1
|
Harrison BP, McNeil WH, Dai T, Campbell JE, Scown CD. Site Suitability and Air Pollution Impacts of Composting Infrastructure for California's Organic Waste Diversion Law. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19913-19924. [PMID: 39472449 PMCID: PMC11562721 DOI: 10.1021/acs.est.4c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/13/2024]
Abstract
California's organic waste diversion law, SB 1383, mandates a 75% reduction in organics disposal by 2025 to reduce landfill methane emissions. Composting will likely be the primary alternative to landfilling, and 75-100 new large-scale composting facilities must be sited in the state to meet its diversion goal. We developed a strategy for evaluating site suitability for commercial composting by incorporating land-use, economic, and environmental justice criteria. In our Baseline scenario, we identified 899 candidate sites, and nearly all are within a cost-effective hauling distance of cropland and rangelands for compost application. About half of sites, mostly in rural areas, are not within a cost-effective collection distance of enough municipal organics to supply an average-sized facility. Conversely, sites near cities have greater access to organics but cause greater health damages from ammonia and volatile organic compounds emitted during the composting process. The additional required composting capacity corresponds to $266-355 million in annual damages from air pollution. However, this excludes avoided emissions from landfilling, and damages could be reduced by 56% if aerated static piles are used instead of windrows. Siting a higher number of smaller decentralized facilities could also help equally distribute air pollution to avoid concentrating burdens in certain communities.
Collapse
Affiliation(s)
- Brendan P. Harrison
- Energy
and Biosciences Institute, University of
California, Berkeley, Berkeley, California 94720, United States
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Wilson H. McNeil
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Tao Dai
- Biosciences
Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Life-Cycle,
Economics and Agronomy Division, Joint BioEnergy
Institute, Emeryville, California 94608, United States
| | - J. Elliott Campbell
- Environmental
Studies Department, University of California,
Santa Cruz, Santa
Cruz, California 95064, United States
| | - Corinne D. Scown
- Energy
and Biosciences Institute, University of
California, Berkeley, Berkeley, California 94720, United States
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Biosciences
Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Life-Cycle,
Economics and Agronomy Division, Joint BioEnergy
Institute, Emeryville, California 94608, United States
| |
Collapse
|
2
|
Wei TJ, Li G, Cui YR, Xie J, Liang ZW, Guan FC, Li ZH. Response of Alfalfa Leaf Traits and Rhizosphere Fungal Communities to Compost Application in Saline-Sodic Soil. Microorganisms 2024; 12:2287. [PMID: 39597677 PMCID: PMC11596975 DOI: 10.3390/microorganisms12112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Soil salinization is considered a major global environmental problem due to its adverse effects on agricultural sustainability and production. Compost is an environmentally friendly and sustainable measure used for reclaiming saline-sodic soil. However, the responses of the physiological characteristics of alfalfa and the structure and function of rhizosphere fungal communities after compost application in saline-sodic soil remain elusive. Here, a pot experiment was conducted to explore the effect of different compost application rates on soil properties, plant physiological traits, and rhizosphere fungal community characteristics. The results showed that compost significantly increased soil nutrients and corresponding soil enzyme activities, enhanced leaf photosynthesis traits, and ion homeostasis compared with the control treatment. We further found that the rhizosphere fungal communities were dominated by Sodiomyces at the genus level, and the relative abundance of pathogenic fungi, such as Botryotrichum, Plectosphaerella, Pseudogymnoascus, and Fusarium, declined after compost application. Moreover, the α-diversity indexes of the fungal community under compost application rates of 15% and 25% significantly decreased in comparison to the control treatment. The soil SOC, pH, TP, and TN were the main environmental factors affecting fungal community composition. The leaf photosynthetic traits and metal ion contents showed significantly positive correlations with Sodiomyces and Aspergillus. The fungal trophic mode was dominated by Pathotroph-Saprotroph-Symbiotroph and Saprotroph. Overall, our findings provide an important basis for the future application of microbial-based strategies to improve plant tolerance to saline-alkali stress.
Collapse
Affiliation(s)
- Tian-Jiao Wei
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| | - Guang Li
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| | - Yan-Ru Cui
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| | - Jiao Xie
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| | - Zheng-Wei Liang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
| | - Fa-Chun Guan
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| | - Zhong-He Li
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun 130033, China; (T.-J.W.); (G.L.); (Y.-R.C.); (J.X.)
| |
Collapse
|
3
|
Hall AL, Ponomareva AI, Torn MS, Potts MD. Socio-environmental Opportunities for Organic Material Management in California's Sustainability Transition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9031-9039. [PMID: 38752553 PMCID: PMC11137869 DOI: 10.1021/acs.est.3c10711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Contemporary resource management is doubly burdened by high rates of organic material disposal in landfills, generating potent greenhouse gases (GHG), and globally degraded soils, which threaten future food security. Expansion of composting can provide a resilient alternative, by avoiding landfill GHG emissions, returning valuable nutrients to the soil to ensure continued agricultural production, and sequestering carbon while supporting local communities. Recognizing this opportunity, California has set ambitious organics diversion targets in the Short-Lived Climate Pollutant Law (SB1383) which will require significant increases (5 to 8 million tonnes per year) in organic material processing capacity. This paper develops a spatial optimization model to consider how to handle this flow of additional material while achieving myriad social and ecological benefits through compost production. We consider community-based and on-farm facilities alongside centralized, large-scale infrastructure to explore decentralized and diversified alternative futures of composting infrastructure in the state of California. We find using a diversity of facilities would provide opportunity for cost savings while achieving significant emissions reductions of approximately 3.4 ± 1 MMT CO2e and demonstrate that it is possible to incorporate community protection into compost infrastructure planning while meeting economic and environmental objectives.
Collapse
Affiliation(s)
- Anaya L. Hall
- Energy
& Resources Group University of California—Berkeley 345 Giannini Hall Berkeley, California 94720, United States
| | - Aleksandra I. Ponomareva
- Energy
& Resources Group University of California—Berkeley 345 Giannini Hall Berkeley, California 94720, United States
| | - Margaret S. Torn
- Energy
& Resources Group University of California—Berkeley 345 Giannini Hall Berkeley, California 94720, United States
- Climate
and Ecosystem Sciences Division Lawrence
Berkeley National Laboratory Berkeley, California 94720, United States
| | - Matthew D. Potts
- Department
of Environmental Science, Policy, and Management University of California—Berkeley 130 Mulford Hall Berkeley, California 94720, United States
- Carbon
Direct, Incorporated 17 State Street New York, New York 10004, United States
| |
Collapse
|
4
|
Fu J, Zhou X, He Y, Liu R, Yao Y, Zhou G, Chen H, Zhou L, Fu Y, Bai SH. Co-application of biochar and organic amendments on soil greenhouse gas emissions: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166171. [PMID: 37582442 DOI: 10.1016/j.scitotenv.2023.166171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Biochar has been shown to reduce soil greenhouse gas (GHG) and increase nutrient retention in soil; however, the interaction between biochar and organic amendments on GHG emissions remain largely unclear. In this study, we collected 162 two-factor observations to explore how biochar and organic amendments jointly affect soil GHG emissions. Our results showed that biochar addition significantly increased soil CO2 emission by 8.62 %, but reduced CH4 and N2O emissions by 27.0 % and 23.9 %, respectively. Meanwhile, organic amendments and the co-application with biochar resulted in an increase of global warming potential based on the 100-year time horizon (GWP100) by an average of 18.3 % and 26.1 %. More importantly, the interactive effect of biochar and organic amendments on CO2 emission was antagonistic (the combined effect was weaker than the sum of their individual effects), while additive on CH4 and N2O emissions. Additionally, our results suggested that when biochar is co-applied with organic amendments, soil GHG emissions were largely influenced by soil initial total carbon, soil texture, and biochar feedstocks. Our work highlights the important interactive effects of biochar and organic amendments on soil GHG emissions, and provides new insights for promoting ecosystem sustainability as well as mitigating future climate change.
Collapse
Affiliation(s)
- Jia Fu
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yanghui He
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Ruiqiang Liu
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yixian Yao
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Guiyao Zhou
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Hongyang Chen
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lingyan Zhou
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yuling Fu
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
5
|
Pérez T, Vergara SE, Silver WL. Assessing the climate change mitigation potential from food waste composting. Sci Rep 2023; 13:7608. [PMID: 37165058 PMCID: PMC10172324 DOI: 10.1038/s41598-023-34174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Food waste is a dominant organic constituent of landfills, and a large global source of greenhouse gases. Composting food waste presents a potential opportunity for emissions reduction, but data on whole pile, commercial-scale emissions and the associated biogeochemical drivers are lacking. We used a non-invasive micrometeorological mass balance approach optimized for three-dimensional commercial-scale windrow compost piles to measure methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions continuously during food waste composting. Greenhouse gas flux measurements were complemented with continuous oxygen (O2) and temperature sensors and intensive sampling for biogeochemical processes. Emission factors (EF) ranged from 6.6 to 8.8 kg CH4-C/Mg wet food waste and were driven primarily by low redox and watering events. Composting resulted in low N2O emissions (0.01 kg N2O-N/Mg wet food waste). The overall EF value (CH4 + N2O) for food waste composting was 926 kgCO2e/Mg of dry food waste. Composting emissions were 38-84% lower than equivalent landfilling fluxes with a potential net minimum savings of 1.4 MMT CO2e for California by year 2025. Our results suggest that food waste composting can help mitigate emissions. Increased turning during the thermophilic phase and less watering overall could potentially further lower emissions.
Collapse
Affiliation(s)
- Tibisay Pérez
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA.
- Centro de Ciencias Atmosféricas y Biogeoquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Aptdo 1020A, Venezuela.
| | - Sintana E Vergara
- Department of Environmental Resources Engineering, Humboldt State University, 1 Harpst Street, Arcata, CA, 95521, USA
| | - Whendee L Silver
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
6
|
Mayer A, Silver WL. The climate change mitigation potential of annual grasslands under future climates. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2705. [PMID: 35808918 DOI: 10.1002/eap.2705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Composted manure and green waste amendments have been shown to increase net carbon (C) sequestration in rangeland soils and have been proposed as a means to help lower atmospheric CO2 concentrations. However, the effect of climate change on soil organic C (SOC) stocks and greenhouse gas emissions in rangelands is not well understood, and the viability of climate change mitigation strategies under future conditions is even less certain. We used a process-based biogeochemical model (DayCent) at a daily time step to explore the long-term effects of potential future climate changes on C and greenhouse gas dynamics in annual grassland ecosystems. We then used the model to explore how the same ecosystems might respond to climate change following compost amendments to soils and determined the long-term viability of net SOC sequestration under changing climates. We simulated net primary productivity (NPP), SOC, and greenhouse gas fluxes across seven California annual grasslands with and without compost amendments. We drove the DayCent simulations with field data and with site-specific daily climate data from two Earth system models (CanESM2 and HadGEM-ES) and two representative concentration pathways (RCP4.5 and RCP8.5) through 2100. NPP and SOC stocks in unamended and amended ecosystems were surprisingly insensitive to projected climate changes. A one-time amendment of compost to rangeland acted as a slow-release organic fertilizer and increased NPP by up to 390-814 kg C ha-1 year-1 across sites. The amendment effect on NPP was not sensitive to Earth system model or emissions scenario and endured through the end of the century. Net SOC sequestration amounted to 1.96 ± 0.02 Mg C ha-1 relative to unamended soils at the maximum amendment effect. Averaged across sites and scenarios, SOC sequestration peaked 22 ± 1 years after amendment and declined but remained positive throughout the century. Though compost stimulated nitrous oxide (N2 O) emissions, the cumulative net emissions (in CO2 equivalents) due to compost were far less than the amount of SOC sequestered. Compost amendments resulted in a net climate benefit of 69.6 ± 0.5 Tg CO2 e 20 ± 1 years after amendment if applied to similar ecosystems across the state, amounting to 39% of California's rangeland. These results suggest that the biogeochemical benefits of a single amendment of compost to rangelands in California are insensitive to climate change and could contribute to decadal-scale climate change mitigation goals alongside emissions reductions.
Collapse
Affiliation(s)
- Allegra Mayer
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Lab, Livermore, California, USA
| | - Whendee L Silver
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
7
|
Parodi A, Villamonte-Cuneo G, Loboguerrero AM, Martínez-Barón D, Vázquez-Rowe I. Embedding circularity into the transition towards sustainable agroforestry systems in Peru. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156376. [PMID: 35662598 DOI: 10.1016/j.scitotenv.2022.156376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Peru is promoting the adoption of agroforestry systems with the aim to halt the deforestation of tropical forests caused by smallholder farmers. However, deficient soil conservation practices and nutrient management are common among the targeted smallholders, hampering the success of this strategy. In this study, we explore the potential of valorizing municipal biowaste as compost to be used as soil amendment in coffee agroforestry systems and in silvopastoral systems. The analysis was concentrated in four Peruvian regions and the most populous city in each of them. For lands with coffee production, it was assumed that 90 kg N ha-1 (i.e., 50% of the N requirements) should come from compost, while for pastures, the requirement was 40 kg P ha-1. We found that composting could lead to large greenhouse gas (GHG) reductions compared with the current waste disposal methods (i.e., deep dumping and landfilling), as it only emits 5-10% of the GHG emissions produced with the other methods. Nonetheless, the area of agroforestry and silvopastoral systems that could be fertilized with compost obtained from the main city of each region is limited and insufficient. If all compost were to be used for the coffee agroforestry system, less than 3% of the coffee agroforestry area could be fertilized, while in the case of pastures, only 4% would be attained. Large amounts of compost could be obtained from Lima, the most populated city; however, its transportation to the agroforestry areas would increase compost GHG emissions by 15-60%. Although composting municipal food waste and loss may bring GHG benefits and should be promoted, its use as a fertilizer requires mixing with N-rich sources to improve its nutrient quality.
Collapse
Affiliation(s)
- Alejandro Parodi
- Animal Production Systems group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands.
| | - Gianfranco Villamonte-Cuneo
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, Lima 15088, Peru
| | | | | | - Ian Vázquez-Rowe
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, Lima 15088, Peru
| |
Collapse
|
8
|
Wu N, Liu A, Ye R, Yu D, Du W, Chaolumeng Q, Liu G, Yu S. Quantitative analysis of relative impacts of climate change and human activities on Xilingol grassland in recent 40 years. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Ryals R, Bischak E, Porterfield KK, Heisey S, Jeliazovski J, Kramer S, Pierre S. Toward Zero Hunger Through Coupled Ecological Sanitation-Agriculture Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.716140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ecological sanitation (EcoSan) systems capture and sanitize human excreta and generate organic nutrient resources that can support more sustainable nutrient management in agricultural ecosystems. An emerging EcoSan system that is implemented in Haiti and several other contexts globally couples container-based household toilets with aerobic, thermophilic composting. This closed loop sanitation system generates organic nutrient resources that can be used as part of an ecological approach to soil nutrient management and thus has the potential to contribute to Sustainable Development Goals 2 (zero hunger), 6 (clean water and sanitation for all), and 13 (climate change solutions). However, the role of organic nutrient resources derived from human excreta in food production is poorly studied. We conducted a greenhouse experiment comparing the impact of feces-derived compost on crop production, soil nutrient cycling, and nutrient losses with two amendments produced from wastewater treatment (pelletized biosolids and biofertilizer), urea, and an unfertilized control. Excreta-derived amendments increased crop yields 2.5 times more than urea, but had differing carry-over effects. After a one-time application of compost, crop production remained elevated throughout all six crop cycles. In contrast, the carry-over of crop response lasted two and four crop cycles for biosolids and biofertilizer, respectively, and was absent for urea. Soil carbon concentration in the compost amended soils increased linearly through time from 2.0 to 2.5%, an effect not seen with other treatments. Soil nitrous oxide emissions factors ranged from 0.3% (compost) to 4.6% (biosolids), while nitrogen leaching losses were lowest for biosolids and highest for urea. These results indicate that excreta-derived compost provides plant available nutrients, while improving soil health through the addition of soil organic carbon. It also improved biogeochemical functions, indicating the potential of excreta-derived compost to close nutrient loops if implemented at larger scales. If captured and safely treated through EcoSan, human feces produced in Haiti can meet up to 13, 22, and 11% of major crop needs of nitrogen, phosphorus, and potassium, respectively.
Collapse
|
10
|
Carbon Dynamics of Fruit and Vegetable Wastes and Biodegradable Municipal Waste Compost-Amended Oxisol. SUSTAINABILITY 2021. [DOI: 10.3390/su131910869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recycling of wastes via composting is advocated as a means to reduce environmental hazards due to the dumping of wastes. Composting also creates a vital source of organic matter that is important in nutrient and soil moisture retention, soil fertility preservation and improving the physical and chemical properties of soils. This study was conducted to evaluate the short-term effects of four compost amendments in an Oxisol on carbon dynamics (carbon dioxide evolution and carbon transformation). The composts were prepared in 3:1 and 1:2 of fruit and vegetable waste (FVW) to biodegradable municipal waste (BMW) with and without indigenous microorganisms (IMO) (3:1 +IMO, 1:2 +IMO, 3:1 −IMO, 1:2 −IMO). Soil incubation studies were carried out for 35 days at three compost application rates of 0, 5 and 10 Mg ha−1, with measurements done including the CO2 evolution, dehydrogenase enzyme (DHA) assay and compost Fourier transform infrared (FTIR) spectroscopy spectral analysis. At 10 Mg ha−1 compost application rate, increased soil respiration rate was obtained at 3:1 +IMO compost, mostly due to increased labile organic matter and higher amount of FVW in the compost mixture, which stimulated soil microorganisms and/or their activities reflected by increased evolution of CO2 in the process of decomposition of the added composts in the compost-amended soils. The DHA activity increased with compost application rates, and significantly, the highest DHA activity was recorded at 3:1 +IMO compost applied at 10 Mg ha−1 soil at 1.38 triphenylformazan (TPF)/g dry soil/24 h. The compost FTIR spectral analysis showed transformations that occurred due to the composting that was carried out. A broadband between 3279–3347 cm wavelength in the FTIR spectroscopy indicated the presence of carboxylic and hydroxyl functional groups because of carbon transformation that occurred in the composts.
Collapse
|
11
|
Almaraz M, Wong MY, Geoghegan EK, Houlton BZ. A review of carbon farming impacts on nitrogen cycling, retention, and loss. Ann N Y Acad Sci 2021; 1505:102-117. [PMID: 34580879 DOI: 10.1111/nyas.14690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
Soil carbon (C) sequestration in agricultural working lands via soil amendments and management practices is considered a relatively well-tested and affordable approach for removing CO2 from the atmosphere. Carbon farming provides useful benefits for soil health, biomass production, and crop resilience, but the effects of different soil C sequestration approaches on the nitrogen (N) cycle remain controversial. While some C farming practices have been shown to reduce N fertilizer use in some cases, C farming could also impose an unwanted "N penalty" through which soil C gains can only be maintained with additional N inputs, thereby increasing N losses to the environment. We systematically reviewed meta-analysis studies on the impacts of C farming on N cycling in agroecosystems and estimated the cumulative effect of several C farming practices on N cycling. We found that, on average, combined C farming practices significantly reduced nitrous oxide emissions and nitrate leaching from soils, thus inferring both N cycling and climate change benefits. In addition to more widely studied C farming practices that generate organic C, we also discuss silicate rock additions, which offer a pathway to inorganic C sequestration that does not require additional N inputs, framing important questions for future research.
Collapse
Affiliation(s)
- Maya Almaraz
- John Muir Institute of the Environment, University of California, Davis, California
| | | | - Emily K Geoghegan
- Department of Land, Air and Water Resources, University of California, Davis, California
| | - Benjamin Z Houlton
- Department of Global Development, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York.,Department of Ecology and Evolutionary Biology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
12
|
Silver WL, Perez T, Mayer A, Jones AR. The role of soil in the contribution of food and feed. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200181. [PMID: 34365816 PMCID: PMC8349637 DOI: 10.1098/rstb.2020.0181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Soils play a critical role in the production of food and feed for a growing global population. Here, we review global patterns in soil characteristics, agricultural production and the fate of embedded soil nutrients. Nitrogen- and organic-rich soils supported the highest crop yields, yet the efficiency of nutrient utilization was concentrated in regions with lower crop productivity and lower rates of chemical fertilizer inputs. Globally, soil resources were concentrated in animal feed, resulting in large inefficiencies in nutrient utilization and losses from the food system. Intercontinental transport of soil-derived nutrients displaced millions of tonnes of nitrogen and phosphorus annually, much of which was ultimately concentrated in urban waste streams. Approximately 40% of the global agricultural land area was in small farms providing over 50% of the world's food and feed needs but yield gaps and economic constraints limit the ability to intensify production on these lands. To better use and protect soil resources in the global food system, policies and actions should encourage shifts to more nutrient-efficient diets, strategic intensification and technological improvement, restoration and maintenance of soil fertility and stability, and enhanced resilience in the face of global change. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- W. L. Silver
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - T. Perez
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- Centro de Ciencias Atmosféricas y Biogeoquímica, IVIC, Caracas, Venezuela
| | - A. Mayer
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - A. R. Jones
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Fenster TLD, Oikawa PY, Lundgren JG. Regenerative Almond Production Systems Improve Soil Health, Biodiversity, and Profit. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.664359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regenerative agriculture aims to improve soil health and promote biodiversity while producing nutritious food profitably. Almonds are the dominant crop in California agriculture in terms of acreage and revenue generated. We examined the soil health, biodiversity, yield, and profit of regenerative and conventional almond production systems that represented farmer-derived best management practices. Regenerative practices included abandoning some or all synthetic agrichemicals, planting perennial ground covers, integrating livestock, maintaining non-crop habitat, and using composts and compost teas. Total soil carbon (TSC), soil organic matter (SOM), total soil nitrogen (TSN), total soil phosphorous, calcium, sulfur, and soil health test scores were all significantly greater in regenerative soils. Water infiltrated regenerative soils six-fold faster than conventional soils. Total microbial biomass, total bacterial biomass, Gram+ bacteria, and Actinobacteria were significantly greater in regenerative soils. There was more plant biomass, species diversity, and percent cover in regenerative orchards. Invertebrate richness and diversity, and earthworm abundance and biomass were significantly greater in regenerative orchards. Pest populations, yields, and nutrient density of the almonds were similar in the two systems. Profit was twice as high in the regenerative orchards relative to their conventional counterparts. No one practice was responsible for the success of regenerative farms; their success was the result of simultaneously combining multiple regenerative practices into a single, functional farm system. This style of farming may assist in combatting planetary scale problems (e.g., climate change, biodiversity loss, agricultural pollution, chronic human health problems, and declining rural communities) while making farms more profitable and resilient.
Collapse
|
14
|
Di Vittorio AV, Simmonds MB, Nico P. Quantifying the effects of multiple land management practices, land cover change, and wildfire on the California landscape carbon budget with an empirical model. PLoS One 2021; 16:e0251346. [PMID: 33961661 PMCID: PMC8104402 DOI: 10.1371/journal.pone.0251346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/24/2021] [Indexed: 11/19/2022] Open
Abstract
The effectiveness of land-based climate mitigation strategies is generally estimated on a case-by-case basis without considering interactions with other strategies or influencing factors. Here we evaluate a new, comprehensive approach that incorporates interactions among multiple management strategies, land use/cover change, wildfire, and climate, although the potential effects of climate change are not evaluated in this study. The California natural and working lands carbon and greenhouse gas model (CALAND) indicates that summing individual practice estimates of greenhouse gas impacts may underestimate emission reduction benefits in comparison with an integrated estimate. Annual per-area estimates of the potential impact of specific management practices on landscape emissions can vary based on the estimation period, which can be problematic for extrapolating such estimates over space and time. Furthermore, the actual area of implementation is a primary factor in determining potential impacts of management on landscape emissions. Nonetheless, less intensive forest management, avoided conversion to urban land, and urban forest expansion generally create the largest annual per-area reductions, while meadow restoration and forest fuel reduction and harvest practices generally create the largest increases with respect to no management. CALAND also shows that data uncertainty is too high to determine whether California land is a source or a sink of carbon emissions, but that estimating effects of management with respect to a baseline provides valid results. Important sources of this uncertainty are initial carbon density, net ecosystem carbon accumulation rates, and land use/cover change data. The appropriate choice of baseline is critical for generating valid results.
Collapse
Affiliation(s)
- Alan V. Di Vittorio
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Maegen B. Simmonds
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Peter Nico
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
15
|
Lazcano C, Zhu-Barker X, Decock C. Effects of Organic Fertilizers on the Soil Microorganisms Responsible for N 2O Emissions: A Review. Microorganisms 2021; 9:microorganisms9050983. [PMID: 34062833 PMCID: PMC8147359 DOI: 10.3390/microorganisms9050983] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
The use of organic fertilizers constitutes a sustainable strategy to recycle nutrients, increase soil carbon (C) stocks and mitigate climate change. Yet, this depends largely on balance between soil C sequestration and the emissions of the potent greenhouse gas nitrous oxide (N2O). Organic fertilizers strongly influence the microbial processes leading to the release of N2O. The magnitude and pattern of N2O emissions are different from the emissions observed from inorganic fertilizers and difficult to predict, which hinders developing best management practices specific to organic fertilizers. Currently, we lack a comprehensive evaluation of the effects of OFs on the function and structure of the N cycling microbial communities. Focusing on animal manures, here we provide an overview of the effects of these organic fertilizers on the community structure and function of nitrifying and denitrifying microorganisms in upland soils. Unprocessed manure with high moisture, high available nitrogen (N) and C content can shift the structure of the microbial community, increasing the abundance and activity of nitrifying and denitrifying microorganisms. Processed manure, such as digestate, compost, vermicompost and biochar, can also stimulate nitrifying and denitrifying microorganisms, although the effects on the soil microbial community structure are different, and N2O emissions are comparatively lower than raw manure. We propose a framework of best management practices to minimize the negative environmental impacts of organic fertilizers and maximize their benefits in improving soil health and sustaining food production systems. Long-term application of composted manure and the buildup of soil C stocks may contribute to N retention as microbial or stabilized organic N in the soil while increasing the abundance of denitrifying microorganisms and thus reduce the emissions of N2O by favoring the completion of denitrification to produce dinitrogen gas. Future research using multi-omics approaches can be used to establish key biochemical pathways and microbial taxa responsible for N2O production under organic fertilization.
Collapse
Affiliation(s)
- Cristina Lazcano
- Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95616, USA;
- Correspondence:
| | - Xia Zhu-Barker
- Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95616, USA;
| | - Charlotte Decock
- Natural Resources Management and Environmental Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| |
Collapse
|
16
|
Cusack DF, Kazanski CE, Hedgpeth A, Chow K, Cordeiro AL, Karpman J, Ryals R. Reducing climate impacts of beef production: A synthesis of life cycle assessments across management systems and global regions. GLOBAL CHANGE BIOLOGY 2021; 27:1721-1736. [PMID: 33657680 PMCID: PMC8248168 DOI: 10.1111/gcb.15509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 06/02/2023]
Abstract
The global demand for beef is rapidly increasing (FAO, 2019), raising concern about climate change impacts (Clark et al., 2020; Leip et al., 2015; Springmann et al., 2018). Beef and dairy contribute over 70% of livestock greenhouse gas emissions (GHG), which collectively contribute ~6.3 Gt CO2 -eq/year (Gerber et al., 2013; Herrero et al., 2016) and account for 14%-18% of human GHG emissions (Friedlingstein et al., 2019; Gerber et al., 2013). The utility of beef GHG mitigation strategies, such as land-based carbon (C) sequestration and increased production efficiency, are actively debated (Garnett et al., 2017). We compiled 292 local comparisons of "improved" versus "conventional" beef production systems across global regions, assessing net GHG emission data from Life Cycle Assessment (LCA) studies. Our results indicate that net beef GHG emissions could be reduced substantially via changes in management. Overall, a 46 % reduction in net GHG emissions per unit of beef was achieved at sites using carbon (C) sequestration management strategies on grazed lands, and an 8% reduction in net GHGs was achieved at sites using growth efficiency strategies. However, net-zero emissions were only achieved in 2% of studies. Among regions, studies from Brazil had the greatest improvement, with management strategies for C sequestration and efficiency reducing beef GHG emissions by 57%. In the United States, C sequestration strategies reduced beef GHG emissions by over 100% (net-zero emissions) in a few grazing systems, whereas efficiency strategies were not successful at reducing GHGs, possibly because of high baseline efficiency in the region. This meta-analysis offers insight into pathways to substantially reduce beef production's global GHG emissions. Nonetheless, even if these improved land-based and efficiency management strategies could be fully applied globally, the trajectory of growth in beef demand will likely more than offset GHG emissions reductions and lead to further warming unless there is also reduced beef consumption.
Collapse
Affiliation(s)
- Daniela F. Cusack
- Department of Ecosystem Science and SustainabilityWarner College of Natural ResourcesB205 Natural and Environmental Sciences BuildingColorado State UniversityFort CollinsCOUSA
- Department of GeographyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Clare E. Kazanski
- The Nature Conservancy – North America RegionMinneapolisMNUSA
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Alexandra Hedgpeth
- Department of GeographyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Kenyon Chow
- Department of Atmospheric & Oceanic SciencesUniversity of California, Los AngelesLos AngelesCAUSA
| | - Amanda L. Cordeiro
- Department of Ecosystem Science and SustainabilityWarner College of Natural ResourcesB205 Natural and Environmental Sciences BuildingColorado State UniversityFort CollinsCOUSA
| | - Jason Karpman
- Luskin School of Public AffairsUniversity of California, Los AngelesLos AngelesCAUSA
| | - Rebecca Ryals
- Department of Life and Environmental SciencesUniversity of California, MercedMercedCAUSA
| |
Collapse
|
17
|
Kitamura R, Sugiyama C, Yasuda K, Nagatake A, Yuan Y, Du J, Yamaki N, Taira K, Kawai M, Hatano R. Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.649613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reduction of chemical fertilizers and effective use of livestock excrement are required for the realization of sustainable agriculture and reduction of greenhouse gas (GHG) emissions. The purpose of this study was to estimate the reduction rate of GHG emissions represented by comparing global warming potential (GWP) using organic fertilizers instead of chemical fertilizers. The study was conducted in a managed grassland on Andosol in southern Hokkaido for 3 years from May 2017 to April 2020. There were five treatment plots: no fertilizer, chemical fertilizer, manure, slurry, and digestive fluid. Organic fertilizers were applied such that the amount of NPK did not exceed the recommended application rate, and the shortage was supplemented with chemical fertilizers. Fluxes in CO2 caused by heterotrophic respiration (RH), CH4, and N2O were measured using the closed chamber method. Net ecosystem carbon balance (NECB) was obtained as net primary production + organic fertilizer application—RH—harvest. The GWP was estimated by CO2 equivalent NECB and CH4 and N2O emissions in each treatment. Chemical fertilizer nitrogen application rates in the organic fertilizer treatments were reduced by 10% for manure, 19.7% for slurry and 29.7% for digestive fluid compared to chemical fertilizer only, but the grass yields were not significantly different among the fertilizer treatments. The 3-year NECB showed significantly smallest carbon loss in manure treatment, and smaller carbon loss in the organic fertilizer treatments than in the chemical fertilizer only. The reduction rate in the GWP with use of organic fertilizers relative to that of chemical fertilizer was 16.5% for slurry, 27.0% for digestive fluid, and 36.2% for manure. The NECB accounted for more than 90% of the GWP in all treatments. CH4 emissions were < 0.1% of the GWP. On the other hand, N2O emissions accounted for more than 5% of the GWP, and was larger in the order of slurry > chemical fertilizer only > digestive fluid > manure. As a conclusion, these organic fertilizers can be used without no reduction of crop yield instead of chemical fertilizer, however, manure is the best way to increase soil carbon and to decrease GWP, followed by digestive fluid.
Collapse
|
18
|
Harrison BP, Chopra E, Ryals R, Campbell JE. Quantifying the Farmland Application of Compost to Help Meet California's Organic Waste Diversion Law. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4545-4553. [PMID: 32162912 DOI: 10.1021/acs.est.9b05377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
California's landmark waste diversion law, SB 1383, mandates the diversion of 75% of organic waste entering landfills by 2025. Much of this organic waste will likely be composted and applied to farms. However, compost is expensive and energy intensive to transport, which limits the distance that compost can be shipped. Though the diversion of organic waste from landfills in California has the potential to significantly reduce methane emissions, it is unclear if enough farmland exists in close proximity to each city for the distribution of compost. To address this knowledge gap, we develop the Compost Allocation Network (CAN), a geospatial model that simulates the production and transport of waste for all California cities and farms across a range of scenarios for per capita waste production, compost application rate, and composting conversion rate. We applied this model to answer two questions: how much farmland can be applied with municipal compost and what percentage of the diverted organic waste can be used to supplement local farmland. The results suggest that a composting system that recycles nutrients between cities and local farms has the potential to play a major role in helping California meet SB 1383 while reducing state emissions by -6.3 ± 10.1 MMT CO2e annually.
Collapse
Affiliation(s)
- Brendan P Harrison
- Environmental Studies Department, University of California, Santa Cruz, 1156 High St., Santa Cruz, California 95064, United States
| | - Evan Chopra
- Environmental Studies Department, University of California, Santa Cruz, 1156 High St., Santa Cruz, California 95064, United States
| | - Rebecca Ryals
- Life and Environmental Sciences Unit, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - J Elliott Campbell
- Environmental Studies Department, University of California, Santa Cruz, 1156 High St., Santa Cruz, California 95064, United States
| |
Collapse
|
19
|
|
20
|
Breunig HM, Amirebrahimi J, Smith S, Scown CD. Role of Digestate and Biochar in Carbon-Negative Bioenergy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12989-12998. [PMID: 31626735 DOI: 10.1021/acs.est.9b03763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Digestate and biochar can be land applied to sequester carbon and improve net primary productivity, but the achievable scale is tied to expected growth in bioenergy production and land available for application. We use an attributional life-cycle assessment approach to estimate the greenhouse gas (GHG) emissions and carbon storage potential of biochar, digested solids, and composted digested solids generated from organic waste in California as a test case. Our scenarios characterize changes in organic waste production, bioenergy facility build-out, bioenergy byproduct quality, and soil response. Moderate to upper bound growth in the bioenergy sector with annual byproduct disposal over 100 years could provide a cumulative GHG offset of 50-400 MMTCO2 equiv, with an additional 80-300 MMTC sequestered in soils. This corresponds to net GHG mitigation over 100 years equivalent to 340-1500 MMTCO2 equiv (80-350% of California's annual emissions). In most scenarios, there is sufficient working land to apply all available biochar and digestate, although land becomes a constraint if the soil's rest time between applications increases from 5 to 15 years.
Collapse
Affiliation(s)
- Hanna M Breunig
- Energy Technologies Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jahon Amirebrahimi
- Energy Technologies Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Goldman School of Public Policy , University of California , Berkeley , California 94720 , United States
| | - Sarah Smith
- Energy Technologies Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Civil and Environmental Engineering , University of California , Berkeley , California 94720 , United States
| | - Corinne D Scown
- Energy Technologies Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Joint BioEnergy Institute , Emeryville , California 94608 , United States
- Energy & Biosciences Institute , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
21
|
Mekki A, Aloui F, Sayadi S. Influence of biowaste compost amendment on soil organic carbon storage under arid climate. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:867-877. [PMID: 28945514 DOI: 10.1080/10962247.2017.1374311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/03/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Organic matter amendments have been proposed as a means to enhance soil carbon stocks on degraded soils, particularly under arid climate. Soil organic carbon (SOC) plays a critical role in terrestrial carbon cycling and is central to preserving soil quality. The effects of biowaste compost (BWC) on soil carbon storage were investigated. In addition, changes in soil organic matter (SOM) and even soil organic carbon (SOC) in BWC-amended soils following different applications were studied. The added BWC quantities were as followed: BWC/soil (weight/weight (w/w) respectively: 1/8, 1/4, and 1/2). The different BWC-amended soils were assessed during 180 days under arid ambient conditions and in comparison with control soil. Results showed a significant increase in SOM and SOC with relation to BWC quantities applied. This increase was relatively clear up to 120 days, after which decrease in SOM and SOC levels were observed. Furthermore, results showed improved microbiological activities of the amended soils in comparison with the control soil. This was reflected by the increase of the amended soils' respirometric activities as cumulative carbon dioxide carbon (C-CO2) as function of incubation time and also in terms of specific respiration expressed as C-CO2/SOC ratios. Implications: Mediterranean soils under arid climate such as Tunisian soils are poor in organic matter content. Biowastes are potential source for soil fertilization. Composting process is the best method for the stabilization of organic matter of diverse origins. The biowaste compost amendment improves the soil organic carbon storage and enhances the soil microbial activity.
Collapse
Affiliation(s)
- Ali Mekki
- a Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax , Tunisia
| | - Fathi Aloui
- a Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax , Tunisia
| | - Sami Sayadi
- a Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax , Tunisia
| |
Collapse
|
22
|
Gravuer K, Gennet S, Throop HL. Organic amendment additions to rangelands: A meta-analysis of multiple ecosystem outcomes. GLOBAL CHANGE BIOLOGY 2019; 25:1152-1170. [PMID: 30604474 PMCID: PMC6849820 DOI: 10.1111/gcb.14535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/03/2018] [Accepted: 11/01/2018] [Indexed: 05/06/2023]
Abstract
Interest in land application of organic amendments-such as biosolids, composts, and manures-is growing due to their potential to increase soil carbon and help mitigate climate change, as well as to support soil health and regenerative agriculture. While organic amendments are predominantly applied to croplands, their application is increasingly proposed on relatively arid rangelands that do not typically receive fertilizers or other inputs, creating unique concerns for outcomes such as native plant diversity and water quality. To maximize environmental benefits and minimize potential harms, we must understand how soil, water, and plant communities respond to particular amendments and site conditions. We conducted a global meta-analysis of 92 studies in which organic amendments had been added to arid, semiarid, or Mediterranean rangelands. We found that organic amendments, on average, provide some environmental benefits (increased soil carbon, soil water holding capacity, aboveground net primary productivity, and plant tissue nitrogen; decreased runoff quantity), as well as some environmental harms (increased concentrations of soil lead, runoff nitrate, and runoff phosphorus; increased soil CO2 emissions). Published data were inadequate to fully assess impacts to native plant communities. In our models, adding higher amounts of amendment benefitted four outcomes and harmed two outcomes, whereas adding amendments with higher nitrogen concentrations benefitted two outcomes and harmed four outcomes. This suggests that trade-offs among outcomes are inevitable; however, applying low-N amendments was consistent with both maximizing benefits and minimizing harms. Short study time frames (median 1-2 years), limited geographic scope, and, for some outcomes, few published studies limit longer-term inferences from these models. Nevertheless, they provide a starting point to develop site-specific amendment application strategies aimed toward realizing the potential of this practice to contribute to climate change mitigation while minimizing negative impacts on other environmental goals.
Collapse
Affiliation(s)
- Kelly Gravuer
- Center for Biodiversity OutcomesArizona State UniversityTempeArizona
- The Nature ConservancyArlingtonVirginia
| | | | - Heather L. Throop
- School of Earth and Space ExplorationArizona State UniversityTempeArizona
- School of Life SciencesArizona State UniversityTempeArizona
| |
Collapse
|
23
|
Schlesinger WH, Amundson R. Managing for soil carbon sequestration: Let's get realistic. GLOBAL CHANGE BIOLOGY 2019; 25:386-389. [PMID: 30485613 DOI: 10.1111/gcb.14478] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/18/2018] [Accepted: 10/08/2018] [Indexed: 05/28/2023]
Abstract
Improved soil management is increasingly pursued to ensure food security for the world's rising global population, with the ancillary benefit of storing carbon in soils to lower the threat of climate change. While all increments to soil organic matter are laudable, we suggest caution in ascribing large, potential climate change mitigation to enhanced soil management. We find that the most promising techniques, including applications of biochar and enhanced silicate weathering, collectively are not likely to balance more than 5% of annual emissions of CO2 from fossil fuel combustion.
Collapse
Affiliation(s)
| | - Ronald Amundson
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| |
Collapse
|
24
|
Baldi E, Cavani L, Margon A, Quartieri M, Sorrenti G, Marzadori C, Toselli M. Effect of compost application on the dynamics of carbon in a nectarine orchard ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:918-925. [PMID: 29763872 DOI: 10.1016/j.scitotenv.2018.05.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to compare the quantity and the type of carbon (C) stored during the 14-year lifetime of a commercial nectarine orchard ecosystem fertilized with mineral or organic fertilizers. The study was carried out in the Po valley, Italy, in a nectarine orchard of the variety Stark RedGold, grafted on GF677 hybrid peach × almond. Since orchard planting in August 2001, the following treatments were applied in a randomized complete block design with four replicates per block and compared: 1. unfertilized control; 2. mineral fertilization (including P and K at planting and N applied as NO3NH4 yearly at the rate of 70-130 kg ha-1); 3. compost application at a rate of 5 Mg DW ha-1 yr-1; 4. compost application at a rate of 10 Mg DW ha-1 yr-1. Compost was obtained from domestic organic wastes mixed with pruning material from urban ornamental trees and garden management after a 3-month stabilization period. Application of compost at the highest rate increased C in the soil; the amount of C sequestered was approximately 60% from amendment source and 40% from the net primary production of trees and grasses with a net increase of C compared to mineral fertilization. Compost application was found to be a win-win strategy to increase C storage in soil and, at the same time, to promote plant growth and yield to levels similar to those obtained with mineral fertilization. The rate of C application is crucial, indicated by the fact that compost supply at the rate of 10 Mg ha-1 yr-1 was the only fertilization strategy of the ones tested that resulted in higher C sequestration. This shows that compost amendment may stimulate an increase in the net primary production of plants.
Collapse
Affiliation(s)
- E Baldi
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy.
| | - L Cavani
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - A Margon
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - M Quartieri
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - G Sorrenti
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - C Marzadori
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| | - M Toselli
- Department of Agricultural and Food Sciences, University of Bologna, viale Fanin, 46 40127 Bologna, Italy
| |
Collapse
|
25
|
Harden JW, Hugelius G, Ahlström A, Blankinship JC, Bond-Lamberty B, Lawrence CR, Loisel J, Malhotra A, Jackson RB, Ogle S, Phillips C, Ryals R, Todd-Brown K, Vargas R, Vergara SE, Cotrufo MF, Keiluweit M, Heckman KA, Crow SE, Silver WL, DeLonge M, Nave LE. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. GLOBAL CHANGE BIOLOGY 2018; 24:e705-e718. [PMID: 28981192 DOI: 10.1111/gcb.13896] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.
Collapse
Affiliation(s)
- Jennifer W Harden
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- U.S. Geological Survey, Menlo Park, CA, USA
| | - Gustaf Hugelius
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Anders Ahlström
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Department of Physical Geography and Ecosystem Science, Lund, Sweden
| | - Joseph C Blankinship
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Ben Bond-Lamberty
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, University of Maryland, College Park, College Park, MD, USA
| | | | - Julie Loisel
- Department of Geography, Texas A&M University, College Station, TX, USA
| | - Avni Malhotra
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Robert B Jackson
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment and Precourt Institute for Energy, Stanford University, Stanford, CA, USA
| | - Stephen Ogle
- Natural Resource Ecology Laboratory and Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Claire Phillips
- USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, OR, USA
| | - Rebecca Ryals
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Rodrigo Vargas
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | - Sintana E Vergara
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - M Francesca Cotrufo
- Natural Resource Ecology Laboratory and Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Marco Keiluweit
- School of Earth and Sustainability, Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | | | - Susan E Crow
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Whendee L Silver
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Marcia DeLonge
- Food and Environment Program, Union of Concerned Scientists, DC, USA
| | - Lucas E Nave
- Biological Station and Department of Ecology and Evolutionary Biology, University of Michigan, Pellston, MI, USA
| |
Collapse
|
26
|
S. VM, P. C, Dahiya S, A. NK. Waste derived bioeconomy in India: A perspective. N Biotechnol 2018; 40:60-69. [DOI: 10.1016/j.nbt.2017.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
|
27
|
Yao Z, Zhang D, Yao P, Zhao N, Liu N, Zhai B, Zhang S, Li Y, Huang D, Cao W, Gao Y. Coupling life-cycle assessment and the RothC model to estimate the carbon footprint of green manure-based wheat production in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:433-442. [PMID: 28704669 DOI: 10.1016/j.scitotenv.2017.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Reducing the carbon footprint (CF) of crop production is an efficient way to mitigate climate change. Growing legume green manure (LGM) instead of summer fallow may achieve this goal by lowering synthetic nitrogen (N) fertilizer needs and replenishing the depleted soil carbon (C) pool. The Rothamsted Carbon (RothC) model was incorporated into the Life-Cycle Assessment (LCA) to evaluate the present and projected CFs of green manure-based wheat production systems in dryland agriculture on the Loess Plateau of China. The field study included four main treatments (Huai bean, soybean and mung bean grown as green manure in summer and fallow as control) and four synthetic N rates (0, 108, 135 and 162kgNha-1) applied at wheat sowing. Soybean as LGM increased averaged wheat yield over 4 synthetic N rates by 8% compared with fallow (P<0.05), and synthetic N requirement was reduced by 33% without compromising the wheat yield for all the main treatments. Although LGM treatments had higher greenhouse gas (GHG) emissions from agricultural inputs, the greater amount of C inputs elevated the corresponding SOC stocks (SOCS) by 14-24% after 8years, thus significantly reducing the CF by 25-51% compared with fallow. The modelled SOCS equilibrium indicates that the CF for cropping systems with LGM will be 53-62% lower than fallow and 23-37% lower compared with their current level. In conclusion, introducing legume green manure instead of summer fallow is a highly efficient measure for persistent CF reduction, and coupling the RothC model and LCA is an alternative method to predict the long-term impact of different cropping systems on GHG emissions.
Collapse
Affiliation(s)
- Zhiyuan Yao
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Dabin Zhang
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China; Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, 712100 Yangling, Shaanxi, China
| | - Pengwei Yao
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Na Zhao
- Bayannaoer Academy of Agricultural and Animal Sciences, 015000 Bayannaoer, Inner Mongolia, China
| | - Na Liu
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Bingnian Zhai
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China; Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, 712100 Yangling, Shaanxi, China
| | - Suiqi Zhang
- Institute of Soil and Water Conservation, CAS & MWR, 712100 Yangling, Shaanxi, China
| | - Yangyang Li
- Institute of Soil and Water Conservation, CAS & MWR, 712100 Yangling, Shaanxi, China
| | - Donglin Huang
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China; Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, 712100 Yangling, Shaanxi, China
| | - Weidong Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Yajun Gao
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China; Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
28
|
Ecosystem management and land conservation can substantially contribute to California's climate mitigation goals. Proc Natl Acad Sci U S A 2017; 114:12833-12838. [PMID: 29133408 PMCID: PMC5715745 DOI: 10.1073/pnas.1707811114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Combatting climate change will require using all available tools, especially those that contribute to other societal and economic goals, such as natural resource protection and energy security. Conserving and managing natural and agricultural lands to retain and absorb greenhouse gasses (GHGs) are tools that have not been widely integrated into climate policy. Our analysis provides a quantification of potential climate benefits from multiple land-based activities for a jurisdiction with an emissions reduction target (up to 13.3% of the cumulative reductions needed to meet the 2050 target, or nearly three-fourths of a billion metric tons of GHGs). This approach provides a model that other jurisdictions can use to evaluate emissions reductions that might be achieved from conserving and restoring natural lands. Modeling efforts focused on future greenhouse gas (GHG) emissions from energy and other sectors in California have shown varying capacities to meet the emissions reduction targets established by the state. These efforts have not included potential reductions from changes in ecosystem management, restoration, and conservation. We examine the scale of contributions from selected activities in natural and agricultural lands and assess the degree to which these actions could help the state achieve its 2030 and 2050 climate mitigation goals under alternative implementation scenarios. By 2030, an Ambitious implementation scenario could contribute as much as 147 MMTCO2e or 17.4% of the cumulative reductions needed to meet the state’s 2030 goal, greater than the individual projected contributions of four other economic sectors, including those from the industrial and agricultural sectors. On an annual basis, the Ambitious scenario could result in reductions as high as 17.9 MMTCO2e⋅y−1 or 13.4% of the state’s 2030 reduction goal. Most reductions come from changes in forest management (61% of 2050 projected cumulative reductions under the Ambitious scenario), followed by reforestation (14%), avoided conversion (11%), compost amendments to grasslands (9%), and wetland and grassland restoration (5%). Implementation of a range of land-based emissions reduction activities can materially contribute to one of the most ambitious mitigation targets globally. This study provides a flexible, dynamic framework for estimating the reductions achievable through land conservation, ecological restoration, and changes in management regimes.
Collapse
|
29
|
Owen JJ, Silver WL. Greenhouse gas emissions from dairy manure management in a Mediterranean environment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:545-559. [PMID: 27859918 DOI: 10.1002/eap.1465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/17/2016] [Accepted: 09/26/2016] [Indexed: 05/22/2023]
Abstract
Livestock agriculture is a major source of anthropogenic greenhouse gas (GHG) emissions, with a substantial proportion of emissions derived from manure management. Accurate estimates of emissions related to management practices and climate are needed for identifying the best approaches to minimize, and potentially mitigate, GHG emissions. Current emissions models such as those of the IPCC, however, are based on emissions factors that have not been broadly tested against field-scale measurements, due to a lack of data. We used a diverse set of measurements over 22 months across a range of substrate conditions on a working dairy to determine patterns and controls on soil-based GHG fluxes. Although dairy soils and substrates differed by management unit, GHG fluxes were poorly predicted by these or climate variables. The manure pile had the greatest GHG emissions, and though temperature increased and O2 concentration decreased following mixing, we detected almost no change in GHG fluxes due to mixing. Corral fluxes were characterized by hotspots and hot moments driven by patterns in deposition. Annual scraping kept the soil and accumulated manure pack thin, producing drier conditions, particularly in the warm dry season. Summed over area, corral fluxes had the greatest non-CO2 global warming potential. The field had net CH4 consumption, but CH4 uptake was insufficient to offset N2 O emissions on an area basis. All sites emitted N2 O with a similar or greater climate impact than CH4 . Our results highlight the importance of N2 O emissions, a less commonly measured GHG, from manure management and present potential opportunities for GHG emissions reductions.
Collapse
Affiliation(s)
- Justine J Owen
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, 94720, USA
| | - Whendee L Silver
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, 94720, USA
| |
Collapse
|
30
|
Ryals R, Eviner VT, Stein C, Suding KN, Silver WL. Grassland compost amendments increase plant production without changing plant communities. Ecosphere 2016. [DOI: 10.1002/ecs2.1270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Rebecca Ryals
- Department of Environmental Science, Policy and ManagementUniversity of California, Berkeley 137 Mulford Hall #3114 Berkeley California 94720 USA
| | - Valerie T. Eviner
- Department of Plant SciencesUniversity of California, Davis 1210 PES Mail Stop 1, One Shields Ave Davis California 95616 USA
| | - Claudia Stein
- Department of Environmental Science, Policy and ManagementUniversity of California, Berkeley 137 Mulford Hall #3114 Berkeley California 94720 USA
| | - Katharine N. Suding
- Department of Environmental Science, Policy and ManagementUniversity of California, Berkeley 137 Mulford Hall #3114 Berkeley California 94720 USA
| | - Whendee L. Silver
- Department of Environmental Science, Policy and ManagementUniversity of California, Berkeley 137 Mulford Hall #3114 Berkeley California 94720 USA
| |
Collapse
|
31
|
Owen JJ, Parton WJ, Silver WL. Long-term impacts of manure amendments on carbon and greenhouse gas dynamics of rangelands. GLOBAL CHANGE BIOLOGY 2015; 21:4533-4547. [PMID: 26183573 DOI: 10.1111/gcb.13044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/02/2015] [Indexed: 06/04/2023]
Abstract
Livestock manure is applied to rangelands as an organic fertilizer to stimulate forage production, but the long-term impacts of this practice on soil carbon (C) and greenhouse gas (GHG) dynamics are poorly known. We collected soil samples from manured and nonmanured fields on commercial dairies and found that manure amendments increased soil C stocks by 19.0 ± 7.3 Mg C ha(-1) and N stocks by 1.94 ± 0.63 Mg N ha(-1) compared to nonmanured fields (0-20 cm depth). Long-term historical (1700-present) and future (present-2100) impacts of management on soil C and N dynamics, net primary productivity (NPP), and GHG emissions were modeled with DayCent. Modeled total soil C and N stocks increased with the onset of dairying. Nitrous oxide (N2 O) emissions also increased by ~2 kg N2 O-N ha(-1) yr(-1) . These emissions were proportional to total N additions and offset 75-100% of soil C sequestration. All fields were small net methane (CH4 ) sinks, averaging -4.7 ± 1.2 kg CH4 -C ha(-1) yr(-1) . Overall, manured fields were net GHG sinks between 1954 and 2011 (-0.74 ± 0.73 Mg CO2 e ha(-1) yr(-1) , CO2 e are carbon dioxide equivalents), whereas nonmanured fields varied around zero. Future soil C pools stabilized 40-60 years faster in manured fields than nonmanured fields, at which point manured fields were significantly larger sources than nonmanured fields (1.45 ± 0.52 Mg CO2 e ha(-1) yr(-1) and 0.51 ± 0.60 Mg CO2 e ha(-1) yr(-1) , respectively). Modeling also revealed a large background loss of soil C from the passive soil pool associated with the shift from perennial to annual grasses, equivalent to 29.4 ± 1.47 Tg CO2 e in California between 1820 and 2011. Manure applications increased NPP and soil C storage, but plant community changes and GHG emissions decreased, and eventually eliminated, the net climate benefit of this practice.
Collapse
Affiliation(s)
- Justine J Owen
- Department of Environmental Science, Policy & Management, University of California, 137 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - William J Parton
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
| | - Whendee L Silver
- Department of Environmental Science, Policy & Management, University of California, 137 Mulford Hall #3114, Berkeley, CA, 94720, USA
| |
Collapse
|
32
|
Oldfield EE, Felson AJ, Auyeung DSN, Crowther TW, Sonti NF, Harada Y, Maynard DS, Sokol NW, Ashton MS, Warren RJ, Hallett RA, Bradford MA. Growing the urban forest: tree performance in response to biotic and abiotic land management. Restor Ecol 2015. [DOI: 10.1111/rec.12230] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emily E. Oldfield
- School of Forestry and Environmental Studies; Yale University; 370 Prospect Street New Haven CT 06511 U.S.A
| | - Alexander J. Felson
- School of Forestry and Environmental Studies; Yale University; 370 Prospect Street New Haven CT 06511 U.S.A
- School of Architecture; Yale University; 180 York Street New Haven CT 06511 U.S.A
| | - D. S. Novem Auyeung
- NYC Department of Parks & Recreation; NYC Urban Field Station; 431 Walter Reed Road Bayside NY 11359 U.S.A
| | - Thomas W. Crowther
- School of Forestry and Environmental Studies; Yale University; 370 Prospect Street New Haven CT 06511 U.S.A
| | - Nancy F. Sonti
- USDA Forest Service; Northern Research Station, NYC Urban Field Station; 431 Walter Reed Road Bayside NY 11359 U.S.A
- USDA Forest Service; Northern Research Station; Baltimore Field Station, 5523 Research Park Drive Baltimore MD 21228 U.S.A
| | - Yoshiki Harada
- School of Forestry and Environmental Studies; Yale University; 370 Prospect Street New Haven CT 06511 U.S.A
- Department of Horticulture; Cornell University; 134 Plant Sciences Building Ithaca NY 14853 U.S.A
| | - Daniel S. Maynard
- School of Forestry and Environmental Studies; Yale University; 370 Prospect Street New Haven CT 06511 U.S.A
| | - Noah W. Sokol
- School of Forestry and Environmental Studies; Yale University; 370 Prospect Street New Haven CT 06511 U.S.A
| | - Mark S. Ashton
- School of Forestry and Environmental Studies; Yale University; 370 Prospect Street New Haven CT 06511 U.S.A
| | - Robert J. Warren
- Department of Biology; SUNY Buffalo State; 1300 Elmwood Avenue Buffalo NY 14222 U.S.A
| | | | - Mark A. Bradford
- School of Forestry and Environmental Studies; Yale University; 370 Prospect Street New Haven CT 06511 U.S.A
| |
Collapse
|
33
|
Ryals R, Hartman MD, Parton WJ, DeLonge MS, Silver WL. Long-term climate change mitigation potential with organic matter management on grasslands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:531-45. [PMID: 26263673 DOI: 10.1890/13-2126.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Compost amendments to grasslands have been proposed as a strategy to mitigate climate change through carbon (C) sequestration, yet little research exists exploring the net mitigation potential or the long-term impacts of this strategy. We used field data and the DAYCENT biogeochemical model to investigate the climate change mitigation potential of compost amendments to grasslands in California, USA. The model was used to test ecosystem C and greenhouse gas responses to a range of compost qualities (carbon to nitrogen [C:N] ratios of 11.1, 20, or 30) and application rates (single addition of 14 Mg C/ha or 10 annual additions of 1.4 Mg C · ha(-1) · yr(-1)). The model was parameterized using site-specific weather, vegetation, and edaphic characteristics and was validated by comparing simulated soil C, nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes, and net primary production (NPP) with three years of field data. All compost amendment scenarios led to net greenhouse gas sinks that persisted for several decades. Rates of climate change mitigation potential ranged from 130 ± 3 g to 158 ± 8 g CO2-eq · m(-2) ·yr(-1) (where "eq" stands for "equivalents") when assessed over a 10-year time period and 63 ± 2 g to 84 ± 10 g CO2- eq · m(-2) · yr(-1) over a 30-year time period. Both C storage and greenhouse gas emissions increased rapidly following amendments. Compost amendments with lower C:N led to higher C sequestration rates over time. However, these soils also experienced greater N20 fluxes. Multiple smaller compost additions resulted in similar cumulative C sequestration rates, albeit with a time lag, and lower cumulative N2O emissions. These results identify a trade-off between maximizing C sequestration and minimizing N2O emissions following amendments, and suggest that compost additions to grassland soils can have a long-term impact on C and greenhouse gas dynamics that contributes to climate change mitigation.
Collapse
|
34
|
DeLonge MS, Ryals R, Silver WL. A Lifecycle Model to Evaluate Carbon Sequestration Potential and Greenhouse Gas Dynamics of Managed Grasslands. Ecosystems 2013. [DOI: 10.1007/s10021-013-9660-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|