-independent endocytosis. Conclusions Our findings, focusing on the pro-angiogenic receptor CD93, unveil the mechanisms of its polarized trafficking during EC adhesion and migration, opening novel therapeutic opportunities for angiogenic diseases. Electronic supplementary material The online version of this article (10.1186/s12964-019-0375-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Federica Nardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Ines Elia
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Giulia Realini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University of Siena, Policlinico "Le Scotte", Viale Bracci, 53100, Siena, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| |
Collapse
|
36
|
Blackburn JWD, Lau DHC, Liu EY, Ellins J, Vrieze AM, Pawlak EN, Dikeakos JD, Heit B. Soluble CD93 is an apoptotic cell opsonin recognized by α x β 2. Eur J Immunol 2019; 49:600-610. [PMID: 30656676 DOI: 10.1002/eji.201847801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/13/2018] [Accepted: 01/16/2019] [Indexed: 11/11/2022]
Abstract
Efferocytosis is essential for homeostasis and prevention of the inflammatory and autoimmune diseases resulting from apoptotic cell lysis. CD93 is a transmembrane glycoprotein previously implicated in efferocytosis, with mutations in CD93 predisposing patients to efferocytosis-associated diseases. CD93 is a cell surface protein, which is proteolytically shed under inflammatory conditions, but it is unknown how CD93 mediates efferocytosis or whether its efferocytic activity is mediated by the soluble or membrane-bound form. Herein, using cell lines and human monocytes and macrophages, we demonstrate that soluble CD93 (sCD93) potently opsonizes apoptotic cells but not a broad range of microorganisms, whereas membrane-bound CD93 has no phagocytic, efferocytic, or tethering activity. Using mass spectrometry, we identified αx β2 as the receptor that recognizes sCD93, and via deletion mutagenesis determined that sCD93 binds to apoptotic cells via its C-type lectin-like domain and to αx β2 by its EGF-like repeats. The bridging of apoptotic cells to αx β2 markedly enhanced efferocytosis by macrophages and was abrogated by αx β2 knockdown. Combined, these data elucidate the mechanism by which CD93 regulates efferocytosis and identifies a previously unreported opsonin-receptor system utilized by phagocytes for the efferocytic clearance of apoptotic cells.
Collapse
Affiliation(s)
- Jack W D Blackburn
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Darius H C Lau
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Elaine Y Liu
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Jessica Ellins
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Angela M Vrieze
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Emily N Pawlak
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
37
|
Giustarini D, Galvagni F, Dalle Donne I, Milzani A, Severi FM, Santucci A, Rossi R. N-acetylcysteine ethyl ester as GSH enhancer in human primary endothelial cells: A comparative study with other drugs. Free Radic Biol Med 2018; 126:202-209. [PMID: 30114478 DOI: 10.1016/j.freeradbiomed.2018.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 02/08/2023]
Abstract
Several drugs are currently in use as glutathione (GSH) enhancers in clinical, pre-clinical and experimental research. Here we compare the ability of N-acetylcysteine (NAC), 2-oxothiazolidine-4-carboxylic acid (OTC), glutathione ethyl ester (GSH-EE) and N-acetylcysteine ethyl ester (NACET) to increase the intracellular concentration of GSH using primary human umbilical vein endothelial cells (HUVEC) as in vitro model. Our experiments highlighted that NACET is largely the most efficient molecule in increasing the intracellular levels of GSH, cysteine, and γ-glutamylcysteine. This is because NACET is lipophilic and can freely cross plasma membrane but, inside the cell, it is de-esterified to the more hydrophilic NAC, which, in turn, is trapped into the cell and slowly transformed into cysteine. The higher availability of cysteine is matched by an increase in GSH synthesis, cysteine availability being the rate limiting step for this reaction. Surprisingly, the increase in GSH concentration was not linear but peaked at 0.5 mM NACET and gradually decreased when cells were treated with higher concentrations of NACET. We demonstrated that this puzzling ceiling effect was due to the fact that NAC released from NACET turned out to be a competitive inhibitor of the enzyme glutamate-cysteine ligase, with a Ki value of 3.2 mM. By using a cell culture medium lacking of cysteine and methionine, we could demonstrate that the slight increase in intracellular levels of cysteine and GSH induced by NAC in HUVEC grown in standard medium was due to the reduction of the cystine present in the medium itself there rather than to the action of NAC as Cys pro-drug. This fact may explain why NAC works well as GSH enhancer at very high concentrations in pre-clinical and in vitro studies, whereas it failed in most clinical trials.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Isabella Dalle Donne
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Filiberto Maria Severi
- Department of Molecular and Developmental Medicine, Via delle Scotte, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Ranieri Rossi
- Department of Life Sciences, University of Siena, Via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
38
|
Lugano R, Vemuri K, Yu D, Bergqvist M, Smits A, Essand M, Johansson S, Dejana E, Dimberg A. CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. J Clin Invest 2018; 128:3280-3297. [PMID: 29763414 PMCID: PMC6063507 DOI: 10.1172/jci97459] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Tumor angiogenesis occurs through regulation of genes that orchestrate endothelial sprouting and vessel maturation, including deposition of a vessel-associated extracellular matrix. CD93 is a transmembrane receptor that is upregulated in tumor vessels in many cancers, including high-grade glioma. Here, we demonstrate that CD93 regulates β1 integrin signaling and organization of fibronectin fibrillogenesis during tumor vascularization. In endothelial cells and mouse retina, CD93 was found to be expressed in endothelial filopodia and to promote filopodia formation. The CD93 localization to endothelial filopodia was stabilized by interaction with multimerin-2 (MMRN2), which inhibited its proteolytic cleavage. The CD93-MMRN2 complex was required for activation of β1 integrin, phosphorylation of focal adhesion kinase (FAK), and fibronectin fibrillogenesis in endothelial cells. Consequently, tumor vessels in gliomas implanted orthotopically in CD93-deficient mice showed diminished activation of β1 integrin and lacked organization of fibronectin into fibrillar structures. These findings demonstrate a key role of CD93 in vascular maturation and organization of the extracellular matrix in tumors, identifying it as a potential target for therapy.
Collapse
Affiliation(s)
- Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Michael Bergqvist
- Centre for Research and Development, Uppsala University, Gävle Hospital, Gävle, Sweden.,Department of Radiation Sciences and Oncology, Umeå University Hospital, Umeå, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden.,Vascular Biology Unit, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
39
|
Tosi GM, Neri G, Caldi E, Fusco F, Bacci T, Tarantello A, Nuti E, Marigliani D, Baiocchi S, Traversi C, Barbarino M, Eandi CM, Parolini B, Mundo L, Santucci A, Orlandini M, Galvagni F. TGF-β concentrations and activity are down-regulated in the aqueous humor of patients with neovascular age-related macular degeneration. Sci Rep 2018; 8:8053. [PMID: 29795291 PMCID: PMC5966430 DOI: 10.1038/s41598-018-26442-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/11/2018] [Indexed: 01/21/2023] Open
Abstract
Controversy still exists regarding the role of the TGF-β in neovascular age-related macular degeneration (nAMD), a major cause of severe visual loss in the elderly in developed countries. Here, we measured the concentrations of active TGF-β1, TGF-β2, and TGF-β3 by ELISA in the aqueous humor of 20 patients affected by nAMD, who received 3 consecutive monthly intravitreal injections of anti-VEGF-A antibody. Samples were collected at baseline (before the first injection), month 1 (before the second injection), and month 2 (before the third injection). The same samples were used in a luciferase-based reporter assay to test the TGF-β pathway activation. Active TGF-β1 concentrations in the aqueous humor were below the minimum detectable dose. Active TGF-β2 concentrations were significantly lower at baseline and at month 1, compared to controls. No significant differences in active TGF-β3 concentration were found among the sample groups. Moreover, TGF-β pathway activation was significantly lower at baseline compared to controls. Our data corroborate an anti-angiogenic role for TGF-β2 in nAMD. This should be considered from the perspective of a therapy using TGF-β inhibitors.
Collapse
Affiliation(s)
- Gian Marco Tosi
- University of Siena, Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, Siena, 53100, Italy
| | - Giovanni Neri
- University of Siena, Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, Siena, 53100, Italy
| | - Elena Caldi
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Siena, 53100, Italy
| | - Fiorella Fusco
- University of Siena, Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, Siena, 53100, Italy
| | - Tommaso Bacci
- University of Siena, Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, Siena, 53100, Italy
| | - Antonio Tarantello
- University of Siena, Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, Siena, 53100, Italy
| | - Elisabetta Nuti
- University of Siena, Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, Siena, 53100, Italy
| | - Davide Marigliani
- University of Siena, Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, Siena, 53100, Italy
| | - Stefano Baiocchi
- University of Siena, Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, Siena, 53100, Italy
| | - Claudio Traversi
- University of Siena, Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience, Siena, 53100, Italy
| | - Marcella Barbarino
- University of Siena, Department of Medicine, Surgery and Neuroscience, Siena, 53100, Italy
| | - Chiara M Eandi
- University of Turin, Department of Surgical Science, Turin, 10124, Italy
| | | | - Lucia Mundo
- University of Siena, Department of Medical Biotechnology, Siena, 53100, Italy
| | - Annalisa Santucci
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Siena, 53100, Italy
| | - Maurizio Orlandini
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Siena, 53100, Italy.
| | - Federico Galvagni
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Siena, 53100, Italy.
| |
Collapse
|
40
|
Galvagni F, Nardi F, Spiga O, Trezza A, Tarticchio G, Pellicani R, Andreuzzi E, Caldi E, Toti P, Tosi GM, Santucci A, Iozzo RV, Mongiat M, Orlandini M. Dissecting the CD93-Multimerin 2 interaction involved in cell adhesion and migration of the activated endothelium. Matrix Biol 2017; 64:112-127. [DOI: 10.1016/j.matbio.2017.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 01/20/2023]
|
41
|
Geminiani M, Gambassi S, Millucci L, Lupetti P, Collodel G, Mazzi L, Frediani B, Braconi D, Marzocchi B, Laschi M, Bernardini G, Santucci A. Cytoskeleton Aberrations in Alkaptonuric Chondrocytes. J Cell Physiol 2017; 232:1728-1738. [DOI: 10.1002/jcp.25500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/22/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Michela Geminiani
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Silvia Gambassi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Lia Millucci
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Pietro Lupetti
- Dipartimento di Scienze della Vita; Università degli Studi di Siena; Siena Italy
| | - Giulia Collodel
- Dipartimento di Medicina Molecolare e dello Sviluppo; Università degli Studi di Siena; Siena Italy
| | - Lucia Mazzi
- Dipartimento di Medicina Molecolare e dello Sviluppo; Università degli Studi di Siena; Siena Italy
| | - Bruno Frediani
- Dipartimento di Scienze Mediche; Chirurgiche e Neuroscienze; Università degli Studi di Siena; Siena Italy
| | - Daniela Braconi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Barbara Marzocchi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Marcella Laschi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| |
Collapse
|
42
|
Tosi GM, Caldi E, Parolini B, Toti P, Neri G, Nardi F, Traversi C, Cevenini G, Marigliani D, Nuti E, Bacci T, Galvagni F, Orlandini M. CD93 as a Potential Target in Neovascular Age-Related Macular Degeneration. J Cell Physiol 2016; 232:1767-1773. [DOI: 10.1002/jcp.25689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Gian Marco Tosi
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience; University of Siena; Siena Italy
| | - Elena Caldi
- Department of Biotechnology, Chemistry and Pharmacy; University of Siena; Siena Italy
| | | | - Paolo Toti
- Department of Medical Biotechnologies; University of Siena; Siena Italy
| | - Giovanni Neri
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience; University of Siena; Siena Italy
| | - Federica Nardi
- Department of Biotechnology, Chemistry and Pharmacy; University of Siena; Siena Italy
| | - Claudio Traversi
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience; University of Siena; Siena Italy
| | - Gabriele Cevenini
- Department of Medical Biotechnologies; University of Siena; Siena Italy
| | - Davide Marigliani
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience; University of Siena; Siena Italy
| | - Elisabetta Nuti
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience; University of Siena; Siena Italy
| | - Tommaso Bacci
- Ophthalmology Unit of the Department of Medicine, Surgery and Neuroscience; University of Siena; Siena Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy; University of Siena; Siena Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy; University of Siena; Siena Italy
| |
Collapse
|
43
|
Millucci L, Bernardini G, Marzocchi B, Braconi D, Geminiani M, Gambassi S, Laschi M, Frediani B, Galvagni F, Orlandini M, Santucci A. Angiogenesis in alkaptonuria. J Inherit Metab Dis 2016; 39:801-806. [PMID: 27671890 DOI: 10.1007/s10545-016-9976-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 10/20/2022]
Abstract
Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of AKU treatment is palliative and little is known about its physiopathology. Neovascularization is involved in the pathogenesis of systemic inflammatory rheumatic diseases, a family of related disorders that includes AKU. Here, we investigated the presence of neoangiogenesis in AKU synovium and healthy controls. Synovium from AKU patients, who had undergone total joint replacement or arthroscopy, or from healthy patients without any history of rheumatic diseases, who underwent surgical operation following sport trauma was subjected to hematoxylin and eosin staining. Histologic grades were assigned for clinical disease activity and synovitis based on cellular content of the synovium. By immunofluorescence microscopy, using different endothelial cell markers, we observed large vascularization in AKU but not in healthy synovium. Moreover, Western blotting and quantification analyses confirmed strong expression of endothelial cell markers in AKU synovial tissues. Importantly, AKU synovium vascular endothelium expressed high levels of β-dystroglycan, a protein previously involved in the regulation of angiogenesis in osteoarthritic synovium. This is the first report providing experimental evidences that new blood vessels are formed in AKU synovial tissues, opening new perspectives for AKU therapy.
Collapse
Affiliation(s)
- Lia Millucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Barbara Marzocchi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Silvia Gambassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Marcella Laschi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Bruno Frediani
- Department of Medicine, Surgery and Neurosciences, Rheumatology section, University of Siena, Policlinico Le Scotte, 53100, Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| |
Collapse
|
44
|
Goiko M, de Bruyn JR, Heit B. Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane. Sci Rep 2016; 6:34987. [PMID: 27725698 PMCID: PMC5057110 DOI: 10.1038/srep34987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
The plasma membrane is a heterogeneous environment characterized by anomalous diffusion and the presence of microdomains that are molecularly distinct from the bulk membrane. Using single particle tracking of the C-type lectin CD93, we have identified for the first time the transient trapping of transmembrane proteins in cage-like microdomains which restrict protein diffusion. These cages are stabilized by actin-dependent confinement regions, but are separate structures with sizes and lifespans uncorrelated to those of the underlying actin corral. These membrane cages require cholesterol for their strength and stability, with cholesterol depletion decreasing both. Despite this, cages are much larger in size and are longer lived than lipid rafts, suggesting instead that cholesterol-dependent effects on membrane fluidity or molecular packing play a role in cage formation. This diffusional compartment in the plasma membrane has characteristics of both a diffusional barrier and a membrane microdomain, with a size and lifespan intermediate between short-lived microdomains such as lipid rafts and long-lasting diffusional barriers created by the actin cytoskeleton.
Collapse
Affiliation(s)
- Maria Goiko
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 Canada
| | - John R de Bruyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Centre for Human Immunology, The University of Western Ontario, London, Ontario, N6A 5C1 Canada
| |
Collapse
|
45
|
Elevated expression of CD93 promotes angiogenesis and tumor growth in nasopharyngeal carcinoma. Biochem Biophys Res Commun 2016; 476:467-474. [PMID: 27255994 DOI: 10.1016/j.bbrc.2016.05.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023]
Abstract
CD93, also known as the complement component C1q receptor (C1qRp), has been reported to promote the progression of some cancer types. However, the expression and physiological significance of CD93 in nasopharyngeal carcinoma (NPC) remain largely elusive. In this study, we first examined the expression of CD93 in NPC and experimentally manipulated its expression. We observed that vascular CD93 expression is elevated in NPC and is correlated with T classification, N classification, distant metastasis, clinical stage and poor prognosis (all P < 0.05). In addition, overexpression of CD93 promoted angiogenesis in vitro. What's more, we found that CD93 was highly expressed in NPC tissues and cells, and the regulation of CD93 on cell proliferation was determined by cell counting kit (CCK)-8 assay and cell cycle analyses. Our findings provide unique insight into the pathogenesis of NPC and underscore the need to explore novel therapeutic targets such as CD93 to improve NPC treatment.
Collapse
|