1
|
Bax HJ, Chauhan J, McCraw AJ, Grandits M, Stavraka C, Lentfer H, Hillyer T, Carroll S, Vigor K, Selkirk C, Figini M, Cheeseman J, Urbanowicz PA, Gardner RA, Spencer DIR, Westwood N, Mellor S, Spicer J, Josephs DH, Karagiannis SN. Physiochemical and functional evaluation of the first-in-class anti-cancer IgE antibody drug, MOv18, through process development and good manufacturing practice production. MAbs 2025; 17:2451295. [PMID: 39833133 DOI: 10.1080/19420862.2025.2451295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Antibodies used for cancer therapy are monoclonal IgGs, but tumor-targeting IgE antibodies have shown enhanced effector cell potency against cancer in preclinical models. Research-grade recombinant IgE antibodies have been generated and studied for several decades. The recent Phase 1 clinical trial of the first-in-class MOv18 IgE, however, necessitated the inaugural process development and scaled manufacture of a recombinant IgE to clinical quality standards. During the process development and scaled Good Manufacturing Practice production, we demonstrate the retention of glycosylation state, biophysical profile, and functional characteristics of MOv18 IgE, including Fc-mediated mast cell degranulation and tumor cell killing. Assessment of manufacturing parameters shows expected pH, purity, concentration, and stability properties, as well as below threshold levels of known biological manufacturing contaminants. We confirm the suitability of the pipeline described for generating intact, functionally active, clinical-grade material for this novel therapeutic class as an Investigational Medicinal Product (IMP), with comparable characteristics to the original research-grade antibody. Furthermore, we screened patient blood ex vivo for potential type I hypersensitivity reaction to MOv18 IgE, using the basophil activation test, to identify patients not predicted to be hypersensitive to MOv18 IgE administration. This study supports the production of functionally active clinical grade (IMP) recombinant IgE and paves the way for the development of a new therapeutic antibody class for a range of antigenic specificities and disease settings.
Collapse
Affiliation(s)
- Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - Alexandra J McCraw
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - Melanie Grandits
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - Chara Stavraka
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - Heike Lentfer
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Tim Hillyer
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Simon Carroll
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Kim Vigor
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Chris Selkirk
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Mariangela Figini
- ANP2, Department of Advanced Diagnostics, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | - Nigel Westwood
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Sarah Mellor
- Centre for Drug Development, Cancer Research UK, London, UK
| | - James Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
- Cancer Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
- Cancer Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Innovation Hub, Guy's Cancer Centre, London, UK
| |
Collapse
|
2
|
Ghosh R, Kumar M, Kumar S, Komal K, Sharma R, Kurmi BD. Small molecule therapeutics for receptor-mediated targeting through liposomes in breast cancer treatment: A comprehensive review. Bioorg Chem 2025; 160:108442. [PMID: 40199009 DOI: 10.1016/j.bioorg.2025.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Breast cancer (BC) remains a significant global health challenge, with conventional treatment approaches such as surgery, chemotherapy, and radiation therapy. These approaches face limitations in targeting, toxicity, and efficacy. Liposomal drug delivery systems have emerged as promising tools for targeted breast cancer therapies. Liposomes can encapsulate both hydrophilic and hydrophobic drugs, improve drug distribution, and reduce the side effects. Passive targeting exploits the enhanced permeability and retention effect in tumor tissues, whereas active targeting employs small molecule ligands such as aptamers, folic acid (FA), transferrin, and monoclonal antibodies to specifically bind to overexpressed receptors on cancer cells. Aptamer-functionalized liposomes exhibit high specificity and affinity, folate and transferrin receptor targeting enhances cellular uptake and cytotoxicity, and antibody-conjugated liposomes improve drug delivery and efficacy by targeting specific antigens. Dual-responsive liposomes are sensitive to multiple stimuli and further enhance targeting precision. However, challenges remain, including tumor heterogeneity, limited penetration, and potential immunogenicity. Current research has focused on developing stable and effective formulations and exploring combination-targeting strategies to overcome these limitations. With further advancements, targeted liposomal drug delivery systems hold great promise in improving breast cancer treatment outcomes and reducing adverse effects.
Collapse
Affiliation(s)
- Rashmi Ghosh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India.
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Kumari Komal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Rohit Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| |
Collapse
|
3
|
Kim J, Kim M, Han H, Kim S, Lahiji SF, Kim YH. Dual-delivery of exosome inhibitor and immune-activating gene via lipid nano-assemblies for tumor immune evasion inhibition. J Control Release 2025; 381:113569. [PMID: 39993637 DOI: 10.1016/j.jconrel.2025.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The tumor microenvironment, with its complex immune evasion mechanisms, significantly hinders the efficacy of anti-tumor immunotherapies, including immune checkpoint inhibitors. Consequently, there is a strong impetus for extensive research to elucidate the immunosuppressive mechanisms within the tumor microenvironment and to develop novel therapeutic strategies. In this study, we have developed a drug/gene delivery system (folate-modified GW4869-loaded siIRF3 nano-complex, FD9R-GW/siIRF3) designed to simultaneously target and inhibit two key immune evasion pathways in the tumor microenvironment. The folate receptor-mediated delivery of GW4869 to cancer cells and tumor-associated macrophages (TAMs) led to the suppression of biosynthesis and release of tumor-derived exosomes (TEXs) containing exosomal PD-L1. Furthermore, IRF3 gene silencing effectively inhibited the M2-type differentiation of TAMs, and suppressed the secretion of CC motif chemokine ligand 22 (CCL22) in cancer cells, consequently reducing the recruitment of regulatory T cells (Tregs). The efficacy of FD9R-GW/siIRF3 in impeding tumor immune evasion was substantiated by an augmented recruitment of cytotoxic T cells and a diminished M2 macrophage polarization in the folate receptor-expressing 4 T1 allograft breast cancer model. Furthermore, the combination of a-PD-1 immunotherapy with FD9R-GW/siIRF3 led to a significant enhancement in the antitumor immune response, as evidenced by the inhibition of circulating tumor-derived exosomal PD-L1.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea; Cursus Bio Inc. Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea
| | - Minjeong Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea
| | - Heesoo Han
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea
| | - SangJin Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea
| | - Shayan Fakhraei Lahiji
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea; Cursus Bio Inc. Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 04763 Seoul, Republic of Korea; Cursus Bio Inc. Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, 04763 Seoul, Republic of Korea.
| |
Collapse
|
4
|
Saraei P, Ghasemi M, Talebi A, Vafaeinezhad A, Saberzadeh J. Nutritional Strategies in Oncology: A Narrative Review of Advances in Folate-Targeted Therapeutic Approaches for Cancer Treatment. Nutr Cancer 2025:1-23. [PMID: 40295145 DOI: 10.1080/01635581.2025.2497096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Folate, a water-soluble B vitamin crucial for DNA synthesis and repair, is internalized by cells through specific folate receptors (FRs), which are frequently overexpressed in various types of cancers. In this comprehensive study, we conducted a review of the literature from Google Scholar, PubMed, and Science Direct, focusing on research published between 1980 and 2024 to evaluate folate-targeted therapeutic strategies in oncology. Our study design involved a rigorous review of both preclinical and clinical research, emphasizing strategies such as folate-drug conjugates, antibody-drug conjugates, and folate-targeted nanoparticles. Key findings indicate that targeting FRs in cancers such as ovarian, breast, cervical, renal, and colorectal enhances drug delivery specificity to tumors, increases therapeutic efficacy, and decreases systemic toxicity compared to traditional chemotherapy. Several clinical trials reported improved progression-free survival and overall response rates among patients receiving folate-targeted therapies. In conclusion, our review highlights the significant potential of folate-targeted strategies in advancing precision oncology while these approaches provide substantial benefits in terms of efficacy and safety, further research is essential to refine drug design and expand clinical applications. Such initiatives will facilitate the development of more personalized cancer treatment protocols that maximize therapeutic outcomes while minimizing adverse effects.
Collapse
Affiliation(s)
- Pouya Saraei
- Student Research Committee, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Ghasemi
- Comprehensive Medical Research Center, Center for Basic Medical Sciences, Physiology Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Arefe Vafaeinezhad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Jamileh Saberzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Sahane P, Puri N, Khairnar P, Phatale V, Shukla S, Priyadarshinee A, Srivastava S. Harnessing Folate Receptors: A Comprehensive Review on the Applications of Folate-Adorned Nanocarriers for the Management of Melanoma. ACS APPLIED BIO MATERIALS 2025. [PMID: 40275606 DOI: 10.1021/acsabm.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The advancement in exclusively tailored therapeutic delivery systems has escalated a great deal of interest in targeted delivery to augment therapeutic efficacy and to lessen adverse effects. The targeted delivery approach promisingly helps to surmount the unmet clinical needs of conventional therapies, including chemoresistance, limited penetration, and side effects. In the case of melanoma, various receptors were overexpressed on the tumor site, among which folate receptor (FR) targeting is considered to be a progressive approach for managing melanoma. FRs are the macromolecules of the glycosyl phosphatidylinositol-attached protein that possess globular assembly with a greater affinity toward specific ligands. So, the functional ligands can be utilized to design targeted nanocarriers (NCs) that can effectively bind to overexpressed FRs. Hence, folate-adorned NCs (FNCs) offer various benefits such as site-specific targeting, cargo protection, and minimizing toxicity. This review focuses on the insights and implications of FRs, targeting FRs, and mechanisms, challenges, and advantages of FNCs. Further, the applications of various FNCs, such as liposomes, polymeric NCs, albumin nanoparticles, inorganic NCs, liquid crystalline nanoparticles, and nanogels, have been elaborated for melanoma therapy. Likewise, the potential of FNCs in immunotherapy, photodynamic therapy, chemotherapy, gene therapy, photothermal therapy, and tumor imaging has been exhaustively discussed. Furthermore, translational hurdles and potential solutions are discussed in detail. The present review is expected to give thoughtful ideas to researchers, industry stakeholders, and formulation scientists for the efficacious development of FNCs.
Collapse
Affiliation(s)
- Prajakta Sahane
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Niharika Puri
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Abhipsa Priyadarshinee
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| |
Collapse
|
6
|
Zheng Y, Cheng H, Jiang S, Tai W. Fc Multisite Conjugation and Prolonged Delivery of the Folate-Targeted Drug Conjugate EC140. Bioconjug Chem 2025; 36:762-769. [PMID: 40178505 DOI: 10.1021/acs.bioconjchem.5c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Small molecule-drug conjugate (SMDC) is a targeted drug delivery technology that develops in parallel with the antibody-drug conjugate. However, the clinical translation of SMDC faces challenges due to its limited circulating half-life in vivo. The drawback in pharmacokinetics is that it restricts the exposure time of SMDC to tumor tissues and ultimately reduces the therapeutic efficacy. In this study, we chemically conjugated a folate-targeted SMDC EC140 to the long-circulating Fc protein at multiple sites, yielding a stable and high-DAR Fc-SMDC conjugate (Fc-EC140). Fc-EC140 can bear approximately 4 molecules of EC140 per Fc protein (drug-antibody ratio = 4.1) and display enhanced potency in folate receptor (FR)-positive tumor cells compared to the SMDC comparator. In addition, Fc-EC140 retains the FcRn-mediated recycling function and displays an extended half-life of 28 h in the mice. In vivo, antitumor experiments demonstrate that intravenous administration of Fc-EC140 (Q7D × 3 at a dose of 15 mg/kg) nearly cures the KB tumors, which is far more effective than the comparator EC140 administrated at equivalent doses. This study presents a new strategy for the targeted delivery of SMDC.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Sibo Jiang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
7
|
Jaiswal N, Mahata N, Chanda N. Nanogold-albumin conjugates: transformative approaches for next-generation cancer therapy and diagnostics. NANOSCALE 2025. [PMID: 40237258 DOI: 10.1039/d4nr05279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nanogold-albumin conjugates have garnered significant attention as a highly adaptable theranostic platform, capable of delivering a wide range of therapeutics, from small-molecule drugs to larger biomolecules, while offering promising applications for monitoring and managing cancer. The remarkable theranostic capabilities of these conjugates stem from the combined strengths of gold and albumin, which provide low toxicity, a large surface area, customizable surface chemistry, and unique optical properties, all contributing to their potential in cancer therapy. This review delves into the design and development of two primary types of nanogold-albumin conjugate: supramolecular albumin-coated gold nanoparticles (GNP-BSA/HSA) and albumin-templated ultra-small gold nanoclusters (GNC-BSA/HSA). Each strategy offers distinct advantages, enabling the fine-tuning of conjugate properties to optimize therapeutic delivery and facilitate cancer-specific bio-sensing. The integration of gold and albumin further improves biocompatibility, extends circulation time, and enhances tumor targeting, making these conjugates an attractive option for cancer treatment. The review also focuses on the refinement of surface chemistry to achieve precise targeting of cancer cells, as well as the challenges and future prospects for advancing nanogold-albumin systems in clinical applications.
Collapse
Affiliation(s)
- Namita Jaiswal
- Human Centered Robotics and Cybernetics Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India.
- Department of Biotechnology, National Institute of Technology (NIT), Durgapur, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology (NIT), Durgapur, India
| | - Nripen Chanda
- Human Centered Robotics and Cybernetics Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India.
| |
Collapse
|
8
|
Zhang Y, Dantsu Y, Zhang W. Construction of a Mirror-Image RNA Nanostructure for Enhanced Biostability and Drug Delivery Efficiency. ACS Biomater Sci Eng 2025; 11:2408-2421. [PMID: 40033796 DOI: 10.1021/acsbiomaterials.4c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The development of stable and efficient drug delivery systems is essential for advancing therapeutic applications. Here, we present an innovative approach using a mirror-image RNA (l-RNA) nanostructure to enhance the biostability and drug delivery efficiency. We engineered an l-RNA three-way junction structure conjugated with both small interfering RNA (siRNA) targeting MCL1 and the chemotherapeutic agent doxorubicin for targeted and synergistic drug delivery. This codelivery strategy leverages the combined effects of doxorubicin and MCL1 siRNA, achieving improved therapeutic outcomes. The l-RNA nanostructure demonstrates superior stability compared with natural d-RNA, resulting in reduced toxicity in healthy cells while maintaining therapeutic efficacy in cancer cells. This indicates that l-RNA nanostructures may offer enhanced biosafety when applied as therapeutic agents. The addition of folic acid (FA) to the nanostructure surface substantially increases both delivery specificity and endosomal escape efficiency, optimizing targeted delivery. Structural modeling also suggests a distinctive binding conformation of doxorubicin with l-DNA, setting it apart from native DNA interactions. This study highlights the potential of mirror-image nucleic acid nanostructures as robust and precise platforms for combinatorial drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, 535 Barnhill Drive, Indianapolis, Indiana 46202, United States
| |
Collapse
|
9
|
Păduraru L, Panainte AD, Peptu CA, Apostu M, Vieriu M, Bibire T, Sava A, Bibire N. Smart Drug Delivery Systems Based on Cyclodextrins and Chitosan for Cancer Therapy. Pharmaceuticals (Basel) 2025; 18:564. [PMID: 40283999 PMCID: PMC12030441 DOI: 10.3390/ph18040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Despite improvements in therapeutic approaches like immunotherapy and gene therapy, cancer still remains a serious threat to world health due to its high incidence and mortality rates. Limitations of conventional therapy include suboptimal targeting, multidrug resistance, and systemic toxicity. A major challenge in current oncology therapies is the development of new delivery methods for antineoplastic drugs that act directly on target. One approach involves the complexation of antitumor drugs with cyclodextrins (CDs) and chitosan (CS) as an attempt to counteract their primary limitations: low water solubility and bioavailability, diminished in vitro and in vivo stability, and high dose-dependent toxicity. All those drawbacks may potentially exclude some therapeutic candidates from clinical trials, thus their integration into smart delivery systems or drug-targeting technologies must be implemented. We intended to overview new drug delivery systems based on chitosan or cyclodextrins with regard to the current diagnosis and cancer management. This narrative review encompasses full-length articles published in English between 2019 and 2025 (including online ahead of print versions) in PubMed-indexed journals, focusing on recent research on the encapsulation of diverse antitumor drugs within those nanosystems that exhibit responsiveness to various stimuli such as pH, redox potential, and folate receptor levels, thereby enhancing the release of bioactive compounds at tumor sites. The majority of the cited references focus on the most notable research, studies of novel applications, and scientific advancements in the field of nanostructures and functional materials employed in oncological therapies over the last six years. Certainly, there are additional stimuli with research potential that can facilitate the drug's release upon activation, such as reactive oxygen species (ROS), various enzymes, ATP level, or hypoxia; however, our review exclusively addresses the aforementioned stimuli presented in a comprehensive manner.
Collapse
Affiliation(s)
- Larisa Păduraru
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| | - Alina-Diana Panainte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| | - Cătălina-Anișoara Peptu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 71st Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iasi, Romania
| | - Mihai Apostu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| | - Mădălina Vieriu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| | - Tudor Bibire
- “St. Spiridon” County Clinical Emergency Hospital, 1st Independentei Blvd., 700111 Iasi, Romania;
| | - Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| | - Nela Bibire
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| |
Collapse
|
10
|
Cai Y, Chai T, Nguyen W, Liu J, Xiao E, Ran X, Ran Y, Du D, Chen W, Chen X. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct Target Ther 2025; 10:115. [PMID: 40169560 PMCID: PMC11961771 DOI: 10.1038/s41392-025-02140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 04/03/2025] Open
Abstract
Phototherapy has emerged as a promising modality in cancer treatment, garnering considerable attention for its minimal side effects, exceptional spatial selectivity, and optimal preservation of normal tissue function. This innovative approach primarily encompasses three distinct paradigms: Photodynamic Therapy (PDT), Photothermal Therapy (PTT), and Photoimmunotherapy (PIT). Each of these modalities exerts its antitumor effects through unique mechanisms-specifically, the generation of reactive oxygen species (ROS), heat, and immune responses, respectively. However, significant challenges impede the advancement and clinical application of phototherapy. These include inadequate ROS production rates, subpar photothermal conversion efficiency, difficulties in tumor targeting, and unfavorable physicochemical properties inherent to traditional phototherapeutic agents (PTs). Additionally, the hypoxic microenvironment typical of tumors complicates therapeutic efficacy due to limited agent penetration in deep-seated lesions. To address these limitations, ongoing research is fervently exploring innovative solutions. The unique advantages offered by nano-PTs and nanocarrier systems aim to enhance traditional approaches' effectiveness. Strategies such as generating oxygen in situ within tumors or inhibiting mitochondrial respiration while targeting the HIF-1α pathway may alleviate tumor hypoxia. Moreover, utilizing self-luminescent materials, near-infrared excitation sources, non-photoactivated sensitizers, and wireless light delivery systems can improve light penetration. Furthermore, integrating immunoadjuvants and modulating immunosuppressive cell populations while deploying immune checkpoint inhibitors holds promise for enhancing immunogenic cell death through PIT. This review seeks to elucidate the fundamental principles and biological implications of phototherapy while discussing dominant mechanisms and advanced strategies designed to overcome existing challenges-ultimately illuminating pathways for future research aimed at amplifying this intervention's therapeutic efficacy.
Collapse
Affiliation(s)
- Yeyu Cai
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Tian Chai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China
| | - William Nguyen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Du
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China.
| | - Xiangyu Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
11
|
Zarrella S, Miranda MR, Covelli V, Restivo I, Novi S, Pepe G, Tesoriere L, Rodriquez M, Bertamino A, Campiglia P, Tecce MF, Vestuto V. Endoplasmic Reticulum Stress and Its Role in Metabolic Reprogramming of Cancer. Metabolites 2025; 15:221. [PMID: 40278350 PMCID: PMC12029571 DOI: 10.3390/metabo15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum (ER) stress occurs when ER homeostasis is disrupted, leading to the accumulation of misfolded or unfolded proteins. This condition activates the unfolded protein response (UPR), which aims to restore balance or trigger cell death if homeostasis cannot be achieved. In cancer, ER stress plays a key role due to the heightened metabolic demands of tumor cells. This review explores how metabolomics can provide insights into ER stress-related metabolic alterations and their implications for cancer therapy. Methods: A comprehensive literature review was conducted to analyze recent findings on ER stress, metabolomics, and cancer metabolism. Studies examining metabolic profiling of cancer cells under ER stress conditions were selected, with a focus on identifying potential biomarkers and therapeutic targets. Results: Metabolomic studies highlight significant shifts in lipid metabolism, protein synthesis, and oxidative stress management in response to ER stress. These metabolic alterations are crucial for tumor adaptation and survival. Additionally, targeting ER stress-related metabolic pathways has shown potential in preclinical models, suggesting new therapeutic strategies. Conclusions: Understanding the metabolic impact of ER stress in cancer provides valuable opportunities for drug development. Metabolomics-based approaches may help identify novel biomarkers and therapeutic targets, enhancing the effectiveness of antitumor therapies.
Collapse
Affiliation(s)
- Salvatore Zarrella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| |
Collapse
|
12
|
Feng J, Wang Q, Yin G, Jiang Y, Ruan Q, Han P, Xiao Q, Ding D, Li Z, Du J, Zhang J. Synthesis and Preclinical Evaluation of Novel 99mTc-Labeled FR-Targeting Agents with Satisfactory Imaging Contrast and Reduced Renal Uptake. J Med Chem 2025; 68:5675-5686. [PMID: 39982495 DOI: 10.1021/acs.jmedchem.4c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The folate receptor is overexpressed in a variety of epithelial-derived malignant cells. Several folate-based tracers have shown the ability to target FR, but excessive renal uptake is a general concern. To decrease renal uptake and achieve high target-to-nontarget ratios, two folate derivatives (DProFA and DAlaFA) were designed and synthesized. Eight complexes with high labeling yields and good in vitro stability were obtained by radiolabeling with technetium-99m and different coligands. The results of both in vitro cell and in vivo normal mice biodistribution studies demonstrated specific binding of eight complexes to the FR. Among them, [99mTc]Tc-DProFA-L1 exhibited lower off-target uptake and high tumor uptake in tumor-bearing mice, and significant inhibition in the biodistribution and SPECT/CT imaging study. The lower renal uptake of [99mTc]Tc-DProFA-L1 may prevent irradiation damage to the kidney. Consequently, [99mTc]Tc-DProFA-L1 is a highly promising candidate probe for the diagnosis of epithelial tumors in clinical nuclear medicine.
Collapse
Affiliation(s)
- Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Department of Isotopes, China Institute of Atomic Energy, P.O. Box 2108, Beijing 102413, China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qingna Xiao
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Dajie Ding
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zuojie Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jin Du
- Department of Isotopes, China Institute of Atomic Energy, P.O. Box 2108, Beijing 102413, China
- China Isotope & Radiation Corporation, Beijing 100089, China
- CAEA Center of Excellence on Nuclear Technology Application for Engineering and Industrialization of Radiopharmaceuticals, Beijing 102413, China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
13
|
Wu Y, Xia L, Song C, Chen X, Wu X. Complete response to Mirvetuximab Soravtansine in platinum-resistant recurrent ovarian cancer: a case report. J Ovarian Res 2025; 18:43. [PMID: 40050918 PMCID: PMC11887124 DOI: 10.1186/s13048-025-01628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/15/2025] [Indexed: 03/09/2025] Open
Abstract
Ovarian cancer, colloquially termed the "king of gynecological cancers," presents significant diagnostic and therapeutic challenges due to its covert nature. It ranks as the deadliest gynecologic malignancy with a disheartening 5-year survival rate below 40%. Standard therapeutic protocols for newly diagnosed patients encompass cytoreductive surgery followed by neoadjuvant or adjuvant platinum-based chemotherapy. Despite initial chemotherapeutic responses, recurrence is common, affecting up to 80% of patients, with nearly all developing eventual resistance to chemotherapy regimens. This case report highlights an Aisan patient with ovarian cancer, who exhibited tolerance, recurrence, and progression after several prior lines of treatment. The application of Mirvetuximab Soravtansine, facilitated by positive FRα expression identified through IHC analysis, notably reduced tumor lesions and CA125 levels, achieving a complete response and maintaining low CA125 levels during treatment, underscoring its efficacy in treating platinum-resistant recurrent ovarian cancer.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chunyan Song
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
14
|
Yu Z, Lepoitevin M, Serre C. Iron-MOFs for Biomedical Applications. Adv Healthc Mater 2025; 14:e2402630. [PMID: 39388416 PMCID: PMC11937880 DOI: 10.1002/adhm.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Over the past two decades, iron-based metal-organic frameworks (Fe-MOFs) have attracted significant research interest in biomedicine due to their low toxicity, tunable degradability, substantial drug loading capacity, versatile structures, and multimodal functionalities. Despite their great potential, the transition of Fe-MOFs-based composites from laboratory research to clinical products remains challenging. This review evaluates the key properties that distinguish Fe-MOFs from other MOFs and highlights recent advances in synthesis routes, surface engineering, and shaping technologies. In particular, it focuses on their applications in biosensing, antimicrobial, and anticancer therapies. In addition, the review emphasizes the need to develop scalable, environmentally friendly, and cost-effective production methods for additional Fe-MOFs to meet the specific requirements of various biomedical applications. Despite the ability of Fe-MOFs-based composites to combine therapies, significant hurdles still remain, including the need for a deeper understanding of their therapeutic mechanisms and potential risks of resistance and overdose. Systematically addressing these challenges could significantly enhance the prospects of Fe-MOFs in biomedicine and potentially facilitate their integration into mainstream clinical practice.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de ParisENSESPCI ParisCNRSPSL UniversityParisFrance
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de ParisENSESPCI ParisCNRSPSL UniversityParisFrance
| | - Christian Serre
- Institut des Matériaux Poreux de ParisENSESPCI ParisCNRSPSL UniversityParisFrance
| |
Collapse
|
15
|
Auchynnikava T, Äärelä A, Moisio O, Liljenbäck H, Andriana P, Iqbal I, Laine T, Palani S, Lehtimäki J, Rajander J, Salo H, Airaksinen AJ, Virta P, Roivainen A. Biological Evaluation of Molecular Spherical Nucleic Acids: Targeting Tumors via a Hybridization-Based Folate Decoration. ACS OMEGA 2025; 10:6003-6014. [PMID: 39989783 PMCID: PMC11840764 DOI: 10.1021/acsomega.4c10047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
Folate receptors (FRs), membrane-bound proteins that bind specifically to folate with high affinity, are overexpressed by various cancer types and are therefore used as targets for delivery of therapeutic agents. Molecular spherical nucleic acids (MSNAs) are dendritic formulations of oligonucleotides (ONs) that may have advantages over linear parent ONs with respect to delivery properties. Here, we assembled folate-decorated MSNAs, site-specifically radiolabeled them, and then biologically evaluated their effects in mice bearing HCC1954 breast cancer xenograft tumors. The biodistribution of intravenously administered 18F-radiolabeled MSNAs was monitored using positron emission tomography/computed tomography imaging. The results revealed higher accumulation of folate-decorated MSNAs in FR-expressing organs such as the liver, kidney, and spleen, as well as a higher tumor-to-muscle ratio than that observed for MSNAs without the folate decoration. However, the observed increase was statistically significant only for MSNA structures with a PO backbone. The observed selective uptake of folate-decorated MSNAs highlights their potential as targeted delivery vehicles for therapeutic and diagnostic agents in FR-overexpressing cancers.
Collapse
Affiliation(s)
- Tatsiana Auchynnikava
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Antti Äärelä
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Olli Moisio
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Heidi Liljenbäck
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Turku
Center for Disease Modeling, University
of Turku, Turku FI-20520, Finland
| | - Putri Andriana
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Imran Iqbal
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Toni Laine
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Senthil Palani
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Jyrki Lehtimäki
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Johan Rajander
- Turku
PET Centre, Accelerator Laboratory, Åbo
Akademi University, Turku FI-20520, Finland
| | - Harri Salo
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Anu J. Airaksinen
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Pasi Virta
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Anne Roivainen
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Turku
Center for Disease Modeling, University
of Turku, Turku FI-20520, Finland
- InFLAMES
Research Flagship, University of Turku, Turku FI-20520, Finland
| |
Collapse
|
16
|
Lim JX, Yong YK, Dewi FRP, Chan SY, Lim V. Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches. Drug Deliv Transl Res 2025:10.1007/s13346-025-01790-3. [PMID: 39955406 DOI: 10.1007/s13346-025-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.
Collapse
Affiliation(s)
- Jian Xin Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
17
|
Palhares LCGF, Grandits M, Stoker K, Chauhan J, Sow HS, Fruhwirth GO, Tsoka S, Birtley J, Partington L, Wilson T, Hardaker E, Karagiannis SN, Bax HJ, FitzGerald K. An IgE antibody targeting HER2 identified by clonal selection restricts breast cancer growth via immune-stimulating activities. J Exp Clin Cancer Res 2025; 44:49. [PMID: 39934835 DOI: 10.1186/s13046-025-03319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Tumor-targeting IgE antibodies have elicited potent tumor-restricting effects by recruiting immune effector mechanisms. However, a dedicated platform for the generation, selection and evaluation of novel IgEs based on target antigen recognition and functional profiles has not been reported. METHODS By establishing an IgE class antibody therapeutic design platform to allow selection of lead candidates, we generated a panel of IgEs recognising the human epidermal growth factor receptor 2 (HER2), overexpressed in 15-20% of breast cancers. From 1840 phage display-generated variable region sequences panned against HER2, we engineered 30 full length IgE antibodies. We selected three clones based on biophysical properties, reactivity to HER2 + cancer cells, epitope reactivity and Fc-mediated anti-tumor profiles in vitro. Clones with cross-reactivity to rat HER2 were selected to allow functional evaluations in a fully immunocompetent syngeneic HER2 + rat breast cancer model. RESULTS IgE antibodies induced degranulation and antibody-dependent cellular cytotoxicity against human and rat HER2-expressing tumor cells in vitro. IgE antibody 26 demonstrated anti-tumor activity in a syngeneic HER2 + rat model, and a human HER2 + breast cancer xenograft model in mice reconstituted with human immune cells. Treatment was associated with enhanced immune cell infiltration and pro-inflammatory immune signatures, and downregulated cancer progression signaling pathways, in the tumor microenvironment. CONCLUSIONS This study pioneers the design and generation of anti-HER2 IgE lead antibody candidates with immune-stimulating and tumor-restricting effects. The present work may pave the way for antibody engineering therapeutic opportunities for challenging-to-treat HER2-expressing cancers.
Collapse
Affiliation(s)
- Lais C G F Palhares
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, & KHP Centre for Translational Medicine, King's College London, London, SE1 9RT, UK
- Epsilogen Ltd, Waterfront, ARC West London, Manbre Road, Hammersmith, London, W6 9RH, UK
| | - Melanie Grandits
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, & KHP Centre for Translational Medicine, King's College London, London, SE1 9RT, UK
- Epsilogen Ltd, Waterfront, ARC West London, Manbre Road, Hammersmith, London, W6 9RH, UK
| | - Katie Stoker
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, & KHP Centre for Translational Medicine, King's College London, London, SE1 9RT, UK
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, & KHP Centre for Translational Medicine, King's College London, London, SE1 9RT, UK
| | - Heng Sheng Sow
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, & KHP Centre for Translational Medicine, King's College London, London, SE1 9RT, UK
- Epsilogen Ltd, Waterfront, ARC West London, Manbre Road, Hammersmith, London, W6 9RH, UK
| | - Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, SE1 7EH, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - James Birtley
- Epsilogen Ltd, Waterfront, ARC West London, Manbre Road, Hammersmith, London, W6 9RH, UK
| | - Leanne Partington
- Epsilogen Ltd, Waterfront, ARC West London, Manbre Road, Hammersmith, London, W6 9RH, UK
| | - Tim Wilson
- Epsilogen Ltd, Waterfront, ARC West London, Manbre Road, Hammersmith, London, W6 9RH, UK
| | - Elizabeth Hardaker
- Epsilogen Ltd, Waterfront, ARC West London, Manbre Road, Hammersmith, London, W6 9RH, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, & KHP Centre for Translational Medicine, King's College London, London, SE1 9RT, UK
- Epsilogen Ltd, Waterfront, ARC West London, Manbre Road, Hammersmith, London, W6 9RH, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, & KHP Centre for Translational Medicine, King's College London, London, SE1 9RT, UK
- Epsilogen Ltd, Waterfront, ARC West London, Manbre Road, Hammersmith, London, W6 9RH, UK
| | - Kevin FitzGerald
- Epsilogen Ltd, Waterfront, ARC West London, Manbre Road, Hammersmith, London, W6 9RH, UK.
| |
Collapse
|
18
|
Wang C, Xiu Y, Zhang Y, Wang Y, Xu J, Yu W, Xing D. Recent advances in biotin-based therapeutic agents for cancer therapy. NANOSCALE 2025; 17:1812-1873. [PMID: 39676680 DOI: 10.1039/d4nr03729d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Biotin receptors, as biomarkers for cancer cells, are overexpressed in various tumor types. Compared to other vitamin receptors, such as folate receptors and vitamin B12 receptors, biotin receptor-based targeting strategies exhibit superior specificity and broader potential in treating aggressive cancers, including ovarian cancer, leukemia, colon cancer, breast cancer, kidney cancer, and lung cancer. These strategies promote biotin transport via receptor-mediated endocytosis, which is triggered upon ligand binding. Biotin, as the ligand of the biotin receptor, can be conjugated to anti-cancer drugs to form targeted therapies that bind to receptors overexpressed on tumor cells, thus increasing drug uptake. Despite these advantages, many candidate drugs have progressed slowly and remain in the preclinical stage, impeding clinical translation. This is mainly due to the effects of various conjugation methods and drug formulations on their functionality and efficacy. Therefore, developing novel biotin-based therapeutics is crucial. The innovation of this strategy lies in its multifunctionality-researchers can use different conjugation methods to design and synthesize these drugs, enabling precise targeting of various tumor types while minimizing toxicity to normal cells. These drugs include small-molecule-biotin conjugates (SMBCs) and nano-biotin conjugates (NBCs). This dual-platform approach represents a significant advancement in targeted therapy, offering unprecedented flexibility in drug design and delivery. Compared to chemotherapy drugs and traditional delivery systems, biotin-based drugs with tumor-specific targeting demonstrate enhanced targeting, improved efficacy, and reduced toxicity. This review examines strategies and applications for enhancing the delivery of chemotherapy drugs to cancer cells, highlighting the need for high-quality conjugates and strategies. It not only summarizes the latest progress but also provides key insights into how this emerging field could revolutionize personalized cancer treatment, especially in the context of precision medicine. Additionally, it offers perspectives on future research directions in this field.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Wanpeng Yu
- Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Tu YP, Lagraauw HM, Method M, Wang Y, Hanze E, Li L, Parrott T, Sloss CM, Westin EH. Exposure-response relationships of mirvetuximab soravtansine in patients with folate receptor-α-positive ovarian cancer: Justification of therapeutic dose regimen. Br J Clin Pharmacol 2025; 91:220-231. [PMID: 39307840 DOI: 10.1111/bcp.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS This study aimed to investigate exposure-response (ER) relationships in efficacy and safety for mirvetuximab soravtansine (MIRV) which is a first-in-class antibody-drug conjugate approved for the treatment of folate receptor-α-positive platinum-resistant ovarian cancer. METHODS MIRV was characterized in 4 clinical studies. Exposure metrics for MIRV, its payload and a metabolite were derived from a population pharmacokinetic model. Efficacy was analysed in MIRV-treated patients (n = 215) in a recent confirmatory, randomized, chemotherapy-controlled MIRASOL trial and safety was evaluated in patients pooled across all 4 clinical studies (n = 757). RESULTS In the MIRASOL trial (NCT04209855), MIRV demonstrated significant benefit over chemotherapy in progression-free survival (PFS), objective response rate (ORR) and overall survival (OS). The most common adverse events (AEs) included ocular disorders, peripheral neuropathy and pneumonitis. For PFS, ORR and OS, the trough concentration of MIRV was the predictor consistently found in ER models for efficacy. In contrast, for ocular AEs (as well as the time to onset of ocular AEs) and peripheral neuropathy, the area under the concentration-time curve (AUC) of MIRV was identified as the exposure metric in ER models for safety. No exposure parameters were found to correlate with pneumonitis. Covariates in all models did not show clinically meaningful impact on efficacy or safety. Logistic regression models for ORR and ocular AEs based on AUC of MIRV were used to justify the clinical dose regimen approved for MIRV. CONCLUSION The trough concentration of MIRV correlated with efficacy whereas the AUC of MIRV was associated with major AEs. The ER relationships supported the selected therapeutic dose regimen.
Collapse
Affiliation(s)
- Ya-Ping Tu
- Clinical Pharmacology, ImmunoGen, Waltham, MA, USA
| | | | | | | | - Eva Hanze
- qPharmetra LLC, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Previs RA, Strickland KC, Wallen Z, Ko H, Green M, Cooper M, Lyon E, Biorn M, Armetta J, Quarles R, Watson CH, Ring K, Klein JL, Caveney B, Severson EA, Ramkissoon S. Analysis of real world FRα testing in ovarian, fallopian tube, and primary peritoneal cancers. Gynecol Oncol 2025; 192:102-110. [PMID: 39631181 DOI: 10.1016/j.ygyno.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) remains a significant challenge in gynecologic oncology, particularly in the context of platinum-resistant disease. Mirvetuximab soravtansine (MIRV), was approved after trials revealed favorable response and survival outcomes. MIRV targets folate receptor alpha (FRα), a cell-surface receptor that is overexpressed in EOC and has been associated with aggressive disease phenotypes. METHODS This retrospective study analyzed 425 patient samples tested for FRα using the VENTANA® FOLR1 RxDx immunohistochemical assay. The patient cohort included cases with high grade serous carcinoma predominantly, tested across various anatomical sites. Statistical analysis examined the correlation between FRα positivity and clinical parameters such as tumor site and histology. RESULTS FRα was highly expressed in 36.3 % of the cases, with a significant association between FRα positivity and high grade serous ovarian histology. Tumor samples from the ovary, fallopian tube, adnexa, and dominant pelvic masses showed higher FRα positivity compared to metastatic sites (positive rates of 44.4 % vs 32.5 %, p = 0.02), highlighting the potential influence of tumor origin on expression of FRα. Time between sample collection and testing did not impact FRα expression, with sample testing spread over a median of 19.5 months post-collection. Eight patients had more than one specimen tested, of which 3 (37.5 %) had discordant results when a subsequent specimen was tested. CONCLUSION Our results highlight a need for standardized protocols for FRα testing to ensure accurate biomarker evaluation across varied clinical settings. The heterogeneity in FRα expression, influenced by tumor histology and anatomical origin, warrant further investigation to optimize therapeutic outcomes. PRIOR PRESENTATION Preliminary findings from this study were previously presented in poster format at the Society of Gynecologic Oncology 2024 Annual Metting. We confirm that the submission complies with the journal requirements.
Collapse
Affiliation(s)
- Rebecca A Previs
- Labcorp, Durham, NC, USA; Duke University Medical Center, Duke Cancer Institute, Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Durham, NC, USA.
| | - Kyle C Strickland
- Labcorp, Durham, NC, USA; Duke University Medical Center, Duke Cancer Institute, Department of Pathology, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | - Kari Ring
- University of Virginia, Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Charlottesville, VA, USA
| | | | | | | | - Shakti Ramkissoon
- Labcorp, Durham, NC, USA; Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
21
|
Mihaylova R, Momekova D, Elincheva V, Momekov G. Immunoconjugates as an Efficient Platform for Drug Delivery: A Resurgence of Natural Products in Targeted Antitumor Therapy. Pharmaceuticals (Basel) 2024; 17:1701. [PMID: 39770542 PMCID: PMC11677665 DOI: 10.3390/ph17121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The present review provides a detailed and comprehensive discussion on antibody-drug conjugates (ADCs) as an evolving new modality in the current therapeutic landscape of malignant diseases. The principle concepts of targeted delivery of highly toxic agents forsaken as stand-alone drugs are examined in detail, along with the biochemical and technological tools for their successful implementation. An extensive analysis of ADCs' major components is conducted in parallel with their function and impact on the stability, efficacy, safety, and resistance profiles of the immunoconjugates. The scope of the article covers the major classes of currently validated natural compounds used as payloads, with an emphasis on their structural and mechanistic features, natural origin, and distribution. Future perspectives in ADCs' design are thoroughly explored, addressing their inherent or emerging challenges and limitations. The survey also provides a comprehensive overview of the molecular rationale for active tumor targeting of ADC-based platforms, exploring the cellular biology and clinical relevance of validated tumor markers used as a "homing" mechanism in both hematological and solid tumor malignancies.
Collapse
Affiliation(s)
- Rositsa Mihaylova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| | - Denitsa Momekova
- Department “Pharmaceutical Technology and Biopharmaceutics”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Viktoria Elincheva
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| | - Georgi Momekov
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (V.E.); (G.M.)
| |
Collapse
|
22
|
Daksh S, Bose P, Kumar S, Kumar N, Kumaran SS, Verma YK, Deep S, Datta A. Tuned Manganese-Impregnated Mesoporous Silica Nanoparticles as a pH-Responsive Dual Imaging Probe. ACS APPLIED BIO MATERIALS 2024; 7:8503-8516. [PMID: 39587397 DOI: 10.1021/acsabm.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The limitations of individual imaging modalities have led to significant interest in hybrid imaging methods that combine the advantages of multiple techniques. The development of diverse dual imaging agents, which offer the exceptional sensitivity of single-photon emission computed tomography (SPECT) and the high spatial resolution of magnetic resonance imaging (MRI), has been addressing the demand for more advanced diagnostic pharmaceuticals. In this study, 99mTc-labeled manganese oxide-loaded mesoporous silica nanoparticles (MSNs), conjugated with folic acid as the targeting moiety and the chelating agent H2pentapa-en-NH2 (99mTc-MnOx-MSN-FA-pa), were developed for targeted SPECT-MRI dual imaging. The toxicity of the nanoparticles was confirmed through an MTT assay, showing >90% viability in HEK-293 and MDA-MB-231 cells at concentrations up to 200 μg/mL, indicating nonsignificant toxicity. Cellular uptake studies showed that folic acid functionalization effectively accentuated tumor-specific intracellular uptake of nanoparticles in MDA-MB-231 cells through folate receptor-mediated endocytosis. Additionally, the radiolabeling yield of 99mTc-MnOx-MSN-FA-pa was found to be 99.6 ± 0.8% (n = 3), and the pH-responsive release of paramagnetic manganese ions increased the r1 relaxivity of the nanoprobe to 11.37 mM-1 s-1. In vivo SPECT imaging demonstrated rapid tracer accumulation in MDA-MB-231 xenografts, with a tumor-to-muscle ratio of 6.01 ± 0.51 at 2 h, and minimal uptake in nontargeted organs. In vivo MRI studies indicated the strongest tumor contrast at 2 h postinjection. Given its desirable contrast enhancement in T1 MRI and SPECT imaging, along with low toxicity, MnOx-MSN-FA-pa shows potential as an effective multifunctional nanoprobe for precise tumor imaging.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig. S K Mazumdar Marg, Delhi 110054, India
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Pritha Bose
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig. S K Mazumdar Marg, Delhi 110054, India
| | - Subodh Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig. S K Mazumdar Marg, Delhi 110054, India
| | - Nikhil Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig. S K Mazumdar Marg, Delhi 110054, India
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Yogesh Kumar Verma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig. S K Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi 110016, India
| | - Anupama Datta
- Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organization, Brig. S K Mazumdar Marg, Delhi 110054, India
| |
Collapse
|
23
|
Verdin A, Malherbe C, Sloan-Dennison S, Faulds K, Graham D, Eppe G. Thiol-polyethylene glycol-folic acid (HS-PEG-FA) induced aggregation of Au@Ag nanoparticles: A SERS and extinction UV-Vis spectroscopy combined study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124848. [PMID: 39032228 DOI: 10.1016/j.saa.2024.124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Plasmonic colloidal nanoparticles (NPs) functionalised with polymers are widely employed in diverse applications, offering advantages demonstrated over non-functionalised NPs such as enhanced colloidal stability or increased biocompatibility. However, functionalisation with polymers does not always increase the stability of the colloidal system. This work explores the intricate relationship between the functionalisation of plasmonic core@shell Au@Ag nanoparticles (NPs) with thiol-polyethylene glycol-folic acid (HS-PEG-FA) polymer chains and the resulting stability and spectral characteristics of Surface-Enhanced Raman Scattering (SERS) nanotags based on these NPs. We demonstrate that varying levels of HS-PEG-FA grafting influence nanotag stability, with a low level of grafting causing aggregation and subsequently affecting the spectral signature of Raman-reporter molecules attached to the surface of the NP. Electrostatic destabilisation is identified as the primary mechanism driving aggregation, impacting the SERS spectrum of Malachite Green isothiocyanate (MGITC) whose spectral shape is different between the aggregated and non-aggregated NPs. The findings provide valuable insights into NPs stability under different conditions, offering essential considerations for the design and optimisation of SERS nanotags in bio-analytical applications, particularly those involving data processing based on spectral shape, such as in multiplex approaches where experimental spectra are decomposed with several reference components.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
24
|
Wu J, Wen L, Liu X, Li Q, Sun Z, Liang C, Xie F, Li X. Silybin: A Review of Its Targeted and Novel Agents for Treating Liver Diseases Based on Pathogenesis. Phytother Res 2024; 38:5713-5740. [PMID: 39310970 DOI: 10.1002/ptr.8347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 12/13/2024]
Abstract
Liver disease represents a significant global public health concern. Silybin, derived from Silybum marianum, has been demonstrated to exhibit a range of beneficial properties, including anti-inflammatory, antioxidative, antifibrotic, antiviral, and cytoprotective effects. These attributes render it a promising candidate for the treatment of liver fibrosis, cirrhosis, liver cancer, viral hepatitis, non-alcoholic fatty liver disease, and other liver conditions. Nevertheless, its low solubility and low bioavailability have emerged as significant limitations in its clinical application. To address these limitations, researchers have developed a number of silybin formulations. This study presents a comprehensive review of the results of research on silybin for the treatment of liver diseases in recent decades, with a particular focus on novel formulations based on the pathogenesis of the disease. These include approaches targeting the liver via the CD44 receptor, folic acid, vitamin A, and others. Furthermore, the study presents the findings of studies that have employed nanotechnology to enhance the low bioavailability and low solubility of silybin. This includes the use of nanoparticles, liposomes, and nanosuspensions. This study reviews the application of silybin preparations in the treatment of global liver diseases. However, further high-quality and more complete experimental studies are still required to gain a more comprehensive understanding of the efficacy and safety of these preparations. Finally, the study considers the issues that arise during the research of silybin formulations.
Collapse
Affiliation(s)
- Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Gronbeck C, Hadfield MJ, Grant-Kels JM. Dermatologic toxicities of antibody-drug conjugates. J Am Acad Dermatol 2024; 91:1177-1188. [PMID: 39182677 DOI: 10.1016/j.jaad.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Antibody-drug conjugates (ADCs) are a new and emerging category of oncologic treatments that combine the target specificity of a monoclonal antibody with a cytotoxic payload. These drugs are associated with unique cutaneous toxicities that vary across agents. Currently, there are eleven ADCs with regulatory approval for solid and liquid tumors and over 80 ADCs currently in clinical development, it is critical for dermatologists to recognize and appropriately mitigate the cutaneous toxicities associated with these therapies. This clinical review will summarize the novel mechanisms and indications of approved ADCs, discuss dermatologic toxicities demonstrated in clinical trials and postmarketing studies, and impart recognition and management guidance when encountering these reactions to help maintain patients safely and comfortably on their medications.
Collapse
Affiliation(s)
- Christian Gronbeck
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut
| | - Matthew J Hadfield
- Dermatology Medical Oncology, Brown University/Legoretta Cancer Center, Providence, Rhode Island
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut; Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida.
| |
Collapse
|
26
|
Ibrahim M, Fathalla Z, Fatease AA, Alamri AH, Abdelkader H. Breast cancer epidemiology, diagnostic barriers, and contemporary trends in breast nanotheranostics and mechanisms of targeting. Expert Opin Drug Deliv 2024; 21:1735-1754. [PMID: 39361257 DOI: 10.1080/17425247.2024.2412823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Breast cancer is one of the main causes of mortality in women globally. Early and accurate diagnosis represents a milestone in cancer management. Several breast cancer diagnostic agents are available. Many chemotherapeutic agents in conventional dosage forms are approved; nevertheless, they lack cancer cell specificity, resulting in improper treatment and undesirable side effects. Recently, nanotheranostics has emerged as a new paradigm to achieve safe and effective cancer diagnosis and management. AREA COVERED This review provides insight into breast cancer epidemiology, barriers hindering the early diagnosis, and effective delivery of chemotherapeutics. Also, conventional diagnostic agents and recent nanotheranostic platforms have been used in breast cancer. In addition, mechanisms of cancer cell targeting and nano-carrier surface functionalization as an effective approach for chemotherapeutic targeting were reviewed along with future perspectives. EXPERT OPINION We proposed that modified nano-carriers may provide an efficacious approach for breast cancer drug targeting. These nanotheranostics need more clinical evaluations to confirm their efficacy in cancer management. In addition, we recommend the use of artificial intelligence (AI) as a promising approach for early and efficient assessment of breast lesions. AI allows better interpretation and analysis of nanotheranostic data, which minimizes misdiagnosis and avoids the belated intervention of health care providers.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Zeinab Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
27
|
Bethke M, Abramowski P, Droste M, Felsberger A, Kochsiek L, Kotter B, Plettig L, Antonova K, Baghdo S, Burzan N, Tomszak F, Martinez-Osuna M, Eckardt D, Herbel C. Identification and Characterization of Fully Human FOLR1-Targeting CAR T Cells for the Treatment of Ovarian Cancer. Cells 2024; 13:1880. [PMID: 39594628 PMCID: PMC11592683 DOI: 10.3390/cells13221880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
CAR T cell therapy has been an effective treatment option for hematological malignancies. However, the therapeutic potential of CAR T cells can be reduced by several constraints, partly due to immunogenicity and toxicities. The lack of established workflows enabling thorough evaluation of new candidates, limits comprehensive CAR assessment. To improve the selection of lead CAR candidates, we established a stringent, multistep workflow based on specificity assessments, employing multiple assays and technologies. Moreover, we characterized a human FOLR1-directed CAR binding domain. Selection of binding domains was based on extensive specificity assessment by flow cytometry and imaging, to determine on-/off-target and off-tumor reactivity. CAR T cell functionality and specificity were assessed by high-throughput screening and advanced in vitro assays. Our validation strategy highlights that assays comprehensively characterizing CAR functionality and binding specificity complement each other. Thereby, critical specificity considerations can be addressed early in the development process to overcome current limitations for future CAR T cell therapies.
Collapse
|
28
|
Bukowski K, Rogalska A, Marczak A. Folate Receptor Alpha-A Secret Weapon in Ovarian Cancer Treatment? Int J Mol Sci 2024; 25:11927. [PMID: 39595996 PMCID: PMC11593442 DOI: 10.3390/ijms252211927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy worldwide. Due to its nonspecific symptoms and unreliable screening tools, EOC is not diagnosed at an early stage in most cases. Unfortunately, despite achieving initial remission after debulking surgery and platinum-based chemotherapy, most patients experience the recurrence of the disease. The limited therapy approaches have encouraged scientists to search for new detection and therapeutic strategies. In this review, we discuss the role of folate receptor alpha (FRα) in EOC development and its potential application as a biomarker and molecular target in designing new EOC screening and treatment methods. We summarize the mechanisms of the action of various therapeutic strategies based on FRα, including MABs (monoclonal antibodies), ADCs (antibody-drug conjugates), FDCs (folate-drug conjugates), SMDCs (small molecule-drug conjugates), vaccines, and CAR-T (chimeric antigen receptor T) cells, and present the most significant clinical trials of some FRα-based drugs. Furthermore, we discuss the pros and cons of different FR-based therapies, highlighting mirvetuximab soravtansine (MIRV) as the currently most promising EOC-targeting drug.
Collapse
Affiliation(s)
- Karol Bukowski
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (A.R.); (A.M.)
| | | | | |
Collapse
|
29
|
Kim ET, Kim JH, Park EY, Song IH, Park HS, Park S, Lim MC. The Efficacy and Safety of Folate Receptor α-Targeted Antibody-Drug Conjugate Therapy in Patients With High-Grade Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancers: A Systematic Review and Meta-Analysis. Cancer Med 2024; 13:e70392. [PMID: 39526448 PMCID: PMC11551784 DOI: 10.1002/cam4.70392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADC) have emerged as a highly promising systemic option in the treatment of recurrent ovarian cancer. The present study aimed to evaluate the treatment efficacy of folate receptor α (FRα)-targeting ADCs, associated treatment-related adverse events (TRAEs), and their impact on treatment safety. METHODS We conducted an electronic search to identify prospective trials of single-agent ADCs targeting FRα and those combined with chemotherapy in recurrent ovarian cancer. Information regarding the objective response rate (ORR) and TRAEs was collectively analyzed, and differences in subgroups based on FRα receptor expression levels were investigated. The protocol was registered with PROSPERO (CRD42023491151). RESULTS Ten studies with a total of 940 patients (859 treated with Mirvetuximab soravtansine-gynx (MIRV)), 45 with Farletuzumab Ecteribulin (MORAb-202), and 36 with Luveltamab Tazevibulin (STRO-002) were included in this meta-analysis. Based on the pooled data, the ORR of the entire cohort was 37% (95% CI: 0.30-0.43), while that of the high-FRα expression group was 34% (95% CI: 0.26-0.42). The incidence of grade ≥ 3 adverse events was 27% (95% CI: 0.19-0.36). CONCLUSION FRα-targeting ADCs, including MIRV, demonstrated definite efficacy and good safety as novel choices for second-line and beyond treatment of advanced or recurrent ovarian cancer. Patients with high FRα expression showed ORR and PFS benefits similar to those in the overall cohort.
Collapse
Affiliation(s)
- Eun Taeg Kim
- Department of Obstetrics and GynecologyKosin University College of MedicinePusanRepublic of Korea
| | - Ji Hyun Kim
- Center for Gynecologic CancerNational Cancer CenterGoyangRepublic of Korea
| | - Eun Young Park
- Biostatistics Collaboration TeamResearch Core Center, National Cancer CenterGoyangRepublic of Korea
| | - In Hye Song
- Department of Obstetrics and GynecologySeoul National University College of MedicineSeoulRepublic of Korea
| | - Han Song Park
- Department of Obstetrics and GynecologyKosin University College of MedicinePusanRepublic of Korea
| | - Sang‐Yoon Park
- Center for Gynecologic CancerNational Cancer CenterGoyangRepublic of Korea
| | - Myong Cheol Lim
- Center for Gynecologic CancerNational Cancer CenterGoyangRepublic of Korea
- Cancer Control and Policy, National Cancer Center Graduate School of Cancer Science and PolicyNational Cancer CenterGoyangRepublic of Korea
- Rare & Paediatric Cancer Branch and Immuno‐Oncology Branch, Division of Rare and Refractory CancerResearch Institute, National Cancer CenterGoyangRepublic of Korea
| |
Collapse
|
30
|
Fayoud AM, Darwish MY, Nada EA, Helal AA, Mohamed NS, Elrashedy AA, Abd-ElGawad M. Efficacy and Safety of Farletuzumab in Ovarian Cancer: A Systematic Review and Single-Arm Meta-Analysis. Cureus 2024; 16:e73503. [PMID: 39677200 PMCID: PMC11638381 DOI: 10.7759/cureus.73503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Folate receptor alpha (FRα) has emerged as a promising target in the treatment of ovarian cancer, with farletuzumab, a humanized monoclonal antibody targeting FRα, showing potential in clinical settings. This systematic review and single-arm meta-analysis aimed to evaluate the efficacy and safety of farletuzumab in patients with solid tumors, particularly ovarian cancer. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a thorough search across PubMed, the Web of Science, Scopus, and the Cochrane Central Register of Controlled Trials (CENTRAL) for clinical trials assessing farletuzumab in solid tumors. Data were extracted on study characteristics, patient demographics, treatment regimens, and efficacy outcomes including progression-free survival (PFS), overall survival (OS), response rates, and adverse events (AEs). The pooled analyses were performed using the Open Meta-Analyst software. In total, seven prospective studies were included, covering various farletuzumab regimens in ovarian cancer and other solid tumors. The pooled PFS was 10.5 months (95% CI: 8, 15.7) across three studies involving 925 patients, while the pooled OS was 36.7 months (95% CI: 26.6, 35) in two studies with 881 patients. Treatment response rates indicated a partial response in 55.25% of patients and stable disease in 28.68% of cases. Gastrointestinal and hematological AEs were frequently reported, with nausea (52.14%), neutropenia (50.65%), and anemia (39.76%) being the most common. Farletuzumab appears to offer a promising efficacy profile, particularly in ovarian cancer, with notable improvements in disease progression and survival. However, the treatment is associated with a high incidence of gastrointestinal and hematological AEs, raising the need for careful patient selection. Further studies are required to refine the therapeutic regimen and ensure an optimal balance between efficacy and safety.
Collapse
Affiliation(s)
- Aya M Fayoud
- Faculty of Pharmacy, Kafr El-Shaikh University, Kafr El-Shaikh, EGY
| | | | | | | | | | | | - Mohamed Abd-ElGawad
- Department of Neurology, Faculty of Medicine, Fayoum University, Fayoum, EGY
| |
Collapse
|
31
|
Kesharwani P, Halwai K, Jha SK, Al Mughram MH, Almujri SS, Almalki WH, Sahebkar A. Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers. Mol Cancer 2024; 23:244. [PMID: 39482651 PMCID: PMC11526716 DOI: 10.1186/s12943-024-02163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Uttar Pradesh, Kanpur, 208016, India
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Liu X, Dong Y, Wang C, Guo Z. Application of chitosan as nano carrier in the treatment of inflammatory bowel disease. Int J Biol Macromol 2024; 278:134899. [PMID: 39187100 DOI: 10.1016/j.ijbiomac.2024.134899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is characterized by persistent and recurrent gastrointestinal inflammation. Conventional IBD therapies often involve the use of antibiotics, NSAIDs, biological agents, and immunomodulators. While these medications can mitigate acute inflammatory symptoms, their long-term efficacy is frequently compromised due to cumulative toxic effects. In recent years, significant attention has shifted toward nanoparticle (NP)-based therapies as potential alternatives for IBD management. Various drug delivery strategies, including those targeting microbiota interactions, ligand-receptor binding, pH sensitivity, biodegradability, pressure response, and specific charge and size parameters, have been explored and optimized in animal studies. This review provides a comprehensive overview of the current landscape of chitosan NP-mediated drug delivery systems for IBD treatment. Additionally, it will discuss the prevailing challenges and propose future research directions to advance chitosan NP-based therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Gastroenterology, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Yunrui Dong
- Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, China
| | - Chenyu Wang
- Department of General Surgery, Huaihe Hospital of Henan University, 115 Ximen Street, Kaifeng 475000, Henan, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University (Suzhou Municipal Hospital of Anhui Province), No.616 Bianyangsan Road, Suzhou 234000, Anhui, China.
| |
Collapse
|
33
|
Mikled P, Chavasiri W, Khongkow M. Dual folate/biotin-decorated liposomes mediated delivery of methylnaphthazarin for anti-cancer activity. Sci Rep 2024; 14:21796. [PMID: 39294264 PMCID: PMC11410993 DOI: 10.1038/s41598-024-72532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Chemotherapy is an effective strategy for mitigating the global challenge of cancer treatment, which often encounters drug resistance and negative side effects. Methylnaphthazarin (MNZ), a natural compound with promising anti-cancer properties, has been underexplored due to its poor aqueous solubility and low selectivity. This study introduces a novel approach to overcome these limitations by developing MNZ-encapsulating liposomes decorated with folate and biotin (F/B-LP-MNZ). This dual-targeting strategy aims to enhance the anti-cancer efficacy and specificity of MNZ delivery. Our innovative F/B-LP-MNZ formulation demonstrated excellent physicochemical properties, stability, and controlled drug release profiles. In vitro studies revealed that MNZ-loaded liposomes attenuate the toxicity associated with free MNZ while F/B-LP-MNZ significantly increased cytotoxicity against HeLa cells, which express high levels of folate and biotin receptors, compared to non-targeted liposomes. Enhanced cellular uptake and improved dynamic flow attachment further confirmed the superior specificity of F/B-LP in targeting cancer cells. Additionally, our results revealed that F/B-LP-MNZ effectively inhibits HeLa cell migration and adhesion through EMT suppression and apoptotic induction, indicating its potential to prevent cancer metastasis. These findings highlight the potential of dual folate and biotin receptors-targeting liposomes as an effective delivery system for MNZ, offering a promising new avenue for targeted cancer therapy.
Collapse
Affiliation(s)
- Pirun Mikled
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
34
|
Kegyes D, Milea PA, Mazga AI, Tigu AB, Nistor M, Cenariu D, Tomai R, Buruiana S, Einsele H, Daniela Tănase A, Tomuleasa C. Looking ahead to targeting macrophages by CAR T- or NK-cells in blood cancers. Expert Opin Ther Targets 2024; 28:779-787. [PMID: 39235181 DOI: 10.1080/14728222.2024.2400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The bone marrow microenvironment (BME) is critical for healthy hematopoiesis and is often disrupted in hematologic malignancies. Tumor-associated macrophages (TAMs) are a major cell type in the tumor microenvironment (TME) and play a significant role in tumor growth and progression. Targeting TAMs and modulating their polarization is a promising strategy for cancer therapy. AREAS COVERED In this review, we discuss the importance of TME and different multiple possible targets to modulate immunosuppressive TAMs such as: CD123, Sphingosine 1-Phosphate Receptors, CD19/CD1d, CCR4/CCL22, CSF1R (CD115), CD24, CD40, B7 family proteins, MARCO, CD47, CD163, CD204, CD206 and folate receptors. EXPERT OPINION Innovative approaches to combat the immunosuppressive milieu of the tumor microenvironment in hematologic malignancies are of high clinical significance and may lead to increased survival, improved quality of life, and decreased toxicity of cancer therapies. Standard procedures will likely involve a combination of CAR T/NK-cell therapies with other treatments, leading to more comprehensive cancer care.
Collapse
Affiliation(s)
- David Kegyes
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Paul Alexandru Milea
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea-Isabella Mazga
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian-Bogdan Tigu
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Cenariu
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Tomai
- Department of Hematology, Ion Chiricuta Cancer Center, Cluj-Napoca, Romania
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Hermann Einsele
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine II, Hematology, University Hospital Würzburg, Würzburg, Germany
| | - Alina Daniela Tănase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Ciprian Tomuleasa
- Department of Hematology/Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Cancer Center, Cluj-Napoca, Romania
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
35
|
Al-Hasnawi HNG, Pouresmaeil V, Davoodi-Dehaghani F, Rahban S, Pouresmaeil A, Homayouni Tabrizi M. Synthesis Folate-linked Chitosan-coated Quetiapine/BSA Nano-Carriers as the Efficient Targeted Anti-Cancer Drug Delivery System. Mol Biotechnol 2024; 66:2297-2307. [PMID: 37633875 DOI: 10.1007/s12033-023-00858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
Quetiapine (QTP) has been known to suppress cancer progression in patients suffering from mental disorders. This study aimed to produce the folate-linked chitosan-coated quetiapine/BSA nano-carriers (FCQB-NCs) and evaluate their antioxidant, apoptotic, and anti-metastatic potentials on prostate, pancreas, colon, and breast cancer cell lines. The FCQB-NCs were designed, produced, and characterized using DLS, FESEM, FTIR, and Zeta potential techniques. The nano-carriers antioxidant activity was studied by applying ABTS, DPPH, and FRAP assays. The FCQB-NCs' cytotoxicity and apoptotic/metastatic properties were evaluated utilizing MTT assay and qPCR-based analysis for measuring the apoptotic (Nf-KB)/metastatic (MMP2, MMP9, and MMP13) gene expression, respectively. The AO/PI fluorescent cell staining, DAPI staining, and scratch assay methods were conducted to verify the apoptotic and anti-metastatic activities of FCQB-NCs. The 51-nm FCQB-NCs (PDI = 0.26) exhibited antioxidant activity and selectively decreased the MDA-MB-231 cancer cells' viability by inducing Nf-KB overexpression, which caused the apoptosis pathway activation. Moreover, the FCQB-NCs suppressed the MDA-MB-231 cells' metastatic activity by down-regulating the MMP2, MMP9, and MMP13 gene expression, verified by detecting the decreased migration rate. The FCQB-NCs selectively induced apoptosis and suppressed metastasis in the human breast cancer cell line, which can be attributed to the stepwise release of QTP in two primary (extra-cellular release) and secondary (intra-cellular release) phases. The efficient selective cytotoxic impact of FCQB-NCs can be due to the novel stepwise release mechanism of the FCQB-NCs based on the two-phase entrapment of QTP by BSA and chitosan molecules. Therefore, FCQB-NCs have the potential to be used as an efficient selective anti-breast cancer.
Collapse
Affiliation(s)
| | - Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
| | - Fatemeh Davoodi-Dehaghani
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sara Rahban
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Aida Pouresmaeil
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
36
|
Nehal N, Rohilla A, Sartaj A, Baboota S, Ali J. Folic acid modified precision nanocarriers: charting new frontiers in breast cancer management beyond conventional therapies. J Drug Target 2024; 32:855-873. [PMID: 38748872 DOI: 10.1080/1061186x.2024.2356735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer presents a significant global health challenge, ranking highest incidence rate among all types of cancers. Functionalised nanocarriers offer a promising solution for precise drug delivery by actively targeting cancer cells through specific receptors, notably folate receptors. By overcoming the limitations of passive targeting in conventional therapies, this approach holds the potential for enhanced treatment efficacy through combination therapy. Encouraging outcomes from studies like in vitro and in vivo, underscore the promise of this innovative approach. This review explores the therapeutic potential of FA (Folic acid) functionalised nanocarriers tailored for breast cancer management, discussing various chemical modification techniques for functionalization. It examines FA-conjugated nanocarriers containing chemotherapeutics to enhance treatment efficacy and addresses the pharmacokinetic aspect of these functionalised nanocarriers. Additionally, the review integrates active targeting via folic acid with theranostics, photothermal therapy, and photodynamic therapy, offering a comprehensive management strategy. Emphasising rigorous experimental validation for practical utility, the review underscores the need to bridge laboratory research to clinical application. While these functionalised nanocarriers show promise, their credibility and applicability in real-world settings necessitate thorough validation for effective clinical use.
Collapse
Affiliation(s)
- Nida Nehal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Aashish Rohilla
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
37
|
Sobral AF, Cunha A, Silva V, Gil-Martins E, Silva R, Barbosa DJ. Unveiling the Therapeutic Potential of Folate-Dependent One-Carbon Metabolism in Cancer and Neurodegeneration. Int J Mol Sci 2024; 25:9339. [PMID: 39273288 PMCID: PMC11395277 DOI: 10.3390/ijms25179339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular metabolism is crucial for various physiological processes, with folate-dependent one-carbon (1C) metabolism playing a pivotal role. Folate, a B vitamin, is a key cofactor in this pathway, supporting DNA synthesis, methylation processes, and antioxidant defenses. In dividing cells, folate facilitates nucleotide biosynthesis, ensuring genomic stability and preventing carcinogenesis. Additionally, in neurodevelopment, folate is essential for neural tube closure and central nervous system formation. Thus, dysregulation of folate metabolism can contribute to pathologies such as cancer, severe birth defects, and neurodegenerative diseases. Epidemiological evidence highlights folate's impact on disease risk and its potential as a therapeutic target. In cancer, antifolate drugs that inhibit key enzymes of folate-dependent 1C metabolism and strategies targeting folate receptors are current therapeutic options. However, folate's impact on cancer risk is complex, varying among cancer types and dietary contexts. In neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, folate deficiency exacerbates cognitive decline through elevated homocysteine levels, contributing to neuronal damage. Clinical trials of folic acid supplementation show mixed outcomes, underscoring the complexities of its neuroprotective effects. This review integrates current knowledge on folate metabolism in cancer and neurodegeneration, exploring molecular mechanisms, clinical implications, and therapeutic strategies, which can provide crucial information for advancing treatments.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Andrea Cunha
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
| | - Vera Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
38
|
Malik S, Sikander M, Bell N, Zubieta D, Bell MC, Yallapu MM, Chauhan SC. Emerging role of mucins in antibody drug conjugates for ovarian cancer therapy. J Ovarian Res 2024; 17:161. [PMID: 39118097 PMCID: PMC11308542 DOI: 10.1186/s13048-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Ovarian cancer stands as the deadliest gynecologic malignancy, responsible for nearly 65% of all gynecologic cancer-related deaths. The challenges in early detection and diagnosis, coupled with the widespread intraperitoneal spread of cancer cells and resistance to chemotherapy, contribute significantly to the high mortality rate of this disease. Due to the absence of specific symptoms and the lack of effective screening methods, most ovarian cancer cases are diagnosed at advanced stages. While chemotherapy is a common treatment, it often leads to tumor recurrence, necessitating further interventions. In recent years, antibody-drug conjugates (ADCs) have emerged as a valuable tool in targeted cancer therapy. These complex biotherapeutics combine an antibody that specifically targets tumor specific/associated antigen(s) with a high potency anti-cancer drug through a linker, offering a promising approach for ovarian cancer treatment. The identification of molecular targets in various human tumors has paved the way for the development of targeted therapies, with ADCs being at the forefront of this innovation. By delivering cytotoxic agents directly to tumors and metastatic lesions, ADCs show potential in managing chemo-resistant ovarian cancers. Mucins such as MUC16, MUC13, and MUC1 have shown significantly higher expression in ovarian tumors as compared to normal and/or benign samples, thus have become promising targets for ADC generation. While traditional markers are limited by their elevated levels in non-cancerous conditions, mucins offer a new possibility for targeted treatment in ovarian cancer. This review comprehensively described the potential of mucins for the generation of ADC therapy, highlighting their importance in the quest to improve the outcome of ovarian cancer patients.
Collapse
Affiliation(s)
- Shabnam Malik
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Mohammed Sikander
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Natasha Bell
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Daniel Zubieta
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Maria C Bell
- Sanford Health, Sanford Gynecologic Oncology Clinic, Sioux Falls, SD, 57104, USA
| | - Murali M Yallapu
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Subhash C Chauhan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA.
| |
Collapse
|
39
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
40
|
Xu H, Wang L, Xu D. Global publication productivity and research trends on recurrent ovarian cancer: a bibliometric study. Front Oncol 2024; 14:1422213. [PMID: 39035742 PMCID: PMC11257877 DOI: 10.3389/fonc.2024.1422213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Recurrent ovarian cancer (ROC) presents a dismal prognosis, persistently devoid of efficacious therapeutic strategies. Over the past decade, significant shifts have transpired in ROC management, marked by the identification of novel therapeutic targets and advancements in biomarker research and innovation. Since bibliometrics is an effective method for revealing scientific literature, we conducted a bibliometric analysis of literature pertaining to ROC. Our exploration encompassed identifying emerging research trends and common patterns, analyzing collaborative networks, and anticipating future directions within this clinical context. Methods We conducted a search in the Web of Science Core Collection (WoSCC) to acquire relevant articles as our dataset, which were then exported using R-Studio-2023.12.0-369 software. The Bibliometrix R package was utilized to perform visual analyses on countries, institutions, journals, authors, landmark articles, and keywords within this research field. Results A total of 1538 articles and 173 reviews published between 2014 and 2023 were eventually retrieved. The annual growth rate of scientific production was 4.27%. The USA led the way in the number of published works, total citations, and collaboration. Gynecologic Oncology was the most favoured journal in this research field. Vergote I from the University Hospital Leuven, was the most influential author. At last, the most prominent keywords were "chemotherapy" (n = 124), "bevacizumab" (n = 87), and "survival" (n = 65). Clinical outcomes (prognosis, survival), chemotherapy, bevacizumab, and PARP inhibitors (olaparib, niraparib) represented the basic and transversal themes, while antibody-drug conjugate (ADC) and drug resistance were emerging themes. Cytoreduction surgical procedures and tamoxifen were niche themes, while immunotherapy and biomarkers were motor themes and had high centrality. Conclusion The trends in the ROC research field over the past decade were revealed through bibliometric analysis. Platinum resistance, ADC, and immunotherapy have emerged as the current prominent research topics.
Collapse
Affiliation(s)
| | | | - Dianbo Xu
- Department of Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Oehler JB, Rajapaksha W, Albrecht H. Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer. J Pers Med 2024; 14:723. [PMID: 39063977 PMCID: PMC11278299 DOI: 10.3390/jpm14070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer remains the most prevalent cancer among women worldwide, driving the urgent need for innovative approaches to diagnosis and treatment. This review highlights the pivotal role of nanoparticles in revolutionizing breast cancer management through advancements of interconnected approaches including targeted therapy, imaging, and personalized medicine. Nanoparticles, with their unique physicochemical properties, have shown significant promise in addressing current treatment limitations such as drug resistance and nonspecific systemic distribution. Applications range from enhancing drug delivery systems for targeted and sustained release to developing innovative diagnostic tools for early and precise detection of metastases. Moreover, the integration of nanoparticles into photothermal therapy and their synergistic use with existing treatments, such as immunotherapy, illustrate their transformative potential in cancer care. However, the journey towards clinical adoption is fraught with challenges, including the chemical feasibility, biodistribution, efficacy, safety concerns, scalability, and regulatory hurdles. This review delves into the current state of nanoparticle research, their applications in breast cancer therapy and diagnosis, and the obstacles that must be overcome for clinical integration.
Collapse
Affiliation(s)
- Josephine B. Oehler
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, QLD 4810, Australia
| | - Weranga Rajapaksha
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
42
|
Solidoro R, Centonze A, Miciaccia M, Baldelli OM, Armenise D, Ferorelli S, Perrone MG, Scilimati A. Fluorescent imaging probes for in vivo ovarian cancer targeted detection and surgery. Med Res Rev 2024; 44:1800-1866. [PMID: 38367227 DOI: 10.1002/med.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer is the most lethal gynecological cancer, with a survival rate of approximately 40% at five years from the diagno. The first-line treatment consists of cytoreductive surgery combined with chemotherapy (platinum- and taxane-based drugs). To date, the main prognostic factor is related to the complete surgical resection of tumor lesions, including occult micrometastases. The presence of minimal residual diseases not detected by visual inspection and palpation during surgery significantly increases the risk of disease relapse. Intraoperative fluorescence imaging systems have the potential to improve surgical outcomes. Fluorescent tracers administered to the patient may support surgeons for better real-time visualization of tumor lesions during cytoreductive procedures. In the last decade, consistent with the discovery of an increasing number of ovarian cancer-specific targets, a wide range of fluorescent agents were identified to be employed for intraoperatively detecting ovarian cancer. Here, we present a collection of fluorescent probes designed and developed for fluorescence-guided ovarian cancer surgery. Original articles published between 2011 and November 2022 focusing on fluorescent probes, currently under preclinical and clinical investigation, were searched in PubMed. The keywords used were targeted detection, ovarian cancer, fluorescent probe, near-infrared fluorescence, fluorescence-guided surgery, and intraoperative imaging. All identified papers were English-language full-text papers, and probes were classified based on the location of the biological target: intracellular, membrane, and extracellular.
Collapse
Affiliation(s)
- Roberta Solidoro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Antonella Centonze
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Olga Maria Baldelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Domenico Armenise
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | | | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| |
Collapse
|
43
|
Boidin L, Moinard M, Moussaron A, Merlier M, Moralès O, Grolez GP, Baydoun M, Mohd-Gazzali A, Tazizi MHDM, Allah HHA, Kerbage Y, Arnoux P, Acherar S, Frochot C, Delhem N. Targeted Photodynamic Therapy using a Vectorized Photosensitizer coupled to Folic Acid Analog induces Ovarian Tumor Cell Death and inhibits IL-6-mediated Inflammation. J Control Release 2024; 371:351-370. [PMID: 38789088 DOI: 10.1016/j.jconrel.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Ovarian cancer (OC) is one of the most lethal cancers among women. Frequent recurrence in the peritoneum due to the presence of microscopic tumor residues justifies the development of new therapies. Indeed, our main objective is to develop a targeted photodynamic therapy (PDT) treatment of peritoneal carcinomatosis from OC to improve the life expectancy of cancer patients. Herein, we propose a targeted-PDT using a vectorized photosensitizer (PS) coupled with a newly folic acid analog (FAA), named PSFAA, in order to target folate receptor alpha (FRα) overexpressed on peritoneal metastasis. This PSFAA was the result of the coupling of pyropheophorbide-a (Pyro-a), as the PS, to a newly synthesized FAA via a polyethylene glycol (PEG) spacer. The selectivity and the PDT efficacy of PSFAA was evaluated on two human OC cell lines overexpressing FRα compared to fibrosarcoma cells underexpressing FRα. Final PSFAA, including the synthesis of a newly FAA and its conjugation to Pyro-a, was obtained after 10 synthesis steps, with an overall yield of 19%. Photophysical properties of PSFAA in EtOH were performed and showed similarity with those of free Pyro-a, such as the fluorescence and singlet oxygen quantum yields (Φf = 0.39 and ΦΔ = 0.53 for free Pyro-a, and Φf = 0.26 and ΦΔ = 0.41 for PSFAA). Any toxicity of PSFAA was noticed. After light illumination, a dose-dependent effect on PS concentration and light dose was shown. Furthermore, a PDT efficacy of PSFAA on OC cell secretome was detected inducing a decrease of a pro-inflammatory cytokine secretion (IL-6). This new PSFAA has shown promising biological properties highlighting the selectivity of the therapy opening new perspectives in the treatment of a cancer in a therapeutic impasse.
Collapse
Affiliation(s)
- Léa Boidin
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Morgane Moinard
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France
| | - Albert Moussaron
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France; Univ. Lorraine, CNRS, UMR7375 - LCPM - Laboratoire de Chimie-Physique Macromoléculaire, Nancy F-54000, France
| | - Margaux Merlier
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France; Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
| | - Guillaume Paul Grolez
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Martha Baydoun
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Amirah Mohd-Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Hassan Hadi Abd Allah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Yohan Kerbage
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France
| | - Philippe Arnoux
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France
| | - Samir Acherar
- Univ. Lorraine, CNRS, UMR7375 - LCPM - Laboratoire de Chimie-Physique Macromoléculaire, Nancy F-54000, France.
| | - Céline Frochot
- Univ. Lorraine, CNRS, UMR7274 - LRGP- Laboratoire des Réactions et Génie des Procédés, Nancy F-54000, France.
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, Lille F-59000, France.
| |
Collapse
|
44
|
Khadela A, Megha K, Shah VB, Soni S, Shah AC, Mistry H, Bhatt S, Merja M. Exploring the Potential of Antibody-Drug Conjugates in Targeting Non-small Cell Lung Cancer Biomarkers. Clin Med Insights Oncol 2024; 18:11795549241260534. [PMID: 38911453 PMCID: PMC11193349 DOI: 10.1177/11795549241260534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Antibody-drug conjugates (ADCs), combining the cytotoxicity of the drug payload with the specificity of monoclonal antibodies, are one of the rapidly evolving classes of anti-cancer agents. These agents have been successfully incorporated into the treatment paradigm of many malignancies, including non-small cell lung cancer (NSCLC). The NSCLC is the most prevalent subtype of lung cancer, having a considerable burden on the cancer-related mortality and morbidity rates globally. Several ADC molecules are currently approved by the Food and Drug Administration (FDA) to be used in patients with NSCLC. However, the successful management of NSCLC patients using these agents was met with several challenges, including the development of resistance and toxicities. These shortcomings resulted in the exploration of novel therapeutic targets that can be targeted by the ADCs. This review aims to explore the recently identified ADC targets along with their oncologic mechanisms. The ADC molecules targeting these biomarkers are further discussed along with the evidence from clinical trials.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kaivalya Megha
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Vraj B Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shruti Soni
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Aayushi C Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Hetvi Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Manthan Merja
- Department of Clinical Oncology, Starlit Cancer Centre, Kothiya Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
45
|
Kazemzadeh H, Bagheri M, Sepehri M, Ebrahimi E, Wang H, Haider S, Kheirabadi M, Tohidkia MR. Isolation and Characterization of the Vascular Endothelial Growth Factor Receptor Targeting ScFv Antibody Fragments Derived from Phage Display Technology. ACS OMEGA 2024; 9:21964-21973. [PMID: 38799304 PMCID: PMC11112697 DOI: 10.1021/acsomega.3c10158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Angiogenesis, as a tumor hallmark, plays an important role in the growth and development of the tumor vasculature system. There is a huge amount of evidence suggesting that the vascular endothelial growth factor receptor (VEGFR-2)/VEGF-A axis is one of the main contributors to tumor angiogenesis and metastasis. Thus, inhibition of the VEGFR-2 signaling pathway by anti-VEGFR-2 mAb can retard tumor growth. In this study, we employ phage display technology and solution-phase biopanning (SPB) to isolate specific single-chain variable fragments (scFvs) against VEGFR-2 and report on the receptor binding characteristics of the candidate scFvs A semisynthetic phage antibody library to isolate anti-VEGFR-2 scFvs through an SPB performed with decreasing concentrations of the VEGFR-2-His tag and VEGFR-2-biotin. After successful expression and purification, the specificity of the selected scFv clones was further analyzed by enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunoblotting. The competition assay was undertaken to identify the VEGFR-2 receptor-blocking properties of the scFvs. Furthermore, the molecular binding characteristics of candidate scFvs were extensively studied by peptide-protein docking. Polyclonal ELISA analysis subsequent to four rounds of biopanning showed a significant enrichment of VEGFR-2-specific phage clones by increasing positive signals from the first round toward the fourth round of selection. The individual VEGFR-2-reactive scFv phage clones were identified by monoclonal phage ELISA. The sequence analysis and complementarity-determining region alignment identified the four unique anti-VEGFR-2-scFv clones. The soluble and purified scFvs displayed binding activity against soluble and cell-associated forms of VEGFR-2 protein in the ELISA and flow cytometry assays. Based on the inference from the molecular docking results, scFvs D3, E1, H1, and E9 recognized domains 2 and 3 on the VEGFR-2 protein and displayed competition with VEGF-A for binding to VEGFR-2. The competition assay confirmed that scFvs H1 and D3 can block the VEGFR-2/VEGF-A interaction. In conclusion, we identified novel VEGFR-2-blocking scFvs that perhaps exhibit the potential for angiogenesis inhibition in VEGFR-2-overexpressed tumor cells.
Collapse
Affiliation(s)
- Hamid Kazemzadeh
- Research
Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Mahsima Bagheri
- Research
Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Maryam Sepehri
- Research
Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Elham Ebrahimi
- Basic
Science Department, Faculty of Biology, Hakim Sabzevari University, P.O. Box 96179-76487, Sabzevar 571, Iran
| | - Huan Wang
- School
of Pharmacy, University College London, London WC1N 1AX, U.K.
| | - Shozeb Haider
- School
of Pharmacy, University College London, London WC1N 1AX, U.K.
| | - Mitra Kheirabadi
- Basic
Science Department, Faculty of Biology, Hakim Sabzevari University, P.O. Box 96179-76487, Sabzevar 571, Iran
| | - Mohammad Reza Tohidkia
- Research
Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| |
Collapse
|
46
|
Mallmann MR, Tamir S, Alfter K, Ratiu D, Quaas A, Domroese CM. Expression of Potential Antibody-Drug Conjugate Targets in Cervical Cancer. Cancers (Basel) 2024; 16:1787. [PMID: 38730739 PMCID: PMC11083445 DOI: 10.3390/cancers16091787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: There is a huge unmet clinical need for novel treatment strategies in advanced and recurrent cervical cancer. Several cell membrane-bound molecules are up-regulated in cancer cells as compared to normal tissue and have revived interest with the introduction of antibody-drug conjugates (ADCs). (2) Methods: In this study, we characterize the expression of 10 potential ADC targets, TROP2, mesotheline, CEACAM5, DLL3, folate receptor alpha, guanylatcyclase, glycoprotein NMB, CD56, CD70 and CD138, on the gene expression level. Of these, the three ADC targets TROP2, CEACAM5 and CD138 were further analyzed on the protein level. (3) Results: TROP2 shows expression in 98.5% (66/67) of cervical cancer samples. CEACAM5 shows a stable gene expression profile and overall, 68.7% (46/67) of cervical cancer samples are CEACAM-positive with 34.3% (23/67) of cervical cancer samples showing at least moderate or high expression. Overall, 73.1% (49/67) of cervical cancer samples are CD138-positive with 38.8% (26/67) of cervical cancer samples showing at least moderate or high expression. (4) Conclusions: TROP2, CEACAM5 or CD138 do seem suitable for further clinical research and the data presented here might be used to guide further clinical trials with ADCs in advanced and recurrent cervical cancer patients.
Collapse
Affiliation(s)
- Michael R. Mallmann
- Faculty of Medicine, University of Cologne, 50931 Cologne, Germany; (D.R.); (A.Q.); (C.M.D.)
- Department of Obstetrics and Gynecology, University of Cologne, 50931 Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Germany
- Department of Obstetrics and Gynecology, Hospital of the City of Cologne, 51069 Cologne, Germany; (S.T.); (K.A.)
| | - Sina Tamir
- Department of Obstetrics and Gynecology, Hospital of the City of Cologne, 51069 Cologne, Germany; (S.T.); (K.A.)
| | - Katharina Alfter
- Department of Obstetrics and Gynecology, Hospital of the City of Cologne, 51069 Cologne, Germany; (S.T.); (K.A.)
| | - Dominik Ratiu
- Faculty of Medicine, University of Cologne, 50931 Cologne, Germany; (D.R.); (A.Q.); (C.M.D.)
- Department of Obstetrics and Gynecology, University of Cologne, 50931 Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Germany
| | - Alexander Quaas
- Faculty of Medicine, University of Cologne, 50931 Cologne, Germany; (D.R.); (A.Q.); (C.M.D.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Germany
- Department of Pathology, University of Cologne, 50931 Cologne, Germany
| | - Christian M. Domroese
- Faculty of Medicine, University of Cologne, 50931 Cologne, Germany; (D.R.); (A.Q.); (C.M.D.)
- Department of Obstetrics and Gynecology, University of Cologne, 50931 Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Germany
| |
Collapse
|
47
|
Stepanov AV, Xie J, Zhu Q, Shen Z, Su W, Kuai L, Soll R, Rader C, Shaver G, Douthit L, Zhang D, Kalinin R, Fu X, Zhao Y, Qin T, Baran PS, Gabibov AG, Bushnell D, Neri D, Kornberg RD, Lerner RA. Control of the antitumour activity and specificity of CAR T cells via organic adapters covalently tethering the CAR to tumour cells. Nat Biomed Eng 2024; 8:529-543. [PMID: 37798444 DOI: 10.1038/s41551-023-01102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/25/2023] [Indexed: 10/07/2023]
Abstract
On-target off-tumour toxicity limits the anticancer applicability of chimaeric antigen receptor (CAR) T cells. Here we show that the tumour-targeting specificity and activity of T cells with a CAR consisting of an antibody with a lysine residue that catalytically forms a reversible covalent bond with a 1,3-diketone hapten can be regulated by the concentration of a small-molecule adapter. This adapter selectively binds to the hapten and to a chosen tumour antigen via a small-molecule binder identified via a DNA-encoded library. The adapter therefore controls the formation of a covalent bond between the catalytic antibody and the hapten, as well as the tethering of the CAR T cells to the tumour cells, and hence the cytotoxicity and specificity of the cytotoxic T cells, as we show in vitro and in mice with prostate cancer xenografts. Such small-molecule switches of T-cell cytotoxicity and specificity via an antigen-independent 'universal' CAR may enhance the control and safety profile of CAR-based cellular immunotherapies.
Collapse
Affiliation(s)
- Alexey V Stepanov
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Wenji Su
- WuXi AppTec Co., Ltd, Shanghai, China
| | | | | | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Geramie Shaver
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Lacey Douthit
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ding Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Roman Kalinin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Xiang Fu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Yingying Zhao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Tian Qin
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - David Bushnell
- Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Roger D Kornberg
- Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
48
|
Cutri-French C, Nasioudis D, George E, Tanyi JL. CAR-T Cell Therapy in Ovarian Cancer: Where Are We Now? Diagnostics (Basel) 2024; 14:819. [PMID: 38667465 PMCID: PMC11049291 DOI: 10.3390/diagnostics14080819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The success of chimeric antigen receptor T-cell (CAR-T) therapies in the treatment of hematologic malignancies has led to the investigation of their potential in the treatment of solid tumors, including ovarian cancer. While the immunosuppressive microenvironment of ovarian cancer has been a barrier in their implementation, several early phase clinical trials are currently evaluating CAR-T cell therapies targeting mesothelin, folate receptor a, HER2, MUC16, and B7H3. Ongoing challenges include cytokine-associated and "on-target, off-tumor" toxicities, while most common adverse events include cytokine release syndrome, hemophagocytic lymphohistiocytosis/macrophage activation-like syndrome (HLH/MAS), and neurotoxicity. In the present review, we summarize the current status of CAR-T therapy in ovarian cancer and discuss future directions.
Collapse
Affiliation(s)
- Clare Cutri-French
- Department of Obstetrics and Gynecology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA;
| | - Dimitrios Nasioudis
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
| | - Erin George
- Moffitt Cancer Center, Richard M. Schulze Family Foundation Outpatient Center at McKinley Campus, 10920 McKinley Dr, Tampa, FL 33612, USA
| | - Janos L. Tanyi
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Persenaire C, Bitler BG, Corr BR. Folate receptor alpha protein expression in ovarian serous cystadenocarcinoma tumors of The Cancer Genome Atlas: exploration beyond single-agent therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.12.24305742. [PMID: 38645083 PMCID: PMC11030472 DOI: 10.1101/2024.04.12.24305742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Epithelial ovarian cancer (EOC) can be highly lethal, with limited therapeutic options for patients with non-homologous recombination deficient (HRD) disease. Folate receptor alpha (FOLR1/FRα)-targeting agents have shown promise both alone and in combination with available therapies, but the relationship of FRα to other treatment-driving biomarkers is unknown. The Cancer Genome Atlas (TCGA) was queried to assess protein and mRNA expression and mutational burden in patients with differential FRα protein-expressing ovarian tumors, and the results referenced against the standard 324 mutations currently tested through FoundationOne Companion Diagnostics to identify targets of interest. Of 585 samples within TCGA, 121 patients with serous ovarian tumors for whom FRα protein expression was quantified were identified. FRα protein expression significantly correlated with FOLR1 mRNA expression (p=7.19×1014). Progression free survival (PFS) for the FRα-high group (Q1) was 20.7 months, compared to 16.6 months for the FRα-low group (Q4, Logrank, p=0.886). Overall survival (OS) was 54.1 months versus 36.3 months, respectively; however, this result was not significant (Q1 vs. Q4, Logrank, p=0.200). Mutations more commonly encountered in patients with high FRα-expressing tumors included PIK3CA and FGF family proteins. Combinations of FRα-targeting agents with PI3K, mTOR, FGF(R) and VEGF inhibitors warrant investigation to evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Christianne Persenaire
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bradley R. Corr
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
50
|
Śliwa A, Szczerba A, Pięta PP, Białas P, Lorek J, Nowak-Markwitz E, Jankowska A. A Recipe for Successful Metastasis: Transition and Migratory Modes of Ovarian Cancer Cells. Cancers (Basel) 2024; 16:783. [PMID: 38398174 PMCID: PMC10886816 DOI: 10.3390/cancers16040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
One of the characteristic features of ovarian cancer is its early dissemination. Metastasis and the invasiveness of ovarian cancer are strongly dependent on the phenotypical and molecular determinants of cancer cells. Invasive cancer cells, circulating tumor cells, and cancer stem cells, which are responsible for the metastatic process, may all undergo different modes of transition, giving rise to mesenchymal, amoeboid, and redifferentiated epithelial cells. Such variability is the result of the changing needs of cancer cells, which strive to survive and colonize new organs. This would not be possible if not for the variety of migration modes adopted by the transformed cells. The most common type of metastasis in ovarian cancer is dissemination through the transcoelomic route, but transitions in ovarian cancer cells contribute greatly to hematogenous and lymphatic dissemination. This review aims to outline the transition modes of ovarian cancer cells and discuss the migratory capabilities of those cells in light of the known ovarian cancer metastasis routes.
Collapse
Affiliation(s)
- Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Paweł Piotr Pięta
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Białas
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Jakub Lorek
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| |
Collapse
|