1
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Ajayi AF, Oyovwi MO, Akano OP, Akanbi GB, Adisa FB. Molecular pathways in reproductive cancers: a focus on prostate and ovarian cancer. Cancer Cell Int 2025; 25:33. [PMID: 39901204 PMCID: PMC11792371 DOI: 10.1186/s12935-025-03658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Reproductive cancers, including prostate and ovarian cancer, are highly prevalent worldwide and pose significant health challenges. The molecular underpinnings of these cancers are complex and involve dysregulation of various cellular pathways. Understanding these pathways is crucial for developing effective therapeutic strategies. This review aims to provide an overview of the molecular pathways implicated in prostate and ovarian cancers, highlighting key genetic alterations, signaling cascades, and epigenetic modifications. A comprehensive literature search was conducted using databases such as PubMed, Web of Science, and Google Scholar. Articles focusing on molecular pathways in prostate and ovarian cancer were reviewed and analyzed. In prostate cancer, recurrent mutations in genes like AR, TP53, and PTEN drive tumor growth and progression. Androgen signaling plays a significant role, with alterations in the AR pathway contributing to resistance to antiandrogen therapies. In ovarian cancer, high-grade serous carcinomas are characterized by mutations in TP53, BRCA1/2, and homologous recombination repair genes. PI3K and MAPK pathways are frequently activated, promoting cell proliferation and survival. Epigenetic alterations, including DNA methylation and histone modifications, are also prevalent in both cancer types. The molecular pathways involved in prostate and ovarian cancer are diverse and complex. Targeting these pathways with precision medicine approaches holds promise for improving patient outcomes. Further research is needed to elucidate the mechanisms of resistance and identify novel therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo, Nigeria
- Department of Physiology, Adeleke University, Ede, Osun, Nigeria
| | | | - Oyedayo Phillips Akano
- Department of Physiology, School of Basic Medical Sciences, Babcock University, Ilishan Remo, Ogun, Nigeria
| | - Grace Bosede Akanbi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Florence Bukola Adisa
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
3
|
Files R, Cardoso C, Prada J, Silva F, Pires I. Syndecan-1 and E-Cadherin Expression in Canine Cutaneous Squamous Cell Carcinoma. Vet Sci 2024; 11:652. [PMID: 39728992 DOI: 10.3390/vetsci11120652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) in dogs is a locally invasive tumor that typically occurs in areas of poorly pigmented skin due to sun exposure. Identifying new biomarkers, such as syndecan-1 (CD138) and E-cadherin, is fundamental for tumor diagnosis and prognosis. Dysregulation of syndecan-1, expressed in epithelial tissue, fibroblasts, and plasma cells, is associated with poor prognosis in several types of cancer. Similarly, E-cadherin, which plays a crucial role in cell adhesion and epithelial functionality, is also linked to adverse outcomes. This study evaluated the expression of syndecan-1 and E-cadherin in 47 cases of canine cutaneous squamous cell carcinoma. The results showed that the intensity of syndecan-1 decreased with increasing tumor aggressiveness, and its presence in the stroma was significantly associated with tumor grade. E-cadherin also demonstrated a decrease in intensity with increasing malignancy. However, the association between syndecan-1 and E-cadherin was not statistically significant. E-cadherin reduction and stromal syndecan-1 positivity seem to be associated with tumor aggressiveness in canine cutaneous squamous cell carcinoma. Further studies are needed to explore their roles in tumor progression.
Collapse
Affiliation(s)
- Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Cláudia Cardoso
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Elimam H, Alhamshry NAA, Hatawsh A, Elfar N, Moussa R, Radwan AF, Abd-Elmawla MA, Elkashlan AM, Zaki MB, Abdel-Reheim MA, Mohammed OA, Doghish AS. Natural products and long noncoding RNA signatures in gallbladder cancer: a review focuses on pathogenesis, diagnosis, and drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9549-9571. [PMID: 39028332 DOI: 10.1007/s00210-024-03279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Gallbladder cancer (GBC) is an aggressive and lethal malignancy with a poor prognosis. Long noncoding RNAs (lncRNAs) and natural products have emerged as key orchestrators of cancer pathogenesis through widespread dysregulation across GBC transcriptomes. Functional studies have revealed that lncRNAs interact with oncoproteins and tumor suppressors to control proliferation, invasion, metastasis, angiogenesis, stemness, and drug resistance. Curcumin, baicalein, oleanolic acid, shikonin, oxymatrine, arctigenin, liensinine, fangchinoline, and dioscin are a few examples of natural compounds that have demonstrated promising anticancer activities against GBC through the regulation of important signaling pathways. The lncRNAs, i.e., SNHG6, Linc00261, GALM, OIP5-AS1, FOXD2-AS1, MINCR, DGCR5, MEG3, GATA6-AS, TUG1, and DILC, are key players in regulating the aforementioned processes. For example, the lncRNAs FOXD2-AS1, DILC, and HOTAIR activate oncogenes such as DNMT1, Wnt/β-catenin, BMI1, and c-Myc, whereas MEG3 and GATA6-AS suppress the tumor proteins NF-κB, EZH2, and miR-421. Clinically, specific lncRNAs can serve as diagnostic or prognostic biomarkers based on overexpression correlating with advanced TNM stage, metastasis, chemoresistance, and poor survival. Therapeutically, targeting aberrant lncRNAs with siRNA or antisense oligos disrupts their oncogenic signaling and inhibits GBC progression. Overall, dysfunctional lncRNA regulatory circuits offer multiple avenues for precision medicine approaches to improve early GBC detection and overcome this deadly cancer. They have the potential to serve as novel biomarkers as they are detectable in bodily fluids and tissues. These findings enhance gallbladder treatments, mitigating resistance to chemo- and radiotherapy.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26th of July Corridor, Sheikh Zayed City, Nile University, Giza, 12588, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Akram M Elkashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
5
|
Chilamakuri R, Agarwal S. Repurposing of c-MET Inhibitor Tivantinib Inhibits Pediatric Neuroblastoma Cellular Growth. Pharmaceuticals (Basel) 2024; 17:1350. [PMID: 39458991 PMCID: PMC11510580 DOI: 10.3390/ph17101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Dysregulation of receptor tyrosine kinase c-MET is known to promote tumor development by stimulating oncogenic signaling pathways in different cancers, including pediatric neuroblastoma (NB). NB is an extracranial solid pediatric cancer that accounts for almost 15% of all pediatric cancer-related deaths, with less than a 50% long-term survival rate. Results: In this study, we analyzed a large cohort of primary NB patient data and revealed that high MET expression strongly correlates with poor overall survival, disease progression, relapse, and high MYCN levels in NB patients. To determine the effects of c-MET in NB, we repurposed a small molecule inhibitor, tivantinib, and found that c-MET inhibition significantly inhibits NB cellular growth. Tivantinib significantly blocks NB cell proliferation and 3D spheroid tumor formation and growth in different MYCN-amplified and MYCN-non-amplified NB cell lines. Furthermore, tivantinib blocks the cell cycle at the G2/M phase transition and induces apoptosis in different NB cell lines. As expected, c-MET inhibition by tivantinib inhibits the expression of multiple genes in PI3K, STAT, and Ras cell signaling pathways. Conclusions: Overall, our data indicate that c-MET directly regulates NB growth and 3D spheroid growth, and c-MET inhibition by tivantinib may be an effective therapeutic approach for high-risk NB. Further developing c-MET targeted therapeutic approaches and combining them with current therapies may pave the way for effectively translating novel therapies for NB and other c-MET-driven cancers.
Collapse
Affiliation(s)
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY 11439, USA
| |
Collapse
|
6
|
Xie T, Hu W, You L, Wang X. Design, synthesis and biological evaluation of thienopyridine derivatives as c-Met kinase inhibitors. Mol Divers 2024:10.1007/s11030-024-10998-3. [PMID: 39356364 DOI: 10.1007/s11030-024-10998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024]
Abstract
With cabozantinib as the precursor, a novel small molecule inhibitors of c-Met kinase with thieno [2,3-b] pyridine as the scaffold were designed, synthesized and evaluated for their biological activity against A549, Hela and MCF-7 cell lines. The in vitro activities of 16 compounds were tested by MTT method with cabozantinib as control drug. Most compounds had moderate to strong inhibitory activities on cells. Among them, compound 10 had the strongest inhibitory activity, which was superior to the lead compound cabozantinib. Its IC50 values for A549, Hela and MCF-7 cells were 0.005, 2.833 and 13.581 μM, respectively. The colony formation assay demonstrated that compound 10 significantly inhibited the colony formation of A549 cells and suppressed their growth in a concentration-dependent manner. The wound healing assay showed that compound 10 could effectively inhibit the migration of cancer cells compared to a blank control group. The AO/EB assay demonstrated that compound 10 possesses the capability to effectively trigger apoptosis in a concentration-dependent manner. The elementary structure-activity relationship, molecular docking and pharmacokinetics studies revealed the significance of thieno [2,3-b] pyridine derivatives in anti-tumor activity.
Collapse
Affiliation(s)
- Tianyu Xie
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Wenbo Hu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Lin You
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China.
- Liaoning Key Laboratory of New Drug Research & Development, Shenyang, 110036, China.
| |
Collapse
|
7
|
Dessai A, Nayak UY, Nayak Y. Precision nanomedicine to treat non-small cell lung cancer. Life Sci 2024; 346:122614. [PMID: 38604287 DOI: 10.1016/j.lfs.2024.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Lung cancer is a major cause of death worldwide, being often detected at a later stage due to the non-appearance of early symptoms. Therefore, specificity of the treatment is of utmost importance for its effective treatment. Precision medicine is a personalized therapy based on the genomics of the patient to design a suitable drug approach. Genetic mutations render the tumor resistant to specific mutations and the therapy is in vain even though correct medications are prescribed. Therefore, Precision medicine needs to be explored for the treatment of Non-small cell lung cancer (NSCLC). Nanoparticles are widely explored to give personalized interventions to treat lung cancer due to their various advantages like the ability to reach cancer cells, enhanced permeation through tissues, specificity, increased bioavailability, etc. Various nanoparticles (NPs) including gold nanoparticles, carbon nanotubes, aptamer-based NPs etc. were conjugated with biomarkers/diagnostic agents specific to cancer type and were delivered. Various biomarker genes have been identified through precision techniques for the diagnosis and treatment of NSCLC like EGFR, RET, KRAS, ALK, ROS-1, NTRK-1, etc. By incorporating of drug with the nanoparticle through bioconjugation, the specificity of the treatment can be enhanced with this revolutionary treatment. Additionally, integration of theranostic cargos in the nanoparticle would allow diagnosis as well as treatment by targeting the site of disease progression. Therefore, to target NSCLC effectively precision nanomedicine has been adopted in recent times. Here, we present different nanoparticles that are used as precision nanomedicine and their effectiveness against NSCLC disease.
Collapse
Affiliation(s)
- Akanksha Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
8
|
Li GX, Chen L, Hsiao Y, Mannan R, Zhang Y, Luo J, Petralia F, Cho H, Hosseini N, Leprevost FDV, Calinawan A, Li Y, Anand S, Dagar A, Geffen Y, Kumar-Sinha C, Chugh S, Le A, Ponce S, Guo S, Zhang C, Schnaubelt M, Al Deen NN, Chen F, Caravan W, Houston A, Hopkins A, Newton CJ, Wang X, Polasky DA, Haynes S, Yu F, Jing X, Chen S, Robles AI, Mesri M, Thiagarajan M, An E, Getz GA, Linehan WM, Hostetter G, Jewell SD, Chan DW, Wang P, Omenn GS, Mehra R, Ricketts CJ, Ding L, Chinnaiyan AM, Cieslik MP, Dhanasekaran SM, Zhang H, Nesvizhskii AI. Comprehensive proteogenomic characterization of rare kidney tumors. Cell Rep Med 2024; 5:101547. [PMID: 38703764 PMCID: PMC11148773 DOI: 10.1016/j.xcrm.2024.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/29/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.
Collapse
Affiliation(s)
- Ginny Xiaohe Li
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yi Hsiao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Luo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanbyul Cho
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noshad Hosseini
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Aniket Dagar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seema Chugh
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sean Ponce
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaoming Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaojun Jing
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | | | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Gad A Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Hong DS, Cappuzzo F, Chul Cho B, Dowlati A, Hussein M, Kim DW, Percent I, Christensen JG, Morin J, Potvin D, Faltaos D, Tassell V, Der-Torossian H, Chao R. Phase II study investigating the efficacy and safety of glesatinib (MGCD265) in patients with advanced NSCLC containing MET activating alterations. Lung Cancer 2024; 190:107512. [PMID: 38417277 DOI: 10.1016/j.lungcan.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVES Dysregulated signaling by mesenchymal epithelial transition factor (MET) and heightened AXL activation are implicated in the pathogenesis of non-small cell lung cancer (NSCLC). Glesatinib (MGCD265) is an investigational, oral inhibitor of MET and AXL. MATERIALS AND METHODS This open-label, Phase II study investigated glesatinib (free-base suspension [FBS] capsule 1050 mg BID or spray-dried dispersion [SDD] tablet 750 mg BID) in patients with advanced, previously treated NSCLC across four cohorts grouped according to presence of MET activating mutations or amplification in tumor or ctDNA. The primary endpoint was objective response rate (ORR). RESULTS Sixty-eight patients were enrolled: n = 28 and n = 8 with MET exon 14 skipping mutations in tumor tissue and ctDNA, respectively, and n = 20 and n = 12 with MET gene amplification in tumor tissue and ctDNA, respectively. Overall, ORR was 11.8 %, median progression-free survival was 4.0 months, and median overall survival was 7.0 months. Among patients with MET activating mutations, ORR was 10.7 % with tumor testing and 25.0 % with ctDNA testing. For MET amplification, responses were observed only in patients enrolled by tumor testing (ORR 15.0 %). Diarrhea (82.4 %), nausea (50.0 %), increased alanine aminotransferase (41.2 %), fatigue (38.2 %), and increased aspartate aminotransferase (36.8 %) were the most frequent adverse events assessed as related to study medication. Glesatinib exposure was similar with the SDD tablet and FBS capsule formulations. The study was terminated early by the sponsor due to modest clinical activity. CONCLUSIONS Glesatinib had an acceptable safety profile in patients with advanced, pre-treated NSCLC with MET activating alterations. Modest clinical activity was observed, which likely reflects suboptimal drug bioavailability suggested by previously reported Phase I data, and pharmacodynamic findings of lower than anticipated increases in circulating soluble shed MET ectodomain (s-MET).
Collapse
Affiliation(s)
| | | | - Byoung Chul Cho
- Severence Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Afshin Dowlati
- University Hospitals Seidman Cancer Center and Case Western Reserve University, OH, USA
| | - Maen Hussein
- Florida Cancer Specialists, Saint Petersburg, FL, USA
| | - Dong-Wan Kim
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Ivor Percent
- SCRI Florida Cancer Specialists, Fort Myers, FL, USA
| | | | - Josée Morin
- Mirati Therapeutics Inc., San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Park J, Chang ES, Kim JY, Chelakkot C, Sung M, Song JY, Jung K, Lee JH, Choi JY, Kim NY, Lee H, Kang MR, Kwon MJ, Shin YK, Park YH, Choi YL. c-MET-positive circulating tumor cells and cell-free DNA as independent prognostic factors in hormone receptor-positive/HER2-negative metastatic breast cancer. Breast Cancer Res 2024; 26:13. [PMID: 38238761 PMCID: PMC10797795 DOI: 10.1186/s13058-024-01768-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Endocrine therapy resistance in hormone receptor-positive/HER2-negative (HR+/HER2-) breast cancer (BC) is a significant clinical challenge that poses several unmet needs in the management of the disease. This study aimed to investigate the prognostic value of c-MET-positive circulating tumor cells (cMET+ CTCs), ESR1/PIK3CA mutations, and cell-free DNA (cfDNA) concentrations in patients with hormone receptor-positive (HR+) metastatic breast cancer (mBC). METHODS Ninety-seven patients with HR+ mBC were prospectively enrolled during standard treatment at Samsung Medical Center. CTCs were isolated from blood using GenoCTC® and EpCAM or c-MET CTC isolation kits. PIK3CA and ESR1 hotspot mutations were analyzed using droplet digital PCR. CfDNA concentrations were calculated using internal control copies from the ESR1 mutation test. Immunocytochemistry was performed to compare c-MET overexpression between primary and metastatic sites. RESULTS The proportion of c-MET overexpression was significantly higher in metastatic sites than in primary sites (p = 0.00002). Survival analysis showed that c-MET+ CTC, cfDNA concentration, and ESR1 mutations were significantly associated with poor prognosis (p = 0.0026, 0.0021, and 0.0064, respectively) in HR+/HER2- mBC. By contrast, EpCAM-positive CTC (EpCAM+ CTC) and PIK3CA mutations were not associated with progression-free survival (PFS) in HR+/HER2- mBC. Multivariate analyses revealed that c-MET+ CTCs and cfDNA concentration were independent predictors of PFS in HR+/HER2- mBC. CONCLUSIONS Monitoring c-MET+ CTC, rather than assessing c-MET expression in the primary BC site, could provide valuable information for predicting disease progression, as c-MET expression can change during treatment. The c-MET+ CTC count and cfDNA concentration could provide complementary information on disease progression in HR+ /HER2- mBC, highlighting the importance of integrated liquid biopsy.
Collapse
Grants
- HI19C0141 Ministry of Health & Welfare, South Korea
- HI19C0141 Ministry of Health & Welfare, South Korea
- HI19C0141 Ministry of Health & Welfare, South Korea
- HI19C0141 Ministry of Health & Welfare, South Korea
- HI19C0141 Ministry of Health & Welfare, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- #SMO1230021 Samsung Medical Center
Collapse
Affiliation(s)
- Jieun Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Sol Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Chaithanya Chelakkot
- Technical Research Center, Genobio Corp., Seoul, Republic of Korea
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minjung Sung
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Young Song
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungsoo Jung
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ji Hye Lee
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | | | - Na Young Kim
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | - Hyegyeong Lee
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea
| | - Mi-Ran Kang
- R&D Center, Gencurix Inc., Seoul, Republic of Korea
| | - Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- R&D Center, ABION Inc., Seoul, Republic of Korea.
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Yoon-La Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
11
|
Tokizaki S, Podyma‐Inoue KA, Matsumoto T, Takahashi K, Kobayashi M, Ibi H, Uchida S, Iwabuchi S, Harada H, Hashimoto S, Miyazono K, Shirouzu M, Watabe T. Inhibition of transforming growth factor-β signals suppresses tumor formation by regulation of tumor microenvironment networks. Cancer Sci 2024; 115:211-226. [PMID: 37972575 PMCID: PMC10823284 DOI: 10.1111/cas.16006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
The tumor microenvironment (TME) consists of cancer cells surrounded by stromal components including tumor vessels. Transforming growth factor-β (TGF-β) promotes tumor progression by inducing epithelial-mesenchymal transition (EMT) in cancer cells and stimulating tumor angiogenesis in the tumor stroma. We previously developed an Fc chimeric TGF-β receptor containing both TGF-β type I (TβRI) and type II (TβRII) receptors (TβRI-TβRII-Fc), which trapped all TGF-β isoforms and suppressed tumor growth. However, the precise mechanisms underlying this action have not yet been elucidated. In the present study, we showed that the recombinant TβRI-TβRII-Fc protein effectively suppressed in vitro EMT of oral cancer cells and in vivo tumor growth in a human oral cancer cell xenograft mouse model. Tumor cell proliferation and angiogenesis were suppressed in tumors treated with TβRI-TβRII-Fc. Molecular profiling of human cancer cells and mouse stroma revealed that K-Ras signaling and angiogenesis were suppressed. Administration of TβRI-TβRII-Fc protein decreased the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), interleukin-1β (IL-1β) and epiregulin (EREG) in the TME of oral cancer tumor xenografts. HB-EGF increased proliferation of human oral cancer cells and mouse endothelial cells by activating ERK1/2 phosphorylation. HB-EGF also promoted oral cancer cell-derived tumor formation by enhancing cancer cell proliferation and tumor angiogenesis. In addition, increased expressions of IL-1β and EREG in oral cancer cells significantly enhanced tumor formation. These results suggest that TGF-β signaling in the TME controls cancer cell proliferation and angiogenesis by activating HB-EGF/IL-1β/EREG pathways and that TβRI-TβRII-Fc protein is a promising tool for targeting the TME networks.
Collapse
Affiliation(s)
- Shiori Tokizaki
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Katarzyna A. Podyma‐Inoue
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | | | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | - Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Haruka Ibi
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical MedicineAalborg UniversityCopenhagenDenmark
| | - Sadahiro Iwabuchi
- Department of Molecular PathophysiologyWakayama Medical UniversityWakayamaJapan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shinichi Hashimoto
- Department of Molecular PathophysiologyWakayama Medical UniversityWakayamaJapan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
- RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | | | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
12
|
Lai J, Shang C, Chen W, Izevbaye I, Chu MP, Sandhu I, Brandwein J, Lai R, Wang P. An In Vitro Model for Acute Myeloid Leukemia Relapse Using the SORE6 Reporter. Int J Mol Sci 2023; 25:496. [PMID: 38203669 PMCID: PMC10779023 DOI: 10.3390/ijms25010496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Many patients diagnosed with acute myeloid leukemia (AML) relapse within two years of the initial remission. The biology of AML relapse is incompletely understood, although cancer stem-like (CSL) cells have been hypothesized to be important. To test this hypothesis, we employed SORE6, a reporter designed to detect the transcriptional activity of the embryonic stem cell proteins Oct4 and Sox2, to identify/purify CSL cells in two FLT3-mutated AML cell lines. Both cell lines contained ~10% of SORE6+ cells in the steady state. Compared to SORE6- cells, SORE6+ cells exhibited more characteristics of CSL cells, with significantly higher chemoresistance and rates of spheroid formation. SORE6+ cells had substantially higher expression of Myc and FLT3 proteins, which are drivers of SORE6 activity. Using a mixture of SORE6-/SORE6+ cells that were molecularly barcoded, we generated an in vitro study model for AML relapse. Specifically, after 'in vitro remission' induced by Ara-C, both cell lines regenerated after 13 ± 3 days. Barcode analysis revealed that most of the regenerated cells were derived from the original SORE6+ cells. Regenerated cells exhibited more CSL features than did the original SORE6+ cells, even though a proportion of them lost SORE6 activity. In bone marrow samples from a patient cohort, we found that relapsed blasts expressed significantly higher levels of Myc, a surrogate marker of SORE6 activity, compared to pre-treatment blasts. To conclude, using our in vitro model, we have provided evidence that CSL cells contribute to AML relapse.
Collapse
Affiliation(s)
- Justine Lai
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.P.C.); (I.S.); (J.B.)
| | - Chuquan Shang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.S.); (W.C.); (I.I.); (R.L.)
| | - Will Chen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.S.); (W.C.); (I.I.); (R.L.)
| | - Iyare Izevbaye
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.S.); (W.C.); (I.I.); (R.L.)
| | - Michael P. Chu
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.P.C.); (I.S.); (J.B.)
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 2R3, Canada
| | - Irwindeep Sandhu
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.P.C.); (I.S.); (J.B.)
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 2R3, Canada
| | - Joseph Brandwein
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.P.C.); (I.S.); (J.B.)
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.S.); (W.C.); (I.I.); (R.L.)
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 2R3, Canada
| | - Peng Wang
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.P.C.); (I.S.); (J.B.)
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
13
|
Maharati A, Tolue Ghasaban F, Akhlaghipour I, Taghehchian N, Zangouei AS, Moghbeli M. MicroRNA-495: a therapeutic and diagnostic tumor marker. J Mol Histol 2023; 54:559-578. [PMID: 37759132 DOI: 10.1007/s10735-023-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Therapeutic and diagnostic progresses have significantly reduced the mortality rate among cancer patients during the last decade. However, there is still a high rate of mortality among cancer patients. One of the important reasons involved in the high mortality rate is the late diagnosis in advanced tumor stages that causes the failure of therapeutic strategies in these patients. Therefore, investigating the molecular mechanisms involved in tumor progression has an important role in introducing the efficient early detection markers. MicroRNAs (miRNAs) as stable factors in body fluids are always considered as non-invasive diagnostic and prognostic markers. In the present review, we investigated the role of miR-495 in tumor progression. It has been reported that miR-495 has mainly a tumor suppressor function through the regulation of transcription factors and tyrosine kinases as well as cellular processes such as multidrug resistance, chromatin remodeling, and signaling pathways. This review can be an effective step towards introducing the miR-495 as a non-invasive diagnostic/prognostic marker as well as a suitable target in tumor therapy.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Diniz F, Lamas S, Osório H, Aguiar P, Freitas D, Gärtner F, Sarmento B, Reis CA, Gomes J. Nanoparticles targeting Sialyl-Tn for efficient tyrosine kinase inhibitor delivery in gastric cancer. Acta Biomater 2023; 170:142-154. [PMID: 37586448 DOI: 10.1016/j.actbio.2023.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related deaths worldwide and, therefore, it is urgent to develop new and more efficient therapeutic approaches. Foretinib (FRT) is an oral multikinase inhibitor targeting MET (hepatocyte growth factor receptor) and RON (recepteur d'origine nantais) receptor tyrosine kinases (RTKs) that has been used in clinical trials for several solid tumors. Targeted uptake of therapeutic polymeric nanoparticles (NPs) represents a powerful approach in cancer cell drug delivery. Previously, a nanodelivery system composed of polymeric NPs functionalized with B72.3 antibody, which targets the tumor-associated antigen Sialyl-Tn (STn), has been developed. Herein, these NPs were loaded with FRT to evaluate its capacity in delivering the drug to multicellular tumors spheroids (MCTS) and mouse models. The data indicated that B72.3 functionalized FRT-loaded PLGA-PEG-COOH NPs (NFB72.3) specifically target gastric MCTS expressing the STn glycan (MKN45 SimpleCell (SC) cells), leading to a decrease in phospho-RTKs activation and reduced cell viability. In vivo evaluation using MKN45 SC xenograft mice revealed that NFB72.3 were able to decrease tumor growth, reduce cell proliferation and tumor necrosis. NFB72.3-treated tumors also showed inactivation of phospho-MET and phospho-RON. This study demonstrates the value of using NPs targeting STn for FRT delivery, highlighting its potential as a therapeutic application in GC. STATEMENT OF SIGNIFICANCE: Despite the advances in gastric cancer therapeutics, it remains one of the diseases with the highest incidence and mortality in the world. Combining targeted therapies with a controlled drug release is an attractive strategy to reduce drug cytotoxic effects and improve specific drug delivery efficiency to the cancer cells. Thus, we developed nanoparticles loaded with a tyrosine kinase inhibitor and targeting a specific tumor glycan exclusive of cancer cells. In in vivo gastric cancer xenograft mice models, these nanoparticles efficiently reduced tumor growth, cell proliferation and tumor necrosis area and inactivated phosphorylation of targeting receptors. This approach represents an innovative therapeutic strategy with high impact in gastric cancer.
Collapse
Affiliation(s)
- Francisca Diniz
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sofia Lamas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Paulo Aguiar
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela Freitas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; CESPU-IUCS, 4585-116 Gandra, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; FMUP - Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | - Joana Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
15
|
Mekapogu AR, Xu Z, Pothula S, Perera C, Pang T, Hosen SMZ, Damalanka V, Janetka J, Goldstein D, Pirola R, Wilson J, Apte M. HGF/c-Met pathway inhibition combined with chemotherapy increases cytotoxic T-cell infiltration and inhibits pancreatic tumour growth and metastasis. Cancer Lett 2023; 568:216286. [PMID: 37354984 DOI: 10.1016/j.canlet.2023.216286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Pancreatic cancer (PC) is a deadly cancer with a high mortality rate. The unique characteristics of PC, including desmoplasia and immunosuppression, have made it difficult to develop effective treatment strategies. Pancreatic stellate cells (PSCs) play a crucial role in the progression of the disease by interacting with cancer cells. One of the key mediators of PSC - cancer cell interactions is the hepatocyte growth factor (HGF)/c-MET pathway. Using an immunocompetent in vivo model of PC as well as in vitro experiments, this study has shown that a combined approach using HGF/c-MET inhibitors to target stromal-tumour interactions and chemotherapy (gemcitabine) to target cancer cells effectively decreases tumour volume, EMT, and stemness, and importantly, eliminates metastasis. Notably, HGF/c-MET inhibition decreases TGF-β secretion by cancer cells, resulting in an increase in cytotoxic T-cell infiltration, thus contributing to cancer cell death in tumours. HGF/c-MET inhibition + chemotherapy was also found to normalise the gut microbiome and improve gut microbial diversity. These findings provide a strong platform for assessment of this triple therapy (HGF/c-MET inhibition + chemotherapy) approach in the clinical setting.
Collapse
Affiliation(s)
- Alpha Raj Mekapogu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Srinivasa Pothula
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; AbCellera, Beaconsfield, New South Wales, United Kingdom
| | - Chamini Perera
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Tony Pang
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Surgical Innovations Unit, Westmead Hospital, Sydney, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - S M Zahid Hosen
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Vishnu Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, USA
| | - James Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, USA
| | - David Goldstein
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| | - Romano Pirola
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| | - Jeremy Wilson
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Minoti Apte
- Pancreatic Research Group, South West Sydney Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia.
| |
Collapse
|
16
|
Tacchini M, Sacchetti G, Guerrini A, Paganetto G. Mycochemicals against Cancer Stem Cells. Toxins (Basel) 2023; 15:360. [PMID: 37368660 DOI: 10.3390/toxins15060360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Since ancient times, mushrooms have been considered valuable allies of human well-being both from a dietary and medicinal point of view. Their essential role in several traditional medicines is explained today by the discovery of the plethora of biomolecules that have shown proven efficacy for treating various diseases, including cancer. Numerous studies have already been conducted to explore the antitumoural properties of mushroom extracts against cancer. Still, very few have reported the anticancer properties of mushroom polysaccharides and mycochemicals against the specific population of cancer stem cells (CSCs). In this context, β-glucans are relevant in modulating immunological surveillance against this subpopulation of cancer cells within tumours. Small molecules, less studied despite their spread and assortment, could exhibit the same importance. In this review, we discuss several pieces of evidence of the association between β-glucans and small mycochemicals in modulating biological mechanisms which are proven to be involved with CSCs development. Experimental evidence and an in silico approach are evaluated with the hope of contributing to future strategies aimed at the direct study of the action of these mycochemicals on this subpopulation of cancer cells.
Collapse
Affiliation(s)
- Massimo Tacchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Modica C, Cortese M, Bersani F, Lombardi AM, Napoli F, Righi L, Taulli R, Basilico C, Vigna E. Genetic Ablation of the MET Oncogene Defines a Crucial Role of the HGF/MET Axis in Cell-Autonomous Functions Driving Tumor Dissemination. Cancers (Basel) 2023; 15:2742. [PMID: 37345079 DOI: 10.3390/cancers15102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer cell dissemination is sustained by cell-autonomous and non-cell-autonomous functions. To disentangle the role of HGF (Hepatocyte Growth Factor) and MET ligand/receptor axis in this complex process, we genetically knocked out the MET gene in cancer cells in which MET is not the oncogenic driver. In this way, we evaluated the contribution of the HGF/MET axis to cancer cell dissemination independently of its direct activities in cells of the tumor microenvironment. The lack of MET expression in MET-/- cells has been proved by molecular characterization. From a functional point of view, HGF stimulation of MET-/- cancer cells was ineffective in eliciting intracellular signaling and in sustaining biological functions predictive of malignancy in vitro (i.e., anchorage-independent growth, invasion, and survival in the absence of matrix adhesion). Cancer cell dissemination was assessed in vivo, evaluating: (i) the ability of MET-/- lung carcinoma cells to colonize the lungs following intravenous injection and (ii) the spontaneous dissemination to distant organs of MET-/- pancreatic carcinoma cells upon orthotopic injection. In both experimental models, MET ablation affects the time of onset, the number, and the size of metastatic lesions. These results define a crucial contribution of the HGF/MET axis to cell-autonomous functions driving the metastatic process.
Collapse
Affiliation(s)
- Chiara Modica
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
| | - Marco Cortese
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | - Francesca Bersani
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | | | - Francesca Napoli
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| | | | - Elisa Vigna
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10043 Orbassano, TO, Italy
| |
Collapse
|
18
|
Neuendorf HM, Simmons JL, Boyle GM. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front Cell Dev Biol 2023; 11:1183328. [PMID: 37181747 PMCID: PMC10169659 DOI: 10.3389/fcell.2023.1183328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
The acquisition of resistance to anoikis, the cell death induced by loss of adhesion to the extracellular matrix, is an absolute requirement for the survival of disseminating and circulating tumour cells (CTCs), and for the seeding of metastatic lesions. In melanoma, a range of intracellular signalling cascades have been identified as potential drivers of anoikis resistance, however a full understanding of the process is yet to be attained. Mechanisms of anoikis resistance pose an attractive target for the therapeutic treatment of disseminating and circulating melanoma cells. This review explores the range of small molecule, peptide and antibody inhibitors targeting molecules involved in anoikis resistance in melanoma, and may be repurposed to prevent metastatic melanoma prior to its initiation, potentially improving the prognosis for patients.
Collapse
Affiliation(s)
- Hannah M. Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Zhang Z, Wang X, Hamdan FH, Likhobabina A, Patil S, Aperdannier L, Sen M, Traub J, Neesse A, Fischer A, Papantonis A, Singh SK, Ellenrieder V, Johnsen SA, Hessmann E. NFATc1 Is a Central Mediator of EGFR-Induced ARID1A Chromatin Dissociation During Acinar Cell Reprogramming. Cell Mol Gastroenterol Hepatol 2023; 15:1219-1246. [PMID: 36758798 PMCID: PMC10064440 DOI: 10.1016/j.jcmgh.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND & AIMS Loss of AT-rich interactive domain-containing protein 1A (ARID1A) fosters acinar-to-ductal metaplasia (ADM) and pancreatic carcinogenesis by down-regulating transcription programs controlling acinar cell identity. However, how ARID1A reacts to metaplasia-triggering environmental cues remains elusive. Here, we aimed to elucidate the role of ARID1A in controlling ductal pancreatic gene signatures and deciphering hierarchical signaling cues determining ARID1A-dependent chromatin regulation during acinar cell reprogramming. METHODS Acinar cell explants with differential ARID1A status were subjected to genome-wide expression analyses. The impact of epidermal growth factor receptor (EGFR) signaling, NFATc1 activity, and ARID1A status on acinar reprogramming processes were characterized by ex vivo ADM assays and transgenic mouse models. EGFR-dependent ARID1A chromatin binding was studied by chromatin immunoprecipitation sequencing analysis and cellular fractionation. RESULTS EGFR signaling interferes with ARID1A-dependent transcription by inducing genome-wide ARID1A displacement, thereby phenocopying ARID1A loss-of-function mutations and inducing a shift toward ADM permissive ductal transcription programs. Moreover, we show that EGFR signaling is required to push ARID1A-deficient acinar cells toward a metaplastic phenotype. Mechanistically, we identified the transcription factor nuclear factor of activated T cells 1 (NFATc1) as the central regulatory hub mediating both EGFR signaling-induced genomic ARID1A displacement and the induction of ADM-promoting gene signatures in the absence of ARID1A. Consequently, pharmacologic inhibition of NFATc1 or its depletion in transgenic mice not only preserves genome-wide ARID1A occupancy, but also attenuates acinar metaplasia led by ARID1A loss. CONCLUSIONS Our data describe an intimate relationship between environmental signaling and chromatin remodeling in orchestrating cell fate decisions in the pancreas, and illustrate how ARID1A loss influences transcriptional regulation in acinar cell reprogramming.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Xin Wang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Feda H Hamdan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany; Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Anna Likhobabina
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Shilpa Patil
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Lena Aperdannier
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Madhobi Sen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jacobe Traub
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany; Clinical Research Unit 5002, University Medical Center Göttingen, Göttingen, Germany
| | - André Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases, Göttingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Argyris Papantonis
- Clinical Research Unit 5002, University Medical Center Göttingen, Göttingen, Germany; Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany; Clinical Research Unit 5002, University Medical Center Göttingen, Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany; Clinical Research Unit 5002, University Medical Center Göttingen, Göttingen, Germany; Comprehensive Cancer Center Lower Saxony, Hannover Medical School, Hannover, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany; Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany; Clinical Research Unit 5002, University Medical Center Göttingen, Göttingen, Germany; Comprehensive Cancer Center Lower Saxony, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
20
|
Cheke RS, Bagwe P, Bhange S, Kharkar PS. Biologicals and small molecules as target-specific cancer chemotherapeutic agents. MEDICINAL CHEMISTRY OF CHEMOTHERAPEUTIC AGENTS 2023:615-646. [DOI: 10.1016/b978-0-323-90575-6.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Phase I Study Evaluating Glesatinib (MGCD265), An Inhibitor of MET and AXL, in Patients with Non-small Cell Lung Cancer and Other Advanced Solid Tumors. Target Oncol 2023; 18:105-118. [PMID: 36459255 DOI: 10.1007/s11523-022-00931-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Heightened signaling by mesenchymal epithelial transition factor (MET) is implicated in tumorigenesis. Glesatinib is an investigational, oral inhibitor of MET and AXL. OBJECTIVE This phase I study determined the maximum tolerated dose (MTD), recommended phase II dose (RP2D), and safety profile of glesatinib in patients with advanced or unresectable solid tumors. Antitumor activity and pharmacokinetics (PK) were secondary objectives. PATIENTS AND METHODS Four formulations of glesatinib glycolate salt (capsule, unmicronized, micronized, and micronized version 2 [V2] tablets) and two free-base formulations (free-base suspension [FBS] capsule and spray-dried dispersion [SDD] tablet), developed to enhance drug exposure and optimize manufacturing processes, were evaluated in patients with genetically unselected advanced/unresectable solid tumors. MTD, based on dose-limiting toxicities (DLTs) observed during the first 21-day treatment cycle, was further evaluated in dose-expansion cohorts comprising patients with overexpression of MET and/or AXL, MET/AXL amplification, MET-activating mutations, or MET/AXL rearrangements for confirmation as the RP2D. RESULTS Glesatinib was evaluated across 27 dose-escalation cohorts (n = 108). Due to suboptimal exposure with glesatinib glycolate salt formulations in the initial cohorts, investigations subsequently focused on the FBS capsule and SDD tablet; for these formulations, MTD was identified as 1050 mg twice daily and 750 mg twice daily, respectively. An additional 71 patients received glesatinib in the FBS and SDD dose-expansion cohorts. At MTDs, the most frequent treatment-related adverse events were diarrhea (FBS, 83.3%; SDD, 75.0%), nausea (57.1%, 30.6%), vomiting (45.2%, 25.0%), increased alanine aminotransferase (45.2%, 30.6%), and increased aspartate aminotransferase (47.6%, 27.8%). Exploratory pharmacodynamic analyses indicated target engagement and inhibition of MET by glesatinib. Antitumor activity was observed with glesatinib FBS 1050 mg twice daily and SDD 750 mg twice daily in tumors harboring MET/AXL alteration or aberrant protein expression, particularly in patients with non--small cell lung cancer (NSCLC). In patients with NSCLC, the objective response rate was 25.9% in those with MET/AXL mutation or amplification and 30.0% in a subset with MET-activating mutations. All six partial responses occurred in patients with tumors carrying MET exon 14 deletion mutations. CONCLUSIONS The safety profile of single-agent glesatinib was acceptable. SDD 750 mg twice daily was selected as the preferred glesatinib formulation and dose based on clinical activity, safety, and PK data. Observations from this study led to initiation of a phase II study of glesatinib in patients with NSCLC stratified by type of MET alteration (NCT02544633). CLINICAL TRIALS REGISTRATION ClinicalTrials.gov NCT00697632; June 2008.
Collapse
|
22
|
Lin ZS, Chung CC, Liu YC, Chang CH, Liu HC, Liang YY, Huang TL, Chen TM, Lee CH, Tang CH, Hung MC, Chen YH. EZH2/hSULF1 axis mediates receptor tyrosine kinase signaling to shape cartilage tumor progression. eLife 2023; 12:79432. [PMID: 36622753 PMCID: PMC9829410 DOI: 10.7554/elife.79432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Abstract
Chondrosarcomas are primary cancers of cartilaginous tissue and capable of alteration to highly aggressive, metastatic, and treatment-refractory states, leading to a poor prognosis with a five-year survival rate at 11 months for dedifferentiated subtype. At present, the surgical resection of chondrosarcoma is the only effective treatment, and no other treatment options including targeted therapies, conventional chemotherapies, or immunotherapies are available for these patients. Here, we identify a signal pathway way involving EZH2/SULF1/cMET axis that contributes to malignancy of chondrosarcoma and provides a potential therapeutic option for the disease. A non-biased chromatin immunoprecipitation sequence, cDNA microarray analysis, and validation of chondrosarcoma cell lines identified sulfatase 1 (SULF1) as the top EZH2-targeted gene to regulate chondrosarcoma progression. Overexpressed EZH2 resulted in downregulation of SULF1 in chondrosarcoma cell lines, which in turn activated cMET pathway. Pharmaceutical inhibition of cMET or genetically silenced cMET pathway significantly retards the chondrosarcoma growth and extends mice survival. The regulation of EZH2/SULF1/cMET axis were further validated in patient samples with chondrosarcoma. The results not only established a signal pathway promoting malignancy of chondrosarcoma but also provided a therapeutic potential for further development of effective target therapy to treat chondrosarcoma.
Collapse
Affiliation(s)
- Zong-Shin Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichungTaiwan
| | - Chiao-Chen Chung
- Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan
| | - Yu-Chia Liu
- Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan
| | - Chu-Han Chang
- Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan
| | - Hui-Chia Liu
- Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan
| | - Yung-Yi Liang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichungTaiwan
| | - Teng-Le Huang
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical UniversityTaichungTaiwan
| | - Tsung-Ming Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine UniversityKaohsiungTaiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen UniversityKaohsiungTaiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichungTaiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichungTaiwan,Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan,Department of Biotechnology, Asia UniversityTaichungTaiwan
| | - Ya-Huey Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichungTaiwan,Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan
| |
Collapse
|
23
|
Matrix from urine stem cells boosts tissue-specific stem cell mediated functional cartilage reconstruction. Bioact Mater 2022; 23:353-367. [PMID: 36474659 PMCID: PMC9709166 DOI: 10.1016/j.bioactmat.2022.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Articular cartilage has a limited capacity to self-heal once damaged. Tissue-specific stem cells are a solution for cartilage regeneration; however, ex vivo expansion resulting in cell senescence remains a challenge as a large quantity of high-quality tissue-specific stem cells are needed for cartilage regeneration. Our previous report demonstrated that decellularized extracellular matrix (dECM) deposited by human synovium-derived stem cells (SDSCs), adipose-derived stem cells (ADSCs), urine-derived stem cells (UDSCs), or dermal fibroblasts (DFs) provided an ex vivo solution to rejuvenate human SDSCs in proliferation and chondrogenic potential, particularly for dECM deposited by UDSCs. To make the cell-derived dECM (C-dECM) approach applicable clinically, in this study, we evaluated ex vivo rejuvenation of rabbit infrapatellar fat pad-derived stem cells (IPFSCs), an easily accessible alternative for SDSCs, by the abovementioned C-dECMs, in vivo application for functional cartilage repair in a rabbit osteochondral defect model, and potential cellular and molecular mechanisms underlying this rejuvenation. We found that C-dECM rejuvenation promoted rabbit IPFSCs' cartilage engineering and functional regeneration in both ex vivo and in vivo models, particularly for the dECM deposited by UDSCs, which was further confirmed by proteomics data. RNA-Seq analysis indicated that both mesenchymal-epithelial transition (MET) and inflammation-mediated macrophage activation and polarization are potentially involved in the C-dECM-mediated promotion of IPFSCs' chondrogenic capacity, which needs further investigation.
Collapse
|
24
|
Takahashi K, Podyma-Inoue KA, Saito M, Sakakitani S, Sugauchi A, Iida K, Iwabuchi S, Koinuma D, Kurioka K, Konishi T, Tanaka S, Kaida A, Miura M, Hashimoto S, Okada M, Uchihashi T, Miyazono K, Watabe T. TGF-β generates a population of cancer cells residing in G1 phase with high motility and metastatic potential via KRTAP2-3. Cell Rep 2022; 40:111411. [PMID: 36170816 DOI: 10.1016/j.celrep.2022.111411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor β (TGF-β) increases epithelial cancer cell migration and metastasis by inducing epithelial-mesenchymal transition (EMT). TGF-β also inhibits cell proliferation by inducing G1 phase cell-cycle arrest. However, the correlation between these tumor-promoting and -suppressing effects remains unclear. Here, we show that TGF-β confers higher motility and metastatic ability to oral cancer cells in G1 phase. Mechanistically, keratin-associated protein 2-3 (KRTAP2-3) is a regulator of these dual effects of TGF-β, and its expression is correlated with tumor progression in patients with head and neck cancer and migratory and metastatic potentials of oral cancer cells. Furthermore, single-cell RNA sequencing reveals that TGF-β generates two populations of mesenchymal cancer cells with differential cell-cycle status through two distinctive EMT pathways mediated by Slug/HMGA2 and KRTAP2-3. Thus, TGF-β-induced KRTAP2-3 orchestrates cancer cell proliferation and migration by inducing EMT, suggesting motile cancer cells arrested in G1 phase as a target to suppress metastasis.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Maki Saito
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shintaro Sakakitani
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Akinari Sugauchi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keita Iida
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kyoko Kurioka
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toru Konishi
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Susumu Tanaka
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Masahiko Miura
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshihiro Uchihashi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan; Unit of Dentistry, Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
25
|
Hinze C, Kocks C, Leiz J, Karaiskos N, Boltengagen A, Cao S, Skopnik CM, Klocke J, Hardenberg JH, Stockmann H, Gotthardt I, Obermayer B, Haghverdi L, Wyler E, Landthaler M, Bachmann S, Hocke AC, Corman V, Busch J, Schneider W, Himmerkus N, Bleich M, Eckardt KU, Enghard P, Rajewsky N, Schmidt-Ott KM. Single-cell transcriptomics reveals common epithelial response patterns in human acute kidney injury. Genome Med 2022; 14:103. [PMID: 36085050 PMCID: PMC9462075 DOI: 10.1186/s13073-022-01108-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/12/2022] [Indexed: 01/07/2023] Open
Abstract
Background Acute kidney injury (AKI) occurs frequently in critically ill patients and is associated with adverse outcomes. Cellular mechanisms underlying AKI and kidney cell responses to injury remain incompletely understood. Methods We performed single-nuclei transcriptomics, bulk transcriptomics, molecular imaging studies, and conventional histology on kidney tissues from 8 individuals with severe AKI (stage 2 or 3 according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria). Specimens were obtained within 1–2 h after individuals had succumbed to critical illness associated with respiratory infections, with 4 of 8 individuals diagnosed with COVID-19. Control kidney tissues were obtained post-mortem or after nephrectomy from individuals without AKI. Results High-depth single cell-resolved gene expression data of human kidneys affected by AKI revealed enrichment of novel injury-associated cell states within the major cell types of the tubular epithelium, in particular in proximal tubules, thick ascending limbs, and distal convoluted tubules. Four distinct, hierarchically interconnected injured cell states were distinguishable and characterized by transcriptome patterns associated with oxidative stress, hypoxia, interferon response, and epithelial-to-mesenchymal transition, respectively. Transcriptome differences between individuals with AKI were driven primarily by the cell type-specific abundance of these four injury subtypes rather than by private molecular responses. AKI-associated changes in gene expression between individuals with and without COVID-19 were similar. Conclusions The study provides an extensive resource of the cell type-specific transcriptomic responses associated with critical illness-associated AKI in humans, highlighting recurrent disease-associated signatures and inter-individual heterogeneity. Personalized molecular disease assessment in human AKI may foster the development of tailored therapies.
Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01108-9.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christine Kocks
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Janna Leiz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nikos Karaiskos
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Anastasiya Boltengagen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Shuang Cao
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christopher Mark Skopnik
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Jan-Hendrik Hardenberg
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Helena Stockmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Inka Gotthardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | | | - Laleh Haghverdi
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Sebastian Bachmann
- Institute for Functional Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Berlin Institute of Health, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Jonas Busch
- Department of Urology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Wolfgang Schneider
- Department of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany. .,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany. .,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
26
|
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022; 22:259. [PMID: 35986321 PMCID: PMC9389806 DOI: 10.1186/s12935-022-02658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
As an intelligent disease, tumors apply several pathways to evade the immune system. It can use alternative routes to bypass intracellular signaling pathways, such as nuclear factor-κB (NF-κB), Wnt, and mitogen-activated protein (MAP)/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). Therefore, these mechanisms lead to therapeutic resistance in cancer. Also, these pathways play important roles in the proliferation, survival, migration, and invasion of cells. In most cancers, these signaling pathways are overactivated, caused by mutation, overexpression, etc. Since numerous molecules share these signaling pathways, the identification of key molecules is crucial to achieve favorable consequences in cancer therapy. One of the key molecules is the mesenchymal-epithelial transition factor (MET; c-Met) and its ligand hepatocyte growth factor (HGF). Another molecule is the epithelial cell adhesion molecule (EpCAM), which its binding is hemophilic. Although both of them are involved in many physiologic processes (especially in embryonic stages), in some cancers, they are overexpressed on epithelial cells. Since they share intracellular pathways, targeting them simultaneously may inhibit substitute pathways that tumor uses to evade the immune system and resistant to therapeutic agents.
Collapse
|
27
|
Cai B, Liu Y, Chong Y, Mori SF, Matsunaga A, Zhang H, Fang X, Chang CS, Cowell JK, Hu T. A truncated derivative of FGFR1 kinase cooperates with FLT3 and KIT to transform hematopoietic stem cells in syndromic and de novo AML. Mol Cancer 2022; 21:156. [PMID: 35906694 PMCID: PMC9336057 DOI: 10.1186/s12943-022-01628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Myeloid and lymphoid malignancies associated with chimeric FGFR1 kinases are the hallmark of stem cell leukemia and lymphoma syndrome (SCLL). In all cases, FGFR1 kinase is constitutively phosphoactivated as a result of chromosome translocations, which lead to acquisition of dimerization motifs in the chimeric proteins. Recently, we demonstrated that these chimeric kinases could be cleaved by granzyme B to generate a truncated derivative, tnFGFR1, which localized exclusively into the nucleus and was not phosphorylated. Methods Stem cell transduction and transplantation in syngeneic mice was used to assess the transforming ability of tnFGFR1 in bone marrow stem cells, and RPPA and RNA-Seq was used to examine the related signaling pathways and regulated target genes. Results For the first time, we show that this non-classical truncated form of FGFR1 can independently lead to oncogenic transformation of hematopoietic stem cells in an animal model in vivo. These leukemia cells show a mixed immunophenotype with a B-cell B220 + Igm- profile in the majority of cells and Kit+ in virtually all cells, suggesting a stem cell disease. tnFGFR1, however, does not activate classic FGFR1 downstream signaling pathways but induces a distinct profile of altered gene expression with significant upregulation of transmembrane signaling receptors including FLT3 and KIT. We further show that de novo human AML also express tnFGFR1 which correlates with upregulation of FLT3 and KIT as in mouse leukemia cells. ChIP analysis demonstrates tnFGFR1 occupancy at the Flt3 and Kit promoters, suggesting a direct transcriptional regulation. Cells transformed with tnFGFR1 are insensitive to FGFR1 inhibitors but treatment of these cells with the Quizartinib (AC220) FLT3 inhibitor, suppresses in vitro growth and development of leukemia in vivo. Combined treatment with FGFR1 and FLT3 inhibitors provides increased survival compared to FGFR1 inhibition alone. Conclusions This study demonstrates a novel model for transformation of hematopoietic stem cells by chimeric FGFR1 kinases with the combined effects of direct protein activation by the full-length kinases and transcriptional regulation by the truncated nuclear tnFGFR1 derivative, which is associated with GZMB expression levels. Genes significantly upregulated by tnFGFR1 include Flt3 and Kit which promote a leukemia stem cell phenotype. In human AML, tnFGFR1 activation leads to increased FLT3 and KIT expression, and higher FLT3 and GZMB expression levels are associated with an inferior prognosis. These observations provide insights into the relative therapeutic value of targeting FGFR1 and FLT3 in treating AML with this characteristic gene expression profile. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01628-3.
Collapse
Affiliation(s)
- Baohuan Cai
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Liu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yating Chong
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Stephanie Fay Mori
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Atsuko Matsunaga
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Hualei Zhang
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.,Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xuexiu Fang
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Chang-Sheng Chang
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - John K Cowell
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
28
|
Novoa Díaz MB, Carriere P, Gigola G, Zwenger AO, Calvo N, Gentili C. Involvement of Met receptor pathway in aggressive behavior of colorectal cancer cells induced by parathyroid hormone-related peptide. World J Gastroenterol 2022; 28:3177-3200. [PMID: 36051345 PMCID: PMC9331538 DOI: 10.3748/wjg.v28.i26.3177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/21/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parathyroid hormone-related peptide (PTHrP) plays a key role in the development and progression of many tumors. We found that in colorectal cancer (CRC) HCT116 cells, the binding of PTHrP to its receptor PTHR type 1 (PTHR1) activates events associated with an aggressive phenotype. In HCT116 cell xenografts, PTHrP modulates the expression of molecular markers linked to tumor progression. Empirical evidence suggests that the Met receptor is involved in the development and evolution of CRC. Based on these data, we hypothesized that the signaling pathway trigged by PTHrP could be involved in the transactivation of Met and consequently in the aggressive behavior of CRC cells.
AIM To elucidate the relationship among PTHR1, PTHrP, and Met in CRC models.
METHODS For in vitro assays, HCT116 and Caco-2 cells derived from human CRC were incubated in the absence or presence of PTHrP (1-34) (10-8 M). Where indicated, cells were pre-incubated with specific kinase inhibitors or dimethylsulfoxide, the vehicle of the inhibitors. The protein levels were evaluated by Western blot technique. Real-time polymerase chain reaction (RT-qPCR) was carried out to determine the changes in gene expression. Wound healing assay and morphological monitoring were performed to evaluate cell migration and changes related to the epithelial-mesenchymal transition (EMT), respectively. The number of viable HCT116 cells was counted by trypan blue dye exclusion test to evaluate the effects of irinotecan (CPT-11), oxaliplatin (OXA), or doxorubicin (DOXO) with or without PTHrP. For in vivo tests, HCT116 cell xenografts on 6-wk-old male N:NIH (S)_nu mice received daily intratumoral injections of PTHrP (40 μg/kg) in 100 μL phosphate-buffered saline (PBS) or the vehicle (PBS) as a control during 20 d. Humanitarian slaughter was carried out and the tumors were removed, weighed, and fixed in a 4% formaldehyde solution for subsequent treatment by immunoassays. To evaluate the expression of molecular markers in human tumor samples, we studied 23 specimens obtained from CRC patients which were treated at the Hospital Interzonal de Graves y Agudos Dr. José Penna (Bahía Blanca, Buenos Aires, Argentina) and the Hospital Provincial de Neuquén (Neuquén, Neuquén, Argentina) from January 1990 to December 2007. Seven cases with normal colorectal tissues were assigned to the control group. Tumor tissue samples and clinical histories of patients were analyzed. Paraffin-embedded blocks from primary tumors were reviewed by hematoxylin-eosin staining technique; subsequently, representative histological samples were selected from each patient. From each paraffin block, tumor sections were stained for immunohistochemical detection. The statistical significance of differences was analyzed using proper statistical analysis. The results were considered statistically significant at P < 0.05.
RESULTS By Western blot analysis and using total Met antibody, we found that PTHrP regulated Met expression in HCT116 cells but not in Caco-2 cells. In HCT116 cells, Met protein levels increased at 30 min (P < 0.01) and at 20 h (P < 0.01) whereas the levels diminished at 3 min (P < 0.05), 10 min (P < 0.01), and 1 h to 5 h (P < 0.01) of PTHrP treatment. Using an active Met antibody, we found that where the protein levels of total Met decreased (3 min, 10 min, and 60 min of PTHrP exposure), the status of phosphorylated/activated Met increased (P < 0.01) at the same time, suggesting that Met undergoes proteasomal degradation after its phosphorylation/activation by PTHrP. The increment of its protein level after these decreases (at 30 min and 20 h) suggests a modulation of Met expression by PTHrP in order to improve Met levels and this idea is supported by our observation that the cytokine increased Met mRNA levels at least at 15 min in HCT116 cells as revealed by RT-qPCR analysis (P < 0.05). We then proceeded to evaluate the signaling pathways that mediate the phosphorylation/ activation of Met induced by PTHrP in HCT116 cells. By Western blot technique, we observed that PP1, a specific inhibitor of the activation of the proto-oncogene protein tyrosine kinase Src, blocked the effect of PTHrP on Met phosphorylation (P < 0.05). Furthermore, the selective inhibition of the ERK 1/2 mitogen-activated protein kinase (ERK 1/2 MAPK) using PD98059 and the p38 MAPK using SB203580 diminished the effect of PTHrP on Met phosphorylation/activation (P < 0.05). Using SU11274, the specific inhibitor of Met activation, and trypan blue dye exclusion test, Western blot, wound healing assay, and morphological analysis with a microscope, we observed the reversal of cell events induced by PTHrP such as cell proliferation (P < 0.05), migration (P < 0.05), and the EMT program (P < 0.01) in HCT116 cells. Also, PTHrP favored the chemoresistance to CPT-11 (P < 0.001), OXA (P < 0.01), and DOXO (P < 0.01) through the Met pathway. Taken together, these findings suggest that Met activated by PTHrP participates in events associated with the aggressive phenotype of CRC cells. By immunohistochemical analysis, we found that PTHrP in HCT116 cell xenografts enhanced the protein expression of Met (0.190 ± 0.014) compared to tumors from control mice (0.110 ± 0.012; P < 0.05) and of its own receptor (2.27 ± 0.20) compared to tumors from control mice (1.98 ± 0.14; P < 0.01). Finally, assuming that the changes in the expression of PTHrP and its receptor are directly correlated, we investigated the expression of both Met and PTHR1 in biopsies of CRC patients by immunohistochemical analysis. Comparing histologically differentiated tumors with respect to those less differentiated, we found that the labeling intensity for Met and PTHR1 increased and diminished in a gradual manner, respectively (P < 0.05).
CONCLUSION PTHrP acts through the Met pathway in CRC cells and regulates Met expression in a CRC animal model. More basic and clinical studies are needed to further evaluate the PTHrP/Met relationship.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Graciela Gigola
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | | | - Natalia Calvo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
29
|
Chen Y, Gao WK, Shu YY, Ye J. Mechanisms of ductular reaction in non-alcoholic steatohepatitis. World J Gastroenterol 2022; 28:2088-2099. [PMID: 35664038 PMCID: PMC9134136 DOI: 10.3748/wjg.v28.i19.2088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease spectrum caused in part by insulin resistance and genetic predisposition. This disease is primarily characterized by excessive lipid accumulation in hepatocytes in the absence of alcohol abuse and other causes of liver damage. Histologically, NAFLD is divided into several periods: simple steatosis, non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. With the increasing prevalence of obesity and hyperlipidemia, NAFLD has become the main cause of chronic liver disease worldwide. As a result, the pathogenesis of this disease is drawing increasing attention. Ductular reaction (DR) is a reactive bile duct hyperplasia caused by liver injury that involves hepatocytes, cholangiocytes, and hepatic progenitor cells. Recently, DR is shown to play a pivotal role in simple steatosis progression to NASH or liver fibrosis, providing new research and treatment options. This study reviews several DR signaling pathways, including Notch, Hippo/YAP-TAZ, Wnt/β-catenin, Hedgehog, HGF/c-Met, and TWEAK/Fn14, and their role in the occurrence and development of NASH.
Collapse
Affiliation(s)
- Yue Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wen-Kang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
30
|
Patnaik A, Gadgeel S, Papadopoulos KP, Rasco DW, Haas NB, Der-Torossian H, Faltaos D, Potvin D, Tassell V, Tawashi M, Chao R, O'Dwyer PJ. Phase I Study of Glesatinib (MGCD256) in Combination with Erlotinib or Docetaxel in Patients with Advanced Solid Tumors. Target Oncol 2022; 17:125-138. [PMID: 35347559 DOI: 10.1007/s11523-022-00875-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Oncogenic drivers in solid tumors include aberrant activation of mesenchymal epithelial transition factor (MET) and AXL. OBJECTIVE This study investigated the safety and antitumor activity of glesatinib, a multitargeted receptor tyrosine kinase inhibitor that inhibits MET and AXL at clinically relevant doses, in combination with erlotinib or docetaxel. PATIENTS AND METHODS The phase I portion of this open-label, multicenter study included two parallel arms in which ascending doses of oral glesatinib (starting dose 96 mg/m2) were administered with erlotinib or docetaxel (starting doses 100 mg once daily and 50 mg/m2, respectively) using a modified 3 + 3 design. Maximum tolerated dose (MTD) was based on dose-limiting toxicities (DLTs) during the first 21-day treatment cycle. Enrollment focused on patients with solid tumor types typically associated with MET aberration and/or AXL overexpression. The primary objective was to determine the safety profile of the treatment combinations. Antitumor activity and pharmacokinetics (PK) were also assessed. RESULTS Ten dose levels of glesatinib across three glycolate formulations (unmicronized, micronized, or micronized version 2 [V2] tablets) available during the course of the study were investigated in 14 dose-escalation cohorts (n = 126). MTDs of unmicronized glesatinib plus erlotinib or docetaxel, and micronized glesatinib plus erlotinib were not reached. Micronized glesatinib 96 mg/m2 plus docetaxel exceeded the MTD. Further dosing focused on glesatinib micronized V2: maximum administered dose (MAD) was 700 mg twice daily with erlotinib 150 mg once daily or docetaxel 75 mg/m2 every 3 weeks. DLTs, acceptable at lower glesatinib (micronized V2) dose levels, occurred in two of five and two of six patients at the MADs of glesatinib + erlotinib and glesatinib + docetaxel, respectively. Across all cohorts, the most frequent treatment-related adverse events were diarrhea (glesatinib + erlotinib: 84.1%; glesatinib + docetaxel: 45.6%), fatigue (46.4%, 70.4%), and nausea (30.4%, 35.1%). The objective response rate was 1.8% and 12.0% in all glesatinib + erlotinib and glesatinib + docetaxel cohorts, respectively. CONCLUSIONS The safety profile of glesatinib plus erlotinib or docetaxel was acceptable and there were no PK interactions. MADs of glesatinib 700 mg twice daily (micronized V2) with erlotinib 150 mg once daily or docetaxel 75 mg/m2 every 3 weeks exceeded the MTD by a small margin. Modest signals of efficacy were observed with these treatment combinations in non-genetically selected patients with advanced solid tumors. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov NCT00975767; 11 September 2009.
Collapse
Affiliation(s)
- Amita Patnaik
- START, 4383 Medical Drive, Suite 4026, San Antonio, TX, 78229, USA.
| | - Shirish Gadgeel
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.,Henry Ford Health System, Detroit, MI, USA
| | | | - Drew W Rasco
- START, 4383 Medical Drive, Suite 4026, San Antonio, TX, 78229, USA
| | - Naomi B Haas
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Demiana Faltaos
- Mirati Therapeutics Inc., San Diego, CA, USA.,Olema Therapeutics, San Francisco, CA, USA
| | | | | | - Manal Tawashi
- Mirati Therapeutics Inc., San Diego, CA, USA.,HUYABIO International, San Diego, CA, USA
| | | | - Peter J O'Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Zhao Y, Li C, Zhang Y, Li Z. CircTMTC1 contributes to nasopharyngeal carcinoma progression through targeting miR-495-MET-eIF4G1 translational regulation axis. Cell Death Dis 2022; 13:250. [PMID: 35301291 PMCID: PMC8930977 DOI: 10.1038/s41419-022-04686-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/20/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is the most common primary malignancy arising from the epithelial cells of nasopharynx. CircTMTC1 is upregulated in NPC patients, but its role and molecular mechanism in NPC are unknown. Normal nasopharyngeal epithelium and tumor tissues were collected. The expression of circTMTC1, miR-495, MET/eIF4G1 pathway-related molecules were examined. Colony formation and transwell assays were used to assess cell proliferation, migration, and invasion. Cell apoptosis was analyzed by annexin V and propidium iodide (PI) staining. Gene interaction was examined by RNA immunoprecipitation (RIP) and luciferase activity assays. Subcutaneous and intravenous xenograft mouse models were established to analyze NPC growth and metastasis in vivo. CircTMTC1 was highly expressed and miR-495 was downregulated in NPC, which were associated with poor prognosis of NPC. Both circTMTC1 knockdown and miR-495 overexpression inhibited NPC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) and promoted cell apoptosis. CircTMTC1 directly targeted miR-495 to promote the expression of its downstream target gene MET. miR-495 knockdown enhanced the expression of c-Myc, Cyclin D1, and survivin and accelerated NPC cell proliferation, migration, invasion, and EMT through targeting MET and activating the MET-eIF4G1 axis. CircTMTC1 silence inhibited NPC growth and lung metastasis by targeting the miR-495-MET-eIF4G1 translational regulation axis in vivo. CircTMTC1 accelerates NPC progression through targeting miR-495 and consequently activating the MET-eIF4G1 translational regulation axis, suggesting potential therapeutic targets for NPC treatment.
Collapse
Affiliation(s)
- Yajie Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Chao Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Yan Zhang
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan Province, P. R. China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China.
| |
Collapse
|
32
|
To KKW, Cho WCS. Mesenchymal Epithelial Transition Factor (MET): A Key Player in Chemotherapy Resistance and an Emerging Target for Potentiating Cancer Immunotherapy. Curr Cancer Drug Targets 2022; 22:269-285. [PMID: 35255791 DOI: 10.2174/1568009622666220307105107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
The MET protein is a cell surface receptor tyrosine kinase predominately expressed in epithelial cells. Upon binding of its only known ligand, hepatocyte growth factor (HGF), MET homodimerizes, phosphorylates, and stimulates intracellular signalling to drive cell proliferation. Amplification or hyperactivation of MET is frequently observed in various cancer types and it is associated with poor response to conventional and targeted chemotherapy. More recently, emerging evidence also suggests that MET/HGF signalling may play an immunosuppressive role and it could confer resistance to cancer immunotherapy. In this review, we summarized the preclinical and clinical evidence of MET's role in drug resistance to conventional chemotherapy, targeted therapy, and immunotherapy. Previous clinical trials investigating MET-targeted therapy in unselected or MET-overexpressing cancers yielded mostly unfavourable results. More recent clinical studies focusing on MET exon 14 alterations and MET amplification have produced encouraging treatment responses to MET inhibitor therapy. The translational relevance of MET inhibitor therapy to overcome drug resistance in cancer patients is discussed.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
33
|
Extraneural Metastases of Diffuse Midline Glioma, H3 K27M-Mutant at Diagnosis: Case Report, Review of the Literature, and Identifying Targetable Alterations. J Pediatr Hematol Oncol 2022; 44:e597-e604. [PMID: 33974582 DOI: 10.1097/mph.0000000000002189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022]
Abstract
Extraneural metastases are rare in pediatric high-grade gliomas and little is known about the genomic profiles of tumors that disseminate beyond the central nervous system. We describe a pediatric patient with H3 K27M-mutant diffuse midline glioma of the brain and spine with biopsy-confirmed osseous metastases present at diagnosis and suspected metastatic parenchymal pulmonary disease. Several potentially clinically and/or therapeutically relevant genomic alterations were identified, including H3F3A and TP53 mutations as well as MET, CDK6, EMSY, and PIK3CG amplifications. Sequencing is critical to improve our understanding of the molecular drivers of distant metastases and discover therapeutic targets that penetrate all disease sites.
Collapse
|
34
|
Huang YT, Lin CJ, Tsai YY, Hsia NY. Bilateral optic disc edema as a possible complication of cabozantinib use-a case report. Eur J Ophthalmol 2022; 33:NP56-NP59. [PMID: 35128965 DOI: 10.1177/11206721221078675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Cabozantinib, which was approved by the Food and Drug Administration (FDA) in 2012, is a tyrosine kinase inhibitor widely used in the treatment of metastatic renal cell carcinoma (RCC) and medullary thyroid carcinoma. To date, no ocular adverse events have been reported by the FDA or on the package label. Here, we described a patient with metastatic RCC who developed bilateral optic disc edema after a 4-month course of cabozantinib. CASE DESCRIPTION A 55-year-old ethnic Chinese male with RCC with multiple metastases presented to our department with progressive blurred vision in both eyes for 1 month. He started taking cabozantinib 60 mg once daily 5 months prior to this presentation. Poor visual acuity and bilateral disc edema were then noted. Cabozantinib was discontinued after that, and 3-day pulse steroid therapy with methylprednisolone 1 g/day was given. The optic disc edema subsided gradually with limited improvement in visual acuity. CONCLUSION Bilateral optic edema should be considered as a complication associated with cabozantinib. We propose discontinuation of the treatment in cases such as that, and pulse steroid therapy should be considered if there is no contraindication.
Collapse
Affiliation(s)
- Yu-Te Huang
- Department of Ophthalmology, 38020China Medical University Hospital, Taichung
| | - Chun-Ju Lin
- Department of Ophthalmology, 38020China Medical University Hospital, Taichung.,School of Medicine, College of Medicine, 38019China Medical University, Taichung.,Department of Optometry, 63267Asia University, Taichung
| | - Yi-Yu Tsai
- Department of Ophthalmology, 38020China Medical University Hospital, Taichung.,School of Medicine, College of Medicine, 38019China Medical University, Taichung.,Department of Optometry, 63267Asia University, Taichung
| | - Ning-Yi Hsia
- Department of Ophthalmology, 38020China Medical University Hospital, Taichung
| |
Collapse
|
35
|
Adu-Oppong B, Thänert R, Wallace MA, Burnham CAD, Dantas G. Substantial overlap between symptomatic and asymptomatic genitourinary microbiota states. MICROBIOME 2022; 10:6. [PMID: 35039079 PMCID: PMC8762997 DOI: 10.1186/s40168-021-01204-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/30/2021] [Indexed: 06/10/2023]
Abstract
BACKGROUND The lack of a definition of urinary microbiome health convolutes diagnosis of urinary tract infections (UTIs), especially when non-traditional uropathogens or paucity of bacteria are recovered from symptomatic patients in routine standard-of-care urine tests. Here, we used shotgun metagenomic sequencing to characterize the microbial composition of asymptomatic volunteers in a set of 30 longitudinally collected urine specimens. Using permutation tests, we established a range of asymptomatic microbiota states, and use these to contextualize the microbiota of 122 urine specimens collected from patients with suspected UTIs diagnostically categorized by standard-of-care urinalysis within that range. Finally, we used a standard-of-care culture protocol to evaluate the efficiency of culture-based recovery of the urinary microbiota. RESULTS The majority of genitourinary microbiota in individals suspected to have UTI overlapped with the spectrum of asymptomatic microbiota states. Longitudinal characterization of the genitourinary microbiome in urine specimens collected from asymptomatic volunteers revealed fluctuations of microbial functions and taxonomy over time. White blood cell counts from urinalysis suggested that urine specimens categorized as 'insignificant', 'contaminated', or 'no-growth' by conventional culture methods frequently showed signs of urinary tract inflammation, but this inflammation is not associated with genitourinary microbiota dysbiosis. Comparison of directly sequenced urine specimens with standard-of-care culturing confirmed that culture-based diagnosis biases genitourinary microbiota recovery towards the traditional uropathogens Escherichia coli and Klebsiella pneumoniae. CONCLUSION Here, we utilize shotgun metagenomic sequencing to establish a baseline of asymptomatic genitourinary microbiota states. Using this baseline we establish substantial overlap between symptomatic and asymptomatic genitourinary microbiota states. Our results establish that bacterial presence alone does not explain the onset of clinical symptoms. Video Abstract.
Collapse
Affiliation(s)
- Boahemaa Adu-Oppong
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri USA
| | - Robert Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri USA
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri USA
| |
Collapse
|
36
|
Prasad RR, Mishra DK, Kumar M, Yadava PK. Human telomerase reverse transcriptase promotes the epithelial to mesenchymal transition in lung cancer cells by enhancing c-MET upregulation. Heliyon 2022; 8:e08673. [PMID: 35024489 PMCID: PMC8732784 DOI: 10.1016/j.heliyon.2021.e08673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/01/2021] [Accepted: 12/21/2021] [Indexed: 10/25/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT), the essential catalytic subunit of telomerase, is associated with telomere homeostasis to prevent replicative senescence and cellular aging. However, hTERT reactivation also has been linked to the acquisition of several hallmarks of cancer, although the underlying mechanism beyond telomere extension remains elusive. This study demonstrated that hTERT overexpression promotes, whereas its inhibition by shRNA suppresses, epithelial-mesenchymal transition (EMT) in lung cancer cells (A549 and H1299). We found that hTERT modulates the expression of EMT markers E-cadherin, vimentin, and cytokeratin-18a through upregulation of the c-MET. Ectopic expression of hTERT induces expression of c-MET, while hTERT-shRNA treatment significantly decreases the c-MET level in A549 and H1299 through differential expression of p53 and c-Myc. Reporter assay suggests the regulation of c-MET expression by hTERT to be at the promoter level. An increase in c-MET level significantly promotes the expression of mesenchymal markers, including vimentin and N-cadherin, while a notable increase in epithelial markers E-cadherin and cytokeratin-18a is observed after the c-MET knockdown in A549.
Collapse
Affiliation(s)
- Ram Raj Prasad
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepak Kumar Mishra
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manoj Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.,Department of Biological Sciences, Indian Institute for Science Education and Research, Berhampur 760010, Odisha, India
| |
Collapse
|
37
|
Chu C, Rao Z, Pan Q, Zhu W. An updated patent review of small-molecule c-Met kinase inhibitors (2018-present). Expert Opin Ther Pat 2021; 32:279-298. [PMID: 34791961 DOI: 10.1080/13543776.2022.2008356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION c-Met tyrosine kinase receptor is a high-affinity ligand of hepatocyte growth factor (HGF). c-Met is widely expressed in a variety of normal human tissues, but shows abnormally high expression, amplification or mutation in tumour tissues such as lung, gastric and breast cancers. Therefore, the use of c-Met as a target can achieve the inhibition of a series of abnormal physiological processes such as tumourigenesis, development and metastasis. A number of small molecule tyrosine kinase inhibitors targeting c-Met have been successfully marketed. AREAS COVERED This article reviews recent advances in patented c-Met small molecule inhibitors and their inhibitory activity against various cancer cells from 2018 to date. EXPERT OPINION To date, small molecule inhibitors targeting c-Met have demonstrated impressive therapeutic efficacy in the clinical setting. Most recent patents have focused on addressing the direction of c-Met amplification and overexpression. Despite the great success in the development of selective c-Met inhibitors, the effects of bypass secretion and mutagenesis have led to a need for new c-Met small molecule inhibitors that are safe, efficient, selective and less toxic with novel structures and effective against other targets.
Collapse
Affiliation(s)
- Cilong Chu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Zixuan Rao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
38
|
Zhao S, Wu W, Jiang H, Ma L, Pan C, Jin C, Mo J, Wang L, Wang K. Selective Inhibitor of the c-Met Receptor Tyrosine Kinase in Advanced Hepatocellular Carcinoma: No Beneficial Effect With the Use of Tivantinib? Front Immunol 2021; 12:731527. [PMID: 34804015 PMCID: PMC8600564 DOI: 10.3389/fimmu.2021.731527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced hepatocellular carcinoma (HCC) remains a formidable health challenge worldwide, with a 5-year survival rate of 2.4% in patients with distant metastases. The hepatocyte growth factor/cellular-mesenchymal-epithelial transition (HGF/c-Met) signaling pathway represents an encouraging therapeutic target for progressive HCC. Tivantinib, a non-adenosine triphosphate-competitive c-Met inhibitor, showed an attractive therapeutic effect on advanced HCC patients with high MET-expression in phase 2 study but failed to meet its primary endpoint of prolonging the overall survival (OS) in two phase 3 HCC clinical trials. Seven clinical trials have been registered in the "ClinicalTrials.gov" for investigating the safety and efficacy of tivantinib in treating advanced or unresectable HCC. Eight relevant studies have been published with results. The sample size ranged from 20 to 340 patients. The methods of tivantinib administration and dosage were orally 120/240/360 mg twice daily. MET overexpression was recorded at 34.6% to 100%. Two large sample phase 3 studies (the METIV-HCC study of Australia and European population and the JET-HCC study of the Japanese population) revealed that tivantinib failed to show survival benefits in advanced HCC. Common adverse events with tivantinib treatment include neutropenia, ascites, rash, and anemia, etc. Several factors may contribute to the inconsistency between the phase 2 and phase 3 studies of tivantinib, including the sample size, drug dosing, study design, and the rate of MET-High. In the future, high selective MET inhibitors combined with a biomarker-driven patient selection may provide a potentially viable therapeutic strategy for patients with advanced HCC.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lei Ma
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chengyi Pan
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
39
|
Park E, Kim YT, Kim S, Nam EJ, Cho NH. Immunohistochemical and genetic characteristics of HPV-associated endocervical carcinoma with an invasive stratified mucin-producing carcinoma (ISMC) component. Mod Pathol 2021; 34:1738-1749. [PMID: 34103667 DOI: 10.1038/s41379-021-00829-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022]
Abstract
Invasive stratified mucin-producing carcinoma (ISMC) is a recently described entity of human papillomavirus (HPV)-associated endocervical adenocarcinoma with phenotypic plasticity and aggressive clinical behavior. To identify the cell of origin of ISMC, we investigated the immunohistochemical expression of cervical epithelial cell markers (CK7, PAX8, CK5/6, p63, and CK17), stemness markers (ALDH1 and Nanog), and epithelial-mesenchymal transition (EMT) markers (Snail, Twist, and E-cadherin) in 10 pure and mixed type ISMCs with at least 10% of ISMC component in the entire tumor, seven usual type endocervical adenocarcinomas (UEAs), and seven squamous cell carcinomas (SCCs). In addition, targeted sequencing was performed in 10 ISMCs. ISMC was significantly associated with larger tumor size (p = 0.011), more frequent lymphovascular invasion and lymph node metastasis (p < 0.001), higher FIGO stage (p = 0.022), and a tendency for worse clinical outcomes (p = 0.056) compared to other HPV-associated subtypes. ISMC showed negative or borderline positivity for PAX8, CK5/6, and p63, which were distinct from UEA and SCC (p < 0.01). Compared to UEA and SCC, ISMC showed higher expression for ALDH1 (p = 0.119 for UEA and p = 0.009 for SCC), Snail (p = 0.036), and Twist (p = 0.119), and tended to show decreased E-cadherin expression (p = 0.083). In next-generation sequencing analysis, ISMC exhibited frequent STK11, MET, FANCA, and PALB2 mutations compared to conventional cervical carcinomas, and genes related to EMT and stemness were frequently altered. EMT-prone and stemness characteristics and peripheral expression of reserve cell and EMT markers of ISMC suggest its cervical reserve cell origin. We recommend PAX8, CK5/6, and p63 as diagnostic triple biomarkers for ISMC. These findings highlight the distinct biological basis of ISMC.
Collapse
Affiliation(s)
- Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Tae Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ji Nam
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
40
|
Sharma A, Kansara S, Mahajan M, Yadav B, Garg M, Pandey AK. Long non-coding RNAs orchestrate various molecular and cellular processes by modulating epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166240. [PMID: 34363933 DOI: 10.1016/j.bbadis.2021.166240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) regulate various hallmarks associated with the progression of human cancers through their binding with RNA, DNA, and proteins. Epithelial-Mesenchymal Transition (EMT) is a cardinal and multi-stage process where epithelial cells acquire a mesenchymal-like phenotype that is instrumental for tumor cells to initiate invasion and metastasis. LncRNAs can potentially promote tumor onset and progression as well as drug resistance by directly or indirectly altering the EMT program. Head and neck squamous cell carcinoma (HNSCC) are a dreadful malignancy affecting public health globally. The past few years have provided a better insight into the mechanism of EMT in HNSCC. The differential expression of the lncRNAs that can act either as promoters or suppressors in the process of EMT is of great importance. In this review, we aim to sum up, the highly structured mechanism with the diverse role of lncRNAs and their interaction with different molecules in the regulation of EMT. Moreover, discussing principal EMT pathways modulated by lncRNAs and their prospective potential value as therapeutic targets.
Collapse
Affiliation(s)
- Ayushi Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India.
| | - Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Mehul Mahajan
- Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India.
| |
Collapse
|
41
|
Fu J, Su X, Li Z, Deng L, Liu X, Feng X, Peng J. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene 2021; 40:4625-4651. [PMID: 34145400 DOI: 10.1038/s41388-021-01863-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
This review provides a comprehensive landscape of HGF/c-MET (hepatocyte growth factor (HGF) /mesenchymal-epithelial transition factor (c-MET)) signaling pathway in cancers. First, we generalize the compelling influence of HGF/c-MET pathway on multiple cellular processes. Then, we present the genomic characterization of HGF/c-MET pathway in carcinogenesis. Furthermore, we extensively illustrate the malignant biological behaviors of HGF/c-MET pathway in cancers, in which hyperactive HGF/c-MET signaling is considered as a hallmark. In addition, we investigate the current clinical trials of HGF/c-MET-targeted therapy in cancers. We find that although HGF/c-MET-targeted therapy has led to breakthroughs in certain cancers, monotherapy of targeting HGF/c-MET has failed to demonstrate significant clinical efficacy in most cancers. With the advantage of the combinations of HGF/c-MET-targeted therapy, the exploration of more options of combinational targeted therapy in cancers may be the major challenge in the future.
Collapse
Affiliation(s)
- Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Zhihua Li
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Deng
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiawei Liu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| |
Collapse
|
42
|
Park Y, Park J, Ahn JW, Sim JM, Kang SJ, Kim S, Hwang SJ, Han SH, Sung KS, Lim J. Transcriptomic Landscape of Lower Grade Glioma Based on Age-Related Non-Silent Somatic Mutations. ACTA ACUST UNITED AC 2021; 28:2281-2295. [PMID: 34205437 PMCID: PMC8293196 DOI: 10.3390/curroncol28030210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
Glioma accounts for 80% of all malignant brain tumours and is the most common adult primary brain tumour. Age is an important factor affecting the development of cancer, as somatic mutations accumulate with age. Here, we aimed to analyse the significance of age-dependent non-silent somatic mutations in glioma prognosis. Histological tumour grade depends on age at diagnosis in patients with IDH1, TP53, ATRX, and EGFR mutations. Age of patients with wild-type IDH1 and EGFR increased with increase in tumour grade, while the age of patients with IDH1 or EGFR mutation remained constant. However, the age of patients with EGFR mutation was higher than that of patients with IDH1 mutation. The hierarchical clustering of patients was dominantly separated by IDH1 and EGFR mutations. Furthermore, patients with IDH1 mutation were dominantly separated by TP53 and ATRX double mutation and its double wild-type counterpart. The age of patients with ATRX and TP53 mutation was lower than that of patients with wild-type ATRX and TP53. Patients with the double mutation showed poorer prognosis than those with the double wild type genotype. Unlike IDH1 mutant, IDH1 wild-type showed upregulation of expression of epithelial mesenchymal transition associated genes.
Collapse
Affiliation(s)
- YoungJoon Park
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (Y.P.); (J.P.); (J.W.A.); (S.J.K.)
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 13496, Korea; (J.M.S.); (S.K.); (S.J.H.)
| | - JeongMan Park
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (Y.P.); (J.P.); (J.W.A.); (S.J.K.)
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 13496, Korea; (J.M.S.); (S.K.); (S.J.H.)
| | - Ju Won Ahn
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (Y.P.); (J.P.); (J.W.A.); (S.J.K.)
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 13496, Korea; (J.M.S.); (S.K.); (S.J.H.)
| | - Jeong Min Sim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 13496, Korea; (J.M.S.); (S.K.); (S.J.H.)
| | - Su Jung Kang
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (Y.P.); (J.P.); (J.W.A.); (S.J.K.)
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 13496, Korea; (J.M.S.); (S.K.); (S.J.H.)
| | - Suwan Kim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 13496, Korea; (J.M.S.); (S.K.); (S.J.H.)
| | - So Jung Hwang
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 13496, Korea; (J.M.S.); (S.K.); (S.J.H.)
- Global Research Supporting Center, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 13496, Korea
| | - Song-Hee Han
- Department of Pathology, Dong-A University College of Medicine, Dong-A University, Busan 49201, Korea;
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan 49201, Korea
- Correspondence: or (K.S.S.); or (J.L.); Tel.: +82-51-240-5241 (K.S.S.); +82-31-780-5688 (J.L.)
| | - Jaejoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam 13496, Korea; (J.M.S.); (S.K.); (S.J.H.)
- Correspondence: or (K.S.S.); or (J.L.); Tel.: +82-51-240-5241 (K.S.S.); +82-31-780-5688 (J.L.)
| |
Collapse
|
43
|
Zhang S, Xu Y, Zhao P, Bao H, Wang X, Liu R, Xu R, Xiang J, Jiang H, Yan J, Wu X, Shao Y, Liang J, Wu Q, Zhang Z, Lu S, Ma S. Integrated Analysis of Genomic and Immunological Features in Lung Adenocarcinoma With Micropapillary Component. Front Oncol 2021; 11:652193. [PMID: 34221970 PMCID: PMC8248503 DOI: 10.3389/fonc.2021.652193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background Micropapillary adenocarcinoma is one of the most aggressive histologic subtypes of lung adenocarcinoma (LADC), and even a minor proportion of micropapillary component (MPC) within the LADC could contribute to poor prognosis. Comprehensive analysis of genetic and immunological features of LADC with different percentages of MPC would help better understand cancer biology of this LADC subtype and direct future treatments. Methods We performed next-generation sequencing (NGS) for a discovery cohort of 43 LADC patients whose tumors were micro-dissected to separate MPC and non-MPC lesions and a reference cohort of 113 LADC patients. MPC-enriched genetic alterations that were detected in the discovery cohort were then confirmed using a validation cohort of 183 LADC patients. Immunological staining was also conducted on the MPC-containing samples in the discovery cohort. Results Tumors with a higher percentage of MPC tended to harbor more tumor mutation burdens (TMBs) and chromosome instability (CIN). Some rare genetic events may serve as the genetic landscape to drive micropapillary tumor progression. Specifically, alterations in transcription termination factor 1 (TTF1), brain-specific angiogenesis inhibitor 3 (BAI3), mammalian target of rapamycin (MTOR), and cyclin-dependent kinase inhibitor 2A (CDKN2A) were cross-validated to be enriched in MPC-contained LADC. Additionally, tumors with a higher percentage of MPC were associated with a higher percentage of CD4+, CD8+, and PD-L1+ staining, and some genetic changes that were enriched in MPC, including MET amplification and MTOR mutation, were correlated with increased PD-L1 expression. Conclusion We identified multiple novel MPC-enriched genetic changes that could help us understand the nature of this aggressive cancer subtype. High MPC tumors tended to have elevated levels of TMBs, T cell infiltration, and immunosuppression than low MPC tumors, implying the potential link between MPC content and sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Xu
- Research and Development, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Pan Zhao
- Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Bao
- Research and Development, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xiyong Wang
- Department of Thoracic Surgery, Hospital of Marine Police Corps, Jiaxing, China
| | - Rui Liu
- Research and Development, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Rujun Xu
- Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Xiang
- Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Jiang
- Department of Thoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junrong Yan
- Research and Development, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xue Wu
- Research and Development, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang Shao
- Research and Development, Nanjing Geneseeq Technology Inc., Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiafeng Liang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiong Wu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Zhang
- Department of Thoracic Surgery, Hospital of Marine Police Corps, Jiaxing, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shenglin Ma
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Alantolactone inhibits cervical cancer progression by downregulating BMI1. Sci Rep 2021; 11:9251. [PMID: 33927214 PMCID: PMC8085045 DOI: 10.1038/s41598-021-87781-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2021] [Indexed: 01/31/2023] Open
Abstract
Cervical cancer is the second most common cancer in women. Despite advances in cervical cancer therapy, tumor recurrence and metastasis remain the leading causes of mortality. High expression of BMI1 is significantly associated with poor tumor differentiation, high clinical grade, and poor prognosis of cervical cancer, and is an independent prognostic factor in cervical carcinoma. Alantolactone (AL), a sesquiterpene lactone, exhibits potent anti-inflammatory and anticancer activities. In this paper, we investigated the mechanism of AL in reducing the proliferation, migration, and invasion of HeLa and SiHa cervical cancer cells as well as its promotion of mitochondrial damage and autophagy. BMI1 silencing decreased epithelial-mesenchymal transformation-associated proteins and increased autophagy-associated proteins in HeLa cells. These effects were reversed by overexpression of BMI1 in HeLa cells. Thus, BMI1 expression is positively correlated with invasion and negatively correlated with autophagy in HeLa cells. Importantly, AL decreased the weight, volume, and BMI1 expression in HeLa xenograft tumors. Furthermore, the structure of BMI1 and target interaction of AL were virtually screened using the molecular docking program Autodock Vina; AL decreased the expression of N-cadherin, vimentin, and P62 and increased the expression of LC3B and Beclin-1 in xenograft tumors. Finally, expression of BMI1 increased the phosphorylation of STAT3, which is important for cell proliferation, survival, migration, and invasion. Therefore, we suggest that AL plays a pivotal role in inhibiting BMI1 in the tumorigenesis of cervical cancer and is a potential therapeutic agent for cervical cancer.
Collapse
|
45
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
46
|
Prognostic and Therapeutic Utility of Variably Expressed Cell Surface Receptors in Osteosarcoma. Sarcoma 2021; 2021:8324348. [PMID: 33603563 PMCID: PMC7872755 DOI: 10.1155/2021/8324348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/17/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
Background Six cell surface receptors, human epidermal growth factor receptor-2 (Her-2), platelet-derived growth factor receptor-β (PDGFR-β), insulin-like growth factor-1 receptor (IGF-1R), insulin receptor (IR), c-Met, and vascular endothelial growth factor receptor-3 (VEGFR-3), previously demonstrated variable expression across varying patient-derived and standard osteosarcoma (OS) cell lines. The current study sought to validate previous expression patterns and evaluate whether these receptors offer prognostic and/or therapeutic value. Methods Patient-derived OS cell lines (n = 52) were labeled with antibodies to Her-2, PDGFR-β, IGF-1R, IR, c-Met, and VEGFR-3. Expression was characterized using flow cytometry. The difference in geometric mean fluorescent intensity (geoMFIdiff = geoMFIpositive - geoMFInegative) was calculated for each receptor across all cell lines. Receptor expression was categorized as low (Q1), intermediate (Q2, Q3), or high (Q4). The event-free survival (EFS) and overall survival for the six cell surface receptors were estimated by the Kaplan-Meier method. Differences in hazard for EFS event and overall survival event for patients in each of the three expression levels in each of the six cell surface receptors were assessed using the log-rank test. Results All 6 receptors were variably expressed in the majority of cell lines. IR and PDGFR-β expressions were found to be significant predictors for EFS amongst patients with nonmetastatic disease (p=0.02 and 0.01, respectively). The hazard ratio for EFS was significantly higher between high IR and intermediate IR expression (HR = 2.66, p=0.02), as well as between high PDGFR-β and intermediate PDGFR-β expression (HR = 5.68, p=0.002). Her-2, c-Met, IGF-1R, and VEGFR-3 were not found to be significant predictors for either EFS or overall survival. Conclusion The six cell surface receptors demonstrated variable expression across the majority of patient-derived OS cell lines tested. Limited prognostic value was offered by IR and PDGFR-β expression within nonmetastatic patients. The remaining receptors do not provide clear prognostic utility. Nevertheless, their consistent, albeit variable, surface expression across a large panel of patient-derived OS cell lines maintains their potential use as future therapeutic targets.
Collapse
|
47
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
48
|
Silva Paiva R, Gomes I, Casimiro S, Fernandes I, Costa L. c-Met expression in renal cell carcinoma with bone metastases. J Bone Oncol 2020; 25:100315. [PMID: 33024658 PMCID: PMC7527574 DOI: 10.1016/j.jbo.2020.100315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Bone is a common metastatic site in renal cell carcinoma (RCC). HGF/c-Met pathway is particularly relevant in tumors with bone metastases. c-Met/HGF pathway is involved in RCC progression, conferring poor prognosis. Several c-Met targeting therapies are currently in clinical development. c-Met expression is an important therapeutic target in RCC with bone metastases.
Hepatocyte growth factor (HGF)/c-Met pathway is implicated in embryogenesis and organ development and differentiation. Germline or somatic mutations, chromosomal rearrangements, gene amplification, and transcriptional upregulation in MET or alterations in autocrine or paracrine c-Met signalling have been associated with cancer cell proliferation and survival, including in renal cell carcinoma (RCC), and associated with disease progression. HGF/c-Met pathway has been shown to be particularly relevant in tumors with bone metastases (BMs). However, the efficacy of targeting c-Met in bone metastatic disease, including in RCC, has not been proven. Therefore, further investigation is required focusing the particular role of HGF/c-Met pathway in bone microenvironment (BME) and how to effectively target this pathway in the context of bone metastatic disease.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase gene
- AR, androgen receptor
- ATP, adenosine triphosphate
- AXL, AXL Receptor Tyrosine Kinase
- BME, bone microenvironment
- BMPs, bone morphogenetic proteins
- BMs, bone metastases
- BPs, Bisphosphonates
- BTAs, Bone-targeting agents
- Bone metastases
- CCL20, chemokine (C-C motif) ligand 20
- CI, confidence interval
- CRPC, Castration Resistant Prostate Cancer
- CSC, cancer stem cells
- CTC, circulating tumor cells
- CaSR, calcium/calcium-sensing receptor
- EMA, European Medicines Agency
- EMT, epithelial-to-mesenchymal transition
- FDA, US Food and Drug Administration
- FLT-3, FMS-like tyrosine kinase 3
- GEJ, Gastroesophageal Junction
- HCC, Hepatocellular Carcinoma
- HGF, hepatocyte growth factor
- HGF/c-Met
- HIF, hypoxia-inducible factors
- HR, hazard ratio
- IGF, insulin-like growth factor
- IGF2BP3, insulin mRNA Binding Protein-3
- IL, interleukin
- IRC, independent review committees
- KIT, tyrosine-protein kinase KIT
- Kidney cancer
- M-CSF, macrophage colony-stimulating factor
- MET, MET proto-oncogene, receptor tyrosine kinase
- NSCLC, non-small cell lung carcinoma
- ORR, overall response rate
- OS, overall survival
- PDGF, platelet-derived growth factor
- PFS, progression free survival
- PTHrP, parathyroid hormone-related peptide
- RANKL, receptor activator of nuclear factor-κB ligand
- RCC, renal cell carcinoma
- RET, rearranged during transfection proto-oncogene
- ROS, proto-oncogene tyrosine-protein kinase ROS
- RTK, receptor tyrosine kinase
- SCLC, Squamous Cell Lung Cancer
- SREs, skeletal-related events
- SSE, symptomatic skeletal events
- TGF-β, transforming growth factor-β
- TIE-2, Tyrosine-Protein Kinase Receptor TIE-2
- TKI, tyrosine kinase inhibitor
- TRKB, Tropomyosin receptor kinase B
- Targeted therapy
- VEGFR, vascular endothelial growth factor receptor
- VHL, Hippel-Lindau tumor suppressor gene
- ZA, zoledronic acid
- ccRCC, clear-cell RCC
- mAb, monoclonal antibodies
- pRCC, papillary renal cell carcinoma
Collapse
Affiliation(s)
- Rita Silva Paiva
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
| | - Inês Gomes
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Isabel Fernandes
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Luís Costa
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Corresponding author at: Oncology Division, Hospital de Santa Maria, 1649-035 Lisbon, Portugal.
| |
Collapse
|
49
|
Kwon D, Ronen S, Giubellino A, Keiser E, Aung PP, Nagarajan P, Tetzlaff MT, Ivan D, Curry JL, Prieto VG, Torres-Cabala CA. Cutaneous adnexal carcinosarcoma: Immunohistochemical and molecular evidence of epithelial mesenchymal transition. J Cutan Pathol 2020; 48:526-534. [PMID: 32564423 DOI: 10.1111/cup.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
Cutaneous carcinosarcomas are rare biphenotypic tumors that simultaneously show epithelial and mesenchymal differentiation. The most common carcinomatous components in skin carcinosarcomas are basal cell carcinoma and squamous cell carcinoma; adnexal carcinomas are rarely encountered. We report a case of an adnexal carcinoma with ductal and squamous differentiation and spindle cell component, which is interpreted as carcinosarcoma. Loss of immunohistochemical expression of E-cadherin and β-catenin detected in the sarcomatous component suggested epithelial mesenchymal transition (EMT). RNA sequencing analysis identified several gene mutations and alterations such as translocations and upregulations/downregulations, either shared by the two components of the tumor or differentially present in the carcinoma or the sarcoma parts. Thus, mutations in genes, such as TP53, were found in both components of the tumor while mutations in PDGFRA and RB1 (a pathogenic missense mutation) were exclusively present in the sarcomatous areas, further supporting EMT. EMT is a dynamic process by which tumors acquire mesenchymal phenotype while simultaneously losing epithelial properties. Although the pathways involved in EMT have been extensively studied, this phenomenon still needs to be investigated in cutaneous tumors of adnexal origin for a better understanding of their pathogenesis. These molecular changes may represent promising targets for personalized therapies.
Collapse
Affiliation(s)
- DongHyang Kwon
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shira Ronen
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minnesota, USA
| | - Elizabeth Keiser
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P Aung
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Tetzlaff
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Doina Ivan
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan L Curry
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
Sohn SH, Sul HJ, Kim B, Kim BJ, Kim HS, Zang DY. Tepotinib Inhibits the Epithelial-Mesenchymal Transition and Tumor Growth of Gastric Cancers by Increasing GSK3β, E-Cadherin, and Mucin 5AC and 6 Levels. Int J Mol Sci 2020; 21:ijms21176027. [PMID: 32825724 PMCID: PMC7503648 DOI: 10.3390/ijms21176027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of mucins (MUCs) can promote the epithelial–mesenchymal transition (EMT), which leads to enhanced tumorigenesis. Carcinogenesis-related pathways involving c-MET and β-catenin are associated with MUCs. In this study, we characterized the expression of EMT-relevant proteins including MET, β-catenin, and E-cadherin in human gastric cancer (GC) cell lines, and further characterized the differential susceptibility of these cell lines compared with the c-MET inhibitor tepotinib. We assessed the antitumor activity of tepotinib in GC cell lines. The effects of tepotinib on cell viability, apoptotic cell death, EMT, and c-MET and β-catenin signaling were evaluated by 3-(4,5 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS), flow cytometry, Western blotting, and qRT-PCR. The antitumor efficacy was assessed in MKN45 xenograft mice. Tepotinib treatment induced apoptosis in c-MET-amplified SNU620, MKN45, and KATO III cells, but had no effect on c-MET-reduced MKN28 or AGS cells. Tepotinib treatment also significantly reduced the protein levels of phosphorylated and total c-MET, phosphorylated and total ERK, β-catenin, and c-MYC in SNU620 and MKN45 cells. In contrast, this drug was only slightly active against KATO III cells. Notably, tepotinib significantly reduced the expression of EMT-promoting genes such as MMP7, COX-2, WNT1, MUC5B, and c-MYC in c-MET-amplified GC cells and increased the expression of EMT-suppressing genes such as MUC5AC, MUC6, GSK3β, and E-cadherin. In a mouse model, tepotinib exhibited good antitumor growth activity along with increased E-cadherin and decreased phosphorylated c-MET (phospho-c-MET) protein levels. Collectively, these results suggest that tepotinib suppresses tumor growth and migration by negatively regulating c-MET-induced EMT. These findings provide new insights into the mechanism by which MUC5AC and MUC6 contribute to GC progression.
Collapse
Affiliation(s)
- Sung-Hwa Sohn
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
| | - Hee Jung Sul
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
| | - Bohyun Kim
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
| | - Bum Jun Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Korea; (B.J.K.); (H.S.K.)
| | - Hyeong Su Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Korea; (B.J.K.); (H.S.K.)
| | - Dae Young Zang
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Korea; (B.J.K.); (H.S.K.)
- Correspondence: ; Tel.: +82-31-380-4167
| |
Collapse
|