1
|
Che Z, Wang W, Zhang L, Lin Z. Therapeutic strategies targeting CD47-SIRPα signaling pathway in gastrointestinal cancers treatment. J Pharm Anal 2025; 15:101099. [PMID: 39881799 PMCID: PMC11772969 DOI: 10.1016/j.jpha.2024.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 01/31/2025] Open
Abstract
Gastrointestinal (GI) cancers are prevalent globally, with leading incidence and mortality rates among malignant tumors. Despite notable advancements in surgical resection, radiotherapy, and chemotherapy, the overall survival rates remain low. Hence, it is imperative to explore alternative approaches that enhance patient outcomes. Cluster of differentiation 47 (CD47), serving as an early diagnostic marker, is predominantly overexpressed in GI cancers and associated with poor prognosis. Targeting the CD47-signal regulatory protein alpha (SIRPα) signaling pathway may provide a novel strategy for GI cancers treatment. This study summarizes current knowledge of the structure and function of CD47 and SIRPα, their roles in signaling pathways, the prognostic significance of CD47, therapeutic strategies targeting the CD47-SIRPα signaling pathway in GI cancer, and highlights key issues for future investigations.
Collapse
Affiliation(s)
- Zhengping Che
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Wei Wang
- Department of Cancer Center, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 404000, China
| | - Lin Zhang
- Department of Gastroenterology, Chongqing University Jiangjin Hospital, Chongqing, 402260, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
2
|
Farasati
Far B, Safaei M, Nahavandi R, Gholami A, Naimi-Jamal MR, Tamang S, Ahn JE, Ramezani Farani M, Huh YS. Hydrogel Encapsulation Techniques and Its Clinical Applications in Drug Delivery and Regenerative Medicine: A Systematic Review. ACS OMEGA 2024; 9:29139-29158. [PMID: 39005800 PMCID: PMC11238230 DOI: 10.1021/acsomega.3c10102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 07/16/2024]
Abstract
Hydrogel encapsulation is a promising carrier for cell and drug delivery due to its ability to protect the encapsulated entities from harsh physiological conditions and enhance their therapeutic efficacy and bioavailability. However, there is not yet consensus on the optimal hydrogel type, encapsulation method, and clinical application. Therefore, a systematic review of hydrogel encapsulation techniques and their potential for clinical application is needed to provide a comprehensive and up-to-date overview. In this systematic review, we searched electronic databases for articles published between 2008 and 2023 that described the encapsulation of cells or drug molecules within hydrogels. Herein, we identified 9 relevant studies that met the inclusion and exclusion criteria of our study. Our analysis revealed that the physicochemical properties of the hydrogel, such as its porosity, swelling behavior, and degradation rate, play a critical role in the encapsulation of cells or drug molecules. Furthermore, the encapsulation method, including physical, chemical, or biological methods, can affect the encapsulated entities' stability, bioavailability, and therapeutic efficacy. Challenges of hydrogel encapsulation include poor control over the release of encapsulated entities, limited shelf life, and potential immune responses. Future directions of hydrogel encapsulation include the development of novel hydrogel and encapsulation methods and the integration of hydrogel encapsulation with other technologies, such as 3D printing and gene editing. In conclusion, this review is useful for researchers, clinicians, and policymakers who are interested in this field of drug delivery and regenerative medicine that can serve as a guide for the future development of novel technologies that can be applied into clinical practice.
Collapse
Affiliation(s)
- Bahareh Farasati
Far
- Department
of Chemistry, Iran University of Science
and Technology, Tehran 13114-16846, Iran
| | - Maryam Safaei
- Department
of Pharmacology, Faculty of Pharmacy, Eastern
Mediterranean University, via Mersin 10, Famagusta, TR. North Cyprus 99628, Turkey
| | - Reza Nahavandi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Amir Gholami
- Faculty
of Medicine, Kurdistan University of Medical
Science, Sanandaj 6618634683, Iran
| | | | - Sujina Tamang
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Jung Eun Ahn
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Marzieh Ramezani Farani
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| |
Collapse
|
3
|
Zhao P, Xie L, Yu L, Wang P. Targeting CD47-SIRPα axis for Hodgkin and non-Hodgkin lymphoma immunotherapy. Genes Dis 2024; 11:205-217. [PMID: 37588232 PMCID: PMC10425755 DOI: 10.1016/j.gendis.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
The interaction between cluster of differentiation 47 (CD47) and signal regulatory protein α (SIRPα) protects healthy cells from macrophage attack, which is crucial for maintaining immune homeostasis. Overexpression of CD47 occurs widely across various tumor cell types and transmits the "don't eat me" signal to macrophages to avoid phagocytosis through binding to SIRPα. Blockade of the CD47-SIRPα axis is therefore a promising approach for cancer treatment. Lymphoma is the most common hematological malignancy and is an area of unmet clinical need. This review mainly described the current strategies targeting the CD47-SIRPα axis, including antibodies, SIRPα Fc fusion proteins, small molecule inhibitors, and peptides both in preclinical studies and clinical trials with Hodgkin lymphoma and non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Longyan Xie
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ping Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Wang J, Li L, Xu ZP. Enhancing Cancer Chemo-Immunotherapy: Innovative Approaches for Overcoming Immunosuppression by Functional Nanomaterials. SMALL METHODS 2024; 8:e2301005. [PMID: 37743260 DOI: 10.1002/smtd.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Chemotherapy is a critical modality in cancer therapy to combat malignant cell proliferation by directly attacking cancer cells and inducing immunogenic cell death, serving as a vital component of multi-modal treatment strategies for enhanced therapeutic outcomes. However, chemotherapy may inadvertently contribute to the immunosuppression of the tumor microenvironment (TME), inducing the suppression of antitumor immune responses, which can ultimately affect therapeutic efficacy. Chemo-immunotherapy, combining chemotherapy and immunotherapy in cancer treatment, has emerged as a ground-breaking approach to target and eliminate malignant tumors and revolutionize the treatment landscape, offering promising, durable responses for various malignancies. Notably, functional nanomaterials have substantially contributed to chemo-immunotherapy by co-delivering chemo-immunotherapeutic agents and modulating TME. In this review, recent advancements in chemo-immunotherapy are thus summarized to enhance treatment effectiveness, achieved by reversing the immunosuppressive TME (ITME) through the exploitation of immunotherapeutic drugs, or immunoregulatory nanomaterials. The effects of two-way immunomodulation and the causes of immunoaugmentation and suppression during chemotherapy are illustrated. The current strategies of chemo-immunotherapy to surmount the ITME and the functional materials to target and regulate the ITME are discussed and compared. The perspective on tumor immunosuppression reversal strategy is finally proposed.
Collapse
Affiliation(s)
- Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
5
|
Osorio JC, Smith P, Knorr DA, Ravetch JV. The antitumor activities of anti-CD47 antibodies require Fc-FcγR interactions. Cancer Cell 2023; 41:2051-2065.e6. [PMID: 37977147 PMCID: PMC10842210 DOI: 10.1016/j.ccell.2023.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
While anti-CD47 antibodies hold promise for cancer immunotherapy, early-phase clinical trials have shown limited clinical benefit, suggesting that CD47 blockade alone might be insufficient for effective tumor control. Here, we investigate the contributions of the Fc domain of anti-CD47 antibodies required for optimal in vivo antitumor activity across multiple species-matched models, providing insights into the mechanisms behind the efficacy of this emerging class of therapeutic antibodies. Using a mouse model humanized for CD47, SIRPα, and FcγRs, we demonstrate that local administration of Fc-engineered anti-CD47 antibodies with enhanced binding to activating FcγRs promotes tumor infiltration of macrophages and antigen-specific T cells, while depleting regulatory T cells. These effects result in improved long-term systemic antitumor immunity and minimal on-target off-tumor toxicity. Our results highlight the importance of Fc optimization in the development of effective anti-CD47 therapies and provide an attractive strategy to enhance the activity of this promising immunotherapy.
Collapse
Affiliation(s)
- Juan C Osorio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA; Regeneron, Inc., Tarrytown, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Grevtsev AS, Azarian AD, Misorin AK, Chernyshova DO, Iakovlev PA, Karbyshev MS. Towards the Application of a Label-Free Approach for Anti-CD47/PD-L1 Bispecific Antibody Discovery. BIOSENSORS 2023; 13:1022. [PMID: 38131782 PMCID: PMC10742149 DOI: 10.3390/bios13121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The engineering of bispecific antibodies that exhibit optimal affinity and functional activity presents a significant scientific challenge. To tackle this, investigators employ an assortment of protein assay techniques, such as label-free interaction methodologies, which offer rapidity and convenience for the evaluation of extensive sample sets. These assays yield intricate data pertaining to the affinity towards target antigens and Fc-receptors, instrumental in predicting cellular test outcomes. Nevertheless, the fine-tuning of affinity is of paramount importance to mitigate potential adverse effects while maintaining efficient obstruction of ligand-receptor interactions. In this research, biolayer interferometry (BLI) was utilized to probe the functional characteristics of bispecific antibodies targeting cluster of differentiation 47 (CD47) and programmed death-ligand 1 (PD-L1) antigens, encompassing affinity, concurrent binding to two disparate antigens, and the inhibition of ligand-receptor interactions. The findings derived from BLI were juxtaposed with data from in vitro signal regulatory protein-α (SIRP-α)/CD47 blockade reporter bioassays for two leading bispecific antibody candidates, each demonstrating distinct affinity to CD47.
Collapse
|
7
|
CHEN QIUQIANG, GUO XUEJUN, MA WENXUE. Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy. Oncol Res 2023; 32:49-60. [PMID: 38188674 PMCID: PMC10767231 DOI: 10.32604/or.2023.042383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/09/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of cancer, with the tumor microenvironment (TME) playing a pivotal role in modulating the immune response. CD47, a cell surface protein, has been identified as a crucial regulator of the TME and a potential therapeutic target for cancer therapy. However, the precise functions and implications of CD47 in the TME during immunotherapy for cancer patients remain incompletely understood. This comprehensive review aims to provide an overview of CD47's multifaced role in TME regulation and immune evasion, elucidating its impact on various types of immunotherapy outcomes, including checkpoint inhibitors and CAR T-cell therapy. Notably, CD47-targeted therapies offer a promising avenue for improving cancer treatment outcomes, especially when combined with other immunotherapeutic approaches. The review also discusses current and potential CD47-targeted therapies being explored for cancer treatment and delves into the associated challenges and opportunities inherent in targeting CD47. Despite the demonstrated effectiveness of CD47-targeted therapies, there are potential problems, including unintended effects on healthy cells, hematological toxicities, and the development if resistance. Consequently, further research efforts are warranted to fully understand the underlying mechanisms of resistance and to optimize CD47-targeted therapies through innovative combination approaches, ultimately improving cancer treatment outcomes. Overall, this comprehensive review highlights the significance of CD47 as a promising target for cancer immunotherapy and provides valuable insight into the challenges and opportunities in developing effective CD47-targeted therapies for cancer treatment.
Collapse
Affiliation(s)
- QIUQIANG CHEN
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou, 313000, China
| | - XUEJUN GUO
- Department of Hematology, Puyang Youtian General Hospital, Puyang, 457001, China
| | - WENXUE MA
- Department of Medicine, Moores Cancer Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, San Diego, 92093, USA
| |
Collapse
|
8
|
Wang Y, Barrett A, Hu Q. Targeting Macrophages for Tumor Therapy. AAPS J 2023; 25:80. [PMID: 37589825 DOI: 10.1208/s12248-023-00845-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
Macrophages, as one of the most abundant tumor-infiltrating cells, play an important role in tumor development and metastasis. The frequency and polarization of tumor-associated macrophages (TAMs) correlate with disease progression, tumor metastasis, and resistance to various treatments. Pro-inflammatory M1 macrophages hold the potential to engulf tumor cells. In contrast, anti-inflammatory M2 macrophages, which are predominantly present in tumors, potentiate tumor progression and immune escape. Targeting macrophages to modulate the tumor immune microenvironment can ameliorate the tumor-associated immunosuppression and elicit an anti-tumor immune response. Strategies to repolarize TAMs, deplete TAMs, and block inhibitory signaling hold great potential in tumor therapy. Besides, biomimetic carriers based on macrophages have been extensively explored to prolong circulation, enhance tumor-targeted delivery, and reduce the immunogenicity of therapeutics to augment therapeutic efficacy. Moreover, the genetic engineering of macrophages with chimeric antigen receptor (CAR) allows them to recognize tumor antigens and perform tumor cell-specific phagocytosis. These strategies will expand the toolkit for treating tumors, especially for solid tumors, drug-resistant tumors, and metastatic tumors. Herein, we introduce the role of macrophages in tumor progression, summarize the recent advances in macrophage-centered anticancer therapy, and discuss their challenges as well as future applications. Graphical abstract.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A
| | - Allie Barrett
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A..
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A..
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, WI, I 53705, Madison, U.S.A..
| |
Collapse
|
9
|
Zhang Y, Xue W, Xu C, Nan Y, Mei S, Ju D, Wang S, Zhang X. Innate Immunity in Cancer Biology and Therapy. Int J Mol Sci 2023; 24:11233. [PMID: 37510993 PMCID: PMC10379825 DOI: 10.3390/ijms241411233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Immunotherapies including adaptive immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have developed the treatment of cancer in clinic, and most of them focus on activating T cell immunity. Although these strategies have obtained unprecedented clinical responses, only limited subsets of cancer patients could receive long-term benefits, highlighting the demand for identifying novel targets for the new era of tumor immunotherapy. Innate immunity has been demonstrated to play a determinative role in the tumor microenvironment (TME) and influence the clinical outcomes of tumor patients. A thorough comprehension of the innate immune cells that infiltrate tumors would allow for the development of new therapeutics. In this review, we outline the role and mechanism of innate immunity in TME. Moreover, we discuss innate immunity-based cancer immunotherapy in basic and clinical studies. Finally, we summarize the challenges in sufficiently motivating innate immune responses and the corresponding strategies and measures to improve anti-tumor efficacy. This review could aid the comprehension of innate immunity and inspire the creation of brand-new immunotherapies for the treatment of cancer.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjing Xue
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuang Mei
- Shanghai Tinova Immune Therapeutics Co., Ltd., Shanghai 201413, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaofei Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
10
|
Osorio JC, Smith P, Knorr DA, Ravetch JV. The Antitumor Activities of Anti-CD47 Antibodies Require Fc-FcγR interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547082. [PMID: 37455857 PMCID: PMC10347539 DOI: 10.1101/2023.06.29.547082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
While anti-CD47 antibodies hold promise for cancer immunotherapy, early phase clinical trials have shown limited signs of clinical benefit, suggesting that blockade of CD47 alone may not be sufficient for effective tumor control. Here, we investigate the contributions of the Fc domain of anti-CD47 antibodies required for optimal in vivo antitumor activity across multiple species-matched models, providing new insights into the mechanisms underlying the efficacy of this emerging class of therapeutic antibodies. Using a novel mouse model humanized for CD47, SIRPα and FcγRs, we demonstrate that local administration of an Fc-engineered anti-CD47 antibody with enhanced binding to activating FcγRs modulates myeloid and T-cell subsets in the tumor microenvironment, resulting in improved long-term systemic antitumor immunity and minimal on-target off-tumor toxicity. Our results highlight the importance of Fc optimization in the development of effective anti-CD47 therapies and provide a novel approach for enhancing the antitumor activity of this promising immunotherapy.
Collapse
Affiliation(s)
- Juan C Osorio
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
11
|
Huang K, Liu Y, Wen S, Zhao Y, Ding H, Liu H, Kong DX. Binding Mechanism of CD47 with SIRPα Variants and Its Antibody: Elucidated by Molecular Dynamics Simulations. Molecules 2023; 28:4610. [PMID: 37375166 DOI: 10.3390/molecules28124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The intricate complex system of the differentiation 47 (CD47) and the signal-regulatory protein alpha (SIRPα) cluster is a crucial target for cancer immunotherapy. Although the conformational state of the CD47-SIRPα complex has been revealed through crystallographic studies, further characterization is needed to fully understand the binding mechanism and to identify the hot spot residues involved. In this study, molecular dynamics (MD) simulations were carried out for the complexes of CD47 with two SIRPα variants (SIRPαv1, SIRPαv2) and the commercially available anti-CD47 monoclonal antibody (B6H12.2). The calculated binding free energy of CD47-B6H12.2 is lower than that of CD47-SIRPαv1 and CD47-SIRPαv2 in all the three simulations, indicating that CD47-B6H12.2 has a higher binding affinity than the other two complexes. Moreover, the dynamical cross-correlation matrix reveals that the CD47 protein shows more correlated motions when it binds to B6H12.2. Significant effects were observed in the energy and structural analyses of the residues (Glu35, Tyr37, Leu101, Thr102, Arg103) in the C strand and FG region of CD47 when it binds to the SIRPα variants. The critical residues (Leu30, Val33, Gln52, Lys53, Thr67, Arg69, Arg95, and Lys96) were identified in SIRPαv1 and SIRPαv2, which surround the distinctive groove regions formed by the B2C, C'D, DE, and FG loops. Moreover, the crucial groove structures of the SIRPα variants shape into obvious druggable sites. The C'D loops on the binding interfaces undergo notable dynamical changes throughout the simulation. For B6H12.2, the residues Tyr32LC, His92LC, Arg96LC, Tyr32HC, Thr52HC, Ser53HC, Ala101HC, and Gly102HC in its initial half of the light and heavy chains exhibit obvious energetic and structural impacts upon binding with CD47. The elucidation of the binding mechanism of SIRPαv1, SIRPαv2, and B6H12.2 with CD47 could provide novel perspectives for the development of inhibitors targeting CD47-SIRPα.
Collapse
Affiliation(s)
- Kaisheng Huang
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Liu
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuixiu Wen
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Zhao
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanjing Ding
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Hui Liu
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - De-Xin Kong
- State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Wang F, Huang Q, Su H, Sun M, Wang Z, Chen Z, Zheng M, Chakroun R, Monroe M, Chen D, Wang Z, Gorelick N, Serra R, Wang H, Guan Y, Suk J, Tyler B, Brem H, Hanes J, Cui H. Self-assembling paclitaxel-mediated stimulation of tumor-associated macrophages for postoperative treatment of glioblastoma. Proc Natl Acad Sci U S A 2023; 120:e2204621120. [PMID: 37098055 PMCID: PMC10161130 DOI: 10.1073/pnas.2204621120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
The unique cancer-associated immunosuppression in brain, combined with a paucity of infiltrating T cells, contributes to the low response rate and poor treatment outcomes of T cell-based immunotherapy for patients diagnosed with glioblastoma multiforme (GBM). Here, we report on a self-assembling paclitaxel (PTX) filament (PF) hydrogel that stimulates macrophage-mediated immune response for local treatment of recurrent glioblastoma. Our results suggest that aqueous PF solutions containing aCD47 can be directly deposited into the tumor resection cavity, enabling seamless hydrogel filling of the cavity and long-term release of both therapeutics. The PTX PFs elicit an immune-stimulating tumor microenvironment (TME) and thus sensitizes tumor to the aCD47-mediated blockade of the antiphagocytic "don't eat me" signal, which subsequently promotes tumor cell phagocytosis by macrophages and also triggers an antitumor T cell response. As adjuvant therapy after surgery, this aCD47/PF supramolecular hydrogel effectively suppresses primary brain tumor recurrence and prolongs overall survivals with minimal off-target side effects.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, Baltimore, MD21205
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Zeyu Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
| | - Ziqi Chen
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Mengzhen Zheng
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Rami W. Chakroun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Maya K. Monroe
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Daiqing Chen
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Zongyuan Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Noah Gorelick
- Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Riccardo Serra
- Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, The Johns Hopkins University, Baltimore, MD21205
- Department of Neurological Surgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Jung Soo Suk
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Neurological Surgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Betty Tyler
- Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Henry Brem
- Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Ophthalmology, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Justin Hanes
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Ophthalmology, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Biomedical Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
- Whiting School of Engineering, Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD21218
- Center for Nanomedicine, Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, MD21231
- Department of Materials Science and Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
13
|
Kalami A, Shahgolzari M, Khosroushahi AY, Fiering S. Combining in situ vaccination and immunogenic apoptosis to treat cancer. Immunotherapy 2023; 15:367-381. [PMID: 36852419 DOI: 10.2217/imt-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Immunization approaches are designed to stimulate the immune system and eliminate the tumor. Studies indicate that cancer immunization combined with certain chemotherapeutics and immunostimulatory agents can improve outcomes. Chemotherapeutics-based immunogenic cell death makes the tumor more recognizable by the immune system. In situ vaccination (ISV) utilizes established tumors as antigen sources and directly applies an immune adjuvant to the tumor to reverse a cold tumor microenvironment to a hot one. Immunogenic cell death and ISV highlight for the immune system the tumor antigens that are recognizable by immune cells and support a T-cell attack of the tumor cells. This review presents the concept of immunogenic apoptosis and ISV as a powerful platform for cancer immunization.
Collapse
Affiliation(s)
- Arman Kalami
- Biotechnology Research Center, Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth & Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
14
|
Chang R, Chu X, Zhang J, Fu R, Feng C, Jia D, Wang R, Yan H, Li G, Li J. Liposome-Based Co-Immunotherapy with TLR Agonist and CD47-SIRPα Checkpoint Blockade for Efficient Treatment of Colon Cancer. Molecules 2023; 28:molecules28073147. [PMID: 37049910 PMCID: PMC10095745 DOI: 10.3390/molecules28073147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Antitumor immunity is an essential component of cancer therapy and is primarily mediated by the innate immune response, which plays a critical role in initiating and shaping the adaptive immune response. Emerging evidence has identified innate immune checkpoints and pattern recognition receptors, such as CD47 and Toll-like receptor 7 (TLR7), as promising therapeutic targets for cancer treatment. Based on the fusion protein Fc-CV1, which comprises a high-affinity SIRPα variant (CV1), and the Fc fragment of the human IgG1 antibody, we exploited a preparation which coupled Fc-CV1 to imiquimod (TLR7 agonist)-loaded liposomes (CILPs) to actively target CT26. WT syngeneic colon tumor models. In vitro studies revealed that CILPs exhibited superior sustained release properties and cell uptake efficiency compared to free imiquimod. In vivo assays proved that CILPs exhibited more efficient accumulation in tumors, and a more significant tumor suppression effect than the control groups. This immunotherapy preparation possessed the advantages of low doses and low toxicity. These results demonstrated that a combination of immune checkpoint blockade (ICB) therapy and innate immunity agonists, such as the Fc-CV1 and imiquimod-loaded liposome preparation utilized in this study, could represent a highly effective strategy for tumor therapy.
Collapse
Affiliation(s)
- Rui Chang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Xiaohong Chu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Jibing Zhang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Rongrong Fu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Changshun Feng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Dianlong Jia
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Hui Yan
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Guangyong Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Jun Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
15
|
Mercogliano MF, Bruni S, Mauro FL, Schillaci R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15071987. [PMID: 37046648 PMCID: PMC10093019 DOI: 10.3390/cancers15071987] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and the leading cause of death. HER2 overexpression is found in approximately 20% of breast cancers and is associated with a poor prognosis and a shorter overall survival. Tratuzumab, a monoclonal antibody directed against the HER2 receptor, is the standard of care treatment. However, a third of the patients do not respond to therapy. Given the high rate of resistance, other HER2-targeted strategies have been developed, including monoclonal antibodies such as pertuzumab and margetuximab, trastuzumab-based antibody drug conjugates such as trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-DXd), and tyrosine kinase inhibitors like lapatinib and tucatinib, among others. Moreover, T-DXd has proven to be of use in the HER2-low subtype, which suggests that other HER2-targeted therapies could be successful in this recently defined new breast cancer subclassification. When patients progress to multiple strategies, there are several HER2-targeted therapies available; however, treatment options are limited, and the potential combination with other drugs, immune checkpoint inhibitors, CAR-T cells, CAR-NK, CAR-M, and vaccines is an interesting and appealing field that is still in development. In this review, we will discuss the highlights and pitfalls of the different HER2-targeted therapies and potential combinations to overcome metastatic disease and resistance to therapy.
Collapse
|
16
|
Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol 2023; 13:1097983. [PMID: 37007133 PMCID: PMC10061112 DOI: 10.3389/fonc.2023.1097983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Immunotherapy is a developing treatment for advanced breast cancer. Immunotherapy has clinical significance for the treatment of triple-negative breast cancers and human epidermal growth factor receptor-2 positive (HER2+) breast cancers. As a proved effective passive immunotherapy, clinical application of the monoclonal antibodies trastuzumab, pertuzumab and T-DM1 (ado-trastuzumab emtansine) has significantly improved the survival of patients with HER2+ breast cancers. Immune checkpoint inhibitors that block programmed death receptor-1 and its ligand (PD-1/PD-L1) have also shown benefits for breast cancer in various clinical trials. Adoptive T-cell immunotherapies and tumor vaccines are emerging as novel approaches to treating breast cancer, but require further study. This article reviews recent advances in immunotherapy for HER2+ breast cancers.
Collapse
|
17
|
Liu X, Liang C, Meng Q, Qu Y, He Z, Dong R, Qin L, Mao M, Hu Y. Inhibitory effects of circulating natural autoantibodies to CD47-derived peptides on OSCC cells. Oral Dis 2023; 29:445-457. [PMID: 34028935 DOI: 10.1111/odi.13922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Natural autoantibodies serve as an important anti-tumorigenic component in the body. This study was thus designed to investigate whether circulating natural IgG autoantibodies against a cluster of differentiation 47 (CD47) could exert inhibitory effects on oral squamous cell carcinoma (OSCC). SUBJECTS AND METHODS The expression levels of 13 tumor-targeted genes in three OSCC cell lines were analyzed by qPCR, and CD47 expression in OSCC tissues was also verified with IHC staining. An in-house ELISA was performed to analyze circulating anti-CD47 IgG levels in control subjects, oral benign tumor, and OSCC patients, and to detect anti-CD47 IgG-abundant plasma. Three OSCC cell lines were treated with anti-CD47 IgG-abundant and -deficient plasma, respectively, followed by the analysis of cell proliferation, apoptosis, and invasion/metastasis. RESULTS The CD47 gene showed the highest expression among 13 genes detected in three OSCC cell lines; its expression was significantly higher in OSCC tissues than adjacent tissues. Plasma anti-CD47 IgG levels showed the differences between control subjects, oral benign tumor, and OSCC patients. Anti-CD47 IgG-abundant plasma could evidently reduce cell viability via suppressing p-AKT expression and inducing cell apoptosis and inhibit the invasion of all three OSCC cell lines. CONCLUSIONS Natural autoantibodies against CD47 may be a potential agent for OSCC immunotherapy.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chao Liang
- Department of Dental Implant Center, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Qingyong Meng
- Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Yi Qu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ziyi He
- Department of Transfusion Research, Dongguan Blood Center, Dongguan, China
| | - Rui Dong
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Minghui Mao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Podolnikova NP, Key S, Wang X, Ugarova TP. THE CIS ASSOCIATION OF CD47 WITH INTEGRIN Mac-1 REGULATES MACROPHAGE RESPONSES BY STABILIZING THE EXTENDED INTEGRIN CONFORMATION. J Biol Chem 2023; 299:103024. [PMID: 36796515 PMCID: PMC10124913 DOI: 10.1016/j.jbc.2023.103024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
CD47 is a ubiquitously expressed cell surface integrin-associated protein. Recently, we have demonstrated that integrin Mac-1 (αMβ2, CD11b/CD18, CR3), the major adhesion receptor on the surface of myeloid cells, can be coprecipitated with CD47. However, the molecular basis for the CD47-Mac-1 interaction and its functional consequences remain unclear. Here, we demonstrated that CD47 regulates macrophage functions directly interacting with Mac-1. In particular, adhesion, spreading, migration, phagocytosis, and fusion of CD47-deficient macrophages were significantly decreased. We validated the functional link between CD47 and Mac-1 by co-immunoprecipitation analysis using various Mac-1-expressing cells. In HEK293 cells expressing individual αM and β2 integrin subunits, CD47 was found to bind both subunits. Interestingly, a higher amount of CD47 was recovered with the free β2 subunit than in the complex with the whole integrin. Furthermore, activating Mac-1-expressing HEK293 cells with PMA, Mn2+, and activating antibody MEM48 increased the amount of CD47 in complex with Mac-1, suggesting CD47 has a greater affinity for the extended integrin conformation. Notably, on the surface of cells lacking CD47, fewer Mac-1 molecules could convert into an extended conformation in response to activation. Additionally, we identified the binding site in CD47 for Mac-1 in its constituent IgV domain. The complementary binding sites for CD47 in Mac-1 were localized in integrin epidermal growth factor-like domains 3 and 4 of the β2 and calf-1 and calf-2 domains of the α subunits. These results indicate that Mac-1 forms a lateral complex with CD47, which regulates essential macrophage functions by stabilizing the extended integrin conformation.
Collapse
Affiliation(s)
| | - Shundene Key
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | | |
Collapse
|
19
|
Alimohammadi R, Mahmoodi Chalbatani G, Alimohammadi M, Ghaffari-Nazari H, Rahimi A, Mortaz E, Mossafa N, Boon L, Jalali SA. Dual blockage of both PD-L1 and CD47 enhances the therapeutic effect of oxaliplatin and FOLFOX in CT-26 mice tumor model. Sci Rep 2023; 13:2472. [PMID: 36774400 PMCID: PMC9922272 DOI: 10.1038/s41598-023-29363-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
Colorectal cancer is a poorly immunogenic. Such property can be reverted by using ICD. However, ICD inducers can also induce the expression of inhibitory checkpoint receptors CD47 and PD-L1 on tumor cells, making CRC tumors resistant to mainly CD8 T cell killing and macrophage-mediated phagocytosis. In this study, we examined the therapeutic effect of Oxaliplatin and FOLFOX regimen in combination with blocking antibodies against CD47 and PD-L1. FOLFOX and Oxaliplatin treatment lead to an increase in CD47 and PD-L1 expression on CT-26 cells invitro and invivo. Combining blocking antibodies against CD47 and PD-L1 with FOLFOX leads to a significant increase in survival and a decrease in tumor size. This triple combining regimen also leads to a significant decrease in Treg and MDSC and a significant increase in CD8 + INF-γ + lymphocytes and M1/M2 macrophage ratio in the tumor microenvironment. Our study showed triple combining therapy with FOLFOX, CD47 and PD-L1 is an effective treatment regimen in CT-26 mice tumor model and may consider as a potential to translate to the clinic.
Collapse
Affiliation(s)
- Reza Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 198571-7443, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Masoumeh Alimohammadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Department of Immunology, Faculty of Medical Sciences, Mashhad University of Medical Science, Mashhad, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Esmail Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 198571-7443, Iran
| | - Nariman Mossafa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 198571-7443, Iran
| | | | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 198571-7443, Iran.
| |
Collapse
|
20
|
Azumi J, Takeda T, Shimada Y, Zhuang T, Tokuji Y, Sakamoto N, Aso H, Nakamura T. Organogermanium THGP Induces Differentiation into M1 Macrophages and Suppresses the Proliferation of Melanoma Cells via Phagocytosis. Int J Mol Sci 2023; 24:ijms24031885. [PMID: 36768216 PMCID: PMC9915250 DOI: 10.3390/ijms24031885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
M1 macrophages are an important cell type related to tumor immunology and are known to phagocytose cancer cells. In previous studies, the organogermanium compound poly-trans-[(2-carboxyethyl)germasesquioxane] (Ge-132) and its hydrolysate, 3-(trihydroxygermyl) propanoic acid (THGP), have been reported to exert antitumor effects by activating NK cells and macrophages through the induction of IFN-γ activity in vivo. However, the detailed molecular mechanism has not been clarified. In this study, we found that macrophages differentiate into the M1 phenotype via NF-κB activation under long-term culture in the presence of THGP in vitro and in vivo. Furthermore, long-term culture with THGP increases the ability of RAW 264.7 cells to suppress B16 4A5 melanoma cell proliferation. These mechanisms indicate that THGP promotes the M1 polarization of macrophages and suppresses the expression of signal-regulatory protein alpha (SIRP-α) in macrophages and CD47 in cancers. Based on these results, THGP may be considered a new regulatory reagent that suppresses tumor immunity.
Collapse
Affiliation(s)
- Junya Azumi
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Japan
| | - Tomoya Takeda
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Japan
| | - Yasuhiro Shimada
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Japan
| | - Tao Zhuang
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Yoshihiko Tokuji
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen, Inada, Obihiro 080-8555, Japan
| | - Naoya Sakamoto
- Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Kita 10 Jo-Nishi 5, Kita, Sapporo 060-0810, Japan
| | - Hisashi Aso
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Takashi Nakamura
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Japan
- Correspondence: ; Tel.: +81-138-32-0032; Fax: +81-138-31-0132
| |
Collapse
|
21
|
Fay CJ, Awh KC, LeBoeuf NR, Larocca CA. Harnessing the immune system in the treatment of cutaneous T cell lymphomas. Front Oncol 2023; 12:1071171. [PMID: 36713518 PMCID: PMC9878398 DOI: 10.3389/fonc.2022.1071171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023] Open
Abstract
Cutaneous T cell lymphomas are a rare subset of non-Hodgkin's lymphomas with predilection for the skin with immunosuppressive effects that drive morbidity and mortality. We are now appreciating that suppression of the immune system is an important step in the progression of disease. It should come as no surprise that therapies historically and currently being used to treat these cancers have immune modulating functions that impact disease outcomes. By understanding the immune effects of our therapies, we may better develop new agents that target the immune system and improve combinatorial treatment strategies to limit morbidity and mortality of these cancers. The immune modulating effect of therapeutic drugs in use and under development for cutaneous T cell lymphomas will be reviewed.
Collapse
|
22
|
Chen Y, Klingen TA, Aas H, Wik E, Akslen LA. CD47 and CD68 expression in breast cancer is associated with tumor-infiltrating lymphocytes, blood vessel invasion, detection mode, and prognosis. J Pathol Clin Res 2023; 9:151-164. [PMID: 36598153 PMCID: PMC10073931 DOI: 10.1002/cjp2.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
CD47 expressed on tumor cells binds to signal regulatory protein alpha on macrophages, initiating inhibition of phagocytosis. We investigated the relationships between tumor expression of CD47 and CD68 macrophage content, subsets of tumor-infiltrating lymphocytes (TILs), and vascular invasion in breast cancer. A population-based series of 282 cases (200 screen detected and 82 interval patients) from the Norwegian Breast Cancer Screening Program was examined. Immunohistochemical staining for CD47 and CD68 was evaluated on tissue microarray (TMA) slides. For CD47 evaluation, a staining index was used. CD68 tumor-associated macrophages were counted and dichotomized. TIL subsets (CD45, CD3, CD4, CD8, and FOXP3) were counted and dichotomized using immunohistochemistry on TMA slides. Vascular invasion (both lymphatic and blood vessel) was determined on whole tissue slides. High CD47 tumor cell expression or high counts of CD68 macrophages were significantly associated with elevated levels of all TIL subsets (p < 0.02), CD163 macrophages (p < 0.001), blood vessel invasion (CD31 positive) (p < 0.01), and high tumor cell Ki67 (p < 0.004). High CD47 expression was associated with ER negativity (p < 0.001), HER2 positive status (p = 0.03), and interval-detected tumors (p = 0.03). Combined high expression of CD47-CD68 was associated with a shorter recurrence-free survival (RFS) by multivariate analysis (hazard ratio [HR]: 2.37, p = 0.018), adjusting for tumor diameter, histologic grade, lymph node status, and molecular subtype. Patients with luminal A tumors showed a shorter RFS for CD47-CD68 high cases by multivariate assessment (HR: 5.73, p = 0.004). This study demonstrates an association of concurrent high CD47 tumor cell expression and high CD68 macrophage counts with various TIL subsets, blood vessel invasion (CD31 positive), other aggressive tumor features, and interval-presenting breast cancer. Our findings suggest a link between CD47, tumor immune response, and blood vessel invasion (CD31 positive). Combined high expression of CD47-CD68 was an independent prognostic factor associated with poor prognosis in all cases, as well as in the luminal A category.
Collapse
Affiliation(s)
- Ying Chen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyVestfold HospitalTønsbergNorway
- Department of PathologyOslo University HospitalOsloNorway
- Fürst Medical LaboratoryOsloNorway
| | - Tor Audun Klingen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyVestfold HospitalTønsbergNorway
| | - Hans Aas
- Department of SurgeryVestfold HospitalTønsbergNorway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| |
Collapse
|
23
|
Jalil AR, Tobin MP, Discher DE. Suppressing or Enhancing Macrophage Engulfment through the Use of CD47 and Related Peptides. Bioconjug Chem 2022; 33:1989-1995. [PMID: 35316023 PMCID: PMC9990087 DOI: 10.1021/acs.bioconjchem.2c00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Foreign particles and microbes are rapidly cleared by macrophages in vivo, although many key aspects of uptake mechanisms remain unclear. "Self" cells express CD47 which functions as an anti-phagocytic ligand for SIRPα on macrophages, particularly when pro-phagocytic ligands such as antibodies are displayed in parallel. Here, we review CD47 and related "Self" peptides as modulators of macrophage uptake. Nanoparticles conjugated with either CD47 or peptides derived from its SIRPα binding site can suppress phagocytic uptake by macrophages in vitro and in vivo, with similar findings for CD47-displaying viruses. Drugs, dyes, and genes as payloads thus show increased delivery to targeted cells. On the other hand, CD47 expression by cancer cells enables such cells to evade macrophages and immune surveillance. This has motivated development of soluble antagonists to CD47-SIRPα, ranging from blocking antibodies in the clinic to synthetic peptides in preclinical models. CD47 and peptides are thus emerging as dual-use phagocytosis modulators against diseases.
Collapse
|
24
|
Zhou Z, Chen MJM, Luo Y, Mojumdar K, Peng X, Chen H, Kumar SV, Akbani R, Lu Y, Liang H. Tumor-intrinsic SIRPA promotes sensitivity to checkpoint inhibition immunotherapy in melanoma. Cancer Cell 2022; 40:1324-1340.e8. [PMID: 36332624 PMCID: PMC9669221 DOI: 10.1016/j.ccell.2022.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Checkpoint inhibition immunotherapy has revolutionized cancer treatment, but many patients show resistance. Here we perform integrative transcriptomic and proteomic analyses on emerging immuno-oncology targets across multiple clinical cohorts of melanoma under anti-PD-1 treatment, on both bulk and single-cell levels. We reveal a surprising role of tumor-intrinsic SIRPA in enhancing antitumor immunity, in contrast to its well-established role as a major inhibitory immune modulator in macrophages. The loss of SIRPA expression is a marker of melanoma dedifferentiation, a key phenotype linked to immunotherapy efficacy. Inhibition of SIRPA in melanoma cells abrogates tumor killing by activated CD8+ T cells in a co-culture system. Mice bearing SIRPA-deficient melanoma tumors show no response to anti-PD-L1 treatment, whereas melanoma-specific SIRPA overexpression significantly enhances immunotherapy response. Mechanistically, SIRPA is regulated by its pseudogene, SIRPAP1. Our results suggest a complicated role of SIRPA in the tumor ecosystem, highlighting cell-type-dependent antagonistic effects of the same target on immunotherapy.
Collapse
Affiliation(s)
- Zhicheng Zhou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Ju May Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kamalika Mojumdar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hu Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shweta V Kumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Liu Z, Yang H, Chen Z, Jing C. A novel chromatin regulator-related immune checkpoint related gene prognostic signature and potential candidate drugs for endometrial cancer patients. Hereditas 2022; 159:40. [PMID: 36253800 PMCID: PMC9578220 DOI: 10.1186/s41065-022-00253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/22/2022] [Indexed: 11/14/2022] Open
Abstract
Background Endometrial cancer (EC) is the most common gynecologic malignancy in developed countries and its prevalence is increasing. As an emerging therapy with a promising efficacy, immunotherapy has been extensively applied in the treatment of solid tumors. In addition, chromatin regulators (CRs), as essential upstream regulators of epigenetics, play a significant role in tumorigenesis and cancer development. Methods CRs and immune checkpoint-related genes (ICRGs) were obtained from the previous top research. The Genome Cancer Atlas (TCGA) was utilized to acquire the mRNA expression and clinical information of patients with EC. Correlation analysis was utilized for screen CRs-related ICRGs (CRRICRGs). By Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, prognosis related CRRICRGs were screened out and risk model was constructed. The Kaplan–Meier curve was used to estimate the prognosis between high- and low-risk group. By comparing the IC50 value, the drugs sensitivity difference was explored. We obtained small molecule drugs for the treatment of UCEC patients based on CAMP dataset. Results We successfully constructed a 9 CRRICRs-based prognostic signature for patients with UCEC and found the riskscore was an independent prognostic factor. The results of functional analysis suggested that CRRICRGs may be involved in immune processes associated with cancer. Immune characteristics analysis provided further evidence that the CRRICRGs-based model was correlated with immune cells infiltration and immune checkpoint. Eight small molecule drugs that may be effective for the treatment of UCEC patients were screened. Effective drugs identified by drug sensitivity profiling in high- and low-risk groups. Conclusion In summary, our study provided novel insights into the function of CRRICRGs in UCEC. We also developed a reliable prognostic panel for the survival of patients with UCEC. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00253-w.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Hongxia Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Ziyu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
26
|
PARP-inhibition reprograms macrophages toward an anti-tumor phenotype. Cell Rep 2022; 41:111462. [PMID: 36223740 PMCID: PMC9727835 DOI: 10.1016/j.celrep.2022.111462] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/14/2022] [Accepted: 09/16/2022] [Indexed: 01/17/2023] Open
Abstract
Poly(ADP)ribosylation inhibitors (PARPis) are toxic to cancer cells with homologous recombination (HR) deficiency but not to HR-proficient cells in the tumor microenvironment (TME), including tumor-associated macrophages (TAMs). As TAMs can promote or inhibit tumor growth, we set out to examine the effects of PARP inhibition on TAMs in BRCA1-related breast cancer (BC). The PARPi olaparib causes reprogramming of TAMs toward higher cytotoxicity and phagocytosis. A PARPi-related surge in NAD+ increases glycolysis, blunts oxidative phosphorylation, and induces reverse mitochondrial electron transport (RET) with an increase in reactive oxygen species (ROS) and transcriptional reprogramming. This reprogramming occurs in the absence or presence of PARP1 or PARP2 and is partially recapitulated by addition of NAD derivative methyl-nicotinamide (MNA). In vivo and ex vivo, the effect of olaparib on TAMs contributes to the anti-tumor efficacy of the PARPi. In vivo blockade of the "don't-eat-me signal" with CD47 antibodies in combination with olaparib improves outcomes in a BRCA1-related BC model.
Collapse
|
27
|
Lu Y, Gong Y, Zhu X, Dong X, Zhu D, Ma G. Design of Light-Activated Nanoplatform through Boosting "Eat Me" Signals for Improved CD47-Blocking Immunotherapy. Adv Healthc Mater 2022; 11:e2102712. [PMID: 34981660 DOI: 10.1002/adhm.202102712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 01/01/2023]
Abstract
Here, the authors propose a light-activated reactive oxygen species (ROS)-responsive nanoplatform that can boost immunogenic cell death (ICD) to release "eat me" signals, and improve CD47-blocking immunotherapy by tumor-targeted codelivery of photosensitizer IR820 and anti-CD47 antibody (αCD47). Human serum albumin and αCD47 are first constructed into a single nanoparticle using ROS-responsive linkers, which are further conjugated with photosensitizer IR820 via a matrix metalloproteinase-sensitive peptide as linker and then modified with poly(ethylene glycol) on the surface of the obtained nanoparticles. When exposed to the first wave of near-infrared (NIR) laser irradiation, the obtained nanoplatform (M-IR820/αCD47@NP) can generate ROS, which triggers nanoparticles dissociation and thus, facilitates the release of αCD47 and IR820. The second wave of NIR laser irradiation is subsequently used to perform phototherapy and induce ICD of tumor cells. An in vitro cellular study shows that M-IR820/αCD47@NP can stimulate dendritic cells activation while simultaneously enhancing the phagocytic activity of macrophage against tumor cells. In 4T1 tumor-bearing mice, M-IR820/αCD47@NP-mediated combination of phototherapy and CD47 blockade can effectively induce the synergistic antitumor immune responses to inhibit the growth of tumors and prevent local tumor recurrence. This work offers a promising strategy to improve the CD47-blocking immunotherapy efficacy using αCD47 nanomedicine.
Collapse
Affiliation(s)
- Yan Lu
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy The Tianjin Key Laboratory of Biomaterials Institute of Biomedical Engineering Peking Union Medical College & Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Yonghua Gong
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy The Tianjin Key Laboratory of Biomaterials Institute of Biomedical Engineering Peking Union Medical College & Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Xianghui Zhu
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy The Tianjin Key Laboratory of Biomaterials Institute of Biomedical Engineering Peking Union Medical College & Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Xia Dong
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy The Tianjin Key Laboratory of Biomaterials Institute of Biomedical Engineering Peking Union Medical College & Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Dunwan Zhu
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy The Tianjin Key Laboratory of Biomaterials Institute of Biomedical Engineering Peking Union Medical College & Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| | - Guilei Ma
- Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy The Tianjin Key Laboratory of Biomaterials Institute of Biomedical Engineering Peking Union Medical College & Chinese Academy of Medical Sciences 236# Baidi Road, Nankai District Tianjin 300192 China
| |
Collapse
|
28
|
Safari H, Felder ML, Kaczorowski N, Eniola-Adefeso O. Effect of the Emulsion Solvent Evaporation Technique Cosolvent Choice on the Loading Efficiency and Release Profile of Anti-CD47 from PLGA nanospheres. J Pharm Sci 2022; 111:2525-2530. [DOI: 10.1016/j.xphs.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
|
29
|
Hei Y, Chen Y, Li Q, Mei Z, Pan J, Zhang S, Xiong C, Su X, Wei S. Multifunctional Immunoliposomes Enhance the Immunotherapeutic Effects of PD-L1 Antibodies against Melanoma by Reprogramming Immunosuppressive Tumor Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105118. [PMID: 34915595 DOI: 10.1002/smll.202105118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The immunosuppressive tumor microenvironment (TME) can significantly limit the immunotherapeutic effects of the PD-L1 antibody (aPDL1) by inhibiting the infiltration of CD8+ cytotoxic T cells (CTLs) into the tumor tissues. However, how to reprogram the immunosuppressive TME and promote the infiltration of CTLs remains a huge challenge for aPDL1 to achieve the maximum benefits. Herein, the authors design a multifunctional immunoliposome that encapsulates the adrenergic receptor blocker carvedilol (CAR) and connects the "don't eat me" signal antibody (aCD47) and aPDL1 in series via a reactive oxygen species (ROS)-sensitive linker on the surface. In ROS-enriched immunosuppressive TME, the multifunctional immunoliposome (CAR@aCD47/aPDL1-SSL) can first release the outer aCD47 to block the "do not eat me" pathway, promote the phagocytosis of tumor cells by phagocytic cells, and activate CTLs. Then, the aPDL1 on the liposome surface is exposed to block the PD-1/PD-L1 signaling pathway, thereby inducing CTLs to kill tumor cells. CAR encapsulated in CAR@aCD47/aPDL1-SSL can block the adrenergic nerves in the tumor tissues and reduce their densities, thereby inhibiting angiogenesis in the tumor tissues and reprogramming the immunosuppressive TME. According to the results, CAR@aCD47/aPDL1-SSL holds an effective way to reprogram the immunosuppressive TME and significantly enhance immunotherapeutic efficiency of aPDL1 against the primary cancer and metastasis.
Collapse
Affiliation(s)
- Yu Hei
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing, 100081, P. R. China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yang Chen
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Qian Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Zi Mei
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing, 100081, P. R. China
| | - Jijia Pan
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Siqi Zhang
- Institute of molecular medicine, Peking University, Beijing, 100871, P. R. China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, P. R. China
| | - Xiaodong Su
- Biomedical Pioneering Innovation Center (BIOPIC), State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Shicheng Wei
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing, 100081, P. R. China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
30
|
Si Y, Chen K, Ngo HG, Guan JS, Totoro A, Zhou Z, Kim S, Kim T, Zhou L, Liu X. Targeted EV to Deliver Chemotherapy to Treat Triple-Negative Breast Cancers. Pharmaceutics 2022; 14:146. [PMID: 35057042 PMCID: PMC8781632 DOI: 10.3390/pharmaceutics14010146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are heterogeneous and metastatic, and targeted therapy is highly needed for TNBC treatment. Recent studies showed that extracellular vesicles (EV) have great potential to deliver therapies to treat cancers. This study aimed to develop and evaluate a natural compound, verrucarin A (Ver-A), delivered by targeted EV, to treat TNBC. First, the surface expression of epidermal growth factor receptor (EGFR) and CD47 were confirmed with immunohistochemistry (IHC) staining of patient tissue microarray, flow cytometry and Western blotting. EVs were isolated from HEK 293F culture and surface tagged with anti-EGFR/CD47 mAbs to construct mAb-EV. The flow cytometry, confocal imaging and live-animal In Vivo Imaging System (IVIS) demonstrated that mAb-EV could effectively target TNBC and deliver the drug. The drug Ver-A, with dosage-dependent high cytotoxicity to TNBC cells, was packed in mAb-EV. The anti-TNBC efficacy study showed that Ver-A blocked tumor growth in both 4T1 xenografted immunocompetent mouse models and TNBC patient-derived xenograft models with minimal side effects. This study demonstrated that the targeted mAb-EV-Ver-A had great potential to treat TNBCs.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Jia Shiung Guan
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Angela Totoro
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Zhuoxin Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Seulhee Kim
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Taehyun Kim
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Xiaoguang Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| |
Collapse
|
31
|
Tian L, Lei A, Tan T, Zhu M, Zhang L, Mou H, Zhang J. Macrophage-Based Combination Therapies as a New Strategy for Cancer Immunotherapy. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:26-43. [PMID: 35224005 DOI: 10.1159/000518664] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cells of the immune system can inhibit tumor growth and progression; however, immune cells can also promote tumor cell growth, survival, and angiogenesis as a result of the immunosuppressive microenvironments. In the last decade, a growing number of new therapeutic strategies focused on reversing the immunosuppressive status of tumor microenvironments (TMEs), to reprogram the TME to be normal, and to further activate the antitumor functions of immune cells. Most of the "hot tumors" are encompassed with M2 macrophages promoting tumor growth, and the accumulation of M2 macrophages into tumor islets leads to poor prognosis in a wide variety of tumors. SUMMARY Therefore, how to uncover more immunosuppressive signals and to reverse the M2 tumor-associated macrophages (TAMs) to M1-type macrophages is essential for reversing the immunosuppressive state. Except for reeducation of TAMs in the cancer immunotherapy, macrophages as central effectors and regulators of the innate immune system have the capacity of phagocytosis and immune modulation in macrophage-based cell therapies. KEY MESSAGES We review the current macrophage-based cell therapies that use genetic engineering to augment macrophage functionalities with antitumor activity for the application of novel genetically engineered immune cell therapeutics. A combination of TAM reeducation and macrophage-based cell strategy may bring us closer to achieving the original goals of curing cancer. In this review, we describe the characteristics, immune status, and tumor immunotherapy strategies of macrophages to provide clues and evidences for future macrophage-based immune cell therapies.
Collapse
Affiliation(s)
- Lin Tian
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Anhua Lei
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Tianyu Tan
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Mengmeng Zhu
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Li Zhang
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Haibo Mou
- Department of Medical Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Jin Zhang
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
32
|
Targeting Ovarian Carcinoma with TSP-1:CD47 Antagonist TAX2 Activates Anti-Tumor Immunity. Cancers (Basel) 2021; 13:cancers13195019. [PMID: 34638503 PMCID: PMC8508526 DOI: 10.3390/cancers13195019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
TAX2 peptide is a cyclic peptide that acts as an orthosteric antagonist for thrombospondin-1 (TSP-1) interaction with CD47. TAX2 was first described for its anti-angiogenic activities and showed anti-cancer efficacy in numerous preclinical models. Here, we aimed at providing an extensive molecular characterization of TAX2 mode of action, while evaluating its potential in ovarian cancer therapy. Multidisciplinary approaches were used to qualify a TAX2 drug candidate in terms of stability, solubility and potency. Then, efficacy studies, together with benchmark experiments, were performed in relevant mouse models of ovarian carcinoma. TAX2 peptide appears to be stable and soluble in clinically relevant solvents, while displaying a favorable safety profile. Moreover, clinical data mining allowed for the identification of TSP-1 as a relevant pharmacological target in ovarian cancer. In mice, TAX2 therapy inhibits ovarian tumor growth and metastatic dissemination, while activating anti-cancer adaptive immunity. Interestingly, TAX2 also synergizes when administered in combination with anti-PD-1 immune checkpoint inhibitiors. Altogether, our data expose TAX2 as an optimized candidate with advanced preclinical characterization. Using relevant syngeneic ovarian carcinoma models, we highlighted TAX2's ability to convert poorly immunogenic tumors into ones displaying effective anti-tumor T-cell immunity.
Collapse
|
33
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
34
|
Lopez-Yrigoyen M, Cassetta L, Pollard JW. Macrophage targeting in cancer. Ann N Y Acad Sci 2021; 1499:18-41. [PMID: 32445205 DOI: 10.1111/nyas.14377] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
Tumorigenesis is not only determined by the intrinsic properties of cancer cells but also by their interactions with components of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are among the most abundant immune cells in the TME. During initial stages of tumor development, macrophages can either directly promote antitumor responses by killing tumor cells or indirectly recruit and activate other immune cells. As genetic changes occur within the tumor or T helper 2 (TH 2) cells begin to dominate the TME, TAMs begin to exhibit an immunosuppressive protumor phenotype that promotes tumor progression, metastasis, and resistance to therapy. Thus, targeting TAMs has emerged as a strategy for cancer therapy. To date, TAM targeting strategies have focused on macrophage depletion and inhibition of their recruitment into the TME. However, these strategies have shown limited therapeutic efficacy, although trials are still underway with combination therapies. The fact that macrophages have the potential for antitumor activity has moved the TAM targeting field toward the development of TAM-reprogramming strategies to support this antitumor immune response. Here, we discuss the various roles of TAMs in cancer therapy and their immunosuppressive properties, as well as implications for emerging checkpoint inhibitor-based immunotherapies. We review state-of-the-art TAM-targeting strategies, focusing on current ones at the preclinical and clinical trial stages that aim to reprogram TAMs as an oncological therapy.
Collapse
Affiliation(s)
- Martha Lopez-Yrigoyen
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Luca Cassetta
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Cui Z, Xu D, Zhang F, Sun J, Song L, Ye W, Zeng J, Zhou M, Ruan Z, Zhang L, Ren R. CD47 blockade enhances therapeutic efficacy of cisplatin against lung carcinoma in a murine model. Exp Cell Res 2021; 405:112677. [PMID: 34111474 DOI: 10.1016/j.yexcr.2021.112677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Cisplatin (CDDP) is the first generation of platinum-based drug and is widely used to treat many cancers due to its potency. The present study aims to explore the effects of CDDP on lung carcinoma and its relationship with macrophage phagocytosis. In in vitro study, murine and human lung cancer cell lines were applied and treated with CDDP, CD47 antibody (aCD47), or CDDP plus aCD47. In in vivo study, a tumor xenograft animal model was treated with CDDP, aCD47, or CDDP plus aCD47. Real-time PCR was applied to determine the mRNA expressions. Enzyme-linked immunosorbent assay (ELISA), Western blotting, and Immunofluorescent staining were applied to determine the protein expressions. Flow cytometry was applied to analyze cell apoptosis, phagocytosis, and specific cell populations. CDDP enhanced the expressions of CD47 in lung cancer cells. Interestingly, the blockage of CD47 enhanced the macrophages' phagocytic activity on the CDDP-treated tumor cells. The treatment of CDDP and aCD47 exhibited anti-tumor effects and prolonged the LLC tumor-bearing mice survival time. Mechanistic studies revealed that the treatment of CDDP and aCD47 regulated the phagocytic activity of macrophage, percentage of CD8+ T cells, and cytokines (tumor growth factor (TGF)-β, interleukin (IL)12p70, and interferon (IFN)-γ) in the tumor-bearing model. CD47 blockade enhanced therapeutic efficacy of cisplatin against lung carcinoma in vivo and in vitro.
Collapse
Affiliation(s)
- Zhilei Cui
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Dengfei Xu
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Fafu Zhang
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Jinyuan Sun
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Lin Song
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Wenjing Ye
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Junxiang Zeng
- Department of Laboratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Min Zhou
- Department of Respiratory Medicine, Jinshan Branch of the Sixth People's Hospital of Shanghai, Shanghai Jiaotong University, China
| | - Zhengshang Ruan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Linlin Zhang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Rongrong Ren
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
36
|
Si Y, Zhang Y, Guan JS, Ngo HG, Totoro A, Singh AP, Chen K, Xu Y, Yang ES, Zhou L, Liu R, Liu X(M. Anti-CD47 Monoclonal Antibody-Drug Conjugate: A Targeted Therapy to Treat Triple-Negative Breast Cancers. Vaccines (Basel) 2021; 9:882. [PMID: 34452008 PMCID: PMC8402537 DOI: 10.3390/vaccines9080882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are frequently recurrent due to the development of drug resistance post chemotherapy. Both the existing literature and our study found that surface receptor CD47 (cluster of differentiation 47) was upregulated in chemotherapy-treated TNBC cells. The goal of this study was to develop a monoclonal antibody (mAb)-based targeting strategy to treat TNBC after standard treatment. Specifically, a new mAb that targets the extracellular domain of receptor CD47 was developed using hybridoma technology and produced in fed-batch culture. Flow cytometry, confocal microscopy, and in vivo imaging system (IVIS) showed that the anti-CD47 mAb effectively targeted human and mouse TNBC cells and xenograft models with high specificity. The antibody-drug conjugate (ADC) carrying mertansine was constructed and demonstrated higher potency with reduced IC50 in TNBC cells than did the free drug and significantly inhibited tumor growth post gemcitabine treatment in MDA-MB-231 xenograft NSG model. Finally, whole blood analysis indicated that the anti-CD47 mAb had no general immune toxicity, flow cytometry analysis of lymph nodes revealed an increase of CD69+ NK, CD11c+ DC, and CD4+ T cells, and IHC staining showed tumoral infiltration of macrophage in the 4T1 xenograft BALB/cJ model. This study demonstrated that targeting CD47 with ADC has great potential to treat TNBCs as a targeted therapy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Angela Totoro
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Ajeet Pal Singh
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Yuanxin Xu
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA;
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB), 1808 7th Avenue South, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), 1824 6th Avenue South, Birmingham, AL 35233, USA
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA;
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham (UAB), 702 20th St., Birmingham, AL 35233, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), 1824 6th Avenue South, Birmingham, AL 35233, USA
| |
Collapse
|
37
|
Abstract
Checkpoint blockade therapies that target inhibitory receptors on T cells have revolutionized clinical oncology. Antibodies targeting CTLA-4 or the PD-1/PD-L1 axis are now successfully used alone or in combination with chemotherapy for numerous tumor types. Despite the clinical success of checkpoint blockade therapies, tumors exploit multiple mechanisms to escape or subvert the anti-tumor T cell response. Within the tumor microenvironment, tumor-associated macrophages (TAM) can suppress T cell responses and facilitate tumor growth in various ways, ultimately debilitating clinical responses to T cell checkpoint inhibitors. There is therefore significant interest in identifying biologicals and drugs that target immunosuppressive TAM within the tumor microenvironment and can be combined with immune checkpoint inhibitors. Here we review approaches that are currently being evaluated to convert immunosuppressive TAM into immunostimulatory macrophages that promote T cell responses and tumor elimination. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment that impact anti-tumor immune responses and susceptibility to checkpoint blockade. TAMs are very heterogeneous and can be either immunosuppressive or immunostimulatory. Here, Molgora and Colonna review current strategies that aim to reprogram TAMs to enhance rather than inhibit immune responses.
Collapse
|
38
|
Huang L, Zhang Y, Li Y, Meng F, Li H, Zhang H, Tu J, Sun C, Luo L. Time-Programmed Delivery of Sorafenib and Anti-CD47 Antibody via a Double-Layer-Gel Matrix for Postsurgical Treatment of Breast Cancer. NANO-MICRO LETTERS 2021; 13:141. [PMID: 34138357 PMCID: PMC8197688 DOI: 10.1007/s40820-021-00647-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/03/2021] [Indexed: 05/04/2023]
Abstract
The highly immunosuppressive microenvironment after surgery has a crucial impact on the recurrence and metastasis in breast cancer patients. Programmable delivery of immunotherapy-involving combinations through a single drug delivery system is highly promising, yet greatly challenging, to reverse postoperative immunosuppression. Here, an injectable hierarchical gel matrix, composed of dual lipid gel (DLG) layers with different soybean phosphatidylcholine/glycerol dioleate mass ratios, was developed to achieve the time-programmed sequential delivery of combined cancer immunotherapy. The outer layer of the DLG matrix was thermally responsive and loaded with sorafenib-adsorbed graphene oxide (GO) nanoparticles. GO under manually controlled near-infrared irradiation generated mild heat and provoked the release of sorafenib first to reeducate tumor-associated macrophages (TAMs) and promote an immunogenic tumor microenvironment. The inner layer, loaded with anti-CD47 antibody (aCD47), could maintain the gel state for a much longer time, enabling the sustained release of aCD47 afterward to block the CD47-signal regulatory protein α (SIRPα) pathway for a long-term antitumor effect. In vivo studies on 4T1 tumor-bearing mouse model demonstrated that the DLG-based strategy efficiently prevented tumor recurrence and metastasis by locally reversing the immunosuppression and synergistically blocking the CD47-dependent immune escape, thereby boosting the systemic immune responses.
Collapse
Affiliation(s)
- Liping Huang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Yiyi Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Yanan Li
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Fanling Meng
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Hongyu Li
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Huimin Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jiasheng Tu
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Liang Luo
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
39
|
Huang X, Neckenig M, Sun J, Jia D, Dou Y, Ai D, Nan Z, Qu X. Vitamin E succinate exerts anti-tumour effects on human cervical cancer cells via the CD47-SIRPɑ pathway both in vivo and in vitro. J Cancer 2021; 12:3877-3886. [PMID: 34093795 PMCID: PMC8176246 DOI: 10.7150/jca.52315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/22/2021] [Indexed: 12/09/2022] Open
Abstract
Vitamin E succinate (RRR-a-tocopheryl succinate, VES) acts as a potent agent for cancer therapy and has no toxic and side effects on normal tissue cells. However, the mechanism by which VES mediates the effects are not yet fully understood. Here, we hypothesised that VES mediates antitumour activity on human cervical cancer cells via the CD47-SIRPɑ pathway in vivo and in vitro. Results indicated that the human cervical cancer HeLa cells treated with VES were more efficiently engulfed by THP-1-derived macrophages. In response to VES, the protein expression of CD47 on cell membranes and the mRNA level of CD47 in different human cervical cancer cells significantly decreased. And the level of calreticulin (CRT) mRNA in the VES-treated cells increased. By contrast, CRT protein expression was not altered. miRNA-155, miRNA-133 and miRNA-326 were up-regulated in the VES-treated HeLa cells. Knocking down miRNA-155 and miRNA-133 by RNA interference increased CD47 protein expression in the VES-treated cells. In vivo efficacy was determined in BALB/C nude mice with HeLa xenografts. Results showed that VES reduced tumour growth, increased overall survival and inhibited CD47 in the tumour transcriptionally and translationally. Furthermore, inflammatory factors (TNF-α, IL-12, IFN-γ, IL-2 and IL-10) in the spleen were altered because of VES treatment. Our results suggest that VES-induced antitumour activity is coupled to the CD47-SIRPɑ pathway in human cervical HeLa cancer cells.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Nutrition, Qilu Hospital of Shandong University, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Markus Neckenig
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Jintang Sun
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Di Jia
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Dou
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Dan Ai
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaodi Nan
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
40
|
Abdel‐Bar HM, Walters AA, Wang JT, Al‐Jamal KT. Combinatory Delivery of Etoposide and siCD47 in a Lipid Polymer Hybrid Delays Lung Tumor Growth in an Experimental Melanoma Lung Metastatic Model. Adv Healthc Mater 2021; 10:e2001853. [PMID: 33661553 DOI: 10.1002/adhm.202001853] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/04/2021] [Indexed: 12/15/2022]
Abstract
This study investigated the feasibility of lipid polymer hybrid nanoparticles (LPH) as a platform for the combinatorial delivery of small interfering RNA (siRNA) and etoposide (Eto). Different Eto loaded LPH formulations (LPH Eto ) are prepared. The optimized cationic LPH Eto with a particle size of 109.66 ± 5.17 nm and Eto entrapment efficiency (EE %) of 80.33 ± 2.55 is used to incorporate siRNA targeting CD47 (siCD47), a do not eat me marker on the surface of cancer cells. The siRNA-encapsulating LPH (LPH siNEG-Eto ) has a particle size of 115.9 ± 4.11 nm and siRNA EE % of 63.54 ± 4.36 %. LPHs improved the cellular uptake of siRNA in a dose- and concentration-dependent manner. Enhanced cytotoxicity (3.8-fold higher than Eto solution) and high siRNA transfection efficiency (≈50 %) are obtained. An in vivo biodistribution study showed a preferential uptake of the nanosystem into lung, liver, and spleen. In an experimental pseudo-metastatic B16F10 lung tumor model, a superior therapeutic outcome can be observed in mice treated with combinatory therapy. Immunological studies revealed elevated CD4+, CD8+ cells, and macrophages in the lung following combinatory treatment. The study suggests the potential of the current system for combinatory chemotherapy and immunotherapy for the treatment of lung cancer or lung metastasis.
Collapse
Affiliation(s)
- Hend Mohamed Abdel‐Bar
- Department of Pharmaceutics Faculty of Pharmacy University of Sadat City Sadat City 32958 Egypt
| | - Adam A. Walters
- Institute of Pharmaceutical Science Faculty of Life Sciences & Medicine King's College London 150 Stamford Street London SE1 9NH United Kingdom
| | - Julie Tzu‐Wen Wang
- Institute of Pharmaceutical Science Faculty of Life Sciences & Medicine King's College London 150 Stamford Street London SE1 9NH United Kingdom
| | - Khuloud T. Al‐Jamal
- Institute of Pharmaceutical Science Faculty of Life Sciences & Medicine King's College London 150 Stamford Street London SE1 9NH United Kingdom
| |
Collapse
|
41
|
Imam R, Chang Q, Black M, Yu C, Cao W. CD47 expression and CD163 + macrophages correlated with prognosis of pancreatic neuroendocrine tumor. BMC Cancer 2021; 21:320. [PMID: 33765961 PMCID: PMC7992939 DOI: 10.1186/s12885-021-08045-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies have suggested the important roles of CD47 and tumor-associated macrophages in the prognosis and immunotherapy of various human malignancies. However, the clinical significance of CD47 expression and CD163+ TAMs in pancreatic neuroendocrine tumor (PanNET) remains unclear. Methods In this study, 47 well-differentiated PanNET resection specimens were collected. CD47 expression and CD163+ macrophages were evaluated using immunohistochemistry and correlated with clinicopathologic properties. Results Positive CD47 staining was seen in all PanNETs as well as adjacent normal islets. Compared to normal islets, CD47 overexpressed in PanNETs (p = 0.0015). In the cohort, lymph node metastasis (LNM), lymphovascular invasion (LVI), and perineural invasion (PNI) were found in 36.2, 59.6, and 48.9% of the cases, respectively. Interestingly, PanNETs with LNM, LVI, or PNI had significantly lower H-score of CD47 than those without LNM (p = 0.035), LVI (p = 0.0005), or PNI (p = 0.0035). PanNETs in patients with disease progression (recurrence/death) also showed a significantly lower expression of CD47 than those without progression (p = 0.022). In contrast, CD163+ macrophage counts were significantly higher in cases with LNM, LVI, and PNI. Conclusions Our data suggest relative low CD47 expression and high CD163+ TAMs may act as indicators for poor prognosis of PanNETs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08045-7.
Collapse
Affiliation(s)
- Rami Imam
- Department of Pathology, New York University Grossman School of Medicine, 560 1st Ave, Tisch 4-15I, New York, NY, 10016, USA
| | - Qing Chang
- Department of Pathology, New York University Grossman School of Medicine, 560 1st Ave, Tisch 4-15I, New York, NY, 10016, USA
| | - Margaret Black
- Department of Pathology, New York University Grossman School of Medicine, 560 1st Ave, Tisch 4-15I, New York, NY, 10016, USA
| | - Caroline Yu
- Department of Pathology, New York University Grossman School of Medicine, 560 1st Ave, Tisch 4-15I, New York, NY, 10016, USA
| | - Wenqing Cao
- Department of Pathology, New York University Grossman School of Medicine, 560 1st Ave, Tisch 4-15I, New York, NY, 10016, USA.
| |
Collapse
|
42
|
Pemmaraju N, Chen NC, Verstovsek S. Immunotherapy and Immunomodulation in Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2021; 35:409-429. [PMID: 33641877 DOI: 10.1016/j.hoc.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myeloproliferative neoplasms are characterized by chronic inflammation. The discovery of constitutively active JAK-STAT signaling associated with driver mutations has led to clinical and translational breakthroughs. Insights into the other pathways and novel factors of potential importance are being actively investigated. Various classes of agents with immunomodulating or immunosuppressive properties have been used with varying degrees of success in treating myeloproliferative neoplasms. Early clinical trials are investigating the feasibility, effectiveness, and safety of immune checkpoint inhibitors, cell-based immunotherapies, and SMAC mimetics. The dynamic landscape of immunotherapy and immunomodulation in myeloproliferative neoplasms is the topic of the present review.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard #3000, Houston, TX 77030, USA.
| | - Natalie C Chen
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard #428, Houston, TX 77030, USA
| |
Collapse
|
43
|
Shi Y, Zheng W, Yang K, Harris KG, Ni K, Xue L, Lin W, Chang EB, Weichselbaum RR, Fu YX. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med 2020; 217:133861. [PMID: 32142585 PMCID: PMC7201921 DOI: 10.1084/jem.20192282] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Most studies focus on how intestinal microbiota influence cancer immunotherapy through activating gut immunity. However, immunotherapies related to innate responses such as CD47 blockade rely on the rapid immune responses within the tumor microenvironment. Using one defined anaerobic gut microbiota to track whether microbiota interact with host immunity, we observed that Bifidobacterium facilitates local anti-CD47 immunotherapy on tumor tissues through the capacity to accumulate within the tumor microenvironment. Systemic administration of Bifidobacterium leads to its accumulation within the tumor and converts the nonresponder mice into responders to anti-CD47 immunotherapy in a stimulator of interferon genes (STING)– and interferon-dependent fashion. Local delivery of Bifidobacterium potently stimulates STING signaling and increases cross-priming of dendritic cells after anti-CD47 treatment. Our study identifies the mechanism by which gut microbiota preferentially colonize in tumor sites and facilitate immunotherapy via STING signaling.
Collapse
Affiliation(s)
- Yaoyao Shi
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Wenxin Zheng
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | | | - Kaiyuan Ni
- Department of Chemistry, University of Chicago, Chicago, IL
| | - Lai Xue
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL.,Department of Surgery, University of Chicago, Chicago, IL
| | - Wenbin Lin
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL.,Department of Chemistry, University of Chicago, Chicago, IL
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL.,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
44
|
Hu J, Xiao Q, Dong M, Guo D, Wu X, Wang B. Glioblastoma Immunotherapy Targeting the Innate Immune Checkpoint CD47-SIRPα Axis. Front Immunol 2020; 11:593219. [PMID: 33329583 PMCID: PMC7728717 DOI: 10.3389/fimmu.2020.593219] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is the most common and aggressive form of intracranial tumors with poor prognosis. In recent years, tumor immunotherapy has been an attractive strategy for a variety of tumors. Currently, most immunotherapies take advantage of the adaptive anti-tumor immunity, such as cytotoxic T cells. However, the predominant accumulation of tumor-associated microglia/macrophages (TAMs) results in limited success of these strategies in the glioblastoma. To improve the immunotherapeutic efficacy for GBM, it is detrimental to understand the role of TAM in glioblastoma immunosuppressive microenvironment. In this review, we will discuss the roles of CD47-SIRPα axis in TAMs infiltration and activities and the promising effects of targeting this axis on the activation of both innate and adaptive antitumor immunity in glioblastoma.
Collapse
Affiliation(s)
- Jinyang Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Wu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Jalil AR, Hayes BH, Andrechak JC, Xia Y, Chenoweth DM, Discher DE. Multivalent, Soluble Nano-Self Peptides Increase Phagocytosis of Antibody-Opsonized Targets while Suppressing "Self" Signaling. ACS NANO 2020; 14:15083-15093. [PMID: 33186026 PMCID: PMC8489566 DOI: 10.1021/acsnano.0c05091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Macrophages engulf "foreign" cells and particles, but phagocytosis of healthy cells and cancer cells is inhibited by expression of the ubiquitous membrane protein CD47 which binds SIRPα on macrophages to signal "self". Motivated by some clinical efficacy of anti-CD47 against liquid tumors and based on past studies of CD47-derived polypeptides on particles that inhibited phagocytosis of the particles, here we design soluble, multivalent peptides to bind and block SIRPα. Bivalent and tetravalent nano-Self peptides prove more potent (Keff ∼ 10 nM) than monovalent 8-mers as agonists for phagocytosis of antibody opsonized cells, including cancer cells. Multivalent peptides also outcompete soluble CD47 binding to human macrophages, consistent with SIRPα binding, and the peptides suppress phosphotyrosine in macrophages, consistent with inhibition of SIRPα's "self" signaling. Peptides exhibit minimal folding, but functionality suggests an induced fit into SIRPα's binding pocket. Pre-clinical studies in mice indicate safety, with no anemia that typifies clinical infusions of anti-CD47. Multivalent nano-Self peptides thus constitute an alternative approach to promoting phagocytosis of "self", including cancer cells targeted clinically.
Collapse
|
46
|
Lu Q, Chen X, Wang S, Lu Y, Yang C, Jiang G. Potential New Cancer Immunotherapy: Anti-CD47-SIRPα Antibodies. Onco Targets Ther 2020; 13:9323-9331. [PMID: 33061420 PMCID: PMC7520119 DOI: 10.2147/ott.s249822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023] Open
Abstract
CD47 belongs to immunoglobulin superfamily and is widely expressed on the surface of cell membrane, while another transmembrane protein SIRPα is restricted to the surface of macrophages, dendritic cells, and nerve cells. As a cell surface receptor and ligand, respectively, CD47 and SIRPα interact to regulate cell migration and phagocytic activity, and maintain immune homeostasis. In recent years, studies have found that immunoglobulin superfamily CD47 is overexpressed widely across tumor types, and CD47 plays an important role in suppressing phagocytes activity through binding to the transmembrane protein SIRPα in phagocytic cells. Therefore, targeting CD47 may be a novel strategy for cancer immunotherapy, and a variety of anti-CD47 antibodies have appeared, such as humanized 5F9 antibody, B6H12 antibody, ZF1 antibody, and so on. This review mainly describes the research history of CD47-SIRPα and focuses on macrophage-mediated CD47-SIRPα immunotherapy of tumors.
Collapse
Affiliation(s)
- Quansheng Lu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Xi Chen
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Shan Wang
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yu Lu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Chunsheng Yang
- Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| |
Collapse
|
47
|
Hendriks MAJM, Ploeg EM, Koopmans I, Britsch I, Ke X, Samplonius DF, Helfrich W. Bispecific antibody approach for EGFR-directed blockade of the CD47-SIRPα "don't eat me" immune checkpoint promotes neutrophil-mediated trogoptosis and enhances antigen cross-presentation. Oncoimmunology 2020; 9:1824323. [PMID: 33299654 PMCID: PMC7714490 DOI: 10.1080/2162402x.2020.1824323] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer cells overexpress CD47 to subvert phagocytic elimination and evade immunogenic processing of cancer antigens. Moreover, CD47 overexpression inhibits the antibody-dependent cellular phagocytosis (ADCP) and cytotoxicity (ADCC) activities of therapeutic anticancer antibodies. Consequently, CD47-blocking antibodies have been developed to overcome the immunoevasive activities of cancer cell-expressed CD47. However, the wide-spread expression of CD47 on normal cells forms a massive "antigen sink" that potentially limits sufficient tumor accretion of these antibodies. Additionally, a generalized blockade of CD47-SIRPα interaction may ultimately lead to unintended cross-presentation of self-antigens potentially promoting autoimmunity. To address these issues, we constructed a bispecific antibody, designated bsAb CD47xEGFR-IgG1, that blocks cancer cell surface-expressed CD47 in an EGFR-directed manner. BsAb CD47xEGFR-IgG1 selectively induced phagocytic removal of EGFRpos/CD47pos cancer cells and endowed neutrophils with capacity to kill these cancer cells by trogoptosis; an alternate form of ADCC that disrupts the target cell membrane. Importantly, bsAb CD47xEGFR-IgG1 selectively enhanced phagocytosis and immunogenic processing of EGFRpos/CD47pos cancers cells ectopically expressing viral protein CMVpp65. In conclusion, bsAb CD47xEGFR-IgG1 may be useful to reduce on-target/off-tumor effects of CD47-blocking approaches, enhance cancer cell elimination by trogoptosis, and promote adaptive anticancer immune responses.
Collapse
Affiliation(s)
- Mark A. J. M. Hendriks
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Emily M. Ploeg
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Iris Koopmans
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Isabel Britsch
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Douwe F. Samplonius
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Wijnand Helfrich
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- CONTACT Wijnand Helfrich Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen, Groningen, GZ9713, The Netherlands
| |
Collapse
|
48
|
CD47-SIRP α Axis as a Biomarker and Therapeutic Target in Cancer: Current Perspectives and Future Challenges in Nonsmall Cell Lung Cancer. J Immunol Res 2020; 2020:9435030. [PMID: 33015199 PMCID: PMC7520676 DOI: 10.1155/2020/9435030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023] Open
Abstract
CD47 is a cell surface protein in the immunoglobulin superfamily which is normally expressed at low levels in every healthy cell. It´s main physiologic function is to act as an inhibitor of phagocytosis; this occurs throughout interaction with SIRPa expressed on macrophages. Interaction between CD47 and SIRPa leads to activation of tyrosine phosphatases that inhibit myosin accumulation at the submembrane assembly site of the phagocytic synapse, resulting in phagocytosis blockade. In this way CD47 acts as a “don´t eat me signal” for healthy self-cells; accordingly, loss of CD47 leads to phagocytosis of aged or damaged cells. Taking advantage of this anti-phagocytic signal provided by CD47, many types of tumors overexpress this protein, thereby avoiding phagocytosis by macrophages and aiding in the survival of cancer cells. The aim of this review is to describe the physiologic the pathophysiologic role of CD47; summarize the available high-quality information about this molecule as a potential biomarker and/or therapeutic target in cancer; finally, we present an in-depth analysis of the available information about CD47 in association with nonsmall cell lung cancer, EGFR mutations, and tumor microenvironment.
Collapse
|
49
|
Pozdeyev N, Erickson TA, Zhang L, Ellison K, Rivard CJ, Sams S, Hirsch FR, Haugen BR, French JD. Comprehensive Immune Profiling of Medullary Thyroid Cancer. Thyroid 2020; 30:1263-1279. [PMID: 32242507 PMCID: PMC7869888 DOI: 10.1089/thy.2019.0604] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Despite advances in targeted kinase inhibitor development for patients with medullary thyroid cancer (MTC), most patients develop resistance and would benefit from alternative approaches. Immune-based therapies are now considered for patients with progressive MTC. This study is the first comprehensive assessment of the immune milieu, immune-suppressive molecules, and potential tumor antigens in patients with MTC. Methods: Primary and/or regionally metastatic tumor tissues from 46 patients with MTC were screened for immune infiltrates by using standard immunohistochemistry (IHC) and further analyzed by multispectral imaging for T cell and myeloid markers. RNASeq expression profiling was performed in parallel. RNASeq, targeted sequencing, and IHC techniques identified cancer-associated mutations and MTC-enriched proteins. Results: Organized immune infiltration was observed in 49% and 90% of primary and metastatic tumors, respectively. CD8+ cells were the dominant T cell subtype in most samples, while CD163+ macrophages were most frequent among myeloid infiltrates. PD-1+ T cells were evident in 24% of patients. Myeloid subsets were largely major histocompatibility complex II (MHCII-), suggesting a dysfunctional phenotype. Expression profiling confirmed enrichment in T cell, macrophage, and inflammatory profiles in a subset of samples. PD-L1 was expressed at low levels in a small subset of patients, while the immune regulatory molecules CD155 and CD47 were broadly expressed. Calcitonin, GRP, HIST1H4E, NOMO3, and NPIPA2 were highly and specifically expressed in MTC. Mutations in tumor suppressors, PTEN and p53, and mismatch repair genes, MSH2 and MSH6, may be relevant to disease progression and antigenicity. Conclusions: This study suggests that MTC is a more immunologically active tumor that has been previously reported. Patients with advanced MTC should be screened for targetable antigens and immune checkpoints to determine their eligibility for current clinical trials. Additional studies are necessary to fully characterize the antigenic potential of MTC and may encourage the development of adoptive T cells therapies for this rare tumor.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Timothy A. Erickson
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Lian Zhang
- Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Kim Ellison
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Christopher J. Rivard
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Sharon Sams
- Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Fred R. Hirsch
- Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado, USA
| | - Bryan R. Haugen
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado, USA
| | - Jena D. French
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado, USA
- Address correspondence to: Jena D. French, PhD, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12801 East 17th Avenue, RC1 South, 7401D, Campus Box 8106, Aurora, CO 80045, USA
| |
Collapse
|
50
|
Yuba E, Fukaya Y, Yanagihara S, Kasho N, Harada A. Development of Mannose-Modified Carboxylated Curdlan-Coated Liposomes for Antigen Presenting Cell Targeted Antigen Delivery. Pharmaceutics 2020; 12:pharmaceutics12080754. [PMID: 32796567 PMCID: PMC7465930 DOI: 10.3390/pharmaceutics12080754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/03/2023] Open
Abstract
Specific delivery to antigen presenting cells (APC) and precise control of the intracellular fate of antigens are crucial to induce cellular immunity that directly and specifically attacks cancer cells. We previously achieved cytoplasmic delivery of antigen and activation of APC using carboxylated curdlan-modified liposomes, which led to the induction of cellular immunity in vivo. APCs express mannose receptors on their surface to recognize pathogen specifically and promote cross-presentation of antigen. In this study, mannose-residue was additionally introduced to carboxylated curdlan as a targeting moiety to APC for further improvement of polysaccharide-based antigen carriers. Mannose-modified curdlan derivatives were synthesized by the condensation between amino group-introduced mannose and carboxy group in pH-sensitive curdlan. Mannose residue-introduced carboxylated curdlan-modified liposomes showed higher pH-sensitivity than that of liposomes modified with conventional carboxylated curdlan. The introduction of mannose-residue to the liposomes induced aggregation in the presence of Concanavalin A, indicating that mannose residues were presented onto liposome surface. Mannose residue-introduced carboxylated curdlan-modified liposomes exhibited high and selective cellular association to APC. Furthermore, mannose residue-introduced carboxylated curdlan-modified liposomes promoted cross-presentation of antigen and induced strong antitumor effects on tumor-bearing mice. Therefore, these liposomes are promising as APC-specific antigen delivery systems for the induction of antigen-specific cellular immunity.
Collapse
Affiliation(s)
- Eiji Yuba
- Correspondence: (E.Y.); (A.H.); Tel.: +81-72-254-9330 (E.Y.); Fax: +81-72-254-9330 (E.Y.)
| | | | | | | | - Atsushi Harada
- Correspondence: (E.Y.); (A.H.); Tel.: +81-72-254-9330 (E.Y.); Fax: +81-72-254-9330 (E.Y.)
| |
Collapse
|