1
|
Stoyanova M, Milusheva M, Georgieva M, Ivanov P, Miloshev G, Krasteva N, Hristova-Panusheva K, Feizi-Dehnayebi M, Mohammadi Ziarani G, Stojnova K, Tsoneva S, Todorova M, Nikolova S. Synthesis, Cytotoxic and Genotoxic Evaluation of Drug-Loaded Silver Nanoparticles with Mebeverine and Its Analog. Pharmaceuticals (Basel) 2025; 18:397. [PMID: 40143172 PMCID: PMC11944785 DOI: 10.3390/ph18030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Irritable bowel syndrome (IBS) is a prevalent gastrointestinal disorder with a complex pathogenesis that necessitates innovative therapeutic approaches for effective management. Among the commonly used treatments, mebeverine (MBH), an antispasmodic, is widely prescribed to alleviate IBS symptoms. However, challenges in delivering the drug precisely to the colonic region often hinder its therapeutic effectiveness. To address this limitation, silver nanoparticles (AgNPs) have emerged as promising drug delivery systems, offering unique physicochemical properties that can enhance the precision and efficacy of IBS treatments. Objectives: This study aimed to synthesize AgNPs as drug delivery vehicles for MBH and a previously reported analog. The research focused on evaluating the cytotoxic and genotoxic effects of the AgNPs and forecasting their possibly harmful effects on future sustainable development. Methods: AgNPs were synthesized using a rapid method and functionalized with MBH and its analog. The nanoparticles were characterized using different techniques. Cytotoxicity and genotoxicity were evaluated in vitro. Additionally, in silico docking analyses were performed to explore their safety profile further. Results: In vitro assays revealed concentration-dependent cytotoxic effects and a lack of genotoxic effects with MBH-loaded AgNPs. A molecular docking simulation was performed to confirm this effect. Conclusions: The study underscores the potential of AgNPs as advanced drug delivery systems for safe and significant therapeutic implications for IBS. Future in vivo and preclinical investigations are essential to validate the safe range of exposure doses and evaluation standards for assessing AgNPs' safety in targeted and personalized medicine.
Collapse
Affiliation(s)
- Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (P.I.); (G.M.)
| | - Penyo Ivanov
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (P.I.); (G.M.)
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (P.I.); (G.M.)
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (K.H.-P.)
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (K.H.-P.)
| | - Mehran Feizi-Dehnayebi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran P.O. Box 19938-93973, Iran; (M.F.-D.); (G.M.Z.)
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran P.O. Box 19938-93973, Iran; (M.F.-D.); (G.M.Z.)
| | - Kirila Stojnova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.)
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.)
| |
Collapse
|
2
|
Salvadè M, DiLuca M, Gardoni F. An update on drug repurposing in Parkinson's disease: Preclinical and clinical considerations. Biomed Pharmacother 2025; 183:117862. [PMID: 39842271 DOI: 10.1016/j.biopha.2025.117862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025] Open
Abstract
The strategy of drug repositioning has historically played a significant role in the identification of new treatments for Parkinson's disease. Still today, numerous clinical and preclinical studies are investigating drug classes, already marketed for the treatment of metabolic disorders, for their potential use in Parkinson's disease patients. While drug repurposing offers a promising, fast, and cost-effective path to new treatments, these drugs still require thorough preclinical evaluation to assess their efficacy, addressing the specific neurodegenerative mechanisms of the disease. This review explores the state-of-the-art approaches to drug repurposing for Parkinson's disease, highlighting particularly relevant aspects. Preclinical studies still predominantly rely on traditional neurotoxin-based animal models, which fail to effectively replicate disease progression and are characterized by significant variability in model severity and timing of drug treatment. Importantly, for almost all the drugs analyzed here, there is insufficient data regarding the mechanism of action responsible for the therapeutic effect. Regarding drug efficacy, these factors may obviously render results less reliable or comparable. Accordingly, future preclinical drug repurposing studies in the Parkinson's disease field should be carried out using next-generation animal models like α-synuclein-based models that, unfortunately, have to date been used mostly for studies of disease pathogenesis and only rarely in pharmacological studies.
Collapse
Affiliation(s)
- Michela Salvadè
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy; School of Advanced Studies, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Monica DiLuca
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Szablewski L. Associations Between Diabetes Mellitus and Neurodegenerative Diseases. Int J Mol Sci 2025; 26:542. [PMID: 39859258 PMCID: PMC11765393 DOI: 10.3390/ijms26020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Different mechanisms of associations between these diseases and diabetes mellitus have been suggested. For example, it is postulated that an impaired intracellular insulin signaling pathway, together with hyperglycemia and hyperinsulinemia, may cause pathological changes, such as dysfunction of the mitochondria, oxidative stress inflammatory responses, etc. The association between diabetes mellitus and neurodegenerative diseases, as well as the mechanisms of these associations, needs further investigation. The aim of this review is to describe the associations between diabetes mellitus, especially type 1 (T1DM) and type 2 diabetes mellitus, and selected neurodegenerative diseases, i.e., Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Suggested mechanisms of these associations are also described.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
4
|
Wang W, Wang Q, Qi X, Gurney M, Perry G, Volkow ND, Davis PB, Kaelber DC, Xu R. Associations of semaglutide with first-time diagnosis of Alzheimer's disease in patients with type 2 diabetes: Target trial emulation using nationwide real-world data in the US. Alzheimers Dement 2024; 20:8661-8672. [PMID: 39445596 DOI: 10.1002/alz.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Emerging preclinical evidence suggests that semaglutide, a glucagon-like peptide receptor agonist (GLP-1RA) for type 2 diabetes mellitus (T2DM) and obesity, protects against neurodegeneration and neuroinflammation. However, real-world evidence for its ability to protect against Alzheimer's disease (AD) is lacking. METHODS We conducted emulation target trials based on a nationwide database of electronic health records (EHRs) of 116 million US patients. Seven target trials were emulated among 1,094,761 eligible patients with T2DM who had no prior AD diagnosis by comparing semaglutide with seven other antidiabetic medications. First-ever diagnosis of AD occurred within a 3-year follow-up period and was examined using Cox proportional hazards and Kaplan-Meier survival analyses. RESULTS Semaglutide was associated with significantly reduced risk for first-time AD diagnosis, most strongly compared with insulin (hazard ratio [HR], 0.33 [95% CI: 0.21 to 0.51]) and most weakly compared with other GLP-1RAs (HR, 0.59 [95% CI: 0.37 to 0.95]). Similar results were seen across obesity status, gender, and age groups. DISCUSSION These findings support further studies to assess semaglutide's potential in preventing AD. HIGHLIGHTS Semaglutide was associated with 40% to 70% reduced risks of first-time AD diagnosis in T2DM patients compared to other antidiabetic medications, including other GLP-1RAs. Semaglutide was associated with significantly lower AD-related medication prescriptions. Similar reductions were seen across obesity status, gender, and age groups. Our findings provide real-world evidence supporting the potential clinical benefits of semaglutide in mitigating AD initiation and development in patients with T2DM. These findings support further clinical trials to assess semaglutide's potential in delaying or preventing AD.
Collapse
Affiliation(s)
- William Wang
- Center for Science, Health, and Society, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - QuangQiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Mark Gurney
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - George Perry
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neuroscience, Development and Regenerative Biology, College of Sciences, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Maryland, USA
| | - Pamela B Davis
- Center for Community Health Integration, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - David C Kaelber
- Center for Clinical Informatics Research and Education, The MetroHealth System, Ohio, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Mani V, Arfeen M. In Vivo and Computational Studies on Sitagliptin's Neuroprotective Role in Type 2 Diabetes Mellitus: Implications for Alzheimer's Disease. Brain Sci 2024; 14:1191. [PMID: 39766390 PMCID: PMC11674309 DOI: 10.3390/brainsci14121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer's disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 (DPP-4) inhibitor, may offer neuroprotective benefits in type 2 diabetes mellitus (T2DM). METHODS T2DM was induced in rats using nicotinamide (NICO) and streptozotocin (STZ), and biomarkers of AD and DM-linked enzymes, inflammation, oxidative stress, and apoptosis were evaluated in the brain. Computational studies supported the in vivo findings. RESULTS SITG significantly reduced the brain enzyme levels of acetylcholinesterase (AChE), beta-secretase-1 (BACE-1), DPP-4, and glycogen synthase kinase-3β (GSK-3β) in T2DM-induced rats. It also reduced inflammation by lowering cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and nuclear factor-κB (NF-κB). Additionally, SITG improved oxidative stress markers by reducing malondialdehyde (MDA) and enhancing glutathione (GSH). It increased anti-apoptotic B-cell lymphoma protein-2 (Bcl-2) while reducing pro-apoptotic markers such as Bcl-2-associated X (BAX) and Caspace-3. SITG also lowered blood glucose levels and improved plasma insulin levels. To explore potential molecular level mechanisms, docking was performed on AChE, COX-2, GSK-3β, BACE-1, and Caspace-3. The potential binding affinity of SITG for the above-mentioned target enzymes were 10.8, 8.0, 9.7, 7.7, and 7.9 kcal/mol, respectively, comparable to co-crystallized ligands. Further binding mode analysis of the lowest energy conformation revealed interactions with the critical residues. CONCLUSIONS These findings highlight SITG's neuroprotective molecular targets in T2DM-associated neurodegeneration and its potential as a therapeutic approach for AD, warranting further clinical investigations.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
6
|
Zhou Q, Guo X, Chen T, Liu Y, Ji H, Sun Y, Yang X, Ouyang C, Liu X, Lei M. The neuroprotective role of celastrol on hippocampus in diabetic rats by inflammation restraint, insulin signaling adjustment, Aβ reduction and synaptic plasticity alternation. Biomed Pharmacother 2024; 179:117397. [PMID: 39232386 DOI: 10.1016/j.biopha.2024.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Celastrol, the primary constituent of Tripterygium wilfordii, has demonstrated neuroprotective properties in rats with dementia by reducing inflammation. A high-fat diet and streptozotocin injection were utilized to establish a diabetic rat model, which was then employed to investigate the possible protective effect of celastrol against the development of diabetes-induced learning and memory deficits. Afterwards, the experimental animals received a dose of celastrol by gavage (4 mg/kg/d). An animal study showed that celastrol enhanced insulin sensitivity and glucose tolerance in diabetic rats. In the Morris water maze test, rats with diabetes performed poorly in terms of spatial learning and memory; treatment with celastrol improved these outcomes. Additionally, administration of celastrol downregulated the expression of inflammatory-related proteins (NF-κB, IKKα, TNF-α, IL-1β, and IL-6) and greatly reduced the generation of Aβ in the diabetic hippocampus tissue. Moreover, the insulin signaling pathway-related proteins PI3K, AKT, and GSK-3β were significantly upregulated in diabetic rats after celastrol was administered. Also, celastrol prevented damage to the brain structures and increased the synthesis of synaptic proteins like PSD-95 and SYT1. In conclusion, celastrol exerts a neuroprotective effect by modulating the insulin signaling system and reducing inflammatory responses, which helps to ameliorate the cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Qiaofeng Zhou
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tu Chen
- Xianning Public Inspection and Testing Center, Xianning 437100, China
| | - Yumin Liu
- Wuhan Huake Reproductive Specialist Hospital, Wuhan 430000, China
| | - Huimin Ji
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yixuan Sun
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Changhan Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| | - Min Lei
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
7
|
Tomović Pavlović K, Ilić BS, Leitzbach L, Anichina KK, Yancheva D, Živković A, Mavrova AT, Stark H, Šmelcerović A. Bis(benzimidazol-2-yl)amine-Based DPP-4 Inhibitors Potentially Suitable for Combating Diabetes and Associated Nervous System Alterations. Chem Biodivers 2024; 21:e202401227. [PMID: 39001610 DOI: 10.1002/cbdv.202401227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 10/16/2024]
Abstract
Bis(benzimidazol-2-yl)amine scaffold is not present in dipeptidyl peptidase-4 (DPP-4) inhibitors published so far. Herein, the inhibitory potential of bis(benzimidazol-2-yl)amine derivatives against DPP-4 was evaluated. In non-competitive inhibition mode, three representatives 5, 6, and 7 inhibited DPP-4 in vitro with IC50 values below 50 μM. The assessed binding pocket of DPP-4 for these benzimidazoles includes the S2 extensive subsite's residues Phe357 and Arg358. None of the lead compounds showed cytotoxicity to human neuroblastoma SH-SY5Y cells at concentrations lower than 10 μM. None showed significant binding affinity at dopamine D2, D3, and histamine H1, H3 receptors, at concentrations lower than 10 μM, leading to preferable outcomes due to mutually opposite effects of these neurotransmitters on each other. The potential beneficial effects on dopamine synthesis and the survival of dopaminergic neurons could be mediated by DPP-4 inhibition. These effective noncompetitive DPP-4 inhibitors, with inhibitory potential better than reference diprotin A (relative inhibitory potency compared to diprotin A is 3.39 and 1.54 for compounds 7 and 5, respectively), with the absence of cytotoxicity to SH-SY5Y cells, are valuable candidates for further evaluation for the treatment of diabetes and associated disruption of neuronal homeostasis.
Collapse
Affiliation(s)
- Katarina Tomović Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Budimir S Ilić
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Luisa Leitzbach
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Universitätsstr, 1, 40225, Duesseldorf, Germany
| | - Kameliya K Anichina
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756, Sofia, Bulgaria
| | - Denitsa Yancheva
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756, Sofia, Bulgaria
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., build. 9, 1113, Sofia, Bulgaria
| | - Aleksandra Živković
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Universitätsstr, 1, 40225, Duesseldorf, Germany
| | - Anelia Ts Mavrova
- University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756, Sofia, Bulgaria
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Universitätsstr, 1, 40225, Duesseldorf, Germany
| | - Andrija Šmelcerović
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000, Niš, Serbia
| |
Collapse
|
8
|
Zaresharifi S, Niroomand M, Borran S, Dadkhahfar S. Dermatological side effects of dipeptidyl Peptidase-4 inhibitors in diabetes management: a comprehensive review. Clin Diabetes Endocrinol 2024; 10:6. [PMID: 38523307 PMCID: PMC10962164 DOI: 10.1186/s40842-024-00165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/02/2024] [Indexed: 03/26/2024] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of drugs that enhance the incretin-insulin pathway and offer effective glycemic control in type 2 diabetes mellitus. However, these drugs may be associated with various dermatological side effects, ranging from mild to severe. This review article summarizes the current literature on the dermatological side effects of DPP-4 inhibitors, including bullous pemphigoid, severe cutaneous adverse drug reactions, fixed drug eruptions, and other mucocutaneous reactions. The review also discusses the possible mechanisms, risk factors, diagnosis, and management of these side effects. This review aims to increase the awareness and vigilance of healthcare providers in recognizing and managing the dermatological side effects of DPP-4 inhibitors and to emphasize the need for further research and surveillance to optimize diabetes care and patient safety.
Collapse
Affiliation(s)
- Shirin Zaresharifi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Niroomand
- Internal Medicine Department, Endocrinology Division, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Sarina Borran
- Medical student at Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Dadkhahfar
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Reina E, Franco LS, Carneiro TR, Barreiro EJ, Lima LM. Stereochemical insights into β-amino- N-acylhydrazones and their impact on DPP-4 inhibition. RSC Adv 2024; 14:6617-6626. [PMID: 38390500 PMCID: PMC10882265 DOI: 10.1039/d4ra00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Dipeptidyl peptidase IV (DPP-4) is a key enzyme that regulates several important biological processes and it is better known to be targeted by gliptins as a modern validated approach for the management of type 2 diabetes mellitus (T2DM). However, new generations of DPP-4 inhibitors capable of controlling inflammatory processes associated with chronic complications of T2DM are still needed. In this scenario, we report here the design by molecular modelling of new β-amino-N-acylhydrazones, their racemic synthesis, chiral resolution, determination of physicochemical properties and their DPP4 inhibitory potency. Theoretical and experimental approaches allowed us to propose a preliminary SAR, as well as to identify LASSBio-2124 (6) as a new lead for DPP-4 inhibition, with good physicochemical properties, favourable eudismic ratio, scalable synthesis and anti-diabetes effect in a proof-of-concept model. These findings represent an interesting starting point for the development of a new generation of DPP-4 inhibitors, useful in the treatment of T2DM and comorbidities.
Collapse
Affiliation(s)
- Eduardo Reina
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária Rio de Janeiro-RJ Brazil
| | - Lucas Silva Franco
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária Rio de Janeiro-RJ Brazil
- Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro-RJ Brazil
| | - Teiliane Rodrigues Carneiro
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária Rio de Janeiro-RJ Brazil
| | - Eliezer J Barreiro
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária Rio de Janeiro-RJ Brazil
- Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro-RJ Brazil
| | - Lidia Moreira Lima
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária Rio de Janeiro-RJ Brazil
- Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro-RJ Brazil
| |
Collapse
|
10
|
Jiang X, Li J, Yao X, Ding H, Gu A, Zhou Z. Neuroprotective effects of dipeptidyl peptidase 4 inhibitor on Alzheimer's disease: a narrative review. Front Pharmacol 2024; 15:1361651. [PMID: 38405664 PMCID: PMC10884281 DOI: 10.3389/fphar.2024.1361651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Insulin resistance in brain and amyloidogenesis are principal pathological features of diabetes-related cognitive decline and development of Alzheimer's disease (AD). A growing body of evidence suggests that maintaining glucose under control in diabetic patients is beneficial for preventing AD development. Dipeptidyl peptidase 4 inhibitors (DDP4is) are a class of novel glucose-lowering medications through increasing insulin excretion and decreasing glucagon levels that have shown neuroprotective potential in recent studies. This review consolidates extant evidence from earlier and new studies investigating the association between DPP4i use, AD, and other cognitive outcomes. Beyond DPP4i's benefits in alleviating insulin resistance and glucose-lowering, underlying mechanisms for the potential neuroprotection with DPP4i medications were categorized into the following sections: (Ferrari et al., Physiol Rev, 2021, 101, 1,047-1,081): the benefits of DPP4is on directly ameliorating the burden of β-amyloid plaques and reducing the formation of neurofibrillary tangles; DPP4i increasing the bioactivity of neuroprotective DPP4 substrates including glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and stromal-derived factor-1α (SDF-1α) etc.; pleiotropic effects of DPP4is on neuronal cells and intracerebral structure including anti-inflammation, anti-oxidation, and anti-apoptosis. We further revisited recently published epidemiological studies that provided supportive data to compliment preclinical evidence. Given that there remains a lack of completed randomized trials that aim at assessing the effect of DPP4is in preventing AD development and progression, this review is expected to provide a useful insight into DPP4 inhibition as a potential therapeutic target for AD prevention and treatment. The evidence is helpful for informing the rationales of future clinical research and guiding evidence-based clinical practice.
Collapse
Affiliation(s)
- Xin Jiang
- Baoying People’s Hospital, Yangzhou, China
| | | | | | - Hao Ding
- Baoying People’s Hospital, Yangzhou, China
| | - Aihong Gu
- Baoying People’s Hospital, Yangzhou, China
| | - Zhen Zhou
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Demirkılıç O, Eski İ, Çiftçi Öztürk E, Yasun Ö, Aydın B, Birkan C, Özsoy A, Şen S. Association Between Dipeptidyl Peptidase-4 Inhibitor Use and Cognitive Functions, Brain-Derived Neurotrophic Factor, and Pentraxin-3 Levels in Patients With Type 2 Diabetes. Cureus 2024; 16:e54440. [PMID: 38510866 PMCID: PMC10951801 DOI: 10.7759/cureus.54440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/22/2024] Open
Abstract
Background Diabetes mellitus is an important risk factor for dementia, Alzheimer's disease, and other neurodegenerative diseases. Recent findings have made the relationship between the inhibition of the dipeptidyl peptidase-4 (DPP-4) enzyme and cognitive functions an important research topic. Objective This study aimed to evaluate the association between DPP-4 inhibitor use and cognitive functions, serum brain-derived neurotrophic factor (BDNF), and pentraxin-3 (PTX-3) levels in patients with type 2 diabetes, compared with the patients who only use metformin treatment. Design, patients, and methods A total of 50 patients with type 2 diabetes (hemoglobin A1c levels at ≤%7.5) who were under treatment with metformin±DPP-4 inhibitor (n=25) or only metformin (n=25) were included in this cross-sectional study. Serum BDNF and PTX-3 levels were assessed using an enzyme-linked immunosorbent assay. A standardized mini-mental test (sMMSE) was used to evaluate cognitive functions. Results There were no significant differences in the characteristics of the study groups. The mean sMMSE score of the patients receiving DPP-4±metformin treatment was statistically higher when compared with patients receiving only metformin treatment (27.16±1.95 vs. 25.40±3.07; p=0.041). The BDNF levels of the patients receiving DPP-4±metformin treatment were considerably higher than the patients receiving only metformin treatment (394.51±205.66 ng/ml vs. 180.63±297.94 ng/ml; p=0.001). The difference in PTX-3 levels between study groups was not statistically significant (5.47±3.44 vs. 3.79±2.53; p=0.055). Conclusion When compared to metformin alone, the use of DPP-4 inhibitors in the treatment of patients with type 2 diabetes was associated with increased serum BDNF levels and improved cognitive functions.
Collapse
Affiliation(s)
- Ozan Demirkılıç
- Division of Clinical Pharmacology, Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, TUR
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, TUR
- Department of Molecular Oncology, Institute of Health Sciences, Istinye University, Istanbul, TUR
| | - İlker Eski
- Division of Clinical Pharmacology, Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, TUR
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, TUR
- Department of Emergency Medicine, Haseki Training and Research Hospital, Istanbul, TUR
| | - Ece Çiftçi Öztürk
- Department of Internal Medicine, Haseki Training and Research Hospital, Istanbul, TUR
| | - Özge Yasun
- Department of Internal Medicine, Haseki Training and Research Hospital, Istanbul, TUR
| | - Burak Aydın
- Division of Clinical Pharmacology, Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, TUR
| | - Can Birkan
- Division of Clinical Pharmacology, Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, TUR
| | - Ayşegül Özsoy
- Division of Clinical Pharmacology, Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, TUR
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, TUR
| | - Selçuk Şen
- Division of Clinical Pharmacology, Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, TUR
| |
Collapse
|
12
|
Alshaheri Durazo A, Weigand AJ, Bangen KJ, Membreno R, Mudaliar S, Thomas KR. Type 2 Diabetes Moderates the Association Between Amyloid and 1-Year Change in Everyday Functioning in Older Veterans. J Alzheimers Dis 2024; 97:219-228. [PMID: 38160359 DOI: 10.3233/jad-230917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) affects ∼25% of Veterans, a prevalence rate double that of the general population. T2DM is associated with greater dementia risk and has been shown to exacerbate the impact of Alzheimer's disease (AD) risk factors on declines in daily functioning; however, there are few studies that investigate these patterns in older Veterans. OBJECTIVE This study sought to determine whether T2DM moderates the association between amyloid-β (Aβ) positron emission tomography (PET) and 1-year change in everyday functioning in older Veterans. METHODS One-hundred-ninety-eight predominately male Vietnam-Era Veterans without dementia from the Department of Defense-Alzheimer's Disease Neuroimaging Initiative (DoD-ADNI) with (n = 74) and without (n = 124) T2DM completed Aβ PET imaging and everyday functioning measures, including the Clinical Dementia Rating-Sum of Boxes (CDR-SB) and Everyday Cognition (ECog). Linear mixed effects models tested the moderating role of T2DM on the association between Aβ PET and 1-year change in everyday functioning. RESULTS The 3-way T2DM×Aβ PET×time interaction was significant for CDR-SB (p < 0.001) as well as the Memory (p = 0.007) and Language (p = 0.011) subscales from the ECog. Greater amyloid burden was associated with greater increases in functional difficulties, but only in Veterans with T2DM. CONCLUSIONS Higher Aβ was only associated with declines in everyday functioning over 1 year in Veterans with T2DM. Given that people with T2DM are more likely to have co-occurring cerebrovascular disease, the combination of multiple neuropathologies may result in faster declines. Future studies should examine how diabetes duration, severity, and medications impact these associations.
Collapse
Affiliation(s)
- Alin Alshaheri Durazo
- San Diego State University, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System, San Diego, CA, USA
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Rachel Membreno
- San Diego State University, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Sunder Mudaliar
- VA San Diego Healthcare System, San Diego, CA, USA
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Kelsey R Thomas
- VA San Diego Healthcare System, San Diego, CA, USA
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
13
|
Ogunro OB, Olasehinde OR. Neuroinflammatory Response and Redox-regulation Activity of Hyperoside in Manganese-induced Neurotoxicity Model of Wistar Rats. Curr Aging Sci 2024; 17:220-236. [PMID: 38500281 DOI: 10.2174/0118746098277166231204103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 03/20/2024]
Abstract
BACKGROUND Excessive manganese exposure can lead to neurotoxicity with detrimental effects on the brain. Neuroinflammatory responses and redox regulation play pivotal roles in this process. Exploring the impact of hyperoside in a Wistar rat model offers insights into potential neuroprotective strategies against manganese-induced neurotoxicity. OBJECTIVE The study investigated the neuroprotective efficacy of hyperoside isolated from the ethanol leaf extract of Gongronema latifolium (HELEGL), in the brain tissue of Wistar rats following 15 consecutive days of exposure to 30 mg/L of MnCl2. METHODS Control animals in Group 1 had access to regular drinking water, while animals in groups 2-4 were exposed to MnCl2 in their drinking water. Groups 3 and 4 also received additional HELEGL at doses of 100 mg/kg and 200 mg/kg of body weight, respectively. In Group 5, HELEGL at a dose of 100 mg/kg of body weight was administered alone. Treatment with HELEGL commenced on day 8 via oral administration. RESULTS HELEGL effectively mitigated MnCl2-induced memory impairment, organ-body weight discrepancies, and fluid intake deficits. Exposure to MnCl2 increased the activities or levels of various markers such as acyl peptide hydrolase, tumour necrosis factor-α, dipeptidyl peptidase IV, nitric oxide, IL-1β, prolyl oligopeptidase, caspase-3, myeloperoxidase, H2O2, and malondialdehyde, while it decreased the activities or levels of others, including AChE, BChE, DOPA, serotonin, epinephrine, norepinephrine, GST, GPx, CAT, SOD, GSH, and T-SH (p < 0.05). In contrast, HELEGL effectively counteracted the adverse effects of MnCl2 by alleviating oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, cognitive deficits, and bolstering the antioxidant status. Moreover, HELEGL restored the normal histoarchitecture of the brain, which had been distorted by MnCl2. CONCLUSION In summary, HELEGL reversed the causative factors of neurodegenerative diseases induced by MnCl2 exposure, suggesting its potential for further exploration as a prospective therapeutic agent in the management of Alzheimer's disease and related forms of dementia.
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Department of Biological Sciences, Reproductive & Endocrinology, Toxicology, and Bioinformatics Research Laboratory, KolaDaisi University, Ibadan, Nigeria
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Oluwaseun Ruth Olasehinde
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
- Department of Medical Biochemistry, College of Medicine and Health Science, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
14
|
Feldman HH, Messer K, Qiu Y, Sabbagh M, Galasko D, Turner RS, Lopez O, Smith A, Durant J, Lupo JL, Revta C, Balasubramanian A, Kuehn-Wache K, Wassmann T, Schell-Mader S, Jacobs DM, Salmon DP, Léger G, DeMarco ML, Weber F. Varoglutamstat: Inhibiting Glutaminyl Cyclase as a Novel Target of Therapy in Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:S79-S93. [PMID: 39422941 PMCID: PMC11494639 DOI: 10.3233/jad-231126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 10/19/2024]
Abstract
Background Varoglutamstat is a first-in-class, small molecule being investigated as a treatment for early Alzheimer's disease (AD). It is an inhibitor of glutaminyl cyclase (QC), the enzyme that post-translationally modifies amyloid-β (Aβ) peptides into a toxic form of pyroglutamate Aβ (pGlu-Aβ) and iso-QC which post-translationally modifies cytokine monocyte chemoattractant protein-1 (CCL2) into neuroinflammatory pGlu-CCL2. Early phase clinical trials identified dose margins for safety and tolerability of varoglutamstat and biomarker data supporting its potential for clinical efficacy in early AD. Objective Present the scientific rationale of varoglutamstat in the treatment of early AD and the methodology of the VIVA-MIND (NCT03919162) trial, which uses a seamless phase 2A-2B design. Our review also includes other pharmacologic approaches to pGlu-Aβ. Methods Phase 2A of the VIVA-MIND trial will determine the highest dose of varoglutamstat that is safe and well tolerated with sufficient plasma exposure and a calculated target occupancy. Continuous safety evaluation using a pre-defined safety stopping boundary will help determine the highest tolerated dose that will carry forward into phase 2B. An interim futility analysis of cognitive function and electroencephalogram changes will be conducted to inform the decision of whether to proceed with phase 2B. Phase 2B will assess the efficacy and longer-term safety of the optimal selected phase 2A dose through 72 weeks of treatment. Conclusions Varoglutamstat provides a unique dual mechanism of action addressing multiple pathogenic contributors to the disease cascade. VIVA-MIND provides a novel and efficient trial design to establish its optimal dosing, safety, tolerability, and efficacy in early AD.
Collapse
Affiliation(s)
- Howard H. Feldman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - Karen Messer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Yuqi Qiu
- Department of Statistics, East China Normal University, Shanghai, China
| | - Marwan Sabbagh
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - R. Scott Turner
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Smith
- USF Health Byrd Alzheimer’s Institute, Tampa, FL, USA
| | - January Durant
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Jody-Lynn Lupo
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Carolyn Revta
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Archana Balasubramanian
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Diane M. Jacobs
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - David P. Salmon
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - Gabriel Léger
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - for the ADCS VIVA-MIND Study Group
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
- Department of Statistics, East China Normal University, Shanghai, China
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
- Department of Neurology, Georgetown University, Washington, DC, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- USF Health Byrd Alzheimer’s Institute, Tampa, FL, USA
- Vivoryon Therapeutics NV, Halle, Germany
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Abubakar M, Nama L, Ansari MA, Ansari MM, Bhardwaj S, Daksh R, Syamala KLV, Jamadade MS, Chhabra V, Kumar D, Kumar N. GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer's Disease through its Supporting DPP4 Inhibitors: A Review. Curr Top Med Chem 2024; 24:1635-1664. [PMID: 38803170 DOI: 10.2174/0115680266293416240515075450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.
Collapse
Affiliation(s)
- Mohammad Abubakar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Arif Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Mazharuddin Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Shivani Bhardwaj
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Katta Leela Venkata Syamala
- Department of Regulatory and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| |
Collapse
|
16
|
Drakul M, Čolić M. Immunomodulatory activity of dipeptidyl peptidase-4 inhibitors in immune-related diseases. Eur J Immunol 2023; 53:e2250302. [PMID: 37732495 DOI: 10.1002/eji.202250302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as CD26, is a 110-kDa cell surface glycoprotein with enzymatic and signal transducing activity. DPP-4/CD26 is expressed by various cells, including CD4+ and CD8+ T cells, B cells, dendritic cells, macrophages, and NK cells. DPP-4 inhibitors (DPP-4i) were introduced to clinics in 2006 as new oral antihyperglycemic drugs approved for type 2 diabetes mellitus treatment. In addition to glucose-lowering effects, emerging data, from clinical studies and their animal models, suggest that DPP-4i could display anti-inflammatory and immunomodulatory effects as well, but the molecular and immunological mechanisms of these actions are insufficiently investigated. This review focuses on the modulatory activity of DPP-4i in the immune system and the possible application of DPP-4i in other immune-related diseases in patients with or without diabetes.
Collapse
Affiliation(s)
- Marija Drakul
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
17
|
Vahsen BF, Nalluru S, Morgan GR, Farrimond L, Carroll E, Xu Y, Cramb KML, Amein B, Scaber J, Katsikoudi A, Candalija A, Carcolé M, Dafinca R, Isaacs AM, Wade-Martins R, Gray E, Turner MR, Cowley SA, Talbot K. C9orf72-ALS human iPSC microglia are pro-inflammatory and toxic to co-cultured motor neurons via MMP9. Nat Commun 2023; 14:5898. [PMID: 37736756 PMCID: PMC10517114 DOI: 10.1038/s41467-023-41603-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, with additional pathophysiological involvement of non-neuronal cells such as microglia. The commonest ALS-associated genetic variant is a hexanucleotide repeat expansion (HRE) mutation in C9orf72. Here, we study its consequences for microglial function using human iPSC-derived microglia. By RNA-sequencing, we identify enrichment of pathways associated with immune cell activation and cyto-/chemokines in C9orf72 HRE mutant microglia versus healthy controls, most prominently after LPS priming. Specifically, LPS-primed C9orf72 HRE mutant microglia show consistently increased expression and release of matrix metalloproteinase-9 (MMP9). LPS-primed C9orf72 HRE mutant microglia are toxic to co-cultured healthy motor neurons, which is ameliorated by concomitant application of an MMP9 inhibitor. Finally, we identify release of dipeptidyl peptidase-4 (DPP4) as a marker for MMP9-dependent microglial dysregulation in co-culture. These results demonstrate cellular dysfunction of C9orf72 HRE mutant microglia, and a non-cell-autonomous role in driving C9orf72-ALS pathophysiology in motor neurons through MMP9 signaling.
Collapse
Affiliation(s)
- Björn F Vahsen
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Sumedha Nalluru
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Georgia R Morgan
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Lucy Farrimond
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Emily Carroll
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Yinyan Xu
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Kaitlyn M L Cramb
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QX, UK
| | - Benazir Amein
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Jakub Scaber
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Antigoni Katsikoudi
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Molecular Neurodegeneration Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Ana Candalija
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WCIN 3BG, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WCIN 3BG, UK
| | - Richard Wade-Martins
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QX, UK
| | - Elizabeth Gray
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Martin R Turner
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK.
| |
Collapse
|
18
|
Koshatwar M, Acharya S, Prasad R, Lohakare T, Wanjari M, Taksande AB. Exploring the Potential of Antidiabetic Agents as Therapeutic Approaches for Alzheimer's and Parkinson's Diseases: A Comprehensive Review. Cureus 2023; 15:e44763. [PMID: 37809189 PMCID: PMC10556988 DOI: 10.7759/cureus.44763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Alzheimer's and Parkinson's are two prevalent neurodegenerative disorders with significant societal and healthcare burdens. The search for effective therapeutic approaches to combat these diseases has led to growing interest in exploring the potential of antidiabetic agents. This comprehensive review aims to provide a detailed overview of the current literature on using antidiabetic agents as therapeutic interventions for Alzheimer's and Parkinson's diseases. We discuss the underlying pathological mechanisms of these neurodegenerative diseases, including protein misfolding, inflammation, oxidative stress, and mitochondrial dysfunction. We then delve into the potential mechanisms by which antidiabetic agents may exert neuroprotective effects, including regulation of glucose metabolism and insulin signaling, anti-inflammatory effects, modulation of oxidative stress, and improvement of mitochondrial function and bioenergetics. We highlight in vitro, animal, and clinical studies that support the potential benefits of antidiabetic agents in reducing disease pathology and improving clinical outcomes. However, we also acknowledge these agents' limitations, variability in treatment response, and potential side effects. Furthermore, we explore emerging therapeutic targets and novel approaches, such as glucagon-like peptide-1 receptor (GLP-1R) agonists, insulin sensitizer drugs, neuroinflammation-targeted therapies, and precision medicine approaches. The review concludes by emphasizing the need for further research, including large-scale clinical trials, to validate the efficacy and safety of antidiabetic agents in treating Alzheimer's and Parkinson's disease. The collaboration between researchers, clinicians, and pharmaceutical companies is essential in advancing the field and effectively treating patients affected by these debilitating neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahima Koshatwar
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswee Lohakare
- Department of Child Health Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Avinash B Taksande
- Department of Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
19
|
Nowell J, Blunt E, Gupta D, Edison P. Antidiabetic agents as a novel treatment for Alzheimer's and Parkinson's disease. Ageing Res Rev 2023; 89:101979. [PMID: 37328112 DOI: 10.1016/j.arr.2023.101979] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Therapeutic strategies for neurodegenerative disorders have commonly targeted individual aspects of the disease pathogenesis to little success. Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by several pathological features. In AD and PD, there is an abnormal accumulation of toxic proteins, increased inflammation, decreased synaptic function, neuronal loss, increased astrocyte activation, and perhaps a state of insulin resistance. Epidemiological evidence has revealed a link between AD/PD and type 2 diabetes mellitus, with these disorders sharing some pathological commonalities. Such a link has opened up a promising avenue for repurposing antidiabetic agents in the treatment of neurodegenerative disorders. A successful therapeutic strategy for AD/PD would likely require a single or several agents which target the separate pathological processes in the disease. Targeting cerebral insulin signalling produces numerous neuroprotective effects in preclinical AD/PD brain models. Clinical trials have shown the promise of approved diabetic compounds in improving motor symptoms of PD and preventing neurodegenerative decline, with numerous further phase II trials and phase III trials underway in AD and PD populations. Alongside insulin signalling, targeting incretin receptors in the brain represents one of the most promising strategies for repurposing currently available agents for the treatment of AD/PD. Most notably, glucagon-like-peptide-1 (GLP-1) receptor agonists have displayed impressive clinical potential in preclinical and early clinical studies. In AD the GLP-1 receptor agonist, liraglutide, has been demonstrated to improve cerebral glucose metabolism and functional connectivity in small-scale pilot trials. Whilst in PD, the GLP-1 receptor agonist exenatide is effective in restoring motor function and cognition. Targeting brain incretin receptors reduces inflammation, inhibits apoptosis, prevents toxic protein aggregation, enhances long-term potentiation and autophagy as well as restores dysfunctional insulin signalling. Support is also increasing for the use of additional approved diabetic treatments, including intranasal insulin, metformin hydrochloride, peroxisome proliferator-activated nuclear receptor γ agonists, amylin analogs, and protein tyrosine phosphatase 1B inhibitors which are in the investigation for deployment in PD and AD treatment. As such, we provide a comprehensive review of several promising anti-diabetic agents for the treatment of AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- Department of Brain Sciences, Imperial College London, London, UK
| | - Dhruv Gupta
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK; School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
20
|
Alrouji M, Al‐kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Jabir MS, Saad HM, Batiha GE. NF-κB/NLRP3 inflammasome axis and risk of Parkinson's disease in Type 2 diabetes mellitus: A narrative review and new perspective. J Cell Mol Med 2023; 27:1775-1789. [PMID: 37210624 PMCID: PMC10315781 DOI: 10.1111/jcmm.17784] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). Genetic predisposition and immune dysfunction are involved in the pathogenesis of PD. Notably, peripheral inflammatory disorders and neuroinflammation are associated with PD neuropathology. Type 2 diabetes mellitus (T2DM) is associated with inflammatory disorders due to hyperglycaemia-induced oxidative stress and the release of pro-inflammatory cytokines. Particularly, insulin resistance (IR) in T2DM promotes the degeneration of dopaminergic neurons in the substantia nigra (SN). Thus, T2DM-induced inflammatory disorders predispose to the development and progression of PD, and their targeting may reduce PD risk in T2DM. Therefore, this narrative review aims to find the potential link between T2DM and PD by investigating the role of inflammatory signalling pathways, mainly the nuclear factor kappa B (NF-κB) and the nod-like receptor pyrin 3 (NLRP3) inflammasome. NF-κB is implicated in the pathogenesis of T2DM, and activation of NF-κB with induction of neuronal apoptosis was also confirmed in PD patients. Systemic activation of NLRP3 inflammasome promotes the accumulation of α-synuclein and degeneration of dopaminergic neurons in the SN. Increasing α-synuclein in PD patients enhances NLRP3 inflammasome activation and the release of interleukin (IL)-1β followed by the development of systemic inflammation and neuroinflammation. In conclusion, activation of the NF-κB/NLRP3 inflammasome axis in T2DM patients could be the causal pathway in the development of PD. The inflammatory mechanisms triggered by activated NLRP3 inflammasome lead to pancreatic β-cell dysfunction and the development of T2DM. Therefore, attenuation of inflammatory changes by inhibiting the NF-κB/NLRP3 inflammasome axis in the early T2DM may reduce future PD risk.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Majid S. Jabir
- Applied Science DepartmentUniversity of TechnologyBaghdadIraq
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
21
|
Maglinger B, Harp JP, Frank JA, Rupareliya C, McLouth CJ, Pahwa S, Sheikhi L, Dornbos D, Trout AL, Stowe AM, Fraser JF, Pennypacker KR. Inflammatory-associated proteomic predictors of cognitive outcome in subjects with ELVO treated by mechanical thrombectomy. BMC Neurol 2023; 23:214. [PMID: 37280551 PMCID: PMC10243077 DOI: 10.1186/s12883-023-03253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Emergent Large Vessel Occlusion (ELVO) stroke causes devastating vascular events which can lead to significant cognitive decline and dementia. In the subset of ELVO subjects treated with mechanical thrombectomy (MT) at our institution, we aimed to identify systemic and intracranial proteins predictive of cognitive function at time of discharge and at 90-days. These proteomic biomarkers may serve as prognostic indicators of recovery, as well as potential targets for novel/existing therapeutics to be delivered during the subacute stage of stroke recovery. METHODS At the University of Kentucky Center for Advanced Translational Stroke Sciences, the BACTRAC tissue registry (clinicaltrials.gov; NCT03153683) of human biospecimens acquired during ELVO stroke by MT is utilized for research. Clinical data are collected on each enrolled subject who meets inclusion criteria. Blood samples obtained during thrombectomy were sent to Olink Proteomics for proteomic expression values. Montreal Cognitive Assessments (MoCA) were evaluated with categorical variables using ANOVA and t-tests, and continuous variables using Pearson correlations. RESULTS There were n = 52 subjects with discharge MoCA scores and n = 28 subjects with 90-day MoCA scores. Several systemic and intracranial proteins were identified as having significant correlations to discharge MoCA scores as well as 90-day MoCA scores. Highlighted proteins included s-DPP4, CCL11, IGFBP3, DNER, NRP1, MCP1, and COMP. CONCLUSION We set out to identify proteomic predictors and potential therapeutic targets related to cognitive outcomes in ELVO subjects undergoing MT. Here, we identify several proteins which predicted MoCA after MT, which may serve as therapeutic targets to lessen post-stroke cognitive decline.
Collapse
Affiliation(s)
- Benton Maglinger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jordan P Harp
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | - Jacqueline A Frank
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | | | | | - Shivani Pahwa
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Lila Sheikhi
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - David Dornbos
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Amanda L Trout
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA.
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Department of Neurology and Neuroscience, Center for Advanced Translational Stroke Science, University of Kentucky, Building BBSRB, Office B383, Lexington, KY, 40536, USA.
| |
Collapse
|
22
|
Alrouji M, Al-Kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, Elekhnawy E, Batiha GES. DPP-4 inhibitors and type 2 diabetes mellitus in Parkinson's disease: a mutual relationship. Pharmacol Rep 2023:10.1007/s43440-023-00500-5. [PMID: 37269487 DOI: 10.1007/s43440-023-00500-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Parkinson's disease (PD) usually occurs due to the degeneration of dopaminergic neurons in the substantia nigra (SN). Management of PD is restricted to symptomatic improvement. Consequently, a novel treatment for managing motor and non-motor symptoms in PD is necessary. Abundant findings support the protection of dipeptidyl peptidase 4 (DPP-4) inhibitors in PD. Consequently, this study aims to reveal the mechanism of DPP-4 inhibitors in managing PD. DPP-4 inhibitors are oral anti-diabetic agents approved for managing type 2 diabetes mellitus (T2DM). T2DM is linked with an increased chance of the occurrence of PD. Extended usage of DPP-4 inhibitors in T2DM patients may attenuate the development of PD by inhibiting inflammatory and apoptotic pathways. Thus, DPP-4 inhibitors like sitagliptin could be a promising treatment against PD neuropathology via anti-inflammatory, antioxidant, and anti-apoptotic impacts. DPP-4 inhibitors, by increasing endogenous GLP-1, can also reduce memory impairment in PD. In conclusion, the direct effects of DPP-4 inhibitors or indirect effects through increasing circulating GLP-1 levels could be an effective therapeutic strategy in treating PD patients through modulation of neuroinflammation, oxidative stress, mitochondrial dysfunction, and neurogenesis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali K Al-Buhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
23
|
Todorova M, Milusheva M, Kaynarova L, Georgieva D, Delchev V, Simeonova S, Pilicheva B, Nikolova S. Drug-Loaded Silver Nanoparticles-A Tool for Delivery of a Mebeverine Precursor in Inflammatory Bowel Diseases Treatment. Biomedicines 2023; 11:1593. [PMID: 37371688 DOI: 10.3390/biomedicines11061593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic, multifactorial illnesses of the gastrointestinal tract include inflammatory bowel diseases. One of the greatest methods for regulated medicine administration in a particular region of inflammation is the nanoparticle system. Silver nanoparticles (Ag NPs) have been utilized as drug delivery systems in the pharmaceutical industry. The goal of the current study is to synthesize drug-loaded Ag NPs using a previously described 3-methyl-1-phenylbutan-2-amine, as a mebeverine precursor (MP). Methods: A green, galactose-assisted method for the rapid synthesis and stabilization of Ag NPs as a drug-delivery system is presented. Galactose was used as a reducing and capping agent forming a thin layer encasing the nanoparticles. Results: The structure, size distribution, zeta potential, surface charge, and the role of the capping agent of drug-loaded Ag NPs were discussed. The drug release of the MP-loaded Ag NPs was also investigated. The Ag NPs indicated a very good drug release between 80 and 85%. Based on the preliminary results, Ag NPs might be a promising medication delivery system for MP and a useful treatment option for inflammatory bowel disease. Therefore, future research into the potential medical applications of the produced Ag NPs is necessary.
Collapse
Affiliation(s)
- Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Lidia Kaynarova
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Deyana Georgieva
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Vassil Delchev
- Department of Physical Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Stanislava Simeonova
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
24
|
Meneri M, Abati E, Gagliardi D, Faravelli I, Parente V, Ratti A, Verde F, Ticozzi N, Comi GP, Ottoboni L, Corti S. Identification of Novel Biomarkers of Spinal Muscular Atrophy and Therapeutic Response by Proteomic and Metabolomic Profiling of Human Biological Fluid Samples. Biomedicines 2023; 11:1254. [PMID: 37238925 PMCID: PMC10215459 DOI: 10.3390/biomedicines11051254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations or deletions in SMN1 that lead to progressive death of alpha motor neurons, ultimately leading to severe muscle weakness and atrophy, as well as premature death in the absence of treatment. Recent approval of SMN-increasing medications as SMA therapy has altered the natural course of the disease. Thus, accurate biomarkers are needed to predict SMA severity, prognosis, drug response, and overall treatment efficacy. This article reviews novel non-targeted omics strategies that could become useful clinical tools for patients with SMA. Proteomics and metabolomics can provide insights into molecular events underlying disease progression and treatment response. High-throughput omics data have shown that untreated SMA patients have different profiles than controls. In addition, patients who clinically improved after treatment have a different profile than those who did not. These results provide a glimpse on potential markers that could assist in identifying therapy responders, in tracing the course of the disease, and in predicting its outcome. These studies have been restricted by the limited number of patients, but the approaches are feasible and can unravel severity-specific neuro-proteomic and metabolic SMA signatures.
Collapse
Affiliation(s)
- Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Parente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Antonia Ratti
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
- Department Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Linda Ottoboni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
25
|
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview. Rev Neurosci 2023; 34:1-24. [PMID: 35771831 DOI: 10.1515/revneuro-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
26
|
Wang XC, Chu CL, Li HC, Lu K, Liu CJ, Cai YF, Quan SJ, Zhang SJ. Efficacy and safety of hypoglycemic drugs in improving cognitive function in patients with Alzheimer's disease and mild cognitive impairment: A systematic review and network meta-analysis. Front Neurol 2022; 13:1018027. [PMID: 36530613 PMCID: PMC9747761 DOI: 10.3389/fneur.2022.1018027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/15/2022] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVE The purpose of this study was to compare the effects of oral hypoglycaemic drugs (HDs) on cognitive function and biomarkers of mild cognitive impairment (MCI) and Alzheimer's disease (AD) through a network meta-analysis of randomized controlled trials (RCTs). METHODS We conducted systematic searches for English- and Chinese-language articles in the PubMed, Medline, Embase, Cochrane Library and Google Scholar databases, with no date restrictions. We performed a network meta-analysis, which we report here according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The 16 studies included a total of 3,081 patients. We selected the Mini-Mental State Examination (MMSE), the Alzheimer's Disease Assessment Scale-Cognitive section (ADAS-Cog), the Alzheimer's Disease Cooperative Study Activities of Daily Living section (ADCS-ADL) and amyloid beta (Aβ) 42 as the outcome measures for analysis and comparison. RESULT We selected seven treatments and assessed the clinical trials in which they were tested against a placebo control. Of these treatments, intranasal insulin 20 IU (ITSN20), glucagon-like peptide-1 (GLP-1), and dipeptidyl peptidase 4 inhibitor (DPP-4) were associated with significantly improved MMSE scores (7 RCTs, 333 patients, 30≥MMSE score≥20: mild) compared with placebo [standardized mean difference (SMD) 1.11, 95% confidence interval (CI) (0.87, 1.35); SMD 0.75, 95% CI (0.04, 1.41); and SMD 4.08, 95% CI (3.39, 4.77), respectively]. Rosiglitazone 4 mg (RLZ4), rosiglitazone 10 mg (RLZ10), intranasal insulin 40 IU (ITSN40), and ITSN20 significantly decreased ADAS-Cog scores (11 RCTs, 4044 patients, 10 ≤ ADAS-Cog scores ≤ 30: mild and moderate) compared with placebo [SMD -1.40, 95% CI (-2.57, -0.23), SMD -3.02, 95% CI (-4.17, -1.86), SMD -0.92, 95% CI (-1.77, -0.08), SMD -1.88, 95% CI (-3.09, -0.66)]. Additionally, ITSN20 and ITSN40 significantly improved ADCS-ADL scores (2 RCTs, 208 patients, ADCS-ADL scale score ≤ 10: mild) compared with placebo [SMD 0.02, 95% CI (0.01, 0.03), and SMD 0.04, 95% CI (0.03, 0.05), respectively]. In the 16 included studies, the degree of AD was classified as mild or moderate. For mild cognitive impairment, DPP-4 performed best, but for mild to moderate impairment, ITSN40 had excellent performance. CONCLUSION Various HDs can improve the cognitive function of MCI and AD patients. Different drug regimens brought different degrees of improvement, which may be related to their dosage, duration, and mechanism of action. SYSTEMATIC REVIEW REGISTRATION www.crd.york.ac.uk/prospero.
Collapse
Affiliation(s)
- Xin-Chen Wang
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, China
| | - Chen-Liang Chu
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, China
| | - Han-Cheng Li
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, China
| | - Kuan Lu
- Department of Pharmaceutical Engineering, College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, China
| | - Cheng-Jiang Liu
- Department of General Medicine, Affiliated Anqing First People's Hospital of Anhui Medical University, Anqing, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Patel B, Sheth D, Vyas A, Shah S, Parmar S, Patel C, Patel S, Beladiya J, Pande S, Modi K. Amelioration of intracerebroventricular streptozotocin-induced cognitive dysfunction by Ocimum sanctum L. through the modulation of inflammation and GLP-1 levels. Metab Brain Dis 2022; 37:2533-2543. [PMID: 35900690 DOI: 10.1007/s11011-022-01056-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
DPP-4 inhibitors have been shown to reverse amyloid deposition in Alzheimer's disease (AD) patients with cognitive impairment. Ocimum sanctum L. leaves reported the presence of important phytoconstituents which are reported to have DPP-4 inhibitory activity. To investigate the effects of petroleum ether extract of Ocimum sanctum L. (PEOS) in Intracerebroventricular streptozotocin (ICV-STZ) induced AD rats. ICV-STZ (3 mg/kg) was injected bilaterally into male Wistar rats, while sham animals received the artificial CSF. The ICV-STZ-induced rats were administered with three doses of PEOS (100, 200, and 400 mg/kg, p.o.) for thirty days. All experimental rats were subjected to behaviour parameters (radial arm maze task and novel object recognition test), neurochemical parameters such as GLP-1, Aβ42, and TNF-α levels, and histopathological examination (Congo red staining) of the left brain hemisphere. PEOS significantly reversed the spatial learning and memory deficit exhibited by ICV-STZ-induced rats. Furthermore, PEOS also shows promising results in retreating Aβ deposition, TNF α, and increasing GLP-1 levels. The histopathological study also showed a significant dose-dependent reduction in amyloid plaque formation and dense granule in PEOS -treated rats as compared to the ICV-STZ induced rats (Negative control). The results show that extract of Ocimum sanctum L. attenuated ICV-STZ-induced learning and memory deficits in rats and has the potential to be employed in the therapy of AD.
Collapse
Affiliation(s)
- Bansy Patel
- B. K. Mody Government Pharmacy College, Rajkot, 360003, Gujarat, India
| | - Devang Sheth
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabdad, 380009, Gujarat, India.
| | - Amit Vyas
- B. K. Mody Government Pharmacy College, Rajkot, 360003, Gujarat, India
| | - Sunny Shah
- B. K. Mody Government Pharmacy College, Rajkot, 360003, Gujarat, India
| | - Sachin Parmar
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, 360003, Gujarat, India
| | - Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabdad, 380009, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabdad, 380009, Gujarat, India
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabdad, 380009, Gujarat, India
| | - Sonal Pande
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabdad, 380009, Gujarat, India
| | - Ketan Modi
- Government Pharmacy College, Gandhinagar, 382026, Gujarat, India
| |
Collapse
|
28
|
Fang Y, Doyle MF, Chen J, Alosco ML, Mez J, Satizabal CL, Qiu WQ, Murabito JM, Lunetta KL. Association between inflammatory biomarkers and cognitive aging. PLoS One 2022; 17:e0274350. [PMID: 36083988 PMCID: PMC9462682 DOI: 10.1371/journal.pone.0274350] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory cytokines and chemokines related to the innate and adaptive immune system have been linked to neuroinflammation in Alzheimer's Disease, dementia, and cognitive disorders. We examined the association of 11 plasma proteins (CD14, CD163, CD5L, CD56, CD40L, CXCL16, SDF1, DPP4, SGP130, sRAGE, and MPO) related to immune and inflammatory responses with measures of cognitive function, brain MRI and dementia risk. We identified Framingham Heart Study Offspring participants who underwent neuropsychological testing (n = 2358) or brain MRI (n = 2100) within five years of the seventh examination where a blood sample for quantifying the protein biomarkers was obtained; and who were followed for 10 years for incident all-cause dementia (n = 1616). We investigated the association of inflammatory biomarkers with neuropsychological test performance and brain MRI volumes using linear mixed effect models accounting for family relationships. We further used Cox proportional hazards models to examine the association with incident dementia. False discovery rate p-values were used to account for multiple testing. Participants included in the neuropsychological test and MRI samples were on average 61 years old and 54% female. Participants from the incident dementia sample (average 68 years old at baseline) included 124 participants with incident dementia. In addition to CD14, which has an established association, we found significant associations between higher levels of CD40L and myeloperoxidase (MPO) with executive dysfunction. Higher CD5L levels were significantly associated with smaller total brain volumes (TCBV), whereas higher levels of sRAGE were associated with larger TCBV. Associations persisted after adjustment for APOE ε4 carrier status and additional cardiovascular risk factors. None of the studied inflammatory biomarkers were significantly associated with risk of incident all-cause dementia. Higher circulating levels of soluble CD40L and MPO, markers of immune cell activation, were associated with poorer performance on neuropsychological tests, while higher CD5L, a key regulator of inflammation, was associated with smaller total brain volumes. Higher circulating soluble RAGE, a decoy receptor for the proinflammatory RAGE/AGE pathway, was associated with larger total brain volume. If confirmed in other studies, this data indicates the involvement of an activated immune system in abnormal brain aging.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Jiachen Chen
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
| | - Claudia L. Satizabal
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Wei Qiao Qiu
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Psychiatry, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Joanne M. Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
- Department of Medicine, Section of General Internal Medicine, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Boston Medical Center, Boston University, Boston, Massachusetts, United States of America
| | - Kathryn L. Lunetta
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
How nano-engineered delivery systems can help marketed and repurposed drugs in Alzheimer’s disease treatment? Drug Discov Today 2022; 27:1575-1589. [DOI: 10.1016/j.drudis.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
|
30
|
DURAN R, PANCUR S, BAHADORİ F. The Effect of Type 2 Diabetes Mellitus on the Development of Alzheimer’s Disease and Its Molecular Mechanism. BEZMIALEM SCIENCE 2022. [DOI: 10.14235/bas.galenos.2020.4491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
31
|
Pyroglutamate Aβ cascade as drug target in Alzheimer's disease. Mol Psychiatry 2022; 27:1880-1885. [PMID: 34880449 PMCID: PMC9126800 DOI: 10.1038/s41380-021-01409-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
One of the central aims in Alzheimer's disease (AD) research is the identification of clinically relevant drug targets. A plethora of potential molecular targets work very well in preclinical model systems both in vitro and in vivo in AD mouse models. However, the lack of translation into clinical settings in the AD field is a challenging endeavor. Although it is long known that N-terminally truncated and pyroglutamate-modified Abeta (AβpE3) peptides are abundantly present in the brain of AD patients, form stable and soluble low-molecular weight oligomers, and induce neurodegeneration in AD mouse models, their potential as drug target has not been generally accepted in the past. This situation has dramatically changed with the report that passive immunization with donanemab, an AβpE3-specific antibody, cleared aymloid plaques and stabilized cognitive deficits in a group of patients with mild AD in a phase II trial. This review summarizes the current knowledge on the molecular mechanisms of generation of AβpE, its biochemical properties, and the intervention points as a drug target in AD.
Collapse
|
32
|
Sana SRGL, Li EY, Deng XJ, Guo L. Association between plasma dipeptidyl peptidase-4 levels and cognitive function in perinatal pregnant women with gestational diabetes mellitus. World J Clin Cases 2021; 9:10161-10171. [PMID: 34904086 PMCID: PMC8638028 DOI: 10.12998/wjcc.v9.i33.10161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/13/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP4) is associated with cognitive dysfunction in patients with type 2 diabetes.
AIM To assess a possible relationship between serum DPP4 and cognitive function in perinatal pregnant women with gestational diabetes mellitus (GDM).
METHODS The study subjects were divided into three groups: GDM group (n = 81), healthy pregnant (HP) group (n = 85), and control group (n = 51). The Montreal Cognitive Assessment (MoCA) was used to assess the cognitive status of each group. Venous blood samples were collected to measure blood lipids, glycated hemoglobin, and glucose levels. For each participant, a 3-mL blood sample was collected and centrifuged, and the serum was collected. Blood samples were stored at -80 ℃, and DPP4, interleukin-6 (IL-6), and 8-iso-prostaglandin F2α (8-iso-PGF2α), and brain-derived neurotrophic factor (BDNF) were detected using ELISA.
RESULTS The MoCA scores in the GDM and HP groups were significantly different from those in the control group in terms of visuospatial/executive function and attention (P < 0.05); however, the scores were not significantly different between the GDM and HP groups (P > 0.05). In terms of language, the GDM group had significantly different scores from those in the other two groups (P < 0.05). In terms of memory, a significant difference was found between the HP and control groups (P < 0.05), as well as between the GDM and HP groups. The levels of DPP4, IL-6, and 8-iso-PGF2α in the GDM group were significantly higher than those in the HP and control groups (P < 0.05); however, the differences between these levels in the HP and control groups were not significant (P > 0.05). The level of BDNF in the GDM group was significantly lower than that in the HP and control groups (P < 0.05), although the difference in this level between the HP and control groups was not significant (P > 0.05).
CONCLUSION Cognitive dysfunction in perinatal pregnant women with GDM mainly manifested as memory loss, which might be associated with elevated DPP4 levels.
Collapse
Affiliation(s)
- Si-Ri-Gu-Leng Sana
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - En-You Li
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xi-Jin Deng
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Lei Guo
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
33
|
Lynn J, Park M, Ogunwale C, Acquaah-Mensah GK. A Tale of Two Diseases: Exploring Mechanisms Linking Diabetes Mellitus with Alzheimer's Disease. J Alzheimers Dis 2021; 85:485-501. [PMID: 34842187 DOI: 10.3233/jad-210612] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dementias, including the type associated with Alzheimer's disease (AD), are on the rise worldwide. Similarly, type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic diseases globally. Although mechanisms and treatments are well-established for T2DM, there remains much to be discovered. Recent research efforts have further investigated factors involved in the etiology of AD. Previously perceived to be unrelated diseases, commonalities between T2DM and AD have more recently been observed. As a result, AD has been labeled as "type 3 diabetes". In this review, we detail the shared processes that contribute to these two diseases. Insulin resistance, the main component of the pathogenesis of T2DM, is also present in AD, causing impaired brain glucose metabolism, neurodegeneration, and cognitive impairment. Dysregulation of insulin receptors and components of the insulin signaling pathway, including protein kinase B, glycogen synthase kinase 3β, and mammalian target of rapamycin are reported in both diseases. T2DM and AD also show evidence of inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, and amyloid deposition. The impact that changes in neurovascular structure and genetics have on the development of these conditions is also being examined. With the discovery of factors contributing to AD, innovative treatment approaches are being explored. Investigators are evaluating the efficacy of various T2DM medications for possible use in AD, including but not limited to glucagon-like peptide-1 receptor agonists, and peroxisome proliferator-activated receptor-gamma agonists. Furthermore, there are 136 active trials involving 121 therapeutic agents targeting novel AD biomarkers. With these efforts, we are one step closer to alleviating the ravaging impact of AD on our communities.
Collapse
Affiliation(s)
- Jessica Lynn
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | - Mingi Park
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | | | - George K Acquaah-Mensah
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| |
Collapse
|
34
|
Linagliptin Protects Human SH-SY5Y Neuroblastoma Cells against Amyloid-β Cytotoxicity via the Activation of Wnt1 and Suppression of IL-6 Release. IRANIAN BIOMEDICAL JOURNAL 2021; 25:343-8. [PMID: 34425652 PMCID: PMC8487681 DOI: 10.52547/ibj.25.5.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Alzheimer’s disease is one of the neurodegenerative disorders typified by the aggregate of amyloid-β (Aβ) and phosphorylated tau protein. Oxidative stress and neuroinflammation, because of Aβ peptides, are strongly involved in the pathophysiology of Alzheimer’s disease (AD). Linagliptin shows neuroprotective properties against AD pathological processes through alleviation of neural inflammation and AMPK activation. Methods We assessed the benefits of linagliptin pretreatment (at 10, 20, and 50 nM concentrations), against Aβ1-42 toxicity (20 μM) in SH-SY5Y cells. The concentrations of secreted cytokines, such as TNF-α, IL-6, and IL-1β, and signaling proteins, including pCREB, Wnt1, and PKCε, were quantified by ELISA. Results We observed that Aβ led to cellular inflammation, which was assessed by measuring inflammatory cytokines (TNF-α, IL-1β, and IL-6). Moreover, Aβ1-42 treatment impaired pCREB, PKCε, and Wnt1 signaling in human SH-SY5Y neuroblastoma cells. Addition of Linagliptin significantly reduced IL-6 levels in the lysates of cells, treated with Aβ1-42. Furthermore, linagliptin prevented the downregulation of Wnt1 in Aβ1-42-treated cells exposed. Conclusion The current findings reveal that linagliptin alleviates Aβ1-42-induced inflammation in SH-SY5Y cells, probably through the suppression of IL-6 release, and some of its benefits are mediated through the activation of the Wnt1 signaling pathway.
Collapse
|
35
|
Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. APOE Genotype and Alzheimer's Disease: The Influence of Lifestyle and Environmental Factors. ACS Chem Neurosci 2021; 12:2749-2764. [PMID: 34275270 DOI: 10.1021/acschemneuro.1c00295] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with obscure pathogenesis and no disease-modifying therapy to date. AD is multifactorial disease that develops from the complex interplay of genetic factors and environmental exposures. The E4 allele of the gene encoding apolipoprotein E (APOE) is the most common genetic risk factor for AD, whereas the E2 allele acts in a protective manner. A growing amount of epidemiological evidence suggests that several lifestyle habits and environmental factors may interact with APOE alleles to synergistically affect the risk of AD development. Among them, physical exercise, dietary habits including fat intake and ketogenic diet, higher education, traumatic brain injury, cigarette smoking, coffee consumption, alcohol intake, and exposure to pesticides and sunlight have gained increasing attention. Although the current evidence is inconsistent, it seems that younger APOE4 carriers in preclinical stages may benefit mostly from preventive lifestyle interventions, whereas older APOE4 noncarriers with dementia may show the most pronounced effects. The large discrepancies between the epidemiological studies may be attributed to differences in the sample sizes, the demographic characteristics of the participants, including age and sex, the methodological design, and potential related exposures and comorbidities as possible cofounding factors. In this Review, we aim to discuss available evidence of the prominent APOE genotype-environment interactions in regard to cognitive decline with a focus on AD, providing an overview of the current landscape in this field and suggesting future directions.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| | - Sokratis G. Papageorgiou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
36
|
Valverde A, Dunys J, Lorivel T, Debayle D, Gay AS, Caillava C, Chami M, Checler F. Dipeptidyl peptidase 4 contributes to Alzheimer's disease-like defects in a mouse model and is increased in sporadic Alzheimer's disease brains. J Biol Chem 2021; 297:100963. [PMID: 34265307 PMCID: PMC8334387 DOI: 10.1016/j.jbc.2021.100963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid β peptides in Alzheimer's disease, is currently being questioned. In addition to full-length amyloid β peptide, several N-terminally truncated fragments of amyloid β peptide could well contribute to Alzheimer's disease setting and/or progression. Among them, pyroGlu3-amyloid β peptide appears to be one of the main components of early anatomical lesions in Alzheimer's disease-affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid β, but they appear as the rate-limiting enzymes yielding the Glu3-amyloid β peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3-amyloid β. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3-amyloid β peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3-amyloid β peptide and amyloid β 42-positive plaques and amyloid β 42 load in the triple transgenic Alzheimer's disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer's disease-related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer's disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3-amyloid β peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer's disease progression.
Collapse
Affiliation(s)
- Audrey Valverde
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Julie Dunys
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Thomas Lorivel
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Delphine Debayle
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Anne-Sophie Gay
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Céline Caillava
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Mounia Chami
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
37
|
Sfera A, Osorio C, Maguire G, Rahman L, Afzaal J, Cummings M, Maldonado JC. COVID-19, ferrosenescence and neurodegeneration, a mini-review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110230. [PMID: 33373681 PMCID: PMC7832711 DOI: 10.1016/j.pnpbp.2020.110230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Exacerbation of cognitive, motor and nonmotor symptoms have been described in critically ill COVID-19 patients, indicating that, like prior pandemics, neurodegenerative sequelae may mark the aftermath of this viral infection. Moreover, SARS-CoV-2, the causative agent of COVID-19 disease, was associated with hyperferritinemia and unfavorable prognosis in older individuals, suggesting virus-induced ferrosenescence. We have previously defined ferrosenescence as an iron-associated disruption of both the human genome and its repair mechanisms, leading to premature cellular senescence and neurodegeneration. As viruses replicate more efficiently in iron-rich senescent cells, they may have developed the ability to induce this phenotype in host tissues, predisposing to both immune dysfunction and neurodegenerative disorders. In this mini-review, we summarize what is known about the SARS-CoV-2-induced cellular senescence and iron dysmetabolism. We also take a closer look at immunotherapy with natural killer cells, angiotensin II receptor blockers ("sartans"), iron chelators and dipeptidyl peptidase 4 inhibitors ("gliptins") as adjunct treatments for both COVID-19 and its neurodegenerative complications.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, California, United States of America.
| | | | - Gerald Maguire
- University of California, Riverside, United States of America
| | - Leah Rahman
- Patton State Hospital, California, United States of America
| | - Jafri Afzaal
- Patton State Hospital, California, United States of America
| | | | | |
Collapse
|
38
|
Saleh RA, Eissa TF, Abdallah DM, Saad MA, El-Abhar HS. Peganum harmala enhanced GLP-1 and restored insulin signaling to alleviate AlCl 3-induced Alzheimer-like pathology model. Sci Rep 2021; 11:12040. [PMID: 34103557 PMCID: PMC8187628 DOI: 10.1038/s41598-021-90545-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
Peganum harmala (P. harmala) is a folk medicinal herb used in the Sinai Peninsula (Egypt) as a remedy for central disorders. The main constituents, harmine and harmaline, have displayed therapeutic efficacy against Alzheimer's disease (AD); however, the P. harmala potential on sensitizing central insulin to combat AD remains to be clarified. An AD-like rat model was induced by aluminum chloride (AlCl3; 50 mg/kg/day for six consecutive weeks; i.p), whereas a methanolic standardized P. harmala seed extract (187.5 mg/kg; p.o) was given to AD rats starting 2 weeks post AlCl3 exposure. Two additional groups of rats were administered either the vehicle to serve as the normal control or the vehicle + P. harmala seed extract to serve as the P. harmala control group. P. harmala enhanced cognition appraised by Y-maze and Morris water maze tests and improved histopathological structures altered by AlCl3. Additionally, it heightened the hippocampal contents of glucagon-like peptide (GLP)-1 and insulin, but abated insulin receptor substrate-1 phosphorylation at serine 307 (pS307-IRS-1). Besides, P. harmala increased phosphorylated Akt at serine 473 (pS473-Akt) and glucose transporter type (GLUT)4. The extract also curtailed the hippocampal content of beta amyloid (Aβ)42, glycogen synthase (GSK)-3β and phosphorylated tau. It also enhanced Nrf2, while reduced lipid peroxides and replenished glutathione. In conclusion, combating insulin resistance by P. harmala is a novel machinery in attenuating the insidious progression of AD by enhancing both insulin and GLP-1 trajectories in the hippocampus favoring GLUT4 production.
Collapse
Affiliation(s)
- Rofida A Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tarek F Eissa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmacology and Toxicology, School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmacology, Toxicology & Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
39
|
Senescence-like phenotype in post-mitotic cells of mice entering middle age. Aging (Albany NY) 2021; 12:13979-13990. [PMID: 32634782 PMCID: PMC7425512 DOI: 10.18632/aging.103637] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Staining mice tissues for β-galactosidase activity is a fundamental tool to detect age- or disease-associated cellular senescence. However, reported analyses of positivity for senescence-associated β-galactosidase activity or for other markers of senescence in post-mitotic cells of healthy murine tissues have been fragmentary or inconclusive. Here, we attempted to independently deepen this knowledge using multiple senescence markers within the same cells of wild type mice entering middle age (9 months of age). A histochemistry protocol for the pH-dependent detection of β-galactosidase activity in several tissues was used. At pH 6, routinely utilized to detect senescence-associated β-galactosidase activity, only specific cellular populations in the mouse body (including Purkinje cells and choroid plexus in the central nervous system) were detected as strongly positive for β-galactosidase activity. These post-mitotic cells were also positive for other established markers of senescence (p16, p21 and DPP4), detected by immunofluorescence, confirming a potential senescent phenotype. These data might contribute to understanding the functional relation between the senescence-associated β-galactosidase activity and senescence markers in post-mitotic cells in absence of disease or advanced aging.
Collapse
|
40
|
Ropa J, Broxmeyer HE. An expanded role for dipeptidyl peptidase 4 in cell regulation. Curr Opin Hematol 2021; 27:215-224. [PMID: 32487805 DOI: 10.1097/moh.0000000000000590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Dipeptidyl peptidase 4 (DPP4) is a serine protease with diverse regulatory functions in healthy and diseased cells. Much remains unknown about the mechanisms and targets of DPP4. Here we discuss new studies exploring DPP4-mediated cellular regulation, provide an updated list of potential targets of DPP4, and discuss clinical implications of each. RECENT FINDINGS Recent studies have sought enhanced efficacy of targeting DPP4's role in regulating hematopoietic stem and progenitor cells for improved clinical application. Further studies have identified DPP4 functions in different cellular compartments and have proposed ways to target this protein in malignancy. These findings, together with an expanded list of putative extracellular, cell surface, and intracellular DPP4 targets, provide insight into new DPP4-mediated cell regulation. SUMMARY DPP4 posttranslationally modifies proteins and peptides with essential roles in hematopoietic cell regulation, stem cell transplantation, and malignancy. Targets include secreted signaling factors and may include membrane proteins and transcription factors critical for different hematopoietic functions. Knowing these targets and functions can provide insight into new regulatory roles for DPP4 that may be targeted to enhance transplantation, treat disease, and better understand different regulatory pathways of hematopoiesis.
Collapse
Affiliation(s)
- James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
41
|
Wu C, Ouk M, Wong YY, Anita NZ, Edwards JD, Yang P, Shah BR, Herrmann N, Lanctôt KL, Kapral MK, MacIntosh BJ, Rabin JS, Black SE, Swardfager W. Relationships between memory decline and the use of metformin or DPP4 inhibitors in people with type 2 diabetes with normal cognition or Alzheimer's disease, and the role APOE carrier status. Alzheimers Dement 2020; 16:1663-1673. [PMID: 32803865 PMCID: PMC7754496 DOI: 10.1002/alz.12161] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Few studies have examined memory decline among patients with type 2 diabetes using different oral hypoglycemic drugs. METHODS Participants with normal cognition (NC) or Alzheimer's disease (AD) dementia using a hypoglycemic medication (2005 to 2019) were identified from the National Alzheimer's Coordinating Center database. Delayed memory was assessed using the Wechsler Memory Scale Revised-Logical Memory test. Associations between oral drug classes and memory over time were examined using mixed-effects models with inverse probability treatment weights. RESULTS In NC (n = 1192), metformin use was associated with better memory performance over time, whereas in AD (n = 807), dipeptidyl peptidase-4 (DPP4) inhibitor use was associated with a slower rate of memory decline. Interaction effects suggested greater benefit associated with DPP4 inhibitor use among APOE ε4 carriers. DISCUSSION Associations between different oral hypoglycemic drugs and memory change were not consistent between cognitively normal elderly and those with AD dementia. APOE ε4 genotype modified some relationships.
Collapse
Affiliation(s)
- Che‐Yuan Wu
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
| | - Michael Ouk
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
| | - Yuen Yan Wong
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
| | - Natasha Z. Anita
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
| | - Jodi D. Edwards
- University of Ottawa Heart InstituteUniversity of OttawaOttawaOntarioCanada
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
- ICESOttawaOntarioCanada
| | - Pearl Yang
- Primary Care Research UnitDepartment of Family and Community MedicineSunnybrook Health Sciences CentreTorontoOntarioCanada
- Department of Family and Community MedicineFaculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Baiju R. Shah
- ICESTorontoOntarioCanada
- Divisions of Endocrinology and Obstetric MedicineDepartment of MedicineSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Nathan Herrmann
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of PsychiatrySunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Krista L. Lanctôt
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of PsychiatrySunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
- KITE UHN Toronto Rehabilitation InstituteTorontoOntarioCanada
| | - Moira K. Kapral
- ICESTorontoOntarioCanada
- Department of Medicine (Division of General Internal Medicine) and Institute for Health Policy, Management, and EvaluationUniversity of TorontoTorontoOntarioCanada
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Canadian Partnership for Stroke RecoverySunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Jennifer S. Rabin
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of MedicineDivision of NeurologyUniversity of TorontoTorontoOntarioCanada
- Harquail Centre for NeuromodulationHurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Rehabilitation Sciences InstituteUniversity of TorontoTorontoOntarioCanada
| | - Sandra E. Black
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Canadian Partnership for Stroke RecoverySunnybrook Research InstituteTorontoOntarioCanada
- Department of MedicineDivision of NeurologyUniversity of TorontoTorontoOntarioCanada
- Toronto Dementia Research AllianceTorontoOntarioCanada
| | - Walter Swardfager
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
- Hurvitz Brain Sciences ProgramSunnybrook Research InstituteTorontoOntarioCanada
- KITE UHN Toronto Rehabilitation InstituteTorontoOntarioCanada
- Canadian Partnership for Stroke RecoverySunnybrook Research InstituteTorontoOntarioCanada
| |
Collapse
|
42
|
Jash K, Gondaliya P, Sunkaria A, Kalia K. MicroRNA-29b Modulates β-Secretase Activity in SH-SY5Y Cell Line and Diabetic Mouse Brain. Cell Mol Neurobiol 2020; 40:1367-1381. [PMID: 32198621 PMCID: PMC11448805 DOI: 10.1007/s10571-020-00823-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/29/2020] [Indexed: 01/18/2023]
Abstract
Hyperglycemia is one of the major risk factors responsible for memory impairment in diabetes which may lead to Alzheimer's disease (AD) at a later stage. MicroRNAs are a class of non-coding RNAs that are found to play a role in diabetes. Downregulation of microRNA-29b in diabetes is well reported. Moreover, microRNA-29b is also reported to target the 3' UTR of β-secretase (BACE-1) enzyme which is involved in the formation of amyloid-beta (Aβ) in AD via cleavage of amyloid precursor protein (APP). Therefore, the present study was designed to elucidate whether microRNA-29b could be a link between diabetes and dementia. In the in vitro and in vivo diabetic model, we found downregulation of microRNA-29b due to hyperglycemia. After human microRNA-29b treatment, there was a significant improvement in the short-term and spatial memory in diabetic mice. Also, the human microRNA-29b treatment decreased oxidative stress and BACE-1 activity in diabetes. The present findings revealed that the downregulation of microRNA-29b in diabetes could be associated with memory impairment and increased BACE-1 activity. These results would give a future direction to study the role played by microRNAs in diabetes-associated memory impairment and hence aid in the development of therapeutics to treat the same.
Collapse
Affiliation(s)
- Kavya Jash
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Aditya Sunkaria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
43
|
Kim JY, Barua S, Jeong YJ, Lee JE. Adiponectin: The Potential Regulator and Therapeutic Target of Obesity and Alzheimer's Disease. Int J Mol Sci 2020; 21:6419. [PMID: 32899357 PMCID: PMC7504582 DOI: 10.3390/ijms21176419] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023] Open
Abstract
Animal and human mechanistic studies have consistently shown an association between obesity and Alzheimer's disease (AD). AD, a degenerative brain disease, is the most common cause of dementia and is characterized by the presence of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles disposition. Some studies have recently demonstrated that Aβ and tau cannot fully explain the pathophysiological development of AD and that metabolic disease factors, such as insulin, adiponectin, and antioxidants, are important for the sporadic onset of nongenetic AD. Obesity prevention and treatment can be an efficacious and safe approach to AD prevention. Adiponectin is a benign adipokine that sensitizes the insulin receptor signaling pathway and suppresses inflammation. It has been shown to be inversely correlated with adipose tissue dysfunction and may enhance the risk of AD because a range of neuroprotection adiponectin mechanisms is related to AD pathology alleviation. In this study, we summarize the recent progress that addresses the beneficial effects and potential mechanisms of adiponectin in AD. Furthermore, we review recent studies on the diverse medications of adiponectin that could possibly be related to AD treatment, with a focus on their association with adiponectin. A better understanding of the neuroprotection roles of adiponectin will help clarify the precise underlying mechanism of AD development and progression.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Ye Jun Jeong
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
- BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
44
|
Rahman SO, Kaundal M, Salman M, Shrivastava A, Parvez S, Panda BP, Akhter M, Akhtar M, Najmi AK. Alogliptin reversed hippocampal insulin resistance in an amyloid-beta fibrils induced animal model of Alzheimer's disease. Eur J Pharmacol 2020; 889:173522. [PMID: 32866503 DOI: 10.1016/j.ejphar.2020.173522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022]
Abstract
The complications of Alzheimer's disease (AD) have made the development of its treatment a challenging task. Several studies have indicated the disruption of insulin receptor substrate-1 (IRS-1) signaling during the development and progression of AD. The role of a dipeptidyl peptidase-4 (DPP-4) inhibitor on hippocampal IRS-1 signaling has not been investigated before. In this study, we evaluated the efficacy of alogliptin (DPP-4 inhibitor) on hippocampal insulin resistance and associated AD complications. In the present study, amyloid-β (1-42) fibrils were produced and administered intrahippocampally for inducing AD in Wistar rats. After 7 days of surgery, rats were treated with 10 and 20 mg/kg of alogliptin for 28 days. Morris water maze (MWM) test was performed in the last week of our experimental study. Post 24 h of final treatment, rats were euthanized and hippocampi were separated for biochemical and histopathological investigations. In-silico analysis revealed that alogliptin has a good binding affinity with Aβ and beta-secretase-1 (BACE-1). Alogliptin significantly restored cognitive functions in Aβ (1-42) fibrils injected rats during the MWM test. Alogliptin also significantly attenuated insulin level, IRS-1pS307 expression, Aβ (1-42) level, GSK-3β activity, TNF-α level and oxidative stress in the hippocampus. The histopathological analysis supported alogliptin mediated neuroprotective and anti-amyloidogenic effect. Immunohistochemical analysis also revealed a reduction in IRS-1pS307 expression after alogliptin treatment. The in-silico, behavioral, biochemical and histopathological analysis supports the protective effect of alogliptin against hippocampal insulin resistance and AD.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Madhu Kaundal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Apeksha Shrivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Bibhu Prasad Panda
- Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
45
|
Can dipeptidyl peptidase-4 inhibitors treat cognitive disorders? Pharmacol Ther 2020; 212:107559. [PMID: 32380197 DOI: 10.1016/j.pharmthera.2020.107559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
The linkage of neurodegenerative diseases with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), including oxidative stress, mitochondrial dysfunction, excessive inflammatory responses and abnormal protein processing, and the correlation between cerebrovascular diseases and hyperglycemia has opened a new window for novel therapeutics for these cognitive disorders. Various antidiabetic agents have been studied for their potential treatment of cognitive disorders, among which the dipeptidyl peptidase-4 (DPP-4) inhibitors have been investigated more recently. So far, DPP-4 inhibitors have demonstrated neuroprotection and cognitive improvements in animal models, and cognitive benefits in diabetic patients with or without cognitive impairments. This review aims to summarize the potential mechanisms, advantages and limitations, and currently available evidence for developing DPP-4 inhibitors as a treatment of cognitive disorders.
Collapse
|
46
|
Ates Bulut E, Sahin Alak ZY, Dokuzlar O, Kocyigit SE, Soysal P, Smith L, Isik AT. Cognitive and metabolic outcomes of vildagliptin addition to the therapy in patients with type 2 diabetes mellitus: 26 week follow-up study. Arch Gerontol Geriatr 2020; 88:104013. [DOI: 10.1016/j.archger.2020.104013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 01/17/2020] [Indexed: 01/28/2023]
|
47
|
Ghaffari M, Sanadgol N, Abdollahi M. A Systematic Review of Current Progresses in the Nucleic Acid-Based Therapies for Neurodegeneration with Implications for Alzheimer's Disease. Mini Rev Med Chem 2020; 20:1499-1517. [PMID: 32400332 DOI: 10.2174/1389557520666200513122357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Recently, manipulation of gene expression and switching genes on or off highlight the potential of nucleic acid-based therapies (NA-BTs). Alzheimer's Disease (AD) is a common devastating neurodegenerative disease (NDs) responsible for 60-80% of all cases of dementia and predicted as a main public health concern among aged populations. The aim of this study was to outline the current research in the field of NA-BTs for the treatment of AD disabilities, including strategies to suppress the memory and learning defects, to promote recovery processes, and to reinforce social relationships in these patients. This review was performed via evaluating PubMed reported studies from January 2010 to November 2019. Also, reference lists were checked to find additional studies. All intermediation or complementarity of animal models, case-control and cohort studies, and controlled trials (CTs) on specific NA-BTs to AD were acceptable, although in vitro studies were excluded due to the considerable diversities and heterogeneities. After removing the duplicates according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) instruction, we merged remaining titles across search databases. There are 48 ongoing studies related to the application of nucleic acids in the treatment and diagnosis of AD where more consideration is given to DNA targeting strategies (18 targets for vectors and aptamers), antisense oligonucleotides (10 targets), micro-RNAs mimics (7 targets), antagomiRs (6 targets), small interferences-RNAs (5 targets), as well as mRNAs (2 targets) respectively. All of these targets are grouped into 4 categories according to their role in molecular pathways where amyloid-β (18 targets), neural survival (11 targets), memory and cognition (8 targets), and tau (3 targets) are more targeted pathways, respectively. With recent successes in the systemic delivery of nucleic acids via intravenous injection; it is worth investing in the production of new-generation medicines. There are still several challenges for NA-BTs including, their delivery to the effective modulators, mass production at low cost, sustaining efficacy and minimizing off-target effects. Regarding miRNA-based therapies, given the obvious involvement of miRNAs in numerous facets of brain disease, and the many sophisticated techniques for delivery to the brain, miRNA-based therapies will make new hope for the treatment of neurological diseases such as AD.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Iran
| |
Collapse
|
48
|
Chen Z, Tao S, Li X, Zeng X, Zhang M, Yao Q. Anagliptin protects neuronal cells against endogenous amyloid β (Aβ)-induced cytotoxicity and apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2213-2220. [PMID: 31159590 DOI: 10.1080/21691401.2019.1609979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhenbo Chen
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shanwei Tao
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xiaohui Li
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xudong Zeng
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Mirong Zhang
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Qinghe Yao
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
49
|
Darsalia V, Johansen OE, Lietzau G, Nyström T, Klein T, Patrone C. Dipeptidyl Peptidase-4 Inhibitors for the Potential Treatment of Brain Disorders; A Mini-Review With Special Focus on Linagliptin and Stroke. Front Neurol 2019; 10:493. [PMID: 31139140 PMCID: PMC6518970 DOI: 10.3389/fneur.2019.00493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cerebral stroke is a leading cause of death and persistent disability of elderly in the world. Although stroke prevention by targeting several risk factors such as diabetes and hypertension has decreased the stroke incidence, the total number of strokes is increasing due to the population aging and new preventive therapies are needed. Moreover, post-stroke acute pharmacological strategies aimed to reduce stroke-induced brain injury have failed in clinical trials despite being effective in animal models. Finally, approximately 30% of surviving stroke patients do not recover from stroke and remain permanently dependent on supportive care in activities of daily living. Therefore, strategies to improve stroke recovery in the post-acute phase are highly needed. Linagliptin is a dipeptidyl peptidase-4 inhibitor which is clinically approved to reduce hyperglycemia in type 2 diabetes. The regulation of glycemia by dipeptidyl peptidase-4 inhibition is mainly achieved by preventing endogenous glucagon-like peptide-1 (GLP-1) degradation. Interestingly, linagliptin has also shown glycaemia-independent beneficial effects in animal models of stroke, Parkinson's disease and Alzheimer's disease. In some case the preclinical data have been supported with some clinical data. Although potentially very interesting for the development of new strategies against stroke and neurodegenerative disorders, the mode of action of linagliptin in the brain is still largely unknown and seems to occur in a GLP-1R-independent manner. The purpose of this mini-review is to summarize and discuss the recent experimental and clinical work regarding the effects of linagliptin in the central nervous system, with special emphasis on acute neuroprotection, stroke prevention and post-stroke recovery. We also highlight the main questions in this research field that need to be addressed in clinical perspective.
Collapse
Affiliation(s)
- Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Bi J, Cai W, Ma T, Deng A, Ma P, Han Y, Lou C, Wu L. Protective effect of vildagliptin on TNF-α-induced chondrocyte senescence. IUBMB Life 2019; 71:978-985. [PMID: 31026379 DOI: 10.1002/iub.2049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a common age-related disorder. Chondrocytes in joint tissue play a critical role in normal articular cartilage function and tissue homeostasis. Local inflammatory cytokine-induced chondrocyte senescence contributes to the development and progression of OA. Various dipeptidyl peptidase-4 (DPP-4) inhibitors have been widely used to treat type 2 diabetes. Here, we report a novel pharmacological role of the DPP-4 inhibitor vildagliptin in chondrocyte senescence. Our data indicate that DPP-4 is an inducible factor responsive to tumor necrosis factor-α (TNF-α) treatment in chondrocytes. The inhibition of DPP-4 by vildagliptin ameliorates TNF-α-induced chondrocyte senescence as determined by cellular senescence-associated β-galactosidase (SA-β-Gal) activity. Vildagliptin displayed protective capabilities against TNF-α-induced chondrocyte cell cycle arrest in the G1 phase. Moreover, vildagliptin suppresses the three major TNF-α-induced chondrocyte senescence proteins including p53, p21, and plasminogen activator inhibitor-1 (PAI-1). Vildagliptin also suppresses TNF-α-induced p53 acetylation at K382. Consistently, our findings demonstrate the inhibitory effect of vildagliptin on p53 acetylation, which is mediated by sirtuin 1 (SIRT1) as the inhibition of SIRT1 negated the inhibitory action of vildagliptin on p53 acetylation. Furthermore, we found that the effect of vildagliptin on SIRT1 protection is adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) dependent, and the inhibition of AMPK activity negated the protection of vildagliptin against SIRT1 and chondrocytes senescence. In conclusion, our study explored the molecular mechanism and protective effect of the antidiabetic drug vildagliptin against chondrocyte senescence, and our findings imply that vildagliptin has a therapeutic potential in OA. © 2019 IUBMB Life, 1-2, 2019.
Collapse
Affiliation(s)
- Jianping Bi
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, China
| | - Wusheng Cai
- Department of Orthopedics, Heze Third People Hospital, Heze, Shandong, China
| | - Teng Ma
- Department of Orthopedics, Heze Third People Hospital, Heze, Shandong, China
| | - Aiwei Deng
- Department of Bone Surgery, Heze Third People Hospital, Heze, Shandong, China
| | - Ping Ma
- School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ye Han
- Department of Emergency, Hiser Medical Center of Qingdao, Qingdao, Shandong, China
| | - Chunbiao Lou
- Department of Bone Surgery, Heze Third People Hospital, Heze, Shandong, China
| | - Leilei Wu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|